Sample records for programmable avalanche gain

  1. TCAD simulation of Low Gain Avalanche Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh, E-mail:; Ranjan, Kirti


    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  2. TCAD simulation of Low Gain Avalanche Detectors (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti


    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  3. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product. (United States)

    Hayat, Majeed M; Ramirez, David A


    Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all under the assumption that the electric field driving the avalanche process is time varying and spatially nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference in optical receivers without sacrificing sensitivity.

  4. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian


    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  5. Demonstration of multifunctional bi-colour-avalanche gain detection in HgCdTe FPA (United States)

    Perrais, G.; Rothman, J.; Destefanis, G.; Baylet, J.; Castelein, P.; Chamonal, J.-P.; Tribolet, P.


    The characteristics of a multifunctional two-colour-avalanche gain Focal Plane Array, FPA, in which one of the bands can be used in avalanche mode to produce current gain with low excess noise and low dark current, are reported. The multifunctional FPA is based on a bi-colour pseudo-planar MCT detector structure, developed at the CEA-LETI, which superposes two planar type diodes with different composition of Cd. The electro-optic characteristics of the multifunctional LW-MW-avalanche gain detectors are reported for 256x256 30μm pitch arrays hybridised on a bi-colour read-out circuit, and for direct measurements on 30μm pitch test arrays. An avalanche gain of M=5300 at an inverse bias of V pol=-12.5V and a noise factor close to F=1, is reported for MW wavelength diode, characterised by a cut-off wavelength of λ C=5.03μm. A new measure of the sensitivity limit of the APD, the equivalent shot noise limited dark current, i eq_in, was defined and estimated from dark current noise measurements i eq_in=3.0 10 -10A at gain M<300 and i eq_in=1.0 10 -10A at M=5300. The results will be discussed in view of the wide scope of applications which are enabled by the multifunctional FPAs.

  6. Design and TCAD simulation of double-sided pixelated low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Pancheri, Lucio [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Paternoster, Giovanni [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Cartiglia, Nicolo; Cenna, Francesca [INFN Sezione di Torino, Via P. Giuria 2, 10125 Torino (Italy); Bruzzi, Mara [Dipartimento di FIsica e Astronomia, Università di Firenze, and INFN Sezione di Firenze, Via Giovanni Sansone 1, 50019 Sesto Fiorentino (Italy)


    We introduce a double-sided variant of low gain avalanche detector, suitable for pixel arrays without dead-area in between the different read-out elements. TCAD simulations were used to validate the device concept and predict its performance. Different design options and selected simulation results are presented, along with the proposed fabrication process.

  7. Gas gain characteristics of parallel plate avalanche counter

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro [Kyoto Univ. (Japan). Faculty of Engineering; Nakagome, Y.


    In the conventional gas gain theory, the Townsend primary ionization coefficient is expressed as a function of S, which is the ratio of the electric field strength (E) to the gas density (N). In this paper, an experimental form of {alpha} is derived from the data and is compared with the formula so far. (J.P.N.)

  8. Analysis of single photon detection in avalanche photodetectors with multi-gain-stage multiplication region. (United States)

    Hosseinzadeh, Amir; Zavvari, Mahdi


    We report the design and analysis of a single photon avalanche detector (SPAD) with cascaded multiplication stages with asymmetric gain series for near-IR applications. The asymmetric gain profile allows us to selectively enhance the ionization coefficient for injected electrons and suppress the hole-initiated ionization by repetition of high and low field layers. The low field layer acts as a carrier relaxation region, which inhibits avalanche feedback between stages; hence, it is expected to have a lower dark count rate (DCR). The gain stage consists of three distinct layers with different electric fields, which can be adjusted by geometrical and mole fraction design. In this paper we study the effect of these layers' field and thickness on the single photon quantum efficiency (SPQE) and DCR of the proposed SPAD. Our results show that the high-field layer can better influence the performance of the detector rather than the others. In comparison with a conventional SPAD with a uniform multiplication region, our proposed structure shows lower DCR for a same SPQE.

  9. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, Pablo; Flores, D., E-mail:; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.


    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  10. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    Directory of Open Access Journals (Sweden)

    Hall David


    Full Text Available While silicon single-photon avalanche diodes (SPAD have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  11. InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product. (United States)

    Xie, Shiyu; Zhou, Xinxin; Zhang, Shiyong; Thomson, David J; Chen, Xia; Reed, Graham T; Ng, Jo Shien; Tan, Chee Hing


    Increasing reliance on the Internet places greater and greater demands for high-speed optical communication systems. Increasing their data transfer rate allows more data to be transferred over existing links. With optical receivers being essential to all optical links, bandwidth performance of key components in receivers, such as avalanche photodiodes (APDs), must be improved. The APDs rely on In0.53Ga0.47As (grown lattice-matched to InP substrates) to efficiently absorb and detect the optical signals with 1310 or 1550 nm wavelength, the optimal wavelengths of operation for these optical links. Thus developing InP-compatible APDs with high gain-bandwidth product (GBP) is important to the overall effort of increasing optical links' data transfer rate. Here we demonstrate a novel InGaAs/AlGaAsSb APD, grown on an InP substrate, with a GBP of 424 GHz, the highest value reported for InP-compatible APDs, which is clearly applicable to future optical communication systems at or above 10 Gb/s. The data reported in this article are available from the figshare digital repository ( 3827460.v1).

  12. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  13. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain (United States)

    Wu, Hualong; Wu, Weicong; Zhang, Hongxian; Chen, Yingda; Wu, Zhisheng; Wang, Gang; Jiang, Hao


    Solar-blind avalanche photodiodes were fabricated with an all AlGaN-based epitaxial structure on sapphire by metal-organic chemical vapor deposition. The devices demonstrate a maximum responsivity of 114.1 mA/W at 278 nm and zero bias, corresponding to an external quantum efficiency (EQE) of 52.7%. The EQE improves to 64.8% under a bias of -10 V. Avalanche gain higher than 2 × 104 was obtained at a bias of -140 V. The high performance is attributed to the all AlGaN-based p-i-n structure comprised of undoped and Si-doped n-type Al0.4Ga0.6N on a high quality AlN layer and highly conductive p-type AlGaN grown with In-surfactant-assisted Mg-delta doping.

  14. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2 (United States)

    Lange, J.; Carulla, M.; Cavallaro, E.; Chytka, L.; Davis, P. M.; Flores, D.; Förster, F.; Grinstein, S.; Hidalgo, S.; Komarek, T.; Kramberger, G.; Mandić, I.; Merlos, A.; Nozka, L.; Pellegrini, G.; Quirion, D.; Sykora, T.


    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 1015 neq/cm2. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 1015 neq/cm2, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  15. Arctic avalanche dynamics (United States)

    Prokop, Alexander; Eiken, Mari; Ganaus, Kerstin; Rubensdotter, Lena


    Since the avalanche disaster December 19th, 2015 in Longyearbyen (Svalbard) happened, where two people were killed within settlements, the dynamic of avalanches in arctic regions is of increasing interest for hazard mapping in such areas. To investigate the flow behavior of arctic avalanches we focused on avalanches that occurred in Central Svalbard. In this regions historic avalanche events can be analyzed due to their deposition behavior visible on geomorphological maps in the run-out area of the avalanches. To get an idea about possible snow mass that was involved in the avalanches we measured the snow volume balance of recent avalanches (winters 2015/16) via terrestrial laser scanning. In this way we gained reasonable data to set calibration and input parameters for dynamic avalanche modeling. Using state of the art dynamic avalanche models allowed us to back calculate how much snow was involved in the historic avalanches that we identified on the geomorphological maps and what the return period of those events are. In our presentation we first explain our methodology; we discuss arctic avalanche behavior of the avalanches measured via terrestrial laser scanning and how the dynamic avalanche models performed for those case examples. Finally we conclude how our results can improve avalanche hazard mapping for arctic regions.

  16. Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications

    CERN Document Server

    Carulla, M.; Fernández-Martínez, P.; IMB-CNM (CSIC); Flores, D.; IMB-CNM (CSIC); González, J.; Hidalgo, S.; Jaramillo, R.; Merlos, A.; Palomo, F.R.; Pellegrini, G; Quirion, D.; Vila, I.


    ABSTRACT: The first Inverse Low Gain Avalanche Detector (iLGAD) have been fabricated at IMB-CNM (CSIC). The iLGAD structure includes the multiplication diffusions at the ohmic contact side while the segmentation is implemented at the front side with multiple P + diffusions. Therefore, iLGAD is P on P position-sensitive detector with a uniform electric field all along the device area that guarantees the same signal amplification wherever a particle passes through the sensitive bulk solving the main draw of the LGAD microstrip detector. However, the detection current is dominated by holes flowing back from the multiplication junction with the subsequent transient current pulse duration increase in comparison with conventional LGAD counterparts. Applications of iLGAD range from tracking and timing applications like determination of primary interaction vertex to medical imaging. The paper addresses the optimization of the iLGAD structure with the aid of TCAD simul...

  17. High gain and low excess noise near infrared single photon avalanche detector (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    We present the discrete amplification approach used for development of a very high gain and low excess noise factor in the near infrared wavelength region. The devices have the following performance characteristics: gain > 2X105, excess noise factor researchers in the fields of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defense and aerospace applications.

  18. arXiv Simulation of gain stability of THGEM gas-avalanche particle detectors

    CERN Document Server

    Correia, P.M.M.; Azevedo, C.D.R.; Breskin, A.; Bressler, S.; Oliveira, C.A.B.; Silva, A.L.M.; Veenhof, R.; Veloso, J.F.C.A.


    Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrode's hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously.

  19. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time ( 2X105, excess noise factor researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  20. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained (United States)

    Shortall, Ruth; Uihlein, Andreas


    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  1. Secondary avalanches in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Tapan, İlhan [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Veenhof, Rob [RD51 Collaboration, CERN, Genève (Switzerland)


    Avalanche development in gas-based detectors relies not only on direct ionisation but also on excitation of noble gas atoms. Some quencher molecules can be ionised when they collide with excited atoms, a process on which we reported earlier [1]. Alternatively, excited atoms can decay by photon emission. If these photons are insufficiently absorbed by the quencher, yet capable of ionising, then they may escape from the avalanche region and start secondary avalanches. This process, called photon feedback, leads to an over-exponential increase of the gas gain which limits the working range. In this paper, we derive photon feedback parameters from published gain measurements for several gas mixtures and fit these parameters in a model which describes their dependence on the quencher concentration and the pressure.

  2. The experience of dentists who gained enhanced skills in endodontics within a novel pilot training programme. (United States)

    Eliyas, S; Briggs, P; Gallagher, J E


    Objective To explore the experiences of primary care dentists following training to enhance endodontic skills and their views on the implications for the NHS.Design Qualitative study using anonymised free text questionnaires.Setting Primary care general dental services within the National Health Service (NHS) in London, United Kingdom.Subjects and methods Eight primary care dentists who completed this training were asked about factors affecting participant experience of the course, perceived impact on themselves, their organisation, their patients and barriers/facilitators to providing endodontic treatment in NHS primary care. Data were transferred verbatim to a spreadsheet and thematically analysed.Intervention 24-month part-time educational and service initiative to provide endodontics within the NHS, using a combination of training in simulation lab and treatment of patients in primary care.Results Positive impacts were identified at individual (gains in knowledge, skills, confidence, personal development), patient (more teeth saved, quality of care improved) and system levels (access, value for money). Suggested developments for future courses included more case discussions, teaching of practical skills earlier in the course and refinement of the triaging processes. Barriers to using the acquired skills in providing endodontic treatment in primary care within the NHS were perceived to be resources (remuneration, time, skills) and accountability. Facilitators included appropriately remunerated contracts, necessary equipment and time.Conclusion This novel pilot training programme in endodontics combining general practice experience with education/training, hands-on experience and a portfolio was perceived by participants as beneficial for extending skills and service innovation in primary dental care. The findings provide insight into primary dental care practitioners' experience with education/training and have implications for future educational initiatives in

  3. Negative feedback avalanche diode (United States)

    Itzler, Mark Allen (Inventor)


    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  4. Assessing the importance of terrain parameters on glide avalanche release (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.


    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  5. Gaining perspective on own illness - the lived experiences of a patient education programme for women with treated coeliac disease. (United States)

    Ring Jacobsson, Lisa; Milberg, Anna; Hjelm, Katarina; Friedrichsen, Maria


    To explore the lived experiences of women with coeliac disease after attending a patient education programme, to gain a broader perspective of its influence. Adults, particularly women, with coeliac disease report suffering from poor well-being and reduced quality of life in terms of health. Patient education programmes might support and encourage them in the search for possible improvements in lifestyle and in their approach to the disease. A qualitative phenomenological study. Personal narrative interviews with 14 women suffering from coeliac disease who had participated in an educational programme. Data analysis in accordance with Giorgi was performed. The essential structure of women's lived experiences following their participation in the patient education programme was found to be an interaction with others with the same disease, which left the women feeling individually strengthened. The interaction enabled the participants to acquire a broader view of their life with coeliac disease. As a result, this realigned their sense of self in relation to their own disease. In coping with coeliac disease, it seems that women need interaction with others with the disease to experience togetherness within a group, get the opportunity to compare themselves with others and to exchange knowledge. The interaction appears to result in that women acquire an overview of life with the disease, develop a greater confidence and dare to try new things in life. When designing a patient education programme it seems important to consider the needs of persons to meet others with the same disease, and to ask them about their need for knowledge, rather than simply assuming that health care professionals know what they need. © 2016 John Wiley & Sons Ltd.

  6. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends (United States)

    Hong, Zhang; Jie, Zhang; Mudan, Zhang; Xue, Li; Jun, Cheng


    A multifunctional programmable gain amplifier (PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends (AFE) is presented. With a switched-capacitor structure, the PGA also acts as a sample and holder of the analog-to-digital converter (ADC) in the AFE to reduce the power consumption and chip area of the whole AFE. Furthermore, the PGA converts the single-ended video signal into differential signal for the following ADC to reject common-mode noise and interferences. The 9-bit digital-to-analog converter (DAC) for gain and offset adjusting is embedded into the switched capacitor networks of the PGA. A video AFE integrated circuit based on the proposed PGA is fabricated in a 0.18-μm process. Simulation and measurement results show that the PGA achieves a gain control range of 0.90 to 2.34 and an offset control range of -220 to 220 mV while consuming 10.1 mA from a 1.8 V power supply. Project supported by the National Natural Science Foundation of China (No. 61106027), and the Science and Technology Project of Shanxi Province (No. 2014K05-14).

  7. Modeling Double Subjectivity for Gaining Programmable Insights: Framing the Case of Uber

    Directory of Open Access Journals (Sweden)

    Loretta Henderson Cheeks


    Full Text Available The Internet is the premier platform that enable the emergence of new technologies. Online news is unstructured narrative text that embeds facts, frames, and amplification that can influence society attitudes about technology adoption. Online news sources are carriers of voluminous amounts of news for reaching significantly large audience and have no geographical or time boundaries. The interplay of complex and dynamical forces among authors and readers allow for progressive emergent and latent properties to exhibit. Our concept of “Double subjectivity” provides a new paradigm for exploring complementary programmable insights of deeply buried meanings in a system. The ability to understand internal embeddedness in a large collection of related articles are beyond the reach of existing computational tools, and are hence left to human readers with unscalable results. This paper uncovers the potential to utilize advanced machine learning in a new way to automate the understanding of implicit structures and their associated latent meanings to give an early human-level insight into emergent technologies, with a concrete example of “Uber”. This paper establishes the new concept of double subjectivity as an instrument for large-scale machining of unstructured text and introduces a social influence model for the discovery of distinct pathways into emerging technology, and hence an insight. The programmable insight reveals early spatial and temporal opinion shift monitoring in complex networks in a structured way for computational treatment and visualization.

  8. Ultraviolet avalanche photodiodes (United States)

    McClintock, Ryan; Razeghi, Manijeh


    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  9. Synoptic atmospheric circulation patterns controlling avalanche activity in central Svalbard (United States)

    Hancock, Holt; Prokop, Alexander; Eckerstorfer, Markus; Hendrikx, Jordy


    Central Svalbard's avalanche activity is primarily controlled by the local and synoptic scale meteorological conditions characterizing the region's winter storms. Previous work has described Svalbard's direct-action snow climate as High-Arctic maritime based on the unique meteorological conditions and resulting snowpack stratigraphy observed in the region. To gain a better understanding of the broad-scale spatial controls on regional avalanche activity in Svalbard, this work investigates synoptic atmospheric circulation patterns associated with observed avalanche cycles during the 2007/2008 to 2015/2016 winter seasons. We use avalanche observations systematically recorded as part of the Cryoslope Svalbard project from 2007-2010 in combination with additional observations from notable avalanche events from 2010-2016 to develop a regional avalanche cycle history. We then compare the timing of these avalanche cycles to an existing daily calendar of synoptic types and NCEP/NCAR Reanalysis datasets to characterize the synoptic atmospheric circulation patterns influencing this avalanche activity. Our results indicate regional avalanche cycles are driven by cyclonic activity in the seas surrounding Svalbard under synoptic circulation patterns associated with warm air advection and moisture transport from lower latitudes to Svalbard. The character and spatial distribution of observed avalanche activity can be differentiated by atmospheric circulation type: mid-winter slushflow and wet slab avalanche cycles, for example, are typically associated with meridional southerly flow over the North Atlantic bringing warm air and heavy precipitation to Svalbard. Such analyses can provide a foundation upon which to improve the understanding of central Svalbard's snow climate to facilitate regional avalanche forecasting efforts.

  10. programme

    African Journals Online (AJOL)

    Aid for AIDS (AfA) is a disease management programme (DIVIPI available to beneficiaries and employees of contracted medical funds and ... the challenges alluded to in the first article, including late enrolment and the measurement of survival, especially in patients with ... I the HIV prevalence and incidence (new infections].

  11. Avalanche modeling in forested terrain (United States)

    Teich, M.; Bartelt, P. A.; Bebi, P.; Grêt-Regamey, A.


    Mountain forests are a valuable defense against snow avalanches. Currently, however, little quantitative information is available to estimate the effect of forest structure on the motion of avalanches. Avalanche flow is strongly influenced by the condition and composition of vegetation in the avalanche path. This potential decelerating effect has, however, not yet been quantified. We apply the numerical avalanche dynamics program RAMMS to simulate several well documented small avalanche events in forests. The two-dimensional model RAMMS predicts avalanche run-out distances, flow velocities and impact pressures in complex three-dimensional terrain by numerically solving a system of partial differential equations governing avalanche flow. Based on detailed data on forest conditions and avalanche characteristics such as release areas, fracture heights and length collected in forested areas, where avalanches were observed, we modify the input parameters of the RAMMS model to match the observations. We compare the model output with observed run-out distances in order to quantify the decelerating effects of different forest structures. Implementing avalanche forest interactions into numerical avalanche simulations will open new fields of application for avalanche models, e.g. for managing mountain forests and by better accounting for mountain forests as an effective biological protection measure against snow avalanches in natural hazard mapping and landscape planning.

  12. GEM scintillation readout with avalanche photodiodes

    CERN Document Server

    Conceição, A S; Fernandes, L M P; Monteiro, C M B; Coelho, L C C; Azevedo, C D R; Veloso, J F C A; Lopesac, J A M; dos Santosa, J M F


    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  13. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process (United States)

    Mohammed Napiah, Zul Atfyi Fauzan; Hishiki, Takuya; Iiyama, Koichi


    Avalanche photodiodes fabricated by CMOS process (CMOS-APDs) have features of high avalanche gain below 10 V, wide bandwidth over 5 GHz, and easy integration with electronic circuits. In CMOS-APDs, guard ring structure is introduced for high-speed operation by canceling photo-generated carriers in the substrate at the sacrifice of the responsivity. We describe here wavelength dependence of the responsivity and the bandwidth of the CMOS-APDs with shorted and opened guard ring structure.

  14. Solid-state flat panel imager with avalanche amorphous selenium (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei


    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  15. Digitally Programmable and Reconfigurable Multi Input, Multi Mode, Multi Output, Variable Gain, Wideband, Track and Hold System (United States)


    multi output, variable gain amplifier with track and hold capability, is demonstrated. RF bandwidth from 500MHz to over 20GHz is achieved with >20...optimization for minimizing noise on signal “peak” capture. Keywords: Reconfigurable RF ; Multi Mode RF ; Track and Hold; STAR; SiGe BiCMOS Introduction A...GHz Fig Figure 4. P1d ble Gain Tra e 5 shows exa ling a 7GHz R power level w ity gain. Figure e 6 shows spe d down conve ger 7GHz RF output

  16. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode (United States)

    Tan, H. H.


    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  17. Laboratory singing sand avalanches. (United States)

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane


    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  18. Influence of snow-cover properties on avalanche dynamics (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.


    Snow avalanches with the potential of reaching traffic routes and settlements are a permanent winter threat for many mountain communities. Snow safety officers have to take the decision whether to close a road, a railway line or a ski slope. Those decisions are often very difficult as they demand the ability to interpret weather forecasts, to establish their implication for the stability and the structure of the snow cover and to evaluate the influence of the snow cover on avalanche run-out distances. In the operational programme 'Italy-Switzerland, project STRADA' we focus on the effects of snow cover on avalanche dynamics, and thus run-out distance, with the aim to provide a better understanding of this influence and to ultimately develop tools to support snow safety officers in their decision process. We selected five avalanches, measured at the Vallée de la Sionne field site, with similar initial mass and topography but different flow dynamics and run-out distances. Significant differences amongst the individual avalanches could be observed for front and internal velocities, impact pressures, flow regimes, deposition volumes and run-out distances. For each of these avalanches, the prevailing snow conditions at release were reconstructed using field data from local snowpits or were modeled with SNOWPACK. Combining flow dynamical data with snow cover properties shows that erodible snow depth, snow density and snow temperature in the snow pack along the avalanche track are among the decisive variables that appear to explain the observed differences. It is further discussed, how these influencing factors can be quantified and used for improved predictions of site and time specific avalanche hazard.

  19. Progress in simulations of micropattern gas avalanche detectors

    CERN Document Server

    Cwetanski, Peter


    Helpful for a better understanding of the intrinsic processes in the various gas avalanche detectors are simulations, involving three- dimensional Finite Element Method (FEM) field map computations in order to describe the more and more complex geometries. Drift, multiplication and attachment procedures are simulated using Monte Carlo techniques. Recent results show a remarkable agreement with gain and energy resolution measurements thanks to the refined computations of gas transport properties and improved avalanching models. As examples the influence of wire eccentricity on gas gain and energy resolution in the ATLAS TRT straws is shown as well as performed studies of the Micromegas detector. 8 Refs.

  20. Characteristics of avalanche accidents and a overview of avalanche equipment

    Directory of Open Access Journals (Sweden)

    Mateusz Biela


    Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.

  1. Integrated Avalanche Photodiode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Eric S.


    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  2. Integrated avalanche photodiode arrays (United States)

    Harmon, Eric S.


    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  3. Low dose digital X-ray imaging with avalanche amorphous selenium (United States)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei


    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  4. A 515 nW, 0-18 dB Programmable Gain Analog-to-Digital Converter for In-Channel Neural Recording Interfaces. (United States)

    Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel; Medeiro, Fernando


    This paper presents a low-area low-power Switched-Capacitor (SC)-based Programmable-Gain Analog-to-Digital Converter (PG-ADC) suitable for in-channel neural recording applications. The PG-ADC uses a novel implementation of the binary search algorithm that is complemented with adaptive biasing techniques for power saving. It has been fabricated in a standard CMOS 130 nm technology and only occupies 0.0326 mm(2). The PG-ADC has been optimized to operate under two different sampling modes, 27 kS/s and 90 kS/s. The former is tailored for raw data conversion of neural activity, whereas the latter is used for the on-the-fly feature extraction of neural spikes. Experimental results show that, under a voltage supply of 1.2 V, the PG-ADC obtains an ENOB of 7.56 bit (8-bit output) for both sampling modes, regardless of the gain setting. The amplification gain can be programmed from 0 to 18 dB. The power consumption of the PG-ADC at 90 kS/s is 1.52 μW with a FoM of 89.49 fJ/conv, whereas at 27 kS/s it consumes 515 nW and obtains a FoM of 98.31 fJ/conv .

  5. Sustainability of gains made in a primary school HIV prevention programme in Kenya into the secondary school years. (United States)

    Maticka-Tyndale, Eleanor


    The question addressed in this paper is whether the beneficial effects of Primary School Action for Better Health (PSABH), an HIV prevention programme delivered in Kenyan primary schools, continue once students move on to secondary schools. Questionnaires were completed in December 2005 and January 2006 by all form 1-3 students in 154 randomly selected secondary schools. Students who had attended primary schools with PSABH programming were compared to those who did not on knowledge, attitudes and behaviours using multivariate regression with controls for gender, school year, religion and financial resources. Students who attended PSABH primary schools were significantly more likely to have higher levels of knowledge and attitudes that were more supportive of sexual restraint, condom use and HIV testing. They were more likely to have used several safer sex practices and to have been tested for HIV. The effects were strongest in the first year of secondary school and decreased thereafter. PSABH continues to have a beneficial effect for students who continue to secondary school. Copyright 2009 The Association for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  6. Avalanche Photodiode Arrays for Optical Communications Receivers (United States)

    Srinivasan, M.; Vilnrotter, V.


    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  7. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)


    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  8. Type-II Superlattice Avalanche Photodiodes (United States)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most

  9. Electron avalanches in inhomogeneous media

    CERN Document Server

    Byrne, J


    We derive a general expression for the cumulant generating function describing the propagation of electron avalanches in inhomogeneous media. The results have applications in the theory of particle counting devices which rely on signal amplification by electron multiplication.

  10. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)


    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  11. Single electron multiplication distribution in GEM avalanches (United States)

    László, András; Hamar, Gergő; Kiss, Gábor; Varga, Dezső


    In this paper, measurement results and experimental methodology are presented on the determination of multiplication distributions of avalanches initiated by single electron in GEM foils. The measurement relies on the amplification of photoelectrons by the GEM under study, which is subsequently amplified in an MWPC for signal enhancement and readout. The intrinsic detector resolution, namely the sigma-over-mean ratio of the multiplication distribution is also elaborated. Small gain dependence of the shape of the avalanche response distribution is observed in the range of net effective gain of 15 to 100. The distribution has an exponentially decaying tail at large amplitudes. At small amplitudes, the applied working gas is seen to have a well visible effect on the shape of the multiplication distribution. Equivalently, the working gas has an influence on the intrinsic detector resolution of GEMs via suppression of the low amplitude responses. A sigma-over-mean ratio of 0.75 was reached using a neon based mixture, whereas other gases provided an intrinsic detector resolution closer to 1, meaning a multiplication distribution closer to the low-field limit exponential case.

  12. Neuronal avalanches and coherence potentials (United States)

    Plenz, D.


    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  13. First approximations in avalanche model validations using seismic information (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty


    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  14. Avalanche effects near nanojunctions (United States)

    Nandigana, Vishal V. R.; Aluru, N. R.


    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  15. Avalanche risk assessment in Russia (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla


    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  16. Reducing financial avalanches by random investments (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk


    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  17. Development of solid-state avalanche amorphous selenium for medical imaging (United States)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei


    Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel. PMID:25735277

  18. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes. (United States)

    Farrell, Alan C; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M; Huffaker, Diana L


    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  19. Lumped transmission line avalanche pulser (United States)

    Booth, Rex


    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  20. Avalanche dynamics on a barchan dune (United States)

    Nield, Joanna; Baddock, Matthew; Wiggs, Giles


    Avalanching (or grainflow) on the lee side of barchan dunes, is the main mechanism by which these aeolian bedforms migrate. However, we know very little about how the size, shape and location of these sediment deposits change under variable wind and grainfall conditions. Avalanches are initiated when sediment deposited close to the dune brink as a 'bulge', exceeds an angle of repose and is transported down the lee slope. The placement of the bulge depends on the distribution of grainfall on the lee slope, which in turn, is related to wind speed. Here we use terrestrial laser scanning (TLS) to measure avalanche dynamics on a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that as the wind speed and grainfall zone increase, avalanches are initiated further downslope. Under wind speeds above 6 m/s, we also observe secondary avalanches which are initiated partway down the lee slope. This increase in sand transport conditions produces wider, longer and thicker avalanche lobe deposits. It also erodes more sediment within the erosion scarp that propagates upslope from the point of avalanche initiation. Along with the increased avalanche size, stronger winds produce steeper slopes, greater avalanche initiation angles and an increase in avalanche frequency. This study provides a valuable dataset of avalanche morphodynamics which offers insight into the influence of wind speed and grainfall on barchan dune mobility.

  1. Experimental Avalanches in a Rotating Drum (United States)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  2. Computational snow avalanche simulation in forested terrain (United States)

    Teich, M.; Fischer, J.-T.; Feistl, T.; Bebi, P.; Christen, M.; Grêt-Regamey, A.


    Two-dimensional avalanche simulation software operating in three-dimensional terrain is widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure against avalanches; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. We present an evaluation and operationalization of a novel detrainment function implemented in the avalanche simulation software RAMMS for avalanche simulation in forested terrain. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The relationship is parameterized by the detrainment coefficient K [kg m-1 s-2] accounting for differing forest characteristics. We varied K when simulating 40 well-documented small- to medium-scale avalanches, which were released in and ran through forests of the Swiss Alps. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown closure, vertical structure and surface cover, for example, values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulations will improve current applications for avalanche simulation tools in mountain forest and natural hazard management.

  3. Avalanche hazard and control in Kazakhstan

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky


    Full Text Available In Kazakhstan, area of 124 thousand km2 is prone to the avalanche hazard. Avalanches are released down in mountain regions situated along the eastern boundary of Kazakhstan. Systematic studies of avalanches here were started in 1958 by explorer I.S. Sosedov; later on, I.V. Seversky continued these investigations in Institute of Geography of the Kazakh Soviet Republic. Actually, he founded the Kazakh school of the avalanche studies. In 1970–1980s, five snow-avalanche stations operated in Kazakhstan: two in Il’ Alatau, two in Zhetysu Alatau, and one in the Altai. At the present time, only two stations and two snow-avalanche posts operate, and all of them are located in Il’ Alatau.Since 1951 to 2013, 75 avalanches took place in Kazakhstan, releases of them caused significant damages. For this period 172 people happened to be under avalanches, among them 86 perished. Large avalanche catastrophes causing human victims and destructions took place in Altai in 1977 and in Karatau in 1990. In spring of 1966, only in Il’ Alatau avalanches destroyed more 600 ha of mature fir (coniferous forest, and the total area of forest destroyed here by avalanches amounts to 2677 ha or 7% of the total forest area.For 48 years of the avalanche observations, there were 15 winters with increased avalanche activity in the river Almatinka basin when total volume of released snow exceeded annual mean value of 147 thousand m3. During this period, number of days with winter avalanches changed from three (in season of 1973/1974 to 28 (1986/1987, the average for a year is 16 days for a season. Winter with the total volume of snow 1300 thousand m3 occur once in 150 years. Individual avalanches with maximal volume of 350 thousand m3 happen once in 80 years.Preventive avalanche releases aimed at protection of roads and settlements are used in Kazakhstan since 1974. These precautions are taken in Il’ Alatau, Altai, and on Kalbinsky Range. Avalanches are released with the

  4. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K


    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  5. GIS-aided avalanche warning in Norway (United States)

    Jaedicke, Christian; Syre, Egil; Sverdrup-Thygeson, Kjetil


    Avalanche warning for large areas requires the processing of an extensive amount of data. Information relating to the three basic requirements for avalanche warning - knowledge of terrain, the snow conditions, and the weather - needs to be available for the forecaster. The information is highly variable in time. The form and visualization of the data is often decisive for the use by the avalanche forecasters and therefore also for the quality of the produced forecasts. Avalanche warnings can be issued at different scales from national to regional and down to object specific. Often the same warning service is working at different scales and for different clients requiring a flexible and scalable approach. The workflow for producing avalanche forecasts must be extremely efficient - all the way from acquiring observation data, evaluating the situation, down to publishing the new forecast. In this study it has been an aim to include the entire workflow in a single web application. A Geographic Information Systems (GIS) solution was chosen to include all data needed by the forecaster for the avalanche danger evaluation. This interactive system of maps features background information for the entire country, such as topographic maps, slope steepness, aspect, hill shades and satellite images. In each avalanche warning area, all active avalanche paths are plotted including information on wind exposure. Each avalanche path is linked to a webpage with more details, such as fall height, release area elevation and pictures. The avalanche path webpage also includes information on the object at risk e.g. buildings, roads, or other objects. Thus, the forecaster can easily get an overview on the overall situation and focus on single avalanche paths to generate detailed avalanche warnings for the client.

  6. Terrain Classification of Norwegian Slab Avalanche Accidents (United States)

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart


    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  7. Towards an understanding of flows in avalanche transport phenomena (United States)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.


    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  8. Frontal Dynamics of Powder Snow Avalanches (United States)

    Louge, M. Y.; Carroll, C. S.; Turnbull, B.


    We model the dynamics of the head of dilute powder snow avalanches sustained by a massive frontal blow-out, arising as a weakly cohesive snow cover is fluidized by the very pore pressure gradients that the avalanche induces within the snow pack. Such material eruption just behind the front acts as a source of denser fluid thrust into a uniform ambient air flow at high Reynolds number. In such "eruption current", fluidization depth is inversely proportional to a bulk Richardson number representing avalanche height. By excluding situations in which the snow cover is not fluidized up to its free surface, we derive a criterion combining snow pack friction and density indicating which avalanches can produce a sustainable powder cloud. A mass balance involving snow cover and powder cloud sets avalanche height and mean density. By determining which solution of the mass balance is stable, we find that avalanches reach constant growth and acceleration rates for fixed slope and avalanche width. Under these conditions, we calculate the fraction of the fluidized cover that is actually scoured and blown-out into the cloud, and deduce from a momentum balance on the head that the avalanche accelerates at a rate only 14% of the gravitational component along the flow. We also calculate how far a powder cloud travels until its mean density becomes constant. Finally, we show that the dynamics of powder snow avalanches are crucially affected by the rate of change of their width, for example by reaching an apparent steady speed as their channel widens. If such widening is rapid, or if slope inclination vanishes, we calculate where and how powder clouds collapse. Predictions agree well with observations of powder snow avalanches carried out at the Vallee de la Sionne (Switzerland).

  9. Monitoring snow avalanches in the medium range by a network of infrasonic arrays: first results (United States)

    ulivieri, giacomo; marchetti, emanuele; ripepe, maurizio; durand, nathalie; frigo, barbara; chiambretti, igor; segor, valerio


    Avalanche Warning Service of Aosta Valley in near real-time. The research is supported by the Operational programme Italy - France (Alps - ALCOTRA) - Project "Map3 - Monitoring for the Avalanche Prevision, Prediction and Protection".

  10. GEM operation in pure noble gases and the avalanche confinement

    CERN Document Server

    Buzulutskov, A F; Bressan, A; Mauro, A D; Ropelewski, Leszek; Sauli, Fabio; Biagi, S F


    We study the operation of the Gas Electron Multiplier (GEM) in pure Ar and almost pure Xe. Rather high gas gains obtained in pure Ar, of the order of 1000, are explained by the effect of the avalanche confinement to a GEM micro-hole. Applications to the development of non-ageing sealed photon detector filled with pure noble gases are discussed. In particular, it is shown that the photoelectron collection efficiency deteriorated in pure Ar due to electron backscattering, can be recovered by operation at a higher electric field.

  11. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail:; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)


    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  12. Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process


    Iiyama, Koichi; Takamatsu, Hideki; Maruyama, Takeo


    A hole-injection-type and an electron-injection-type Si avalanche photodiode (APD) were fabricated by a standard 0.18-μm complementary metaloxidesemiconductor process. The avalanche amplifications are observed below 10 V of the bias voltage, and the maximum avalanche gains were 493 and 417 for the hole-injection-type and the electron-injection-type APDs, respectively. The maximum bandwidth is 3.4 GHz, and the gain-bandwidth products were 90 and 180 GHz for the hole-injection-type and the elec...

  13. Simple Monte Carlo model with generalized carrier-trajectory tracking equations for prediction of avalanche multiplication statistics in avalanche photodiodes with arbitrary electric field gradient (United States)

    Ong, J. S. L.; Charin, C.; Leong, J. H.


    A set of highly generalized electron-trajectory tracking equations are derived based on the fundamental of high field carrier transport and are employed in a Simple Monte Carlo model for gain and avalanche multiplication noise prediction in APDs with arbitrary electric field gradients. Using the model and assuming electron-only ionization, simulations are carried out on two one-sided abrupt np+ and n+p junctions with doping concentrations in the n and p regions set to 1.0×1018 cm-3 and the p+ and n+ regions set to infinity. Preliminary simulation results of gain, avalanche multiplication noise, and positions of electron ionizations obtained from the Simple Monte Carlo model employing the electron-trajectory tracking equations show excellent agreement with those obtained from the conventional Simple Monte Carlo model even though the one-sided abrupt np+ and n+p junctions are subjected to steep electric field gradient across the avalanche multiplication regions. These simulation results, and the positions of electron ionizations in particular, strongly imply that the electron-trajectory tracking equations employed in the Simple Monte Carlo model for avalanche photodiodes are able to track the trajectory of the electrons and valid, and the equations are highly generalized for APDs with arbitrary electric field gradients, ranging from uniform electric fields to steep electric field gradients.

  14. Slip avalanche in nanoscratching of metallic glasses (United States)

    Han, D. X.; Wang, G.; Ren, J. L.; Song, S. X.; Li, J.; Yi, J.; Jia, Y. D.; Xu, H.; Chan, K. C.; Liaw, P. K.


    Slip avalanches, similar to discrete earthquake events, of Zr-, Co-, and Ce-based metallic glasses during nanoscratching were investigated. Differing from the conventional continuum approach, mean-field theory, which is an inherently-discrete model, was applied to analytically compute intermittent slip avalanches. Mean-field theory was first connected with the potential energy barrier and concentration of free volume in order to study the stick-slip behavior. The results suggest that the motion behavior of free volume affects the critical slip avalanche size.

  15. Continuum description of avalanches in granular media.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I. S.; Tsimring, L. S.


    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  16. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes (United States)

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.


    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  17. Stellar Winds and Dust Avalanches in the AU Mic Debris Disk (United States)

    Chiang, Eugene; Fung, Jeffrey


    We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ˜35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.

  18. Failure modes of large surface avalanche photo diodes in high-energy physics environments (United States)

    Anzivino, G.; Bai, J.; Bencheikh, B.; Contin, A.; DeSalvo, R.; Fagen, S.; He, H.; Liu, L.; Lundin, M.; Madden, R. M.; Mondardini, M. R.; Szawlowski, M.; Wang, K.; Xia, X.; Yang, C.; Zhao, M.


    Large area avalanche photo diodes (APD), a new and very promising type of light detector, were tested at high gain on a beam line and suddenly failed. A detailed study of the failure modes showed that these devices, if used at low gain and with special care, may actually be used in high-energy physics environments and indicates the road of development toward radiation hard, large area APDs. No problem was found when APDs are operated in absence of highly ionizing particles.

  19. Creation of the snow avalanche susceptibility map of the Krkonoše Mountains using GIS

    Directory of Open Access Journals (Sweden)

    Petr Suk


    Full Text Available This article deals with the development of the snow avalanche susceptibility map in the Czech part of the Krkonoše Mountains using the free Geographic Information System (GIS GRASS. The area susceptibility map consists of two components: the morphological risk map, which is derived from the digital terrain model (DTM and describes the slope steepness, aspect and curvature of the slope, and the protecting vegetation influence map, which is based on supervised image classification (spectrozonal aerial photos and takes into consideration the importance of vegetation cover. The final map also includes starting zones calculated on the basis of significant changes in slope steepness and approximate shapes of avalanche paths based on these zones. In the map development, the layer of measured paths of avalanche cadastre in the Czech part of the Krkonoše Mountains was used, partly to gain the morphological characteristics of starting zones and partly to check the quality of the map.

  20. Statistical Distributions of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker


    Full Text Available A new theoretical concept of fractal multiplication of electron avalanches has resulted in forming a generalized distribution function whose multiparameter character has been subjected to detailed discussion. 

  1. Electromagnetic radiation field of an electron avalanche (United States)

    Cooray, Vernon; Cooray, Gerald


    Electron avalanches are the main constituent of electrical discharges in the atmosphere. However, the electromagnetic radiation field generated by a single electron avalanche growing in different field configurations has not yet been evaluated in the literature. In this paper, the electromagnetic radiation fields created by electron avalanches were evaluated for electric fields in pointed, co-axial and spherical geometries. The results show that the radiation field has a duration of approximately 1-2 ns, with a rise time in the range of 0.25 ns. The wave-shape takes the form of an initial peak followed by an overshoot in the opposite direction. The electromagnetic spectrum generated by the avalanches has a peak around 109 Hz.

  2. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva


    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  3. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker


    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  4. Parameters of a runaway electron avalanche (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Oreshkin, V. I.; Mesyats, G. A.


    The features of runaway electron avalanches developing in air at different pressures are investigated using a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  5. Development of Pixelated Linear Avalanche Integration Detector Using Silicon on Insulator Technology (United States)

    Koyama, Akihiro; Shimazoe, Kenji; Takahashi, Hiroyuki; Hamasaki, Ryutaro; Orita, Tadashi; Onuki, Yoshiyuki; Otani, Wataru; Takeshita, Tohru; Kurachi, Ikuo; Miyoshi, Toshinobu; Nakamura, Isamu; Arai, Yasuo

    In various X-ray imaging applications such as single photon counting X-ray CT, micrometer scale spatial resolution and high detection efficiency possibility using structured porous scintillator took great interests. In order to achieve precise energy- and timing information measurements, high sensitive separately readable photo detector needs to be coupled to porous crystal. Therefore, we fabricated test element group (TEG) of micro sized linear avalanche integration detector (Plaid) on a silicon on insulator (SOI) wafer and inspected performance of each device. Measurements results showed guard ring structure achieved avalanche gain of magnitude from 10 to 1000 with lower gain saturation effect than non-guard ring structure. We concluded guard ring structure is desirable to achieve stable gain performance toward various optical powers and efficient to use for scintillation light read out.

  6. A Monte Carlo study of multiplication and noise in HgCdTe avalanche photodiodes (United States)

    Derelle, S.; Bernhardt, S.; Haidar, R.; Primot, J.; Deschamps, J.; Rothman, J.; Perrais, G.


    A Monte Carlo model is developed for understanding the multiplication process in HgCdTe infrared avalanche photodiodes (APD). A good agreement is achieved between simulations and experimental measurements of gain and excess noise factor on midwave infrared electron injected Hg0.7 Cd0.3Te APD manufactured at CEA/LETI. In both cases, an exponential gain and a low excess noise factor - close to unity out to gains greater than 1000 - were observed on 5.1-μm cut-off devices at 77K. These properties are indicative of a single ionizing carrier multiplication process that is to say in our case the electron. Simulations also predict that holes do not achieve enough energy to impact ionize and to contribute to the gain, which confirms the previous observation. A comparison study is presented to explain the effect of different combinations of scattering processes on the avalanche phenomenon in HgCdTe. We find that alloy scattering with random scattering angle increases multiplication gain and reduces excess noise factor compared to the case including impact ionization only. It also appears that, in the more complete scattering environment, optical phonon scattering delays significantly the onset of avalanche.

  7. Erosion dynamics of powder snow avalanches - Observations (United States)

    Sovilla, Betty; Louge, Michel


    Powder snow avalanches (PSA) entrain massive amounts of material from the underlying snow cover by erosion mechanisms that are not fully understood. Despite their inherent diversity, PSAs have recognizable flow features: they are fast, reaching velocity up to 80 m/s, they develop a tall, low density powder cloud and, at the same time, they can exert impact pressure with similar magnitudes of high density flow. In this talk, we report observations that underscore the interplay between entrainment and flow dynamics qualitatively shared by several PSAs at the Vallée de la Sionne test site in Switzerland. Measurements include time-histories of snow pack thickness with buried FMCW radar and time-histories of particle velocity using optical sensors, cloud density and cluster size using capacitance probes, and impact pressure measured at several elevations on a pylon. Measurements show that, at the avalanche front, a layer of light, cold and cohesionless snow is rapidly entrained, creating a turbulent and stratified head region with intermittent snow clusters. Fast and localized entrainment of deeper and warmer snow layers may also occur well behind the front, up to a distance of hundreds of meters, where pronounced stratification appears and snow clusters grow larger. In the avalanche head, impact pressure strongly fluctuates and is larger near the ground. Velocity profiles change throughout the avalanche head, with more abrupt changes localized where rapid entrainment occurs. A basal, continuous dense layer forms as deeper, warmer and denser snow cover is entrained and as suspended material starts to deposit. The thickness of the basal layer progressively increases toward the avalanche tail where, finally, deposition occurs en masse. Toward the avalanche tail, velocity profiles tend to become uniform, impact pressures are lower and nearly constant, while entrainment processes are negligible. These observations underscore the relevance of entrainment location and the

  8. Recent and potential future effects of climate change on snow-avalanche activity in western Norway (United States)

    Laute, Katja; Beylich, Achim A.


    Meteorological records for western Norway show the general trend that the last 100 years, and especially the last three decades, have been warmer and wetter than the time periods before. As snow-avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow-avalanche events is and will be modified through the documented effects of current and future climate change. This work focuses on recent and possible future effects of climate change on snow-avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow-avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). Daily precipitation and air temperature data are analyzed from the highest situated meteorological station (located 872 m asl.) in order to reveal the percentage share of precipitation which occurs actually as snow within the snow avalanche source areas (generally located at this and higher elevations above sea level). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more

  9. Nanopillar Optical Antenna Avalanche Detectors (United States)


    Senanayake is approved. Robert Candler Benjamin S. Williams Shimon Weiss Diana L. Huffaker, Committee Chair University of California, Los...a lower effk would be a higher gain-bandwidth products 4. Emmons predicted the gain-bandwidth product achieved by APDs would be limited by the...Photonics Technology Letters, IEEE 2005, 17, (11), 2412-2414. 71. Emmons , R. B. Journal of Applied Physics 1967, 38, (9), 3705-3714. 63

  10. Practical operational implementation of Teton Pass avalanche monitoring infrasound system. (United States)


    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  11. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector (United States)

    Huntington, Andrew


    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  12. Vulnerability assessment in avalanche hazardous areas (United States)

    Frigo, B.; De Biagi, V.; Chiaia, B.


    Until a few decades ago, damages and human losses related to the avalanche risk represented only a small part of the destructive effects produced each year by natural events. Nowadays, on the contrary, the situation has considerably changed due to growing of the built-up areas and human presence in the mountain environment: this fact increases the current avalanche risk and puts snow avalanches and hydro-geological risks (floods, landslides, rock falls, etc…) at the same importance level. To mitigate the effects, Authorities provide both specific policies for urban development and mountain land use and simple but reliable methodologies to define the avalanche risk. As is well known, risk can be defined as the product of three factors: the environmental danger P (probability that a given phenomenon with its catastrophic intensity occurs in a specific area and time), the vulnerability V (degree of loss of one or more elements by a natural phenomenon of a known magnitude) and the exposure E (measure of the exposed value for each vulnerable element). A novel approach for the evaluation of the "Vulnerability factor" of a new or existing building under avalanche hazard by considering its structural (materials, strength and robustness, etc…) and architectural (shape, exposure, etc…) peculiarities is presented. A real avalanche event occurred in December, 2008 in Aosta Valley, which caused the total collapse of a building is taken as an example for tesing the effectiveness of the proposed risk assessment. By means of photographical analysis on undamaged parts, local surveys and debris arrangement, the impact pressure and the collapse dynamics are back-analyzed. The results are commented and comparisons between the damages and Vulnerability factor are made.

  13. Maximal avalanches in the Bak-Sneppen model

    NARCIS (Netherlands)

    Gillett, A.J.; Meester, R.W.J.; van der Wal, P.


    We study the durations of the avalanches in the maximal avalanche decomposition of the Bak-Sneppen evolution model. We show that all the avalanches in this maximal decomposition have infinite expectation, but only 'barely', in the sense that if we made the appropriate threshold a tiny amount smaller

  14. A Hidden Markov Model for avalanche forecasting on Chowkibal ...

    Indian Academy of Sciences (India)

    for operational avalanche forecasting in the ski area of the Parsenn region and found quite useful for operational purpose. Following the suggestions of. Obled and Good (1980) and Buser et al. (1987),. McClung and Tweedy (1994) derived a numerical avalanche prediction scheme for avalanche forecast- ing on Kootenay ...

  15. Real time avalanche detection for high risk areas. (United States)


    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  16. Characterization of the Zymoetz river rock avalanche


    Boultbee, Nichole Leanne


    On June 8, 2002, the Pacific Northern Gas pipeline in the Zymoetz River valley was severed over a distance of tens of meters by a large debris flow. The event initiated as a rock avalanche in Glen Falls Creek, a tributary of the 6 3 Zymoetz River. The rock avalanche involved I XI 0 m of volcaniclastic bedrock, and travelled through a complex flow path, to finally deposit a large fan in the main Zymoetz River. Approximately half of the debris volume was deposited in the cirque basin at the hea...

  17. Relating rock avalanche morphology to emplacement processes (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette


    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  18. The Photon-Assisted Cascaded Electron Multiplier: a concept for potential avalanche-ion blocking (United States)

    Veloso, J. F. C. A.; Amaro, F. D.; dos Santos, J. M. F.; Breskin, A.; Lyashenko, A.; Chechik, R.


    We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photonmediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole & Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of ~60. The double-MHSP detector had a total gain above 104 and energy resolution of 18% FWHM for 5.9 keV x-rays.

  19. The Photon-Assisted Cascaded Electron Multiplier: a concept for potential avalanche-ion blocking

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, J F C A [Physics Dept., University of Aveiro, 3810-193 Aveiro (Portugal); Amaro, F D [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Santos, J M F dos [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Breskin, A [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Lyashenko, A [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Chechik, R [Dept. of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot (Israel)


    We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photonmediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole and Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of {approx}60. The double-MHSP detector had a total gain above 10{sup 4} and energy resolution of 18% FWHM for 5.9 keV x-rays.

  20. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

    CERN Document Server

    Hora, H; Eliezer, S; Lalousis, N Nissim P; Giuffrida, L; Margarone, D; Picciotto, A; Miley, G H; Moustaizis, S; Martinez-Val, J -M; Barty, C P J; Kirchhoff, G J


    After the very long consideration of the ideal energy source by fusion of the protons of light hydrogen with the boron isotope 11 (boron fusion HB11) the very first two independent measurements of very high reaction gains by lasers basically opens a fundamental breakthrough. The non-thermal plasma block ignition with extremely high power laser pulses above petawatt of picosecond duration in combination with up to ten kilotesla magnetic fields for trapping has to be combined to use the measured high gains as proof of an avalanche reaction for an environmentally clean, low cost and lasting energy source as potential option against global warming. The unique HB11 avalanche reaction is are now based on elastic collisions of helium nuclei (alpha particles) limited only to a reactor for controlled fusion energy during a very short time within a very small volume.

  1. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan


    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  2. Study of frequency and time responses of a separated absorption and multiplication region avalanche photodiode

    CERN Document Server

    Banoushi, A; Setayeshi, S


    In this paper, the frequency and time responses of a separated absorption and multiplication avalanche photodiode are studied by solving the carrier continuity equations, in the low gain regime. The discrepancy between the carrier velocities in different layers is considered for the first time. It is shown that considerable error occurs, if the device d characteristics are calculated assuming uniformly distributed velocities in the depletion layer, especially when the different layers have almost equal thickness.

  3. Geochemical insights into the internal dynamics of debris avalanches. A case study: The Socompa avalanche, Chile

    National Research Council Canada - National Science Library

    Doucelance, Régis; Kelfoun, Karim; Labazuy, Philippe; Bosq, Chantal


    .... Here we present high‐precision Sr‐Nd isotope compositions, plus major and trace element concentrations, of matrix samples and rock fragments from the Socompa debris‐avalanche deposit (Chile...

  4. Avalanche photodiodes for the CATSAT gamma-ray burst mission

    CERN Document Server

    Fletcher Holmes, D W


    five-sigma significance level. In approximately half of these cases, it should be possible to discriminate between the hypothesis that there is an absorbing hydrogen column of density 1 x 10 sup 2 sup 2 cm sup - sup 2 and the hypothesis that there is no column. This thesis firstly describes efforts to characterise large-area, high-gain, Avalanche Photodiodes (APDs), manufactured by Radiation Monitoring Devices (RMD) Inc. of Massachusetts. These are relatively new devices in the field of X-ray spectroscopy and the research presented here attempts to increase our understanding of their behaviour as X-ray detectors and their underlying internal physical processes. Models are suggested for Quantum Detection Efficiency and for Photopeak Fraction in these devices. Measurements of these properties as a function of energy constrain the models, revealing new information about the internal structure of APDs and providing powerful predictive tools for detector response. The intrinsic silicon dead layer of a typical devi...

  5. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning (United States)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft


    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  6. Nano-multiplication region avalanche photodiodes and arrays (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)


    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  7. A probabilistic model for martensitic avalanches

    Directory of Open Access Journals (Sweden)

    Ball John M.


    Full Text Available We present a probabilistic model for the description of martensitic avalanches. Our approach to the analysis of the model is based on an associated general branching random walk process. Comparisons are reported for numerical and analytical solutions and experimental observations.

  8. Measuring acoustic emissions in an avalanche slope (United States)

    Reiweger, Ingrid; Schweizer, Jürg


    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  9. Extended kinetic theory applied to snow avalanches (United States)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas


    In this work we apply the extended kinetic theory, a three-dimensional rheological model for rapid granular flows, to the two-dimensional, depth-averaged shallow water framework, used in snow avalanche simulations. Usually, empirical relations are used to determine the basal friction, which represents the material behavior in the avalanche. Here we present an energy equivalent basal friction relation which accounts for energy dissipating processes in the avalanche body as predicted by the extended kinetic theory. The obtained relation is compared to traditional basal friction relations, e.g. the Voellmy model by conducting numerical simulations with both approaches. As reference, field measurements of runout, affected area and velocity are compared to the simulation results. Two avalanche events, that occurred at the Vallée de la Sionne and Ryggfonn test sites, are evaluated with this method. It is shown that the kinetic theory delivers a physically based explanation for the structure of phenomenological friction relations. However, the new form of the frictional terms explicitly takes the flow depth into account. As consequence, improvements in finding unified parameter sets for various observation variables and events of different sizes could be achieved.

  10. Fractal avalanche ruptures in biological membranes (United States)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe


    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  11. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging. (United States)

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris


    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  12. Relief and snow avalanches in the Tatra Mts. (United States)

    Rączkowska, Zofia; Długosz, Michał; Rojan, Elżbieta


    Snow avalanches are among the main factors influencing the high-mountain environment of the Tatra Mts. and their denudation system in the three uppermost geoecological belts. Dirty avalanches are assumed to be an important morphogenetic factor but also relief affects spatial differentiation of snow avalanche activity. The research aims to recognize the geomorphological conditions for avalanches and assessment of the morphogenetic role of avalanches in the whole Tatra Mts. For recognition of geomorphological conditions of snow avalanches activity was made map of avalanches paths, based on maps of snow avalanches occurred in the recent past, air- photos and digital terrain model. Starting zone and transition zone were specified within each path. For each type of designated zones the morphometric analysis was made, taking in account slope aspect and inclination. The map presents more than 3700 avalanche paths. The number of avalanche paths is more than double in the High Tatras than in the Western Tatras. Morphometric features and altitudinal range of avalanche paths also differ in individual parts of the Tatras what correspond with the relief differences. Length of avalanche paths reach up to 3138 m and in average is the biggest avalanche in the Bielanske Tatra. The paths are located about 200 m higher in the High Tatras than in other parts of the massif. There is no clear relationship between exposure of the slopes and the distribution of the avalanche path, while relationship with slope inclination is distinct. Over 70% of the avalanche paths occur on slopes 26-55o. Similar patterns were found in the distribution of avalanche accumulation zones. Detailed studies of morphogenetic role of avalanches are conducted in four chosen avalanche paths located both in the Western and the High Tatras. Measuring points of erosion, transport and accumulation installed there in the autumn 2012 are checked two times a year. It was found that effects of snow avalanches on the

  13. First demonstration of THGEM/GAPD-matrix optical readout in a two-phase Cryogenic Avalanche Detector in Ar

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Buzulutskov, A., E-mail: [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Dolgov, A. [Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Grebenuk, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Shemyakina, E.; Sokolov, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk (Russian Federation); Breskin, A. [Weizmann Institute of Science, 76100 Rehovot (Israel); Thers, D. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 44307 Nantes Cedex 3 (France)


    The multi-channel optical readout of a THGEM multiplier coupled to a matrix of 3×3 Geiger-mode APDs (GAPDs) was demonstrated in a two-phase Cryogenic Avalanche Detector (CRAD) in Ar. The GAPDs recorded THGEM-hole avalanches in the Near Infrared (NIR) spectral range. At an avalanche charge gain of 160, the yield of the combined THGEM/GAPD-matrix multiplier amounted to ∼80 photoelectrons per 20 keV X-ray absorbed in the liquid phase. A spatial resolution of 2.5 mm (FWHM) has been measured for the impinging X-rays. This technique has potential applications in coherent neutrino-nucleus scattering and in dark matter search experiments.

  14. The Marocche rock avalanches (Trentino, Italy) (United States)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof


    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  15. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles. (United States)

    Butler, David R.


    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  16. Impact of charge carrier trapping on amorphous selenium direct conversion avalanche X-ray detectors (United States)

    Arnab, Salman M.; Kabir, M. Z.


    A cascaded linear system model is developed to determine the detective quantum efficiency (DQE) considering trapping of charge carriers in the absorption layer of an amorphous selenium multilayer direct conversion avalanche detector. This model considers the effects of charge carrier trapping and reabsorption of K-fluorescent X-rays on the frequency-dependent DQE(f). A 2-D simulation is performed to calculate the actual weighting potential in the absorption layer, which is used to calculate the amount of collected charge. It is observed that the DQE(f = 0) reduces from 0.38 to 0.19 due to charge carrier trapping in the absorption layer having a thickness of 1000 μm when the electronic noise is 1500 electrons per pixel. The avalanche gain enhances the signal strength and improves the frequency dependent DQE(f) by overcoming the effect of carrier trapping and as well as the effect of the electronic noise. The simulations suggest that avalanche gain of 35 and 20 are required to overcome the effect of the electronic noise of 1500 and 700 electrons per pixel, respectively.

  17. Stochastic simulation of electron avalanches on supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Rogasinsky, S. V.; Marchenko, M. A. [Institute of Computational Mathematics and Mathematical Geophysics of the SB RAS, Novosibirsk State University, Prospekt Akademika Lavrentieva 6, 6300090, Novosibirsk (Russian Federation)


    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  18. Communicators' perspective on snow avalanche risk communication (United States)

    Charriere, M. K. M.; Bogaard, T.; Mostert, E.


    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is globally used. It consists of 5 levels of danger displayed with a given number and colour and for each of them, behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the tools (usually websites or smartphone applications) with which the information is disseminated to the general pubic differs, particularly in terms of target audience and level of details. This study aims at gathering the perspectives of several communicators that are responsible for these communication practices. The survey was created to assess how and why choices were made in the design process of the communication tools and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication tools, this study provides guidelines for communication and the evaluation of its effectiveness.

  19. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina


    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  20. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni


    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  1. Polarization engineering of back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes (United States)

    Yang, Guofeng; Wang, Fuxue


    The back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes (APDs) with a p-type graded AlGaN layer have been designed to investigate the polarization engineering on the performance of the devices. The calculated results show that the APD with p-graded AlGaN layer exhibits lower avalanche breakdown voltage and increased maximum multiplication gain compared to the structure with conventional p-type AlGaN layer. The improved performance of the designed APD is numerically explained by the polarization-assisted enhancement of the ionization electric field in the multiplication region and polarization doping effect caused by the p-type graded layer.

  2. Determining avalanche modelling input parameters using terrestrial laser scanning technology


    Prokop, A.; Schön, P.; Singer, F.; Pulfer, G.; Naaim, M.; Thibert, E.


    International audience; In dynamic avalanche modelling, data about the volumes and areas of the snow released, mobilized and deposited are key input parameters, as well as the fracture height. The fracture height can sometimes be measured in the field, but it is often difficult to access the starting zone due to difficult or dangerous terrain and avalanche hazards. More complex is determining the areas and volumes of snow involved in an avalanche. Such calculations require high-resolution spa...

  3. GeSn/Si Avalanche Photodetectors on Si substrates (United States)


    whole device structure will be grown by a unique home-built Ultra-high vacuum Chemical Vapor Deposition (UHV- CVD) machine. The detailed problems... avalanche photodiode (APD): The GeSn APD with separate absorption-charge-multiplication (SACM) structure was grown and characterized. The design took... Avalanche photo diode Avalanche photo diode (APD) based on Separate Absorption-Charge-Multiplication (SACM) structure has been fabicated. The

  4. Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    CERN Document Server

    Miyamoto, J; Peskov, V


    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.

  5. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    National Research Council Canada - National Science Library

    Lato, M. J; Frauenfelder, R; Bühler, Y


    .... Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge...

  6. Assessment and mapping of snow avalanche risk in Russia (United States)

    Seliverstov, Yuri; Glazovskaya, Tatiana; Shnyparkov, Alexander; Vilchek, Yana; Sergeeva, Ksenia; Martynov, Alexei

    The term 'risk' can be defined as the probability of unfavourable consequences or negative effects. Risk can be expressed by means of various indices, such as collective or social risk (possible number of dead), individual risk (probability of a person's death within a certain territory during 1 year), probability of losses, etc. This paper is a case study of the small-scale assessment and mapping of individual avalanche risk focused on the two regions of Russia with the highest levels of avalanche activity: the northern Caucasus and the mountainous parts of Sakhalin island. The basic indices applied for individual avalanche risk estimation are: recurrence interval of avalanches (avalanche frequency), percentage of the whole investigated territory that is occupied by avalanche-prone areas, duration of avalanche danger period, probability of a person's stay in an avalanche-prone area during 1 day (24 hours) and during 1 year, total population of the area and its density. The results of individual avalanche risk assessment, undertaken for the territory of Russia as a whole, show that its values generally do not exceed the admissible level (from 1 × 10-6 to 1 × 10-4). However, some areas of the northern Caucasus, including famous alpine skiing resorts (Krasnaya Poliana, Dombai, the Mount Elbrus region, etc.), and of Sakhalin, including the environs of towns (Kholmsk, Nevel'sk) and other smaller human settlements, are characterized by an unacceptable level of risk. In the aggregate, areas with an unacceptable (>1 × 10-4) level of individual avalanche risk comprise about 7% of the whole avalanche-prone territory of the northern Caucasus, those with an admissible level comprise 52% and those with an acceptable level (<1 × 10-6) 41%. The corresponding values for Sakhalin are 0.1%, 14.8% and 85.1%.

  7. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail:; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)


    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  8. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  9. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes (United States)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)


    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  10. Avalanche transmission and critical behaviour in load-bearing ...

    Indian Academy of Sciences (India)

    The strength and stability properties of hierarchical load-bearing networks and their strengthened variants have been discussed in a recent work. Here, we study the avalanche time distributions on these load-bearing networks. The avalanche time distributions of the V-lattice, a unique realization of the networks, show ...

  11. Linear arrays of InGaAs/InP avalanche photodiodes for 1.0-1.7 micron (United States)

    Ackley, D. E.; Hladky, J.; Lange, M. J.; Mason, S.; Erickson, G.; Olsen, G. H.; Ban, V. S.; Forrest, S. R.; Staller, C.


    Separate absorption and multiplication InGaAs/InP avalanche photodiodes (SAM-APDs) with a floating guard ring structure that is well-suited to array applications have been successfully demonstrated. Individual APDs have breakdown voltages greater than 80 V, multiplications over 40 at 100 nA dark current, and uniform spatial gain profiles. Uniform I-V characteristics and gains have been measured over linear dimensions as large as 1.2 cm. Gains over 10 at low multiplied dark currents were measured on 21 consecutive devices at the wafer level.

  12. Age of Palos Verdes submarine debris avalanche, southern California (United States)

    Normark, W.R.; McGann, M.; Sliter, R.


    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  13. III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording) (United States)

    Ghosh, Sid


    Laser detection and ranging (LADAR)-based systems operating in the Near Infrared (NIR) and Short Wave Infrared (SWIR) have become popular optical sensors for remote sensing, medical, and environmental applications. Sophisticated laser-based radar and weapon systems used for long-range military and astronomical applications need to detect, recognize, and track a variety of targets under a wide spectrum of atmospheric conditions. Infrared APDs play an important role in LADAR systems by integrating the detection and gain stages in a single device. Robust silicon-APDs are limited to visible and very near infrared region (quantum efficiency above 0.8um. InGaAs and Ge APDs operate up to wavelengths of 1.5um but have poor multiplication or excess noise due to a low impact ionization coefficient ratio between electrons and holes. For the past several decades HgCdTe has been traditionally used in longer wavelength (> 3um) infrared photon detection applications. Recently, various research groups (including Ghosh et. al.) have reported SWIR and MWIR HgCdTe APDs on CdZnTe and Si substrates. However, HgCdTe APDs suffer from low breakdown fields due to material defects, and excess noise increases significantly at high electric fields. During the past decade, InAs/GaSb Strain Layer Superlattice (SLS) material system has emerged as a potential material for the entire infrared spectrum because of relatively easier growth, comparable absorption coefficients, lower tunneling currents and longer Auger lifetimes resulting in enhanced detectivities (D*). Band engineering in type II SLS allows us to engineer avalanche properties of electrons and holes. This is a great advantage over bulk InGaAs and HgCdTe APDs where engineering avalanche properties is not possible. The talk will discuss the evolution of superlattice based avalanche photodiodes and some of the recent results on the work being done at Raytheon on SWIR avalanche photodiodes.

  14. Avalanches of Singing Sand in the Laboratory (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane


    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  15. Understanding avalanches in a Micromegas from single-electron response measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zerguerras, T., E-mail: [Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3-Université Paris-Sud, F-91406 Orsay Cedex (France); Genolini, B. [Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3-Université Paris-Sud, F-91406 Orsay Cedex (France); Kuger, F. [University of Würzburg, 97070 Würzburg (Germany); CERN, Geneva (Switzerland); Josselin, M.; Maroni, A.; Nguyen-Trung, T.; Pouthas, J.; Rosier, P. [Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3-Université Paris-Sud, F-91406 Orsay Cedex (France); Şahin, Ö. [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Suzuki, D. [Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3-Université Paris-Sud, F-91406 Orsay Cedex (France); Veenhof, R. [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 Collaboration, CERN, Geneva (Switzerland)


    Avalanche fluctuations set a limit to the energy and position resolutions that can be reached by gaseous detectors. This paper presents a method based on a laser test-bench to measure the absolute gain and the relative gain variance of a Micro-Pattern Gaseous Detector from its single-electron response. A Micromegas detector was operated with three binary gas mixtures, composed of 5% isobutane as a quencher, with argon, neon or helium, at atmospheric pressure. The anode signals were read out by low-noise, high-gain Cremat CR-110 charge preamplifiers to enable single-electron detection down to gain of 5× 10{sup 3} for the first time. The argon mixture shows the lowest gain at a given amplification field together with the lowest breakdown limit, which is at a gain of 2×10{sup 4} an order of magnitude lower than that of neon or helium. For each gas, the relative gain variance f is almost unchanged in the range of amplification field studied. It was found that f is twice higher (f∼0.6) in argon than in the two other mixtures. This hierarchy of gain and relative gain variance agrees with predictions of analytic models, based on gas ionisation yields, and a Monte-Carlo model included in the simulation software Magboltz version 10.1.

  16. High-performance SiC avalanche photodiode for single ultraviolet photon detection (United States)

    Bai, Xiaogang; Liu, Han-din; McIntosh, Dion; Campbell, Joe C.


    Sensitive ultraviolet photodetectors are essential components for a growing number of civilian and military applications. In this paper, we report 4H Silicon Carbide (SiC) avalanche photodiodes (APDs) with a p-i-n structure. These APDs, range in diameter from 180 μm to 250μm, exhibit very low dark current (10s of pA at avalanche gain of 1000) and high gain in linear-mode operation. An external quantum efficiency of 48% at 280 nm is achieved at unity gain with a recessed-window structure. The differential resistance of a 250 μm recessed-window device at zero bias is estimated to be 6×1014 ohms. As a result of high external quantum efficiency, large area, and large differential resistance, a record high specific detectivity of 4.1×1014 cmHz 1/2 W-1, has been achieved. Single ultraviolet photon detection in Geiger-mode operation with gated quenching is also described. In this paper, we report single photon detection efficiency (SPDE) of 30% at 280 nm with a dark count probability (DCP) of 8×10-4.

  17. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths (United States)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning


    We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.

  18. Avalanche situation in Turkey and back calculation of selected events (United States)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.


    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  19. Disordered artificial spin ices: Avalanches and criticality (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Cynthia J. Olson, E-mail:; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)


    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  20. Patterns of death among avalanche fatalities: a 21-year review (United States)

    Boyd, Jeff; Haegeli, Pascal; Abu-Laban, Riyad B.; Shuster, Michael; Butt, John C.


    Background Avalanches are a significant cause of winter recreational fatalities in mountain regions. The purpose of this study was to determine the relative contributions of trauma and asphyxia to avalanche deaths. Methods We reviewed all avalanche fatalities between 1984 and 2005 that had been investigated by the offices of the British Columbia Coroners Service and the Chief Medical Examiner of Alberta. In addition, we searched the database of the Canadian Avalanche Centre for fatal avalanche details. We calculated injury severity scores for all victims who underwent autopsy. Results There were 204 avalanche fatalities with mortality information over the 21-year study period. Of these, 117 victims underwent autopsy, and 87 underwent forensic external examination. Asphyxia caused 154 (75%) deaths. Trauma caused 48 (24%) deaths, with the rate of death from trauma ranging from 9% (4/44) for snowmobilers to 42% (5/12) for ice climbers. In addition, 13% (12/92) of the asphyxia victims who underwent autopsy had major trauma, defined as an injury severity score of greater than 15. Only 48% (23/48) of victims for whom trauma was the primary cause of death had been completely buried. Interpretation Asphyxia and severe trauma caused most avalanche fatalities in western Canada. The relative rates differed between snowmobilers and those engaged in other mountain activities. Our findings should guide recommendations for safety devices, safety measures and resuscitation. PMID:19213801

  1. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  2. Supraglacial rock avalanches and their effect on glacial deposition (United States)

    Reznichenko, N.; Davies, T. R. H.; Shulmeister, J.; Winkler, S.


    Although rock avalanches occur commonly in glaciated valleys, it is only recently that their effects on the regime and final deposits of debris-covered glaciers have been recognized. The supraglacially-emplaced rock avalanche deposits are distinct features on glacial surfaces due to their different sedimentology and greater depth than other debris covers. The metre-scale thickness and large areal extent of these deposits significantly impact the glacier mass balance by preventing ice-surface ablation (Reznichenko et al., 2011). These effects are often neglected in estimating the total change of glacial mass balance and its response to the catastrophic event. A supraglacial rock avalanche deposit can cause a glacier to form a moraine that will not reflect any current climate forcing. It is likely that only larger rock avalanche events (with respect to the size of the glacier) will result in a significant glacial response (e.g. advance or cessation of retreat). However, all supraglacially transported rock avalanche sediment will be recycled into moraines. The climatic signals extracted from the moraine chronologies of such glaciers may consequently have significant errors. The specific sedimentary characteristics of rock avalanche sediment such as agglomerates produced under high stress conditions (Reznichenko et al., in press) can be used to identify moraines that may have been formed from rock avalanche effect. Reznichenko, N.V., Davies, T.R.H. and Alexander, D.J., 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology, v. 132, is.3-4, p. 327-338 Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H. Accepted. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology.

  3. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov


    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.


    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J


    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  5. Calibration of snow avalanche mathematical models using the data of real avalanches in the Ile (Zailiyskiy Alatau Range

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky


    Full Text Available The calibration of the dry friction and turbulent friction coefficients is necessary for computer simulation of avalanches. The method of back calculation based on data on actual avalanches is used for this purpose. The article presents the results of the calibration of the Eglit’s and RAMMS models for Ile Alatau range condi‑ tions. The range is located in Kazakhstan. The data on six avalanches in the same avalanche site were used. Five avalanches were dry, and one avalanche was wet. Avalanches volume varied from 2000 to 12000  m3. Maximum speed avalanches were between 15 and 30  m/s, the flow height  – from 3 to 10  m. Series of back calculations with different values of the friction coefficients was made to obtain the calibrated coeffi‑ cients. The calibrated coefficients were chosen under condition of the best fit with real avalanches. The cal‑ ibrated coefficients were following. For the Eglit’s model for dry avalanches of the volume 2000–5000  m3 μ = 0.46÷0.48, k = 0.005–0.006, and the volume 8000–12000 m3 μ = 0.38÷0.42, k = 0.002÷0.003. For RAMMS model for dry avalanches of the volume of 2000–5000 m3 μ (dry friction coefficient = 0.35÷0.4, ξ (viscous friction coefficient = 1500÷2000 m/s2, and the volume 8,000–12,000 m3 μ = 0.3÷0.35, ξ = 2000÷3000 m/s2. For wet avalanches of the volume 12,000 m3 μ = 0.35, ξ = 1500 m/s2. The work on the calibration will be con‑ tinued to obtain the friction coefficients for the Eglit’s and RAMMS models. The additional data on real ava‑ lanches will be needed for this purpose.

  6. DUE AvalRS: Remote Sensing Derive Avalanche Inventory Data for Decision Support and Hind-Cast After Avalanche Events (United States)

    Frauenfelder, Regula; Kronholm, Kalle; Solberg, Rune; Larsen, Siri Oyen; Salberg, Arnt-Borre; Larsen, Jan Otto; Bjordal, Heidi


    Each year, snow avalanches hit populated areas and parts of the transport network in the Norwegian mountain regions, leading to loss of lives and the damaging of buildings and infrastructure. We present the results of a feasibility study on the operation of a service providing the National Public Roads Administration (NPRA) with hind-cast avalanche inventory data on a local-to-regional scale during the course of the winter season, and as soon as possible after major avalanche events. We have explored the use of imagery from high-resolution and very-high-resolution space-borne satellites applying manual mapping and automated image segmentation.

  7. Avalanche statistics from data with low time resolution (United States)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; Gu, Xiaojun; Uhl, J. T.; Dahmen, Karin A.


    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  8. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E


    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  9. SiC Avalanche Photodiodes and Arrays Project (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  10. Relation of the runaway avalanche threshold to momentum space topology (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu


    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  11. Physical vulnerability of reinforced concrete buildings impacted by snow avalanches

    Directory of Open Access Journals (Sweden)

    D. Bertrand


    Full Text Available This paper deals with the assessment of physical vulnerability of civil engineering structures to snow avalanche loadings. In this case, the vulnerability of the element at risk is defined by its damage level expressed on a scale from 0 (no damage to 1 (total destruction. The vulnerability of a building depends on its structure and flow features (geometry, mechanical properties, type of avalanche, topography, etc.. This makes it difficult to obtain vulnerability relations. Most existing vulnerability relations have been built from field observations. This approach suffers from the scarcity of well documented events. Moreover, the back analysis is based on both rough descriptions of the avalanche and the structure. To overcome this problem, numerical simulations of reinforced concrete structures loaded by snow avalanches are carried out. Numerical simulations allow to study, in controlled conditions, the structure behavior under snow avalanche loading. The structure is modeled in 3-D by the finite element method (FEM. The elasto-plasticity framework is used to represent the mechanical behavior of both materials (concrete and steel bars and the transient feature of the avalanche loading is taken into account in the simulation. Considering a reference structure, several simulation campaigns are conducted in order to assess its snow avalanches vulnerability. Thus, a damage index is defined and is based on global and local parameters of the structure. The influence of the geometrical features of the structure, the compressive strength of the concrete, the density of steel inside the composite material and the maximum impact pressure on the damage index are studied and analyzed. These simulations allow establishing the vulnerability as a function of the impact pressure and the structure features. The derived vulnerability functions could be used for risk analysis in a snow avalanche context.

  12. Slab avalanche release area estimation: a new GIS tool


    Veitinger, Jochen; Sovilla, Betty; Purves, Ross S.


    Location and extent of avalanche starting zones are of crucial importance to correctly estimate the potential danger that avalanches pose to roads, railways or other infrastructure. Presently, release area assessment is based on terrain analysis combined with expert judgment. Tools for the automatic definition of release areas are scarce and exclusively based on parameters derived from summer topography, such as slope and curvature. This leads to several limitations concerning the performance...

  13. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise (United States)

    Zhao, Kai; Lo, YuHwa; Farr, William


    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  14. CERN Summer Student Programme 2013 Report Garfield-9 movie

    CERN Document Server

    Yamaji, Tomohiro


    During my summer studentship, I made animation which describes physical phenomena in micromegas gaseous detectors, such as electron-ion transportation, avalanche multiplication, etc. To make the animation, four kinds of software are used. They are the Garfield simulator, shell script, C++ code, Processing, and movie software. Though I have successfully visualized electron transportation phenomena in micromegas detectors, I could not resolve some difficulties in avalanche simulation itself. There are problems about amplification gain and electron transparency. Resolving these problems will be part of the future task.

  15. Avalanche risk assessment for the link Osh - Bishkek, Kyrgyzstan (United States)

    Nazarkulova, Kydyr


    The Bishkek-Osh road is main North-South ground transportation connection between the two major cities of Kyrgyzstan. One of the causes for frequent interruptions and closures between November and May is the avalanche risk due to local terrain characteristics and orographically induced precipitation maxima during winter. As a first step towards more effective prediction and implementation of mitigating measures the development of a digital avalanche inventory ('avalanche cadastre') has been initiated. This is aiming at modeling regional risk, and prioritizes the implementation of protective infrastructures in the most avalanche-prone zones. In addition, this helps with continuous monitoring of avalanche behaviour and the assessment of potential influence of climate change. For the parameterisation of models and support of decisions, details about avalanche incidences need to be collected. Historical data collected during Soviet time serve as an important baseline, complemented by more recent data. Overall, developing such a geo database shall be useful and effective for future planning at the Ministry of Emergency Services. This paper demonstrates important parameters to be collected and critical role of historical data as a baseline. Geodatabases are being developed on ArcGIS and used locally for planning preventive measures.

  16. Avalanches driven by pressure gradients in a magnetized plasma (United States)

    Van Compernolle, B.; Morales, G. J.


    The results are presented for a basic heat transport experiment involving an off-axis heat source in which avalanche events occur. The configuration consists of a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the device walls [Van Compernolle et al. Phys. Rev. E 91, 031102(R) (2015)]. The avalanche events are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and poloidal dynamics. After each collapse, the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are observed only for a limited combination of heating powers and magnetic fields. At higher heating powers, the system transits from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. This manuscript focuses on new results that illustrate the individual contributions to the avalanche process from density and temperature gradients in the presence of zero-order, sheared flows.

  17. A revision of the Haiming rock avalanche (Eastern Alps) (United States)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph


    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  18. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov


    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  19. Modeling of snow avalanches for protection measures designing (United States)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton


    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in

  20. On the complementariness of infrasound and seismic sensors for monitoring snow avalanches

    Directory of Open Access Journals (Sweden)

    A. Kogelnig


    Full Text Available The paper analyses and compares infrasonic and seismic data from snow avalanches monitored at the Vallée de la Sionne test site in Switzerland from 2009 to 2010. Using a combination of seismic and infrasound sensors, it is possible not only to detect a snow avalanche but also to distinguish between the different flow regimes and to analyse duration, average speed (for sections of the avalanche path and avalanche size. Different sensitiveness of the seismic and infrasound sensors to the avalanche regimes is shown. Furthermore, the high amplitudes observed in the infrasound signal for one avalanche were modelled assuming that the suspension layer of the avalanche acts as a moving turbulent sound source. Our results show reproducibility for similar avalanches on the same avalanche path.

  1. A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    CERN Document Server

    Vilella, A; Trenado, J; Vila, A; Casanova, R; Vos, M; Garrido, L; Dieguez, A


    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.

  2. Near infrared single photon avalanche detector with negative feedback and self quenching (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  3. Measurement-based characterization of multipixel avalanche photodiodes for scintillating detectors

    CERN Document Server

    Dziewiecki, M


    Multipixel avalanche photodiodes (MAPD) are recently gaining popularity in high energy physics experiments as an attractive replacement for photomultiplier tubes, which have been extensively used for many years as a part of various scintillating detectors. Their low price, small dimensions and another features facilitating their use (like mechanical shock resistance, magnetic field immunity or moderate supply voltage) make the MAPDs a good choice for commercial use as well, what is reflected in growing number of producers as well as MAPD models available on the market. This dissertation presents Author’s experience with MAPD measurements and modelling, gained during his work on the T2K (Tokai-to-Kamioka) long-baseline neutrino experiment, carried out by an international collaboration in Japan. First, operation principle of the MAPD, definitions of various parameters and measurement methods are discussed. Then, a device for large-scale MAPD measurements and related data processing methods are described. Fina...

  4. Skier triggering of backcountry avalanches with skilled route selection (United States)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce


    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  5. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli


    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  6. Guiding thermomagnetic avalanches with soft magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W. -K.


    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.


    Energy Technology Data Exchange (ETDEWEB)



    We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.

  8. Guiding thermomagnetic avalanches with soft magnetic stripes (United States)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W.-K.


    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  9. The structure of powder snow avalanches (United States)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.


    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  10. Dead Time of Single Photon Avalanche Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Tudisco, S. [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Musumeci, F.; Scordino, A. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Fallica, G.; Mazzillo, M. [ST-Microelectronics, stradale Primosole 50, I-95100, Catania (Italy); Zimbone, M. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy)


    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10{sup 7}cps using a device with 0.97{mu}s total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  11. High data volume seismology: Surviving the avalanche (United States)

    Crotwell, Henry Philip

    Seismic data volumes have increased in the past twenty years with the Incorporated Research Institutes for Seismology's Data Management Center currently archiving upwards of 14 terabytes per year and this trend will continue (Ahern, 2006). Data volumes are quickly reaching the point at which the individual seismologist can be overwhelmed with the avalanche of data. We present three studies at the intersection of seismology and software development that aim to enable more efficient use of data by practicing seismologists. The first is the TauP Toolkit which calculates the travel times of seismic waves through custom one dimensional earth models. TauP also allows almost arbitrary phases to be used and is incorporated into a wide variety of seismology software. TauP is available at The second is a study of the compression of seismic data, allowing more efficient storage and transmission. We find that the predictive operator used can have a significant effect on the compression used, and in many cases second differencing can be noticeably better than first differencing. The last is the EarthScope Automated Receiver Survey, which aims to calculate bulk crustal properties for all three component broadband seismic stations available in the US in a highly automated manner. Because of the high degree of automation, the project has been extended to calculated crustal thickness and Vp/V s for global stations as well. Results are available at

  12. Avalanche outbreaks emerging in cooperative contagions (United States)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter


    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  13. Avalanches in a granular stick-slip experiment: detection using wavelets

    Directory of Open Access Journals (Sweden)

    Abed Zadeh Aghil


    Full Text Available Avalanches have been experimentally investigated in a wide range of physical systems from granular physics to friction. Here, we measure and detect avalanches in a 2D granular stick-slip experiment. We discuss the conventional way of signal processing for avalanche extraction and how statistics depend on several parameters that are chosen in the analysis process. Then, we introduce another way of detecting avalanches using wavelet transformations that can be applied in many other systems. We show that by using this method and measuring Lipschitz exponents, we can intelligently detect noise in a signal, which leads to a better avalanche extraction and more reliable avalanche statistics.

  14. Physically-sound scaling laws for snow avalanche impact pressure (United States)

    Faug, T.; Chanut, B.; Caccamo, P.; Naaim, M.


    Estimating the force on obstacles stemming from snow avalanches is a non trivial task in avalanche-flow regimes at low velocity for which inertia does not prevail. In addition to the gravity force -proportional to the weight of the undisturbed incoming flow- that takes place at low velocity, extra forces induced by friction for granular snow avalanches, or by some possible viscosity effects for more fluid-like snow avalanches, should be considered. We discuss here the case of a wall-like obstacle overflowed by a granular snow avalanche. Recent small-scale discrete numerical simulations and laboratory tests with granular flows have allowed developing and validating an analytical model to predict the force on the wall. This model shows that the force is the sum of the inertial force, the gravity force of the undisturbed flow and an additional contribution caused by the presence of a stagnant zone formed upstream of the wall and co-existing with an inertial zone above. The model is used to derive a physically-sound scaling law giving the pressure relative to the typical inertial force of the undisturbed flow as a function of the Froude number. Rheological properties of the granular flowing material such as the typical friction angles of the granular material as well as the restitution coefficient of granules are included in the proposed scaling law. With appropriate values of those rheological properties for flowing granular snow, the scaling law can be used to interpret existing pressure data from full-scale snow avalanches and can be cross-compared to classical approaches used in snow avalanche engineering.

  15. Avalanches in a stochastic model of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Marc Benayoun

    Full Text Available Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons. When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  16. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? (United States)

    Wang, Y. F.; Dong, J. J.; Cheng, Q. G.


    To characterize the hypermobility mechanism of rock avalanches, a series of rotary shear tests at different shearing velocities (Veq) ranging from 0.07 m/s to 1.31 m/s and at a normal stress of 1.47 MPa were carried out on soil sampled from the basal facies of the Yigong rock avalanche that occurred in the Tibetan plateau in China. Through conducting these tests, the macroscale and microscale features of the deformed samples were analyzed in detail with the following valuable conclusions being reached: (1) soil subjected to rotary shear exhibits a clear velocity-dependent weakening characteristic with an apparent steady state friction of 0.13 being reached at Veq ≥ 0.61 m/s, (2) high-temperature rises and layers with high porosity were observed in the samples sheared at Veq ≥ 0.61 m/s, and (3) the cooperation of thermal pressurization and moisture fluidization induced by friction heating plays an important role in explaining the marked frictional weakening of the soil. In addition, the appearance of nanoparticles due to particle fragmentation should facilitate the weakening of the soil but is not the key reason for the marked frictional weakening.

  17. Sediment Transport by Spring Avalanches in the Southern Swiss Alps (United States)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.


    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  18. Prediction reliability and return times of natural snow avalanche occurrence (United States)

    Perona, P.; Daly, E.; Porporato, A.


    The process of snow avalanche formation is inherently complex and different type of avalanches may occur as a result of the interactions of different factors, resulting in some degree of both space and time unpredictability. We model the occurrence of natural snow avalanches by means of the state-dependent stochastic point process in continuous time formerly presented by Perona et al. (2009), the full analytical solution of which has now been obtained. The time dynamics of snow depth h is mathematically described as marked Poisson snowfall events, after which h decreases deterministically because of snowmelt and compaction. Avalanches are also treated as a stochastic Poisson process, whose frequency depends on the state of the variable h, and acts as a renewal event for the entire process, i.e resetting the variable h to zero for the sake of mathematical tractability. In this paper, we show the statistical distributions for the snow depth, the avalanche size and intertime of occurrence, as a function of snowfall, slope aspect and compaction rate parameters. By using classic Peak over Threshold theory we also compute the Return Time (RT) of both snowfalls and avalanche sizes. We then use such results in order to inquire the origin of the different RT that are often observed between avalanches and preceding intense snowfalls. We find that a gradual decorrelation occurs between size and RT of avalanche events from that of intense snowfalls as the terrain slope decreases within the range of instability (i.e., slopes > 25°). This is due to the important role played by the snow compaction dynamics, which is on the contrary less influent on high slopes where the load increase due to new snow alone drives the detachment. Hence, we discuss how the spatial variability of hydroclimatic conditions (i.e., precipitation and compaction rate), and topographic characteristics (i.e., slope) influence our ability of predicting the statistics of detachment catchmentwise. Although

  19. Implications of Grainfall for Avalanches and Barchan Dune Morphodynamics (United States)

    Nield, J. M.; Wiggs, G.; Baddock, M. C.; Hipondoka, M.


    Sediment accumulation on aeolian dunes is predominately though avalanching (or grainflow). This grainflow is initiated by the accumulation of grainfall deposits, close to the dune brink. When the accumulation, or `bulge', exceeds an angle of repose, avalanches are initiated and sediment is transported down the lee of the dune. The location of sediment accumulation, or avalanche initiation point, is determined by the distance that grainfall can travel from the dune brink. While previous studies have focused on determining angles at which avalanches occur, along with depositional flux rates, technical constraints have limited the testing of models to predict grainfall zone dynamics under varying wind conditions. Here we use terrestrial laser scanning (TLS) to measure both grainfall distance and associated lee slope surface change of a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that under stronger winds, the distance that grainfall can travel from the brink expands (by up to 0.45 m for a 3 m/s increase in wind speed). Along with this expansion of the grainfall distance there is an increase in saltation flux over the brink. The increased grainfall distance shifts sand further from the brink resulting in dominant avalanche initiation point locations expanding from 0.3 m to 0.4 m for wind speeds above 6 m/s. This shift also corresponds to the appearance of secondary avalanches, which are initiated by primary avalanche lobe deposits extending outside of the main grainfall zone. Ultimately, under stronger winds the expansion of the grainfall distance contributes to the destabilisation and movement of increased sediment volumes down the lee slope. Avalanches under stronger wind speeds, therefore, increase in thickness, width and length, while during weaker wind speeds, most of the grainfall and grainflow is limited to the upper section of the lee slope. The implication of this dual avalanche behaviour under variable wind

  20. Intermittent flow under constant forcing: Acoustic emission from creep avalanches (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang


    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  1. Snow avalanche friction relation based on extended kinetic theory

    Directory of Open Access Journals (Sweden)

    M. Rauter


    Full Text Available Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  2. Segregation induced fingering instabilities in granular avalanches (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico


    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  3. Gain stabilization in Micro Pattern Gaseous Detectors: methodology and results (United States)

    Shaked Renous, D.; Roy, A.; Breskin, A.; Bressler, S.


    The phenomenon of avalanche-gain variations over time, particularly in Micro Pattern Gaseous Detectors (MPGD) incorporating insulator materials, have been generally attributed to electric-field modifications resulting from "charging-up" effects of the insulator. A robust methodology for characterization of gain-transients in such detectors is presented. It comprises three guidelines: detector initialization, long gain-stabilization monitoring and imposing transients by applying abrupt changes in operation conditions. Using THWELL and RPWELL detectors, we validated the proposed methodology by assessing a charging-up/charging-down model describing the governing processes of gain stabilization. The results provide a deeper insight into these processes, reflected by different transients upon abrupt variations of detector gain or the irradiation rate. This methodology provides a handle for future investigations of the involved physics phenomena in MPGD detectors comprising insulating components.


    Directory of Open Access Journals (Sweden)

    N. N. Volodicheva


    Full Text Available Elbrus region is characterized by the highest degree of avalanche danger, and now the intensive development of winter tourism is coming there. The plan of building protection against avalanches was created here. The snowkeeping shields were built on southern slopes. In winter of 2009, after intensive snowfalls, the shields were partial covered with avalanche snow, but they did not let the bigger avalanches to form. The builders did not consider the complexity of avalanche structure and made some mistakes in the sequence of shields building. The distribution of snow cover on slopes, the dominant avalanche genetic types that define the volume, speed, and the power of blow and the range of emission must be considered during the designing and building of avalanche protection systems. The experience of MSU works must be used during the building of avalanche protection systems in others places of Elbrus region.

  5. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection (United States)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin


    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  6. The diversity of flux avalanche patterns in superconducting films (United States)

    Vestgården, J. I.; Shantsev, D. V.; Galperin, Y. M.; Johansen, T. H.


    The variety of morphologies in flux patterns created by thermomagnetic dendritic avalanches in type-II superconducting films is investigated using numerical simulations. The avalanches are triggered by introducing a hot spot at the edge of a strip-shaped sample, which is initially prepared in a partially penetrated Bean critical state by slowly ramping the transversely applied magnetic field. The simulation scheme is based on a model accounting for the nonlinear and nonlocal electrodynamics of superconductors in the transverse geometry. By systematically varying the parameters representing the Joule heating, heat conduction in the film, and heat transfer to the substrate, a wide variety of avalanche patterns are formed, and quantitative characterizations of the areal extension, branch width etc are made. The results show that branching is suppressed by the lateral heat diffusion, while large Joule heating gives many branches, and heat removal into the substrate limits the areal size. The morphology shows significant dependence also on the initial flux penetration depth.

  7. Communicators' perspective on snow avalanche risk communication using smartphone applications (United States)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Mostert, Erik


    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is used globally. It consists of 5 levels of danger displayed with a given number and colour, and for each of them behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the smartphone applications with which the information is disseminated to the general public differ, particularly in terms of target audience and level of details. This study aims to gather the perspectives of several persons that are responsible for these avalanche risk communication practices. The survey was created to assess how and why choices were made in the design process of the applications and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication smartphone applications, this study provides guidelines for communication and the evaluation of its effectiveness.

  8. Dynamic rock fragmentation: thresholds for long runout rock avalanches

    Directory of Open Access Journals (Sweden)

    E.T. Bowman


    Full Text Available The dynamic fragmentation of rock within rock avalanches is examined using the fragmentation concepts introduced by Grady and co-workers. The analyses use typical material values for weak chalk and limestone in order to determine theoretical strain rate thresholds for dynamic fragmentation and resulting fragment sizes. These are found to compare favourably with data obtained from field observations of long runout rock avalanches and chalk cliff collapses in spite of the simplicity of the approach used. The results provide insight as to the energy requirements to develop long runout behaviour and hence may help to explain the observed similarities between large rock avalanches and much smaller scale chalk cliff collapses as seen in Europe.

  9. Avalanches and plastic flow in crystal plasticity: an overview (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr


    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  10. Towards an automated detection of avalanche deposits using their directional properties


    Bühler, Y; Hüni, A; Kellenberger, T W; Itten, K I


    Snow avalanches killed more people in the Swiss alpine area during the past decades than any other natural hazard. To further improve the avalanche prediction and the protection of people and infrastructure, information about the occurrence and the distribution of avalanche activity is crucial. Nevertheless this information is missing for large parts of the Alpine area. The surface roughness of avalanche deposits differs considerably from the adjacent undisturbed snow cover and is an impor...

  11. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov


    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.


    Directory of Open Access Journals (Sweden)



    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  13. Meteorological variables associated with deep slab avalanches on persistent weak layers (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.


    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  14. Sixteen-year follow-up of childhood avalanche survivors

    DEFF Research Database (Denmark)

    Thordardottir, E.B.; Valdimarsdóttir, Unnur A; Hansdottir, Ingunn


    stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods......: Childhood survivors (aged 2-19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The PosttraumaticDiagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors...

  15. The RainCloud project: Harnessing Cloud Computing for a meteorological application at the Tyrolean Avalanche Service (United States)

    Schueller, Felix; Ostermann, Simon; Janetschek, Matthias; Prodan, Radu; Mayr, Georg


    Precipitation in mountainous regions is an essential process in meteorological research for its strong impact on the hydrological cycle and its effects on avalanche danger. Our meteorological aim is to investigate and simulate precipitation in mountainous regions with a simple numerical model. This model, due to its mathematical nature, is called the "`linear model of orographic precipitation"' (short: LM). As it is a very simple and basic model, it can be easily run in a large number of iterations for parameter studies, i.e. the same setup with variations in certain input parameters. We are using the LM in 3 different "`flavours"' within the same ASKALON workflow: an operational type, and two research types with varying idealization of the meteorological setup.semi-idealized and an ideal type. The operational type comprises the repeated and regular run of a certain version of the workflow providing the Tyrolean Avalanche Service ("`Lawinenwarndienst Tirol"') with a spatially detailed (500 m resolution) probabilistic precipitation forecast to help them forecast avalanche danger. Using Cloud Computing allows us to be more flexible and cheaper than dedicated hardware. Our workflow invocations can differ substantially in requirements to the computational infrastructure, both in computing power and data size. We present the design of a meteorological application for the Tyrolean Avalanche Service using the ASKALON environment comprising graphical workflow modelling and execution in a Cloud computing environment. We demonstrate with the Amazon EC2 Cloud that within the limits of Amdahl's law our workflow can gain important speedup when executed in a visualized Cloud environment with important operational cost reductions. Results from the research type workflow implementations show the usefulness of our model for determining precipitation distribution in the case of two field campaigns over Norway.

  16. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication. (United States)

    Ferraro, Mike S; Clark, William R; Rabinovich, William S; Mahon, Rita; Murphy, James L; Goetz, Peter G; Thomas, Linda M; Burris, Harris R; Moore, Christopher I; Waters, William D; Vaccaro, Kenneth; Krejca, Brian D


    In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.

  17. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry


    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  18. Features of the Electron Avalanche in the Great Gas Amplification Mode

    CERN Document Server

    Zalikhanov, B Zh


    The results of studying the electron avalanche in narrow-gap wire chambers in the avalanche-to-streamer transition region are presented. Characteristics of the chambers in the great gas amplification mode ($\\geqslant 10^7$) are given. Specific features of the electric field distribution in narrow-gap chambers made it possible to reveal earlier unknown processes which proceed in a high-current avalanche and elucidate the avalanche development dynamics. Qualitative explanation is offered for these processes, and on its basis consideration is given to the possibility of the avalanche-to-streamer transition and the streamer growth mechanism.

  19. Dendritic flux avalanches in superconducting Nb3Sn films

    NARCIS (Netherlands)

    Rudnev, IA; Antonenko, SV; Shantsev, DV; Johansen, TH; Primenko, AE


    The penetration of magnetic flux into a thin superconducting film of Nb3Sn with critical temperature 17.8 K and critical current density 6 MA/cm(2) was visualized using magneto-optical imaging. Below 8 K an avalanche-like flux penetration in form of big and branching dendritic structures was

  20. Snow avalanche hazard of the Krkonose National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Klimeš, Jan; Balek, Jan; Hájek, P.; Červená, L.; Lysák, J.


    Roč. 13, č. 2 (2016), s. 86-90 ISSN 1744-5647 R&D Projects: GA MV VG20132015115 Institutional support: RVO:67985891 Keywords : snow avalanches * hazard * inventory * hazard mitigation * Krkonoše Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.174, year: 2016


    Directory of Open Access Journals (Sweden)

    A. S. Shashkina


    Full Text Available The paper presents research results of fractal properties of microplasma noise at LED avalanche breakdown in the visible spectrum (λ= 660; 700 nm. The breakdown type of p-n-junctionwas determined as a result of measured current-voltage characteristics at room temperature, at the temperature of 100-105 °C and after cooling down to room temperature. It was shown that the breakdown of avalanche type is realized in the majority of LEDs. It was established that the partial avalanche breakdown mode may be realized in LEDs, when a small current flows in pulses through the device. By increasing the voltage, pulse amplitude increases, closely spaced pulses merge, and time intervals between them are reduced. To interpret experimental results we applied model of processes occurring in microplasma, and noise model of partial and advanced avalanche breakdown (by A.S. Tager. The study revealed previously non-described features of microplasma noise – the fractal nature of microplasma noise. The algorithm for fractal dimension calculating was implemented in MATLAB. The dependence of fractal dimension on the reverse voltage applied to the LEDs was found out. Obtained fractal signal can be applied in optical communication systems for noise free and confidential information transmission.

  2. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.


    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  3. Impurity impact ionization avalanche in p-type diamond (United States)

    Mortet, V.; Soltani, A.


    Electrical conductivity of a highly boron doped chemical vapor deposited diamond thin film has been studied at different temperatures under high electric field conditions. Current-voltage characteristics have been measured using pulsed technique to reduce thermal effects. Experimental results evidence deep impurity impact ionization avalanche in p-type diamond up to room temperature.

  4. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain (United States)

    Bright, Leslie Shay


    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  5. Electron avalanche structure determined by random walk theory (United States)

    Englert, G. W.


    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  6. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.


    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These

  7. Rock avalanches clusters along the northern Chile coastal scarp (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.


    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  8. Trial Protocol: Randomised controlled trial of the effects of very low calorie diet, modest dietary restriction, and sequential behavioural programme on hunger, urges to smoke, abstinence and weight gain in overweight smokers stopping smoking

    Directory of Open Access Journals (Sweden)

    Hajek Peter


    Full Text Available Abstract Background Weight gain accompanies smoking cessation, but dieting during quitting is controversial as hunger may increase urges to smoke. This is a feasibility trial for the investigation of a very low calorie diet (VLCD, individual modest energy restriction, and usual advice on hunger, ketosis, urges to smoke, abstinence and weight gain in overweight smokers trying to quit. Methods This is a 3 armed, unblinded, randomized controlled trial in overweight (BMI > 25 kg/m2, daily smokers (CO > 10 ppm; with at least 30 participants in each group. Each group receives identical behavioural support and NRT patches (25 mg(8 weeks,15 mg(2 weeks,10 mg(2 weeks. The VLCD group receive a 429-559 kcal/day liquid formula beginning 1 week before quitting and continuing for 4 weeks afterwards. The modest energy restricted group (termed individual dietary and activity planning(IDAP engage in goal-setting and receive an energy prescription based on individual basal metabolic rate(BMR aiming for daily reduction of 600 kcal. The control group receive usual dietary advice that accompanies smoking cessation i.e. avoiding feeling hungry but eating healthy snacks. After this, the VLCD participants receive IDAP to provide support for changing eating habits in the longer term; the IDAP group continues receiving this support. The control group receive IDAP 8 weeks after quitting. This allows us to compare IDAP following a successful quit attempt with dieting concurrently during quitting. It also aims to prevent attrition in the unblinded, control group by meeting their need for weight management. Follow-up occurs at 6 and 12 months. Outcome measures include participant acceptability, measured qualitatively by semi-structured interviewing and quantitatively by recruitment and attrition rates. Feasibility of running the trial within primary care is measured by interview and questionnaire of the treatment providers. Adherence to the VLCD is verified by the presence of

  9. Dealing with the white death: avalanche risk management for traffic routes. (United States)

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob


    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  10. Avalanche Accidents Causing Fatalities: Are They Any Different in the Summer? (United States)

    Pasquier, Mathieu; Hugli, Olivier; Kottmann, Alexandre; Techel, Frank


    Pasquier, Mathieu, Olivier Hugli, Alexandre Kottmann, and Frank Techel. Avalanche accidents causing fatalities: are they any different in the summer? High Alt Med Biol. 18:67-72, 2017. This retrospective study investigated the epidemiology of summer avalanche accidents that occurred in Switzerland and caused at least one fatality between 1984 and 2014. Summer avalanche accidents were defined as those that occurred between June 1st and October 31st. Summer avalanches caused 21 (4%) of the 482 avalanches with at least one fatality occurring during the study period, and 40 (6%) of the 655 fatalities. The number of completely buried victims per avalanche and the proportion of complete burials among trapped people were lower in summer than in winter. Nevertheless, the mean number of fatalities per avalanche was higher in summer than in winter: 1.9 ± 1.2 (standard deviation; range 1-6) versus 1.3 ± 0.9 (range 1-7; p accidents. Sixty-five percent of fully buried were found due to visual clues at the snow surface. Fatal summer avalanche accidents caused a higher mean number of fatalities per avalanche than winter avalanches, and those deaths resulted mostly from trauma. Rescue teams should anticipate managing polytrauma for victims in summer avalanche accidents rather than hypothermia or asphyxia; they should be trained in prehospital trauma life support and equipped accordingly to ensure efficient patient care.

  11. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.


    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  12. Snow avalanche detection and identification for near real-time application (United States)

    Havens, S.; Johnson, J. B.; Marshall, H.; Nicholson, B.; Trisca, G. O.


    A near real-time avalanche detection system will provide highway avalanche forecasters with a tool to remotely monitor major avalanche paths and provide information about regional avalanche activity and timing. For the last three winters, a network of infrasound arrays has been remotely monitoring both avalanche and non-avalanche events along a 10 mile section of Highway 21 in Idaho. To provide the best results to avalanche forecasters, the system must be robust and detect all major avalanche events of interest that affect the highway. Over the last three winters, the infrasound arrays recorded multiple avalanche cycles and we explore different methods of event detection for both large dry avalanches (strong infrasound signal) and small wet avalanches (weak infrasound signal). We compare the F-statistic and cross-correlation techniques (i.e. PMCC) to determine the most robust method and develop computationally efficient algorithms to implement in near-real time using parallel processing and GPU computing. Once an event has been detected, we use the artificial intelligence method of recursive neural networks to classify based on similar characteristics to past known signals.

  13. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.


    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  14. Maximum speeds and alpha angles of flowing avalanches (United States)

    McClung, David; Gauer, Peter


    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  15. Evaluation and operationalization of a novel forest detrainment modeling approach for computational snow avalanche simulation (United States)

    Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.


    Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure

  16. Hummocks: how they form and evolve in debris avalanches (Invited) (United States)

    Paguican, E. R.; van Wyk de Vries, B.; Lagmay, A.


    Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks remain as discrete entities. They can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. In areas of transverse movement within a landslide, elongate hummocks develop between strike-slip flower structures. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. Hummock size, shape and spatial distribution vary between and within deposits. Such a universal structure with clear connection to the deformation process should provide a framework with which to study avalanche emplacement dynamics and conditions. We study well-preserved and well-sectioned hummocks in the Mt Iriga rockslide-debris avalanches (Philippines), to characterise the internal structure and relate hummocks to the landslide-avalanche behaviour. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. The upper and outer hummock surface is destabilised by minor slumps and scree formation forming a

  17. A new web-based system to improve the monitoring of snow avalanche hazard in France (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael


    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  18. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)


    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  19. A compact gas-filled avalanche counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y., E-mail: [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Chyzh, A.; Kwan, E.; Henderson, R.A.; Gostic, J.M.; Carter, D. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bredeweg, T.A.; Couture, A.; Jandel, M.; Ullmann, J.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)


    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4{pi} {gamma}-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with {sup 235}U, {sup 238}Pu, {sup 239}Pu, and {sup 241}Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in {sup 252}Cf. The design and performance of this avalanche counter for targets with extreme {alpha}-decay rate up to {approx}2.4 Multiplication-Sign 10{sup 8}/s are described.

  20. Erosion dynamics of powder snow avalanches - model of frontal entrainment (United States)

    Louge, Michel; Sovilla, Betty


    We analyze entrainment at the head of powder snow avalanches (PSA) behaving as an eruption current. Instead of invoking an erosion model or other fitted parameters, the analysis assumes that erosion is sustained by a massive blow-out arising as the snow cover is fluidized by the very pore pressure gradients that the avalanche induces within the snow pack. The stability of a mass balance involving snow cover and flow in the PSA's head region then sets frontal speed, height, mixed-mean density, snowpack fluidization depth, frontal impact pressure and static pressure. We show that acceleration of the front is insensitive to local slope, but effectively depends on the rate of change in cloud width. We compare predictions with data collected at the Vallee de la Sionne.

  1. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.


    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential, but a chara......We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential......, but a characteristic event size cannot be inferred, because the mean values of these quantities increase as L-alpha with alpha similar to 3/2. In contrast with results obtained in 2D models, we do not see simply connected avalanches. The exponent suggests a fractal shape of the avalanches, which is also evidenced...

  2. A micropixel avalanche phototransistor for time of flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Abdullayev, K. [National Aviation Academy, Baku (Azerbaijan); Akberov, R. [National Nuclear Research Center, Baku (Azerbaijan); Institute of Radiation Problems, Baku (Azerbaijan); Heydarov, N. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan); Mukhtarov, R. [National Aviation Academy, Baku (Azerbaijan); Nazarov, M.; Valiyev, R. [National Nuclear Research Center, Baku (Azerbaijan)


    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs. - Highlights: • A new photo detector – micropixel avalanche phototransistor was developed. • MAPT has a matrix of microtransistors with fast output. • In these modules the duration of the leading edge of the signal from the photodetectors are not worse than 50–100 ps.

  3. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail:; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)


    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  4. Stability of the discretization of the electron avalanche phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Andrea, E-mail: [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Barbieri, Luca, E-mail: [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Gondola, Marco, E-mail: [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Leon-Garzon, Andres R., E-mail: [CMIC Department “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano (Italy); Malgesini, Roberto, E-mail: [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy)


    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  5. Large Format Geiger Mode Avalanche Photodiode Arrays and Readout Circuits (United States)


    pixel circuit . The photocharge is sensed by an analog amplifier and digitized at the periphery of the array, a process that adds readout noise .1 2...arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single...the readout noise . Airborne flash lidar systems, for example, can achieve high area coverage rates by using large arrays of detectors, each of which

  6. Anterior capsulotomy with a pulsed-electron avalanche knife. (United States)

    Palanker, Daniel; Nomoto, Hiroyuki; Huie, Philip; Vankov, Alexander; Chang, David F


    To evaluate a new pulsed-electron avalanche knife design for creating a continuous curvilinear capsulotomy (CCC) and compare the CCC with a mechanical capsulorhexis. Department of Ophthalmology, Stanford University, Stanford, California, USA. In this study, CCCs were created in freshly enucleated bovine eyes and in rabbit eyes in vivo. The cutting velocity was adjusted by controlling the burst repetition rate, voltage amplitude, and burst duration. Tissue samples were fixed and processed for histology and scanning electron microscopy (SEM) immediately after surgery. The study included 50 bovine eyes and 10 rabbit eyes. By adjusting the electrosurgical waveforms, gas-bubble formation was minimized to permit good surgical visualization. The optimum voltage level was determined to be +/-410 V with a burst duration of 20 mus. Burst repetition rate, continuously adjustable from 20 to 200 Hz with footpedal control, allowed the surgeon to vary linear cutting velocity up to 2.0 mm/s. Histology and SEM showed that the pulsed-electron avalanche knife produced sharp-edged capsule cutting without radial nicks or tears. The probe of the pulsed-electron avalanche knife duplicated the surgical feel of a 25-gauge cystotome and created a histologically smooth capsule cut. It may improve precision and reproducibility of creating a CCC, as well as improve its proper sizing and centration, especially in the face of surgical risk factors, such as weak zonules or poor visibility. Drs. Palanker and Vankov hold patents to the pulsed electron avalanche knife technology, which are licensed to PEAK Surgical by Stanford University. Drs. Palanker and Chang are consultants to PEAK Surgical. Dr. Vankov is an employee of PEAK Surgical. Neither of the other authors has a financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Particle-based Powder-snow Avalanche Simulation Using GPU


    Yndestad, Leif Kåre Hornnes


    The main focus of this thesis was the simulation of a powder-snow avalanche flow. The simulation were implemented using the particle-based simulation solution SPH, from a mathematical model describing powder-snow flow dynamics. The simulation was accelerated by applying the computational power of the GPU, in order to provide a faster simulation time than would have been achieved on the CPU.

  8. Influence of upstream catching dam slope on powder avalanche


    Caccamo, P.; Naaim Bouvet, F.; Faug, T.


    International audience; The influence of an obstacle on the dynamics of a finite-volume density current modelling a powder-snow avalanche was investigated. A constant volume of a dyed salt solution reproduced the small-scale aerosol flowing down an inclined channel immersed in a water tank. Reference tests in the absence of the obstacle characterized the dynamics parameters of the flow and then the influence of two types of obstacles on these parameters was studied. Both of the obstacles repr...

  9. Impurity impact ionization avalanche in p-type diamond


    Mortet, Vincent; Soltani, A.


    Electrical conductivity of a highly boron doped chemical vapor deposited diamond thin film has been studied at different temperatures under high electric field conditions. Current-voltage characteristics have been measured using pulsed technique to reduce thermal effects. Experimental results evidence deep impurity impact ionization avalanche in p-type diamond up to room temperature. (C) 2011 American Institute of Physics. Physics; Applied; electrical conduction; low temperatures; germaniu...

  10. Avalanches and power-law behaviour in lung inflation (United States)

    Suki, Béla; Barabási, Albert-László; Hantos, Zoltán; Peták, Ferenc; Stanley, H. Eugene


    WHEN lungs are emptied during exhalation, peripheral airways close up1. For people with lung disease, they may not reopen for a significant portion of inhalation, impairing gas exchange2,3. A knowledge of the mechanisms that govern reinflation of collapsed regions of lungs is therefore central to the development of ventilation strategies for combating respiratory problems. Here we report measurements of the terminal airway resistance, Rt , during the opening of isolated dog lungs. When inflated by a constant flow, Rt decreases in discrete jumps. We find that the probability distribution of the sizes of the jumps and of the time intervals between them exhibit power-law behaviour over two decades. We develop a model of the inflation process in which 'avalanches' of airway openings are seen-with power-law distributions of both the size of avalanches and the time intervals between them-which agree quantitatively with those seen experimentally, and are reminiscent of the power-law behaviour observed for self-organized critical systems4. Thus power-law distributions, arising from avalanches associated with threshold phenomena propagating down a branching tree structure, appear to govern the recruitment of terminal airspaces.

  11. Meshfree simulation of avalanches with the Finite Pointset Method (FPM) (United States)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios


    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  12. Avalanches in the Bean critical-state model (United States)

    Barford, W.


    A macroscopic equation of motion for the flux density in dirty type-II superconductors is introduced. The flux density is subject to various types of spatially varying pinning force. When there is no stick-slip dynamics, i.e., when the static pinning force equals the dynamic pinning force, it is shown that in both one and two dimensions an increase in the surface magnetic field leads to an overall height change and hence to a change in magnetization equal to the change in the surface magnetic field. More interesting behavior occurs on introducing stick-slip dynamics, i.e., when the static pinning force exceeds the dynamic pinning force. In this limit a distribution of avalanche sizes over four orders of magnitude is found for a 100×100 lattice. Apart from the anomalous behavior at large sizes, this is shown to fit a distribution of the form P(s)~s-ν exp(-s/α), where s is the avalanche size. The anomalous behavior for large sizes corresponds to avalanches which involve most of the lattice and, hence, cause the flux to ``slide over the edge,'' as detected by a change in the edge magnetization.

  13. Automated Characterization of Single-Photon Avalanche Photodiode

    Directory of Open Access Journals (Sweden)

    Aina Mardhiyah M. Ghazali


    Full Text Available We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH. The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 µW, dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer. ABSTRAK: Kami melaporkan pencirian pengesan foton tunggal secara automatik berdasarkan kepada diod foto runtuhan silikon (silicon avalanche photodiode (PerkinElmer C30902SH komersial. Pencirian  diod foto adalah berdasarkan kepada plot arus-voltan (I-V pada tahap pencahayaan yang berbeza (kelam - tanpa cahaya, 10pW, dan 10µW, kadar bacaan latar belakang, kecekapan pengesanan foton pada voltan picuan yang berbeza. Pengaturcaraan C++ digunakan di dalam rutin pencirian automatik melalui komputer dengan sistem pengendalian LINUX.KEYWORDS: avalanche photodiode (APD; single photon detector; photon counting; experiment automation

  14. Self-organization without conservation: are neuronal avalanches generically critical? (United States)

    Bonachela, Juan A.; de Franciscis, Sebastiano; Torres, Joaquín J.; Muñoz, Miguel A.


    Recent experiments on cortical neural networks have revealed the existence of well-defined avalanches of electrical activity. Such avalanches have been claimed to be generically scale invariant—i.e. power law distributed—with many exciting implications in neuroscience. Recently, a self-organized model has been proposed by Levina, Herrmann and Geisel to explain this empirical finding. Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism progressively 'charging' the background synaptic strength, this model/dynamics is very similar in spirit to forest-fire and earthquake models, archetypical examples of non-conserving self-organization, which have recently been shown to lack true criticality. Here we show that cortical neural networks obeying (i) and (ii) are not generically critical; unless parameters are fine-tuned, their dynamics is either subcritical or supercritical, even if the pseudo-critical region is relatively broad. This conclusion seems to be in agreement with the most recent experimental observations. The main implication of our work is that, if future experimental research on cortical networks were to support the observation that truly critical avalanches are the norm and not the exception, then one should look for more elaborate (adaptive/evolutionary) explanations, beyond simple self-organization, to account for this.

  15. Local and global avalanches in a two-dimensional sheared granular medium (United States)

    Barés, Jonathan; Wang, Dengming; Wang, Dong; Bertrand, Thibault; O'Hern, Corey S.; Behringer, Robert P.


    We present the experimental and numerical studies of a two-dimensional sheared amorphous material composed of bidisperse photoelastic disks. We analyze the statistics of avalanches during shear including the local and global fluctuations in energy and changes in particle positions and orientations. We find scale-free distributions for these global and local avalanches denoted by power laws whose cutoffs vary with interparticle friction and packing fraction. Different exponents are found for these power laws depending on the quantity from which variations are extracted. An asymmetry in time of the avalanche shapes is evidenced along with the fact that avalanches are mainly triggered by the shear bands. A simple relation independent of the intensity is found between the number of local avalanches and the global avalanches they form. We also compare these experimental and numerical results for both local and global fluctuations to predictions from mean-field and depinning theories.

  16. The Safran-Crocus-Mepra results and avalanches in Iceland 2001-2002 (United States)

    Haraldsdóttir, S.; Ólafsson, H.; Durand, Y.; Giraud, G.; Mérindol, L.


    Numerical models, Safran, Crocus and Mepra (SCM) have been developed by Météo-France to predict the evolution of the snow pack and its stability with respect to avalanches. The Safran-Crocus models have been adapted to Icelandic weather conditions, where most avalanches are caused by heavy snow precipitation in strong winds. The adapted SCM-models were run operationally during the winter 2001-2002 for testing the avalanche danger prediction, knowing that the models did not take into account the transport of snow by wind. The performance of the models was analysed during 19 avalanche cycles, each consisting of 2-21 recorded avalanches. First indicators of avalanche danger in the models are weak snow layers, leading to moderate, or in most of the 19 cases, high danger of avalanches triggered by human activities. In 5 of these 19 avalanche cycles, the models predicted moderate or high natural avalanche danger. Besides the detection of weak layers the models provide an estimation of the amount of snow available for transport by wind. This together with the fact that the recorded mean wind speed exceeded 15 m/s in all cases make it possible to construct natural avalanche prediction criteria, where the key parameters from the models are the stability of the snow pack and an indication of the availability of snow for transport by wind. Used with the wind speed from observations or numerical weather prediction models the effect of blowing snow can be estimated. As a result the models turn out to be a very useful tool for predicting avalanche danger when considering simultaneously the blowing snow and its potential accumulation in the avalanche starting zones.

  17. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    Directory of Open Access Journals (Sweden)

    M. J. Lato


    Full Text Available Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors, personal property (homes and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object–oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  18. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Bründl


    Full Text Available After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc. in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  19. Weight Gain during Pregnancy (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... fitness > Weight gain during pregnancy Weight gain during pregnancy E-mail to a friend Please fill in ...

  20. Radiation Detection Measurements with a New 'Buried Junction' Silicon Avalanche Photodiode

    CERN Document Server

    Lecomte, R; Rouleau, D; Dautet, H; McIntyre, R J; McSween, D; Webb, P


    An improved version of a recently developed 'Buried Junction' avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the 'Reverse APD', is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of ener...

  1. Web site for GAIN


    Brænden, Stig; Gjerde, Stian; Hansen, Terje, TAR


    The project started with an inquiry from GAIN, Graphic Arts Intelligence Network, on the September 26. 2000. GAIN currently has a website that is static, and is not functioning in a satisfying way. The desire is therefore to establish a new dynamic web site with the possibility for the GAIN members to update the page via a browser interface, and maintain their own profiles. In addition to this they would like a brand new and more functional design. GAIN also wants to e...


    CERN Document Server

    Fedosseev, V; Herfurth, F; Scheidenberger, C; Geppert, C; Gorges, C; Ratajczyk, T; Wiederhold, J C; Vogel, S; Munch, M K; Nieminen, P; Pakarinen, J J A; Lecesne, N; Bouzomita, H; Grinyer, J; Marques moreno, F M; Parlog, M; Blank, B A; Pedroza, J; Ghetta, V; Lozeva, R; Guillemaud mueller, D S; Cottereau, E; Cheikh mhamed, M; Tusseau nenez, S; Tungate, G; Walker, P M; Smith, A G; Fitzpatrick, C; Dominik, W M; Karny, M; Ciemny, A A; Nyman, G H; Thies, R M A; Lindberg, S K G; Langouche, G F; Mayet, P; Ory, G T; Kesteloot, N J K; Papuga, J; Dehairs, M H R; Callens, M; Araujo escalona, V I; Stamati, M; Boudreau, M; Domnanich, K A; Richter, D; Lutter, R J; Javaji, A; Engel, R Y; Wiehr, S; Martinez perez, T; Nacher gonzalez, E; Jungclaus, A; Ribeiro jimenez, G; Marroquin alonso, I; Cal gonzalez, J; Paziy, V; Salsac, M; Murphy, C; Podolyak, Z F; Bajoga, A D; Butler, P; Pritchard, A; Colosimo, S J; Steer, A N; Fox, S P; Wadsworth, B A; Truesdale, V L; Al monthery, M; Bracco, A; Guttormsen, M S; Badea, M N; Calinescu, S; Ujeniuc, S; Cederkall, J A; Zemlyanoy, S; Donets, E D; Golovkov, M; Vranicar, A; Harrichunder, S; Ncube, M; Strisovska, J; Wolf, E; Gerten, R F; Lehnert, J; Gladnishki, K A; Rainovski, G I; Pospisil, S; Datta pramanik, U; Benzoni, G; Fedorov, D; Molkanov, P; Maier, F M; Bonanni, A; Pfeiffer, B; Griesel, T; Wehner, L W; Mikkelsen, M; Lenzi, S M; Smith, J F; Kelly, C M; Acosta sanchez, L A; Chavez lomeli, E R; De melo bandeira tavares, P M; Vieira, J M; Martins da silva, M A; Lima lopes, A M; Mader, J; Kessler, P; Laurent, B G; Schweikhard, L C; Marx, G H; Kulczycka, E; Komorowska, M; Da silva, M F; Goncalves marques, C P; Baptista peres, M A; Welander, J E; Reiter, P; Miller, C; Martin sanchez-cano, D; Wiens, A; Blazhev, A A; Braun, N; Cappellazzo, M V; Birkenbach, B; Gerst, R; Dannhoff, M F; Sithole, M J; Bilgier, B; Nardelli, S; Araujo mendes, C M; Agramunt ros, J; Valencia marin, E; Pantea, E; Hessberger, F P; Leduc, A J; Mitsuoka, S; Carbonari, A W; Buchegger, F J; Garzon camacho, A; Dapo, H; Papka, P; Stachura, M K; Stora, T; Marsh, B A; Thiboud, J A; Heylen, H; Antalic, S; Stahl, C; Bauer, C; Thurauf, M; Maass, B; Sturm, S; Boehm, C; Wolf, N R; Ways, M; Steinsberger, T P; Riisager, K; Ruotsalainen, P A; Bastin, B; Duval, F T; Penessot, G; Flechard, X D; Desrues, P; Giovinazzo, J; Kurtukian nieto, T; Ascher, P E L; Roccia, S; Matea, I; Croizet, H A G; Bonnin, C M; Morfouace, P; Smith, A J; Guin, R; Banerjee, D; Gunnlaugsson, H P; Ohtsubo, T; Zhukov, M V; Tengborn, E A; Welker, A; Giannopoulos, E; Dessagne, P; Juscamaita vivanco, Y; De rydt, M A E; Da costa pereira, L M; Vermaelen, P; Monten, R; Wursten, E J; De coster, A; Jin, H; Hustings, J; Yu, H; Kruecken, R; Nowak, A K; Jankowski, M; Cano ott, D; Murphy, A S J; Shand, C M; Jones, G D; Herzberg, R; Ikin, P; Revill, J P; Everett, C; Napoli, D R; Scarel, G; Larsen, A; Tornyi, T G; Pascu, S G; Stroe, L; Toma, S; Jansson, K; Dronjak fahlander, M; Krupko, S; Hurst, A M; Veskovic, M; Nikolov, J; Masenda, H; Sibanda, W N; Rocchini, M; Klimo, J; Deicher, M; Wichert, T; Kronenberg, J; Helmke, A; Meliani, Z; Ivanov, V S; Keatings, J M; Kuti, I; Halasz, Z; Henry, M O; Bras de sequeira amaral, V; Espirito santo, F; Da silva, D J; Rosendahl, S; Vianden, R J; Speidel, K; Agarwal, I; Faul, T; Kownacki, J M; Martins correia, J G; Lorenz, K; Costa miranda, S M; Granadeiro costa, A R; Zyabkin, D; Kotthaus, T; Pfeiffer, M; Gironi, L; Cakirli, R B; Jensen, A; Romstedt, F; Constantino silva furtado, I; Heredia cardona, J A; Jordan martin, M D; Montaner piza, A; Zacate, M O; Plewinski, F; Mesli, A; Akakpo, E H; Pichard, A; Hergemoller, F; Neu, W; Fallis starhunter, J P; Voulot, D; Mrazek, J; Ugryumov, V; Savreux, R P; Kojouharov, I M; Stegmann, R; Kern, R O; Papst, O; Fitting, J; Lauer, M; Kirsebom, O S; Jensen, K L; Jokinen, A; Rahkila, P J; Hager, U D K; Konki, J P; Dubois, M; Orr, N A; Fabian, X; Huikari, J E; Goigoux, T; Magron, C; Zakari, A A; Maietta, M; Bachelet, C E M; Roussiere, B; Li, R; Canavan, R L; Lorfing, C; Foster, R M; Gislason, H P; Shayestehaminzadeh, S; Qi, B; Mukai, M; Watanabe, Y; Willmann, L; Kurcewicz, W; Wimmer, K; Meisel, Z P; Dorvaux, O; Nowacki, F; Koudriavtsev, I; Lievens, P; Delaure, B J P; Neyens, G; Darby, I G; Descamps, B O; Velten, P; Ceruti, S; Bunka, M; Vermeulen, C; Umbricht, C A; De boer, J; Podadera aliseda, I; Alcorta moreno, M; Pesudo fortes, V; Zielinska, M; Korten, W; Wang, C H; Lotay, G J; Mason, P; Rice, S J; Regan, P H; Willenegger, L M; Andreev, A; Yavuzkanat, N; Hass, M; Kumar, V; Valiente dobon, J J; Crespo campo, L; Zamfir, N - V; Deleanu, D; Jeppesen, H B; Wu, C; Pain, S D; Stracener, D W; Szilner, S; Colovic, P; Matousek, V; Venhart, M; Birova, M; Li, X; Stuchbery, A E; Lellep, G M; Chakraborty, S; Leoni, S; Chupp, T; Yilmaz, C; Severin, G; Garcia ramos, J E; Hadinia, B; Mc glynn, E; Monteiro de sena silvares de carvalho, I; Friedag, P; Figuera, P; Koos, V; Meot, V H; Pauwels, D B; Jancso, A; Srebrny, J; Alves, E J; David bosne, E; Bengtsson, L; Kalkuehler, M; Albers, M; Bharuth-ram, K; Akkus, B; Hemmingsen, L B S; Pedersen, J T; Dos santos redondo, L M; Rubio barroso, B; Algora, A; Kozlov, V; Mavela, D L; Mokhles gerami, A; Keeley, N; Bernardo da silva, E; Unzueta solozabal, I; Schell, J; Szybowicz, M; Yang, X; Plavec, J; Lassen, J; Johnston, K; Coquard, L; Bloch, T P; Bonig, E S; Ignatov, A; Paschalis, S; Fernandez martinez, G; Schilling, M; Habermann, T; Von hahn, R; Minaya ramirez, E E; Manea, V; Moore, I D; Wang, Y; Saastamoinen, A J; Grahn, T; Herzan, A; Stolze, S M; Clement, E; Dijon, A; Shornikov, A; Lienard, E; Gibelin, J D; Pain, C; Canchel, G; Simpson, G S; Latrasse, L P; Huang, W; Forest, D H; Billowes, J; Flanagan, K; Strashnov, I; Binnersley, C L; Sanchez poncela, M; Simpson, J; Morrall, P S; Grant, A F; Charisopoulos, S; Lagogiannis, A; Bhattacharya, C; Olafsson, S; Stepaniuk, M; Tornqvist, H T; Heinz, A M; White iv, E R; Vermote, S L; Courtin, S; Marechal, F; Randisi, G; Kana, T; Rajabali, M M; Lannoo, B J M; Frederickx, R; De coster, T J C; Roovers, N; De lemos lima, T A; Stryjczyk, M; Dockx, K; Haller, S; Rizzi, M; Reichert, S B; Bonn, J; Thirolf, P G; Garcia rios, A R; Gugliermina, V M; Cubero campos, M A; Sanchez tembleque, V; Benito garcia, J; Senoville, M; Mountford, D J; Gelletly, W; Alharbi, T S T; Wilson, E; Rigby, S V; Andreoiu, C; Paul, E S; Harkness, L J; Judson, D S; Wraith, C; Van esbroeck, K; Wadsworth, R; Cubiss, J G; Harding, R D; Vaintraub, S; Mandal, S K; Scarpa, D; Hoff, P; Syed naeemul, H; Borcea, R; Balabanski, D L; Marginean, R; Rotaru, F; Rudolph, D; Fahlander, C H; Chudoba, V; Soic, N; Naidoo, D; Veselsky, M; Kliman, J; Raisanen, J A; Dietrich, M; Maung maung than, M M T; Reed, M W; Danchev, M T; Ray, J; Roy, M; Hammen, M; Recchia, F; Capponi, L; Veghne csatlos, M M; Fryar, J; Mirzadeh vaghefi, S P; Trindade pereira, A M; De pinho oliveira, G N; Bakenecker, A; Tramm, C; Germic, V; Morel, P A; Kowalczyk, M; Matejska-minda, M; Wolinska-cichocka, M; Ringvall moberg, A; Mantovan, R; Fransen, C H; Radeck, F; Schneiders, D W; Steinbach, T; Vibenholt, J E; Magnussen, M J; Stevnhoved, H M; Comas lijachev, V; Dasenbrock-gammon, N M; Perkowski, J; O'neill, G G; Matveev, Y; Wegner, M; Liu, Z; Perez alvarez, T; Cerato, L; Radchenko, V; Molholt, T E; Tabares giraldo, J A; Srnka, D; Dlouhy, Z; Beck, D; Werner, V R; Homm, I; Eliseev, S; Blaum, K; Probst, M B; Kaiser, C J; Martin, J A; Refsgaard, J; Peura, P J; Greenlees, P T; Auranen, K; Delahaye, P; Traykov, E K; Perez loureiro, D; Mery, A A; Couratin, C; Tsekhanovich, I; Lunney, D; Gaulard, C V; Althubiti, N A S; Mottram, A D; Cullen, D M; Das, S K; Van de walle, J; Mazzocchi, C; Jonson, B N G; Woehr, A; Lesher, S R; Zuber, K T; Filippin, L; De witte, H J; Van den bergh, P A M; Raabe, R; Depuydt, M J F; Radulov, D P; Elseviers, J; Dirkx, D; Da silva fenta, A E; Reynders, K L T; Atanasov, D; Delombaerde, L; De maesschalck, D; Parnefjord gustafsson, F O A; Dunlop, R A; Tarasava, K; Gernhaeuser, R A; Weinzierl, W; Berger, C; Wendt, K; Achtzehn, T; Gottwald, T; Schug, M; Rossel, R E; Dominguez reyes, R R; Briz monago, J A; Koester, U H; Bunce, M R; Bowry, M D; Nakhostin, M; Shearman, R; Cresswell, J R; Joss, D T; Gredley, A; Groombridge, D; Laird, A M; Aslanoglou, X; Siem, S; Weterings, J A; Renstrom, T; Szpak, B T; Luczkowski, M J; Ghita, D; Bezbakh, A; Soltz, R A; Bollmann, J; Bhattacharya, P; Roy, S; Rahaman, M A; Wlodarski, T; Carvalho soares, J; Barzakh, A; Schertz, F; Froemmgen, N E; Liberati, V; Foy, B E; Weinheimer, C P; Zboril, M; Simon, R E; Popescu, L A; Czosnyka, T; Miranda jana, P A; Leimbach, D; Naskrecki, R; Plociennik, W A; Ruchowska, E E; Chiara, C J; Eberth, J H; Thomas, T; Thole, P; Queiser, M T; Lo bianco, G; D'amico, F; Muller, S; Sanchez alarcon, R M; Tain enriquez, J L; Orrigo, S E A; Orlandi, R; Masango, S; Plazaola muguruza, F C; Lepareur, N G; Fiebig, J M; Ceylan, N; Wildner, E; Kowalska, M; Malbrunot, S; Garcia ruiz, R F; Pallada, S; Slezak, M; Roeckl, E; Schrieder, G H; Ilieva, S K; Koenig, K L; Amoretti, M A; Lommen, J M; Fynbo, H O U; Weyer, G O P; Koldste, G T; Madsboll, K; Jensen, J H; Nieminen, A M; Reponen, M; Villari, A; Thomas, J; Saint-laurent, M; Sorlin, O H; Carniol, B; Pereira lopez, J; Grevy, S; Plaisir, C; Marie-jeanne, M J; Georgiev, G P; Etile, A M; Le blanc, F M; Verney, D; Stefan, G I; Assie, M; Suzuki, D; Guillot, J; Vazquez rodriguez, L; Campbell, P; Deacon, A N; Ware, T; Flueras, A; Xie, L; Banerjee, K; Piersa, M; Galaviz redondo, D; Johansson, H T; Schwarz, S; Toysa, A S; Aumont, J; Sferrazza, M; Van duppen, P L E; Versyck, S; Dehaes, J; Bree, N C F; Neyskens, P; Carlier, L M F; De schepper, S; Dewolf, K W A; Kabir, L R; Khodery ahmad, M A; Zadvornaya, A; Renaud, M A; Xu, Z; Smolders, P; Krastev, P; Garrett, P E; Rapisarda, E; Reber, J A; Mattolat, C F; Raeder, S; Habs, D; Fraile prieto, L M; Vidal, M; Perez liva, M; Calvo portela, P; Ulla pedrera, F J; Wood, R T; Lalkovski, S; Page, R; Petri, M; Barton, C J; Nichols, A J; Vermeulen, M J; Bloor, D M; Henderson, J; Wilson, G L; De angelis, G; Buerger, A; Modamio hoybjor, V; Klintefjord, M L; Ingeberg, V W; Fornal, B A; Marginean, R; Sava, T; Kusoglu, A; Suvaila, R; Lica, R; Costache, C; Mihai, R; Ionescu, A; Baeck, T M; Fijalkowska, A G; Sedlak, M; Koskelo, O K; Kyaw myat, K M; Ganguly, B; Goncalves marques, J; Cardoso, S; Seliverstov, M; Niessen, B D; Gutt, L E; Chapman, R; Spagnoletti, P N; Lopes, C; De oliveira amorim, C; Batista lopes, C M; Araujo, J; Schielke, S J; Daugas, J R; Gaudefroy, L; Chevrier, R; Szunyogh, D M; Napiorkowski, P J; Wrzosek-lipska, K; Wahl, U; Catarino, N; Pereira carvalho alves de sequeira, M; Walters, W; Hess, H E; Holler, A; Bettermann, L; Geibel, K; Taprogge, J; Lewandowski, L T N; Manchado de sola, F; Das gupta, S; Thulstrup, P W; Heinz, U; Nogwanya, T; Neidherr, D M; Morales lopez, A I; Gumenyuk, O; Peaker, A R; Wakabayashi, Y; Abrahams, K J; Martin montes, E J; Mach, H A; Souza ribeiro junior, I; He, J; Chalil, A; Xing, R; Giles, T J; Dorsival, A; Trujillo hernandez, J S; Kalaninova, Z; Andel, B; Venos, D; Kraemer, J; Saha, S; Neugart, R; Eronen, T O; Kreim, K D; Heck, M K; Goncharov, M; Karthein, J; Julin, R J; Jakobsson, E H U; Eleon, C; Achouri, N L; Grinyer, G F; Fontbonne, C M; Alfaurt, P; Lynch, K M; Wilkins, S G; Brown, A R; Imai, N; Pomorski, M J; Janiak, L; Nilsson, T; Stroke, H H; Stanja, J; Dangelser, E; Heenen, P; Godefroid, M; Mallion, S N; Diriken, J V J; Ghys, L H L; Khamehchi, M A; Van beveren, C; Gins, W A M; Finlay, P E J; Bouma, J T; Augustyns, V; Stegemann, S T; Koszorus, A; Mcnulty, J F; Lin, P; Ohlert, C M; Schwerdtfeger, W; Tengblad, O; Becerril reyes, A D; Perea martinez, A; Martinez perez, M C; Margerin, V; Rudigier, M; Alexander, T D; Patel, Z V; Hammond, N; Wearing, F; Patel, A; Jenkins, D G; Corradi, L; Galtarossa, F; Debernardi, A; Giacoppo, F; Tveten, G M; Malatji, K L; Krolas, W A; Stanoiu, M A; Rickert, E U; Ter-akopian, G; Cline, D; Riihimaeki, I A; Simon, K D; Wagner, F E; Turker, M; Neef, M H; Coombes, B J; Jakubek, J; Vagena, E; Bottoni, S; Nishimura, K; Correia, J; Rodrigues valdrez, C J; Adhikari, R; Ostrowski, A N; Hallmann, O; Scheck, M; Wady, P T; Lane, J; Krasznahorkay, A J; Kunne sohler, D; Meaney, A J; Baptista barbosa, M; Hochschulz, F; Roig, O; Behan, C C; Kargoll, S; Kemnitz, S; Carvalho teixeira, R C; Redondo cubero, A; Tallarida, G; Kaczarowski, R; Finke, F; Linnemann, A; Altenkirch, R; Saed-samii, N; Ansari, S H; Dlamini, W B; Adoons, V N; Ronning, C R; Wiedeking, M; Herlert, A J; Mehl, C V; Judge, S M; Gaertner, D; Divinskyi, S; Zagoraios, G; Boztosun, I; Van zyl, J J; Catherall, R; Lettry, J; Wenander, F J C; Zakoucky, D; Catchen, G L; Noertershaeuser, W; Kroell, T; Leske, J; Shubina, D; Murray, I M; Pancin, J; Delaunay, F; Poincheval, J J L; Audirac, L L; Gerbaux, M T; Aouadi, M; Sole, P G P; Fallot, M P; Onillon, A; Duchemin, C; Formento cavaier, R; Audi, G; Boukhari, A; Lau, C; Martin, J A; Barre, N H; Berry, T A; Procter, T J; Bladen, L K; Axiotis, M; Muto, S; Jeong, S C; Hirayama, Y; Korgul, A B; Minamisono, K; Bingham, C R; Aprahamian, A; Bucher, B M; Severijns, N; Huyse, M L; Himpe, P; Ferrer garcia, R; Marchi, T; Sambi, S; Budincevic, I; Neven, M; Verlinde, M N S; Bomans, P; Romano, N; Maugeri, E A; Klupp, S C; Dehn, M H; Heinke, R M; Naubereit, P; Maira vidal, A; Vedia fernandez, M V; Ibanez garcia, P B; Bruyneel, B J E; Materna, T; Hadynska-klek, K; Al-dahan, N; Alazemi, N; Carroll, R J; Babcock, C; Patronis, N; Eleme, Z; Dhal, A; Sahin, E; Goergen, A; Maj, A; Bednarczyk, P A; Borcea, C; Negoita, F; Suliman, G; Marginean, N M; Sotty, C O; Negret, A L; Nae, S A; Nita, C; Golubev, P I; Knyazev, A; Jost, C U; Petrik, K; Vaeyrynen, S A; Dracoulis, G D; Uher, J; Fernandez dominguez, B; Chakraborty, P; Avigo, R; Falahat, S; Lekovic, F; Dorrer, H J; Mengoni, D; Derkx, X; Angus, L J; Sandhu, K S; Gregor, E; Kelly, N A; Byrne, D J; Haas, H; Lourenco, A A; Sousa pereira, S M; Sousa, J B; De melo mendonca, T M; Tavares de sousa, C; Guerreiro dos santos oliveira custodio, L M; Da rocha rodrigues, P M; Yamaguchi, T; Thompson, P C; Rosenbusch, M; Wienholtz, F; Fischer, P; Iwanicki, J S; Rusek, K M; Hanstorp, D; Vetter, U; Wolak, J M; Park, S H; Warr, N V; Doornenbal, P C; Imig, A; Seidlitz, M; Moschner, K; Vogt, A; Kaya, L; Martel bravo, I; Orduz, A K; Serot, O; Majola, S N; Litvinov, Y; Bommert, M; Hensel, S; Markevich, V; Nishio, K; Ota, S; Matos, I; Zenkevich, A; Picado sandi, E; Forstner, O; Hu, B; Ntshangase, S S; Sanchez-segovia, J


    The experiments aim at a broad exploration of the properties of atomic nuclei far away from the region of beta stability. Furthermore, the unique radioactive beams of over 60~elements produced at the on-line isotope separators ISOLDE-2 and ISOLDE-3 are used in a wide programme of atomic, solid state and surface physics. Around 300 scientists are involved in the project, coming from about 70 laboratories. \\\\ \\\\ The electromagnetic isotope separators are connected on-line with their production targets in the extracted 600 MeV proton or 910~MeV Helium-3 beam of the Synchro-Cyclotron. Secondary beams of radioactive isotopes are available at the facility in intensities of 10$^1

  3. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models (United States)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat


    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and

  4. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia (United States)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri


    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  5. Subsampling effects in neuronal avalanche distributions recorded in vivo

    Directory of Open Access Journals (Sweden)

    Munk Matthias HJ


    Full Text Available Abstract Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s, and sigma = 1, are hallmark features of self-organized critical (SOC systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s and sigma by imposing subsampling on three different SOC models. We then compared f(s and sigma of the subsampled models with those of multielectrode local field potential (LFP activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s. Both, f(s and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s and sigma calculated from the physiological

  6. Energy pumping in electrical circuits under avalanche noise. (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao


    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  7. Simulation of displacement damage for silicon avalanche photo-diodes

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I c, Adnan, E-mail: [Uludag University, Department of Physics, 16059 Bursa (Turkey); Pilicer, Ercan; Tapan, Ilhan; Oezmutlu, Emin N. [Uludag University, Department of Physics, 16059 Bursa (Turkey)


    The silicon avalanche photo-diodes (APDs) in the CMS barrel electromagnetic calorimeter will be exposed to an integrated neutron fluence of about 2 Multiplication-Sign 10{sup 13}n/cm{sup 2} over 10 years of operation. High neutron fluences change the electrical properties of silicon detectors. The changes are proportional to the non-ionising energy loss in the APDs. Using the Geant4 toolkit, we have calculated the non-ionising energy loss as well as the rate of generation of primary defects in the APDs, for the expected neutron fluence.

  8. Double Screening Tests of the CMS ECAL Avalanche Photodiodes

    CERN Document Server

    Deiters, Konrad; Renker, Dieter; Sakhelashvili, Tariel; Britvitch, Ilia; Kuznetsov, Andrey; Musienko, Yuri; Singovsky, Alexander


    Specially developed avalanche photo-diodes (APDs) will be used to measure the light from the 61,200 lead tungstate crystals in the barrel part of the CMS electromagnetic calorimeter. To ensure the reliability over the lifetime of the detector, every APD is screened by irradiation and burn-in before it is accepted for CMS. As part of the establishment of the screening procedure and to determine its effectiveness, a large number of APDs were screened twice. The results of these tests suggest that the required reliability will be achieved.

  9. The Vaigat Rock Avalanche Laboratory, west-central Greenland (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.


    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  10. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, Vishal Vishal; Dutta, Satadal; Annema, Anne J.; Hueting, Raymond Josephus Engelbart; Steeneken, P.G.; Nauta, Bram


    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant overlap

  11. Gain weighted eigenspace assignment (United States)

    Davidson, John B.; Andrisani, Dominick, II


    This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.

  12. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate Project (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  13. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska (United States)

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.


    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  14. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Eckerstorfer


    Full Text Available The study of snow avalanches and their geomorphological effect in the periglacial parts of the cryosphere is important for enhanced geomorphological process understanding as well as hazard-related studies. Only a few field studies, and particularly few in the High Arctic, have quantified avalanche sedimentation. Snow avalanches are traditionally ranked behind rockfall in terms of their significance for mass-wasting processes of rockslopes. Cornice fall avalanches are at present the most dominant snow avalanche type at two slope systems, called Nybyen and Larsbreen, in the valley Longyeardalen in central Svalbard. Both slope systems are on northwest-facing lee slopes underneath a large summit plateau, with annual cornices forming on the top. High-frequency and magnitude cornice fall avalanching is observed by daily automatic time-lapse photography. In addition, rock debris sedimentation by cornice fall avalanches was measured directly in permanent sediment traps or by snow inventories. The results from a maximum of seven years of measurements in a total of 13 catchments show maximum mean rock debris sedimentation rates ranging from 8.2 to 38.7 kg m−2 at Nybyen, and from 0.8 to 55.4 kg m−2 at Larsbreen. Correspondingly, avalanche fan surfaces accreted from 2.6 to 8.8 mm yr−1 at Nybyen, and from 0.2 to 13.9 mm yr−1 at Larsbreen. This comparably efficient rockslope mass wasting is due to collapsing cornices producing cornice fall avalanches containing large amounts of rock debris throughout the entire winter. The rock debris of different origin stems from the plateau crests, the adjacent free rock face and the transport pathway, accumulating distinct avalanche fans at both slope systems. Cornice fall avalanche sedimentation also contributed to the development of a rock glacier at the Larsbreen site during the Holocene. We have recorded present maximum rockwall retreat rates of 0.9 mm yr−1 at Nybyen, but as much as 6.7 mm yr−1 at

  15. Vaccination against Weight Gain

    National Research Council Canada - National Science Library

    Eric P. Zorrilla; Shinichi Iwasaki; Jason A. Moss; Jason Chang; Jonathan Otsuji; Koki Inoue; Michael M. Meijler; Kim D. Janda


    .... Here we show that active vaccination of mature rats with ghrelin immunoconjugates decreases feed efficiency, relative adiposity, and body weight gain in relation to the immune response elicited...

  16. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina (United States)

    Casteller, A.; Christen, M.; Villalba, R.; Martínez, H.; Stöckli, V.; Leiva, J. C.; Bartelt, P.


    The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1) to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2) to highlight the potential of textit{Nothofagus pumilio} tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  17. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    A. Casteller


    Full Text Available The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1 to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2 to highlight the potential of Nothofagus pumilio tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  18. Avalanche photo-detection for high data rate applications (United States)

    Coldenstrodt-Ronge, H. B.; Silberhorn, C.


    Avalanche photo-detection is commonly used in applications which require single-photon sensitivity. We examine the limits of using avalanche photo-diodes (APD) for characterizing photon statistics at high data rates. To identify the regime of linear APD operation, we employ a ps-pulsed diode laser with variable repetition rates between 0.5 MHz and 80 MHz. We modify the mean optical power of the coherent pulses by applying different levels of well-calibrated attenuation. The linearity at high repetition rates is limited by the APD dead time and a nonlinear response arises at higher photon-numbers due to multiphoton events. Assuming Poissonian input-light statistics we ascertain the effective mean photon-number of the incident light with high accuracy. Time multiplexed detectors (TMD) allow us to accomplish photon-number resolution by 'photon chopping'. This detection setup extends the linear response function to higher photon-numbers and statistical methods may be used to compensate for nonlinearity. We investigate this effect, compare it to the single APD case and show the validity of the convolution treatment in the TMD data analysis.

  19. First-principles derivation of static avalanche-size distributions. (United States)

    Le Doussal, Pierre; Wiese, Kay Jörg


    We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold displacements. The tree-level calculation, i.e., mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as the sum of all tree graphs. The 1-loop corrections are computed using results from the functional renormalization group. At the upper critical dimension the shock statistics is described by the Brownian force model (BFM), the static version of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model in the nonequilibrium context of depinning. This model can itself be treated exactly in any dimension and its shock statistics is that of a Lévy process. Contact is made with classical results in probability theory on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.

  20. From an electron avalanche to the lightning discharge (United States)

    Zalikhanov, B. Zh.


    The goal of this work is to describe qualitatively the physics of processes which begin with an electron avalanche and finish in a lightning discharge. A streamer model is considered that is based on studies of the recently discovered processes occurring in the prestreamer region. The investigation and analysis of these processes enabled making the conclusion that they are, in essence, the attendant processes, which ensure the electron avalanche-to-streamer transition, and may be interpreted as a manifestation of properties of a double charge layer exposed to the external electric field. The pressing problems of physical processes which form a lightning discharge are considered from the standpoint of new ideas about the mechanism of the streamer formation and growth. Causes of the emergence of coherent super-high-frequency radiation of a leader and the neutron production in a lightning discharge are revealed that have not been explained so far in the theory of gas discharge. Based also on new ideas about the lightning discharge, a simple ball-lightning model, providing answers to almost allquestions formulated from numerous observations on the behavior of ball lightning, is offered, and the need of a new design of lightning protection instead of the traditional rod is discussed.

  1. Does Avalanche Shovel Shape Affect Excavation Time: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kurt Schindelwig


    Full Text Available In Europe and North America, approximately 150 fatalities occur as a result of avalanches every year. However, it is unclear whether certain shovel shapes are more effective than others in snow removal during avalanche victim recovery. The objective was to determine the performance parameters with a developed standardized test using different shovel shapes and to determine sex-specific differences. Hence, several parameters were determined for clearing the snow from a snow filled box (15 men, 14 women. A flat (F and a deep (D shovel blade with the shaft connected straight (S or in clearing mode (C were used for the investigation of the shovel shapes FS, DC and the subsequent use of DC&DS. Mean snow mass shifted per unit time increased significantly from 1.50 kg/s with FS to 1.71 kg/s (14% with DS and further to 1.79 kg/s (4% with DC&DS for all participants. Snow mass shifted per unit time was 44% higher (p < 0.05 for men than for women. In excavation operations, the sex-specific physical performance should be taken into account. The results were limited to barely binding snow, because only with this snow did the tests show a high reliability.

  2. Supershort avalanche electron beam in SF_{6} and krypton

    Directory of Open Access Journals (Sweden)

    Cheng Zhang (章程


    Full Text Available Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF_{6} in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ∼130  kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ∼1.6  ns. SAEB parameters in SF_{6} are compared with those obtained in krypton (Kr, nitrogen (N_{2}, air, and mixtures of SF_{6} with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF_{6} and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N_{2} and air (ranging from hundreds of milliamps to several amperes. Furthermore, the concentration of SF_{6} additive could significantly reduce the SAEB current in N_{2}-SF_{6} mixture, but it slightly affected the SAEB current in Kr-SF_{6} mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  3. Sixteen-year follow-up of childhood avalanche survivors. (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind


    Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Childhood survivors (aged 2-19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, pexposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  4. Supershort avalanche electron beam in SF6 and krypton (United States)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao


    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  5. Digital automatic gain control (United States)

    Uzdy, Z.


    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  6. Impulse Response Time Measurements in Hg0.7Cd0.3Te MWIR Avalanche Photodiodes (United States)

    Perrais, Gwladys; Rothman, Johan; Destefanis, Gerard; Chamonal, Jean-Paul


    The response time of front-sided illuminated n-on- p Hg0.7Cd0.3Te electron avalanche photodiodes (e-APDs) at T = 77 K was studied using impulse response measurements at λ = 1.55 μm. We measured typical rise and fall times of 50 ps and 800 ps, respectively, at gains of M ≈ 100, and a record gain-bandwidth (GBW) product of GBW = 1.1 THz at M = 2800. Experiments as a function of the collection width have shown that the fall time is strongly limited by diffusion. Variable-gain measurements showed that the impulse response is first-order sensitive to the level of the output amplitude. Only a slight increase in the rise time and the fall time was observed with the gain at constant output amplitude, which is consistent with a strongly dominant electron multiplication. Comparisons of the experimental results with Silvaco finite element simulations confirmed the diffusion limitation of the response time and allowed the illustration of the transit time and RC effects.

  7. Wet-snow avalanche interaction with a deflecting dam: field observations and numerical simulations in a case study

    Directory of Open Access Journals (Sweden)

    B. Sovilla


    Full Text Available In avalanche-prone areas, deflecting dams are widely used to divert avalanches away from endangered objects. In recent years, their effectiveness has been questioned when several large and multiple avalanches have overrun such dams.

    In 2008, we were able to observe a large wet-snow avalanche, characterized by an high water content, that interacted with a deflecting dam and overflowed it at its lower end. To evaluate the dam's performance, we carried out an airborne laser scanning campaign immediately after the avalanche. This data, together with a video sequence made during the avalanche descent, provided a unique data set to study the dynamics of a wet dense snow avalanche and its flow behavior along a deflecting dam.

    To evaluate the effect of the complex flow field of the avalanche along the dam and to provide a basis for discussion of the residual risk, we performed numerical simulations using a two-dimensional dense snow avalanche dynamics model with entrainment.

    In comparison to dry dense snow avalanches, we found that wet-snow avalanches, with high water content, seem to be differently influenced by the local small-scale topography roughness. Rough terrain close to the dam deflected the flow to produce abrupt impacts with the dam. At the impact sites, instability waves were generated and increased the already large flow depths. The complex flow dynamics around the dam may produce large, local snow deposits. Furthermore, the high water content in the snow may decrease the avalanche internal friction angle, inducing wet-snow avalanches to spread further laterally than dry-snow avalanches.

    Based on our analysis, we made recommendations for designing deflecting dams and for residual risk analysis to take into account the effects of wet-snow avalanche flow.

  8. The role of spatially variable terrain slope and compaction processes on snow avalanche occurrence statistics (United States)

    Perona, P.; Daly, E.; Porporato, A. M.


    Avalanche hazard forecasting is an important issue in relation to the protection of people and the built environment in mountain regions. Moreover, avalanche events contribute to the snow redistribution from high to low gradient slopes, thus affecting the mechanisms of glacier recharge and freshwater availability during the melting season. The process of snow avalanche formation is inherently complex and different type of avalanches may occur as a result of the interactions of different factors, resulting in some degree of both space and time unpredictability. Regression analysis and physically based models show that avalanche occurrence is influenced by the amount of snow fallen in consecutive three snowing days and the state of the settled snow at the ground. However, these methods hardly explain the different return period statistics that are often observed between avalanche size and related occurrence frequency from that of intense snowfall. In this work, we explore how compaction processes and terrain slope influence the statistics of a prototypical minimalist state-dependent stochastic process mimicking the probabilistic occurrence of natural snow avalanches at a point. We propose a model to describe the time dynamics of snow depth, h. After snow events, mathematically described as a marked Poisson, h decreases deterministically because of snowmelt and compaction. Avalanches cause sudden drops of snow depths, considered here resetting the variable to zero for the sake of mathematical tractability. In particular, avalanches are again treated as a stochastic Poisson process, whose frequency depends on the state of the variable h, and acts as a renewal event for the entire process. The model allows for the exact derivation of the probability distributions of the snowdepth, and the time between avalanches and their size. This simplified modeling framework explains the gradual decorrelation occurring between size and return time of avalanche events from that of

  9. Risk analysis for dry snow slab avalanche release by skier triggering (United States)

    McClung, David


    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles

  10. High-sensitivity silicon ultraviolet p+-i-n avalanche photodiode using ultra-shallow boron gradient doping (United States)

    Xia, Zhenyang; Zang, Kai; Liu, Dong; Zhou, Ming; Kim, Tong-June; Zhang, Huilong; Xue, Muyu; Park, Jeongpil; Morea, Matthew; Ryu, Jae Ha; Chang, Tzu-Hsuan; Kim, Jisoo; Gong, Shaoqin; Kamins, Theodore I.; Yu, Zongfu; Wang, Zhehui; Harris, James S.; Ma, Zhenqiang


    Photo detection of ultraviolet (UV) light remains a challenge since the penetration depth of UV light is limited to the nanometer scale. Therefore, the doping profile and electric field in the top nanometer range of the photo detection devices become critical. Traditional UV photodetectors usually use a constant doping profile near the semiconductor surface, resulting in a negligible electric field, which limits the photo-generated carrier collection efficiency of the photodetector. Here, we demonstrate, via the use of an optimized gradient boron doping technique, that the carrier collection efficiency and photo responsivity under the UV wavelength region have been enhanced. Furthermore, the ultrathin p+-i-n junction shows an avalanche gain of 2800 and an ultra-low junction capacitance (sub pico-farad), indicating potential applications in the low timing jitter single photon detection area.

  11. Development in the design and performance of gas avalanche microdetectors (MSGC, MGC, and MDOT)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo-Sung [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Enginering


    There has been continuing development of generic classes of microstrip gas chambers (MSGCs), microgap gas chambers (MGCs) and microdot gas chambers (MDOTs) at Lawrence Berkeley National Laboratory (LBNL) over the past few years, to improve such detectors beyond their present capabilities, to produce detectors suitable for use in current or upcoming experiments, and to allow a basis for new R&D developments which may incorporate these detectors as part of the system. All of these new detectors are collectively referred to as "gas avalanche microdetectors". The MSGC, which was motivated by the pioneering work of A. Oed, has many attractive features, especially excellent spatial resolution (~30 μm rms at normal incidence) and high rate capability (~106 mm-2∙s-1). Moreover, the MGC seems to have certain advantages over the MSGC in speed, stability and simplicity, and the MDOT has larger gain (>104) and the intrinsic advantages of two-dimensional readout. Because of these attractive properties, they have received a great deal of attention for nuclear and high energy physics experiments, medical X-ray imaging and many other fields requiring radiation detection and measurement.

  12. Development of new hole-type avalanche detectors and the first results of their applications

    CERN Document Server

    Charpak, Georges; Breuil, P.; Di Mauro, A.; Martinengo, P.; Peskov, V.


    We have developed a new detector of photons and charged particles- a hole-type structure with electrodes made of a double layered resistive material: a thin low resistive layer coated with a layer having a much higher resistivity. One of the unique features of this detector is its capability to operate at high gas gains (up to 10E4) in air or in gas mixtures with air. They can also operate in a cascaded mode or be combined with other detectors, for example with GEM. This opens new avenues in their applications. Several prototypes of these devices based on new detectors and oriented on practical applications were developed and successfully tested: a detector of soft X-rays and alpha particles, a flame sensor, a detector of dangerous gases. All of these detectors could operate stably even in humid air and/or in dusty conditions. The main advantages of these detectors are their simplicity, low cost and high sensitivity. For example, due to the avalanche multiplication, the detectors of flames and dangerous gases...

  13. Characterization of avalanche photodiode arrays for the ClearPEM and ClearPEM-Sonic scanners (United States)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Neves, J.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Silva, R.; Trindade, A.; Varela, J.


    The ClearPEM scanner is a high-resolution Positron Emission Mammography prototype, developed by the Portuguese PET Consortium in the framework of the Crystal Clear Collaboration at the European Organization for Nuclear Research (CERN). The scanner is based on a novel readout scheme which uses fine-pitch scintillator crystals, avalanche photodiodes, low-noise high-gain integrated electronics and a fast reconfigurable digital data acquisition system. The scanner uses two planar detector heads each composed of 96 detector modules. The detector module is composed of a matrix of 32 identical 2 × 2 × 20 mm3 LYSO:Ce scintillator crystals, coupled at both ends to Hamamatsu S8550 APD arrays for Depth-of-Interaction (DOI) measurements. More recently, a new scanner named ClearPEM-Sonic which combines the ClearPEM technology with an Ultrasound apparatus, is being produced. A set of 984 APD arrays used in both scanner assemblies followed a quality control protocol and a characterization procedure. This paper describes the methods used in these measurements and the results obtained with the full APD production batch.

  14. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems (United States)

    Williams, George M.


    Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.

  15. An evaluation of a leadership development coaching and mentoring programme. (United States)

    Le Comte, Lyndsay; McClelland, Beverley


    Purpose The purpose of this paper was to determine the value and impact of the Leadership Development - Coaching and Mentoring Programme at Counties Manukau Health and understand how the skills gained are applied. Design/methodology/approach Mixed-methods approach including surveys of programme participants and senior staff and semi-structured interviews with programme participants. Findings The survey response rate was 24.4 per cent for programme participants and 30 per cent for senior staff. Eight programme participants participated in semi-structured interviews. Of the 70 programme participants, 69 utilised their learning from the programme; 45 of 70 changed their approach to managing staff; and 40 of 68 programme participants reported that meeting with peers for triad group coaching was the most challenging aspect of the programme. Key themes identified through interviews included: working with others; not owning others' problems; professional support and development; coaching and mentoring; future participants. Practical implications The majority of participants changed their leadership behaviours as a result of the programme, which has resulted in improved communication, a more supportive culture and distributed leadership. These changes contribute to better patient care. Originality value There is a paucity of evidence in the literature about the impact of coaching and mentoring programme on leadership development and how the skills gained in such programmes are applied in practice in a healthcare context. This evaluation helps to address that gap.

  16. Prevention of excess gain. (United States)

    Stevens, J; Truesdale, K P; Wang, C-H; Cai, J


    Obesity prevention trials are designed to promote healthy weight. The success of these trials is often assessed using one of three metrics--means, incidence or prevalence. In this study, we point out conceptual shortcomings of these metrics and introduce an alternative that we call 'excess gain'. A mathematical demonstration using simulated data shows a scenario in which the statistical power of excess gain compares favorably with that of incidence and prevalence. Prevention of excess gain communicates an easily understood public health message that is applicable to all individuals regardless of weight status.

  17. Avalanche situation in Turkey and back-calculation of selected events (United States)

    Aydın, A.; Bühler, Y.; Christen, M.; Gürer, I.


    In Turkey, an average of 24 people dies in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea Region where high mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European and American countries. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS combined with a Digital Elevation Model (DEM)-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, flow velocities, impact pressure and flow height.


    Directory of Open Access Journals (Sweden)

    Aleksandr Shnyparkov


    Full Text Available In recent years, the Government of the Russian Federation considerably increased attention to the exploitation of the Russian Arctic territories. Simultaneously, the evaluation of snow avalanches danger was enhanced with the aim to decrease fatalities and reduce economic losses. However, it turned out that solely reporting the degree of avalanche danger is not sufficient. Instead, quantitative information on probabilistic parameters of natural hazards, the characteristics of their effects on the environment and possibly resulting losses is increasingly needed. Such information allows for the estimation of risk, including risk related to snow avalanches. Here, snow avalanche risk is quantified for the Khibiny Mountains, one of the most industrialized parts of the Russian Arctic: Major parts of the territory have an acceptable degree of individual snow avalanche risk (<1×10-6. The territories with an admissible (10-4–10-6 or unacceptable (>1×10-4 degree of individual snow avalanche risk (0.5 and 2% of the total area correspond to the Southeast of the Khibiny Mountains where settlements and mining industries are situated. Moreover, due to an increase in winter tourism, some traffic infrastructure is located in valleys with an admissible or unacceptable degree of individual snow avalanches risk.

  19. Formation of levees, troughs and elevated channels by avalanches on erodible slopes (United States)

    Edwards, Andrew; Viroulet, Sylvain; Kokelaar, Peter; Gray, Nico

    Snow avalanches are typically initiated on marginally stable slopes with a layer of fresh snow that may easily be incorporated into the avalanche. The net balance of erosion and deposition of snow determines whether an avalanche grows, starves away or propagates steadily. We present the results of small scale experiments in which particles are released on a rough inclined plane coated with a static erodible layer of the same grains. For thick static layers on steep slopes the initial avalanche grows rapidly in size by entraining grains. On shallower slopes an elevated channel forms and material is eventually brought to rest due to a greater rate of deposition than erosion. On steep slopes with thinner erodible layers it is possible to generate avalanches that have a perfect balance between erosion and deposition, leaving a constant width trough with levees. We then show, by combining Pouliquen & Forterre (2002)'s friction law with Gray & Edwards (2014)'s depth-averaged μ (I) -rheology, that it is possible to develop a simple 2D shallow water-like avalanche model that qualitatively captures all of the experimental behaviours. Hence this model may have important practical implications for modeling the initiation, growth and decay of snow avalanches for hazard risk assessment. NERC Grants NE/E003206/1 and NE/K003011/1 and EPSRC Grants EP/I019189/1 and EP/K00428X/1.

  20. Avalanche risk in backcountry terrain based on usage frequency and accident data (United States)

    Techel, F.; Zweifel, B.; Winkler, K.


    In Switzerland, the vast majority of avalanche accidents occurs during recreational activities. Risk analysis studies mostly rely on accident statistics without considering exposure (or the elements at risk), i.e. how many and where people are recreating. We compared the accident data (backcountry touring) with reports from two social media mountaineering networks - and On these websites, users reported more than 15 000 backcountry tours during the five winters 2009/2010 to 2013/2014. We noted similar patterns in avalanche accident data and user data like demographics of recreationists, distribution of the day of the week (weekday vs. weekend) or weather conditions (fine vs. poor weather). However, we also found differences such as the avalanche danger conditions on days with activities and accidents, but also the geographic distribution. While backcountry activities are concentrated in proximity to the main population centres in the West and North of the Swiss Alps, a large proportion of the severe avalanche accidents occurred in the inner-alpine, more continental regions with frequently unfavorably snowpack structure. This suggests that even greater emphasis should be put on the type of avalanche problem in avalanche education and avalanche forecasting to increase the safety of backcountry recreationists.

  1. SWIR HgCdTe avalanche photiode focal plane array performances evaluation (United States)

    de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.


    One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This

  2. Fiber Optic Distributed Temperature Sensing in Avalanche Research (United States)

    Woerndl, Michaela; Tyler, S. W.; Hatch, C. E.; Dozier, J.; Prokop, A.


    Being a major driving force for snow metamorphism, thermal properties and temperature gradients in an alpine snow pack influence both, spatial distribution and temporal evolution of its stability throughout a winter season. In avalanche research and forecasting mainly weather station networks and models are employed for temperature-data collection and prediction. Standard temperature measurement devices used in weather stations and for model calibration typically provide point data over time. With fiber-optic Distributed Temperature Sensing (DTS) a laser is pulsed through standard telecommunications optical fibers of up to 30km in length, and uses the cables themselves as a thermometer. DTS allows for continuous observations of temperatures over large spatial scales and with high temporal resolution. Depending on the type of instrument, temperature readings can be provided every 0.25 to 2 meters along the cable and up to six times a minute. Measurement accuracies depend on integration times and can reach +/- 0.1 degrees C or better. Already well established in other environmental applications such as surface water - groundwater hydrology and soil moisture studies, this study assesses applicability and performance of DTS in snow environments and its potential benefits for avalanche research and forecasting. At the CRREL/UCSB research site on Mammoth Mountain, California, 40m fiber-optic cable loops were deployed at different depths in the snow pack to measure temperature and thermal gradient evolution over time and space. Four discrete measurement sessions of 4 to 20 days were conducted during the winter season 2008/2009. Strong horizontal spatial variability of temperatures of up to 3 degrees C within the snow pack over the 40m-sections were resolved. As expected, vertical thermal gradients were influenced by spatial location. Evolution of temperatures and gradients over time could be continuously monitored along the 40m transects during each measurement session

  3. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches (United States)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty


    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  4. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999 (United States)

    Morton, Douglas M.; Hauser, Rachel M.


    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  5. Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study (United States)

    Wang, Yu-Feng; Xu, Qiang; Cheng, Qian-Gong; Li, Yan; Luo, Zhong-Xu


    Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.

  6. The rock avalanche sediment in moraines and its implication for palaeoclimate reconstruction (United States)

    Reznichenko, N.; Davies, T. R. H.; Shulmeister, J.; Winkler, S.


    Rock avalanches mobilise a large quantity of sediment that after deposition on a glacier may cause its regime to alter. The glacier response includes change of mass balance after the rock avalanche emplacement followed by re-deposition of the rock avalanche sediment as moraine (Reznichenko et al., 2010; Reznichenko et al., 2011). Such aclimatic glacier response to a supraglacial rock avalanche deposit can confound apparent climatic signals extracted from moraine chronologies, which are widely used to infer regional climate change and are often correlated globally. Therefore, the origin of any particular dated moraine must be clarified before that date can be used for paleoclimatic interpretation. We present a new method that identifies the presence of rock avalanche sediment in moraines, based on the characteristics of the finest sediment fraction which contrast with those of non-rock-avalanche-derived glacial sediment. Under the dry, high-stress conditions during rock avalanche emplacement, fragmenting grains form agglomerates, which are absent in the wet, lower-stress processes of sub- and en-glacial environments. We show that these agglomerates are present in some moraines in the Southern Alps of New Zealand that have been attributed to climate fluctuation. This technique has the potential to resolve long-standing arguments about the role of rock avalanches in moraine formation and to enhance the use of moraines in palaeoclimatological studies. Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and McSaveney, M.J., 2010. Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Vol. 56, No. 197, 384-394 Reznichenko, N.V., Davies, T.R.H. and Alexander, D.J., 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology, v. 132, is.3-4, p. 327-338

  7. Entraining avalanches on slopes: results from experiments using PIV on viscoplastic gravity currents (United States)

    Bates, Belinda; Ancey, Christophe


    In order to conduct experiments simulating entrainment by avalanches on slopes, it was necessary to select a material which could act as both a stationary entrainable layer, mimicking undisturbed mud or snow, and a flowing mass, representing the flowing avalanche. Carbopol Ultrez 10, a viscoplastic "micro-gel" exhibiting a yield stress does just that: it remains plastic on a slope until an avalanche arrives and increases the shear within, reducing the viscosity in some or all of the material which may begin to flow as a fluid. Carbopol is transparent and easily seeded with fluorescent tracking micro-particles, without significantly changing the material rheology. We take advantage of its properties to perform Particle Imaging Velocimetry (PIV) on an idealized avalanche, which flows into an entrainment zone where it interacts with a layer of stationary bed material. The internal velocity field is obtained for the flow as it passes over the loose material, showing the entrainment mechanisms active at different slope angles. At the shallowest slope the avalanche is slower and mobilizes the bed almost entirely, causing it to slip along the base and buckle downstream of the front. At steeper slopes the avalanche shears the bed, yet appears to glide over it more easily with a smaller effect downstream. Increasing the concentration of the Carbopol and thus increasing the apparent yield stress leads to more destruction of the bed layer by the avalanche. Three flow phases are identified, beginning with a "rolling phase" where the avalanche has minimal effect on the bed and seems to roll onto it as the front moves forward, then a "gliding phase" where the deposited fluid is pushed downwards and glides downstream, shearing the bed material. Finally, on the shallower slopes and at higher Carbopol concentration, the avalanche digs down to the rigid base, and completely displaces the bed material downstream, with its front riding atop an entirely mobilized plug-flow layer.

  8. Are dragon-king neuronal avalanches dungeons for self-organized brain activity? (United States)

    de Arcangelis, L.


    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in

  9. Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA (United States)

    Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.


    In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.

  10. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation (United States)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph


    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  11. Automatic detection of avalanches in seismic data using Hidden Markov Models (United States)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat


    Seismic monitoring systems are well suited for the remote detection of mass movements, such as landslides, rockfalls and debris flows. For snow avalanches, this has been known since the 1970s and seismic monitoring could potentially provide valuable information for avalanche forecasting. We thus explored continuous seismic data from a string of vertical component geophones in an avalanche starting zone above Davos, Switzerland. The overall goal is to automatically detect avalanches with a Hidden Markov Model (HMM), a statistical pattern recognition tool widely used for speech recognition. A HMM uses a classifier to determine the likelihood that input objects belong to a finite number of classes. These classes are obtained by learning a multidimensional Gaussian mixture model representation of the overall observable feature space. This model is then used to derive the HMM parameters for avalanche waveforms using a single training sample to build the final classifier. We classified data from the winter seasons of 2010 and compared the results to several hundred avalanches manually identified in the seismic data. First results of a classification of a single day have shown, that the model is good in terms of probability of detection while having a relatively low false alarm rate. We further implemented a voting based classification approach to neglect events detected only by one sensor to further improve the model performance. For instance, on 22 March 2010, a day with particular high avalanche activity, 17 avalanches were positively identified by at least three sensors with no false alarms. These results show, that the automatic detection of avalanches in seismic data is feasible, bringing us one step closer to implementing seismic monitoring system in operational forecasting.

  12. Metamaterials with Gain (United States)

    Hess, Ortwin


    Nanoplasmonic metamaterials are the key to an extreme control of light and allow us to conceive materials with negative or vanishing refractive index. Indeed, metamaterials enable a multitude of exciting and useful applications, such as subwavelength focusing, invisibility cloaking, and ``trapped rainbow'' stopping of light. The realization of these materials has recently advanced from the microwave to the optical regime. However, at optical wavelengths, metamaterials may suffer from high dissipative losses owing to the metallic nature of their constituent nanoplasmonic meta-molecules. It is therefore not surprising that overcoming loss restrictions by gain is currently one of the most important topics in metamaterials' research. At the same time, providing gain on the nanoplasmonic (metamolecular) level opens up exciting new possibilities such as a whole new type of metamaterial nano-laser with a cavity length of about a tenth of the wavelength. The talk gives an overview of the state of the art of gain-enhanced metamaterials. Particular focus will be placed on nano-plasmonic metamaterials (such as double-fishnet metamaterials) with integrated laser dyes as gain medium. The successful compensation of loss by gain is demonstrated on the meta-molecular level. On the basis of a comprehensive, microscopic Maxwell-Bloch Langevin approach of spatio-temporal light amplification and lasing in gain-enhanced nanoplasmonic (negative-index) metamaterials a methodology based on the discrete Poynting's theorem is introduced that allows dynamic tracing of the flow of electromagnetic energy into and out of ``microscopic'' channels (light field, plasmons, gain medium). It is shown that steady-state amplification can be achieved in nanoplasmonic metamaterials. Finally, a complex spatio-temporal interplay of light-field and coherent absorption dynamics is revealed in the lasing dynamics of a nanoplasmonic gain-enhanced double-fishnet metamaterial.

  13. Design of electronics charts of defence with the use of power avalanche diodes

    Directory of Open Access Journals (Sweden)

    Kravchina V. V.


    Full Text Available Features of switching parameters of frequency avalanche diodes and modeling of their application in the electric schemes of protection are considered. Efficiency of protection against of the overvaulting are formed at switching in the course of transients, by means of electric schemes with application of avalanche diodes and there are using clearing of the impulses of overvaulting by initiation of the avalanche discharge. Modeling of work of the electronic power devices was spent in the system MATLAB+Simulink with simultaneous there is application of the package SimPowerSystems.

  14. XeCl Avalanche discharge laser employing Ar as a diluent (United States)

    Sze, Robert C.


    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  15. Avalanche proton-boron fusion based on elastic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, Shalom; Martinez Val, Josè Maria [Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid (Spain); Hora, Heinrich [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Korn, Georg [Institute of Physics, ASCR, ELI-Beamlines Project, Prague (Czech Republic); Nissim, Noaz [Applied Physics Department, Soreq NRC, Yavne 81800 (Israel)


    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 10{sup 9} alphas. We suggest that these unexpected very high fusion reactions of proton with {sup 11}B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-{sup 11}B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  16. Comprehensive analysis of new near-infrared avalanche photodiode structure (United States)

    Czuba, Krzysztof; Jurenczyk, Jaroslaw; Kaniewski, Janusz


    The essential steps in simulations of modern separate absorption, grading, charge, and multiplication avalanche photodiode and their results are discussed. All simulations were performed using two commercial technology computer-aided design type software packages, namely Silvaco ATLAS and Crosslight APSYS. Comparison between those two frameworks was made and differences between them were pointed out. Several examples of the influence of changes made in individual layers on overall device characteristics have been shown. Proper selection of models and their parameters as well as its significance on results has been illustrated. Additionally, default values of material parameters were revised and adequate values from the literature were entered. Simulated characteristics of optimized structure were compared with ones obtained from measurements of real devices (e.g., current-voltage curves). Finally, properties of crucial layers in the structure were discussed.

  17. Design, fabrication, and characterization of InSb avalanche photodiode (United States)

    Abautret, J.; Evirgen, A.; Perez, J. P.; Christol, P.; Rouvié, A.; Cluzel, R.; Cordat, A.; Rothman, J.


    In this communication, the potentiality of InSb material as an avalanche photodiode (APD) device is investigated. Current density-voltage (J-V) characteristics at 77K of InSb pin photodiodes were simulated by using ATLAS software from SILVACO, in dark conditions and under illumination. In order to validate parameter values used for the modeling, theoretical J-V results were compared with experimental measurements performed on InSb diodes fabricated by molecular beam epitaxy. Next, assuming a multiplication process only induced by the electrons (e-APD), different designs of separate absorption and multiplication (SAM) APD structure were theoretically investigated and the first InSb SAM APD structure with 1μm thick multiplication layer was then fabricated and characterized.

  18. Trough models: Universality classes, distribution of avalanches, and cluster sizes (United States)

    Leung, Kwan-Tai


    Extensions of the one-dimensional two-state trough model introduced by Carlson, Chayes, Grannan, and Swindle (CCGS) [Phys. Rev. A 42, 2467 (1990)] are considered. In particular, I investigate what kinds of physical processes are relevant to its scaling behavior. Short-range rearrangements of trough positions (slide events), which were neglected by CCGS, are shown to be irrelevant. By a simple modification of the dynamics, however, I obtain universality classes characterized by a single parameter. For trough models in general, including the two-state and the ``limited local'' sandpile models, asymptotically exact relations between the distribution of trough-trough distances and that of the mass of avalanches are derived. They yield moment relations in agreement with Krug's [J. Stat. Phys. 66, 1635 (1992)]. All results are verified by simulations.

  19. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning


    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  20. Snow drift: acoustic sensors for avalanche warning and research (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  1. Application of Ultraviolet Light in Dental Identification of Avalanche Victims. (United States)

    Agrawal, Nitin Kumar; Dahal, Samarika; Wasti, Harihar; Soon, Alistair


    In any disaster, it becomes important to identify the deceased for ethical, social and legal causes.Out of the numerous methods of identification, dental comparison is considered to be one of the scientific methods in a Disaster Victim Identification process. The two victims of avalanche in Nepal were identified using dental comparison. The two bodies brought for examination were unidentifiable visually. To aid identification of tooth coloured restorations, ultraviolet light was used. The ultraviolet light made the tooth coloured restorations appear distinct from the adjacent tooth structure in one of the cases. This helped in post-mortem charting of dental examination with greater accuracy. When the ante-mortem dental records and the post-mortem dental findings were compared, positive identification was made for both the cases. The bodies were then handed over to their respective kin. These cases highlighted the importance of ultraviolet light in post-mortem dental examination and the significance of forensic dentistry in identification process.

  2. Avalanches and waves in the Abelian sandpile model

    Energy Technology Data Exchange (ETDEWEB)

    Paczuski, M. [Department of Physics, University of Houston, Houston, Texas 77204-5506 (United States); Boettcher, S. [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)


    We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of waves of toppling events. Priezzhev {ital et al.} [Phys. Rev. Lett. {bold 76}, 2093 (1996)] have recently proposed exact results for the critical exponents in this model based on the existence of a proposed scaling relation for the difference in sizes of subsequent waves, {Delta}s=s{sub k}{minus}s{sub k+1}, where the size of the previous wave s{sub k} was considered to be almost always an upper bound for the size of the next wave s{sub k+1}. Here we show that the significant contribution to {Delta}s comes from waves that violate the bound; the average {l_angle}{Delta}s(s{sub k}){r_angle} is actually negative and diverges with the system size, contradicting the proposed solution. {copyright} {ital 1997} {ital The American Physical Society}

  3. Rapid sequestration of rock avalanche deposits within glaciers. (United States)

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V


    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.

  4. Submicron Plasticity: Yield Stress, Dislocation Avalanches, and Velocity Distribution (United States)

    Ispánovity, Péter Dusán; Groma, István; Györgyi, Géza; Csikor, Ferenc F.; Weygand, Daniel


    The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by 2D and 3D simulations the plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress. The statistical background of this phenomenon is analyzed through the velocity distribution of dislocations, revealing a universal cubic decay and the appearance of a shoulder due to dislocation avalanches.

  5. TCAD simulations for a novel single-photon avalanche diode (United States)

    Jin, Xiangliang; Yang, Jia; Yang, Hongjiao; Tang, Lizhen; Liu, Weihui


    A single-photon avalanche diode (SPAD) device with P+-SEN junction, and a low concentration of N-type doping circular virtual guard-ring was presented in this paper. SEN layer of the proposed SPAD has high concentration of N-type doping, causing the SPAD low breakdown voltage (~14.26 V). What's more, an efficient and narrow (about 2μm) guard-ring of the proposed SPAD not only can withstand considerably higher electric fields for preventing edge breakdown, but also offers a little increment in fill factor compared with existing SPADs due to its small area. In addition, some Silvaco TCAD simulations have been done and verify characteristics and performance of the design in this work.

  6. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca


    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  7. Mechanics of debris flows and rock avalanches: Chapter 43 (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph


    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  8. Advanced active quenching circuits for single-photon avalanche photodiodes (United States)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.


    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  9. Sixteen-year follow-up of childhood avalanche survivors

    Directory of Open Access Journals (Sweden)

    Edda Bjork Thordardottir


    Full Text Available Background: Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES and PTSD symptoms in adulthood. Methods: Childhood survivors (aged 2–19 at the time of exposure of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results: Response rate was 66% (108/163. Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05. When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001, poor financial status (F=12.21, p<0.001, and unemployment and/or disability (F=3.04, p<0.05. In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001 and traumatic reactions of caregivers (t=2.49, p<0.05 in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions: Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  10. The benefit of guest loyalty programmes | La Rose | Research in ...

    African Journals Online (AJOL)

    The aim of this research is to find out what kind of guest loyalty programme Apollo Hotels and Resorts should implement for their individual leisure guests in order to gain more loyal leisure guests. In the literature review of this research, the following aspects are discussed: a loyalty programme and its use; the sort of loyalty ...

  11. Contribution of Open and Distance Learning Programmes to Human ...

    African Journals Online (AJOL)

    Though open and distance learning (ODL) has gained prominence in many countries, there are widespread fears for the quality of ODL programmes. Taking the case of the Bachelor of Arts in Primary Education programme of the National Open University of Nigeria (NOUN), this paper examined the effectiveness of these ...

  12. Adherence challenges encountered in an intervention programme to ...

    African Journals Online (AJOL)

    Objectives: Study's objectives were to explore perceived challenges with implementation of, and adherence to health messages disseminated as part of a CNCD intervention programme; to gain an understanding of participants' expectations of CNCD intervention programmes;, and to explore the acceptability and ...

  13. Delivery of the Nutrition Supplementation Programme in the Cape ...

    African Journals Online (AJOL)

    Ideally these programmes should be delivered within a human rights paradigm, i.e. parents are responsible for their children's health, while the State authority is obliged to help parents meet their responsibility. The Nutrition Supplementation Programme (NSP) aims to help underweight children gain weight and empower ...

  14. Extended Wavelength InP Based Avalanche Diodes for MWIR Response Project (United States)

    National Aeronautics and Space Administration — For this NASA STTR program, we propose to develop a novel superlattice-based near infrared to midwave infrared avalanche photodetector (APD) grown on InP substrates...

  15. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study (United States)

    Wang, XiaoLiang; Li, JiaChun


    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  16. GaN-Based, Low-Voltage Avalanche Photodiodes for Robust and Compact UV Imagers Project (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program is directed toward the development of a novel low-voltage (~10V) AlGaN-based multi-quantum well (MQW) avalanche photodiode (APD) on...

  17. Analysis of the dynamic avalanche of punch through insulated gate bipolar transistor (PT-IGBT) (United States)

    Lefranc, P.; Planson, D.; Morel, H.; Bergogne, D.


    In the paper proposed here, we are studying the dynamic avalanche from experimental results first, dynamic avalanche is identified on a punch through insulated gate bipolar transistor (PT-IGBT) module 1200 V-300 A from Mitsubishi. Secondly, the phenomenon is analysed thanks to simple solid state devices equations. Numerical simulations are used to confirm experimental results. Simulation results allows us locating the active area of the dynamic avalanche during turn-off under over-current conditions. A PT-IGBT cell is described with MEDICI™, a finite element simulator. A mixed-mode simulation is performed thanks to MEDICI™ and SPICE™. The circuit simulated here is a buck topology with an inductive load. Finally, a thermal analysis is performed to estimate temperature increase due to dynamic avalanche.

  18. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes (United States)

    Francis, P. W.; Wells, G. L.


    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  19. Rock avalanche deposits store quantitative evidence on internal shear during runout (United States)

    Zhang, M.; McSaveney, M. J.


    We investigated the quantitative effect of internal shear on grain breakage during rock avalanche runout, by means of 38 ring-shear experiments on identical sand samples at different normal stresses, shear strains and shear strain rates. We compared sample grain-size characteristics before and after shearing. We found that grain size decreased with increase in normal stress and shear strain. Reduction in grain size was inferred to occur through grain breakage associated with grain interactions in strong force chains during strain. The results were consistent with observations of both inverse-grading structure in deep rock avalanche exposures, and fining and grading of particles with increasing rock avalanche travel distance. Our study suggested that with appropriate calibration, variations in grain-size distributions within a rock avalanche deposit would provide quantitative information on the distribution of internal shear during its runout.

  20. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project (United States)

    National Aeronautics and Space Administration — A linear mode HgCdT electron-initiated avalanche photodiode (EAPD) capable of 1570nm photon detection efficiency (PDE) at >10 MHz will be developed. The Phase I...

  1. Avalanche diode having reduced dark current and method for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.


    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  2. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    CERN Document Server

    Chen, R; Tavernier, Stefaan; Bruyndonckx, P; Clément, D; Loude, J F; Morel, Christian


    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application.

  3. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.


    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  4. Receiver Gain Modulation Circuit (United States)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen


    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  5. Relational Information Gain

    DEFF Research Database (Denmark)

    Lippi, Marco; Jaeger, Manfred; Frasconi, Paolo


    We introduce relational information gain, a refinement scoring function measuring the informativeness of newly introduced variables. The gain can be interpreted as a conditional entropy in a well-defined sense and can be efficiently approximately computed. In conjunction with simple greedy general......-to-specific search algorithms such as FOIL, it yields an efficient and competitive algorithm in terms of predictive accuracy and compactness of the learned theory. In conjunction with the decision tree learner TILDE, it offers a beneficial alternative to lookahead, achieving similar performance while significantly...

  6. Automates programmables Partie 3 : Langages de programmation

    CERN Document Server

    International Electrotechnical Commission. Geneva


    S'applique à la représentation imprimée et affichée, à l'aide des caractères ISO/CEI 646, des langages de programmation devant être utilisés pour les automates programmables. Spécifie la syntaxe et la sémantique.

  7. Robust snow avalanche detection using machine learning on infrasonic array data (United States)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg


    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially

  8. Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010 (United States)

    Naaim, Mohamed


    Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.

  9. Time lapse photography as an approach to understanding glide avalanche activity (United States)

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.


    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  10. Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode


    Aritra Acharyya; Moumita Mukherjee; J. P. Banerjee


    A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the dev...

  11. Snow avalanche activity in the High Tatras Mountains: new data achieved by means of dendrogeomorphic methods (United States)

    Tichavsky, R.


    The High Tatras Mountains are permanently affected by the occurrence of hazardous geomorphic processes. Snow avalanches represent a common hazard that threatens the infrastructure and humans living and visiting the mountains. So far, the spatio-temporal reconstruction of snow avalanche histories was based only on existing archival records, orthophoto interpretation and lichenometric dating in the High Tatras Mountains. Dendrogeomorphic methods allow for the intra-seasonal dating of scars on tree stems and branches and have been broadly used for the dating of snow avalanche events all over the world. We extracted the increment cores and cross sections from 189 individuals of Pinus mugo var. mugo growing on four tali in the Great Cold Valley and dated all the past scars that could correspond with the winter to early spring occurrence of snow avalanches. The dating was supported by the visual analysis of three orthophoto images from 2004, 2009 and 2014. In total, nineteen event years of snow avalanches (10 certain events, and 9 probable events) were identified since 1959. Historical archives provided evidence only for nine event years since 1987, and three of them were confirmed dendrogeomorphically. Geomorphic effect of recent snow avalanches identified by the spatial distribution of scarred trees in individual years corresponds with the extent of events visible from the orthophotos. We can confirm higher frequency of snow avalanche events since 1980s (17 out of 19 events) and significant increase during the last ten years. The future expected climatic changes associated with the changes in temperature and precipitation regime could significantly influence on the frequency of snow avalanches. Therefore, our results can become the starting line for more extensive dendrogeomorphic survey in the High Tatras Mountains in order to create a catalogue of all natural hazards for the future prediction and modelling of these phenomena in context of environmental changes.

  12. Experimental study of the influence of protection structures on avalanches and impact pressures


    Caccamo, P.


    In the frame of snow avalanche protection, the optimisation of defence structure design depends on the understanding of the flow dynamics and on a exhaustive knowledge of the flow-obstacle interaction. The study presented here utilises a mainly experimental approach. Small-scale laboratory tests were combined with field measurements and observations. Dense snow avalanches are modelled by granular materials. Dry cohesionless and mono-dispersed glass beads are released down an inclined...

  13. Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway (United States)

    Schleier, Markus; Hermanns, Reginald L.; Gosse, John C.; Oppikofer, Thierry; Rohn, Joachim; Tønnesen, Jan F.


    This paper presents a detailed description of deposits and landforms of multiple rock avalanches in Western Norway, one of which fell onto water-saturated sediments in Innfjorddalen below the former water level. Deposits of the latter are now exposed on the valley floor due to post-glacial isostatic rebound. At least three rock avalanches from the same source at Gråfonnfjellet Mountain have occurred during late glacial and post-glacial time, and their deposits are distributed over an area of 1.44 km2 in the valley. These rock avalanches have volumes of 15.1 × 106 m3, 5.4 × 106 m3 and 0.3 × 106 m3 and yielded cosmogenic radionuclide 10Be ages of 14.3 ± 1.4 ka, 8.79 ± 0.94 ka and 1.028 ± 0.380 ka, respectively. The youngest event dates, within uncertainty limits to a historic rock avalanche in the year 1611-12 CE. The rock avalanches formed a stratified succession of deposits. The rock-avalanche deposits (1.38 m2) have lobate forms, have frontal rims and parallel ridges, extend across the valley floor and up the opposite slope, and form dams on the valley floor. Isolated hills comprised of rock boulders (0.61 km2), interpreted to be 'toma hills', are disconnected from the main rock-avalanche deposits by a 520-m-wide zone of deformed, valley-fill sediments. Trenches and a ground penetrating radar survey of these deposits indicate large-scale deformation or liquefaction. Numerical runout modeling of the rock avalanches with the code DAN3D supports the interpretation of their landforms and sources, and highlights their runout behavior.

  14. Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland) (United States)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Vockenhuber, Christof; Aaron, Jordan; Hajdas, Irka; Ivy-Ochs, Susan


    Large rock avalanches constitute a critical process modulating the evolution of alpine landscapes; however, the relatively infrequent occurrence of these high-magnitude events makes identifying underlying process controls challenging. Here we describe two rock avalanches in the Rinderhorn area of the Bernese Alps, Switzerland, providing new mapping of rock avalanche source areas and deposits, refined volume estimates for each event, runout modeling back-analyses, and absolute age constraint from cosmogenic 36Cl surface exposure dating. Results reveal that the Daubensee rock avalanche released 4 million m3 of limestone sliding from the western crest of the Rinderhorn. Debris ran out across a Lateglacial moraine before reaching the valley bottom and spreading, leaving thin (on average 7 m) deposits across a broad area. The runout resulted in a Fahrböschung angle of 21°. Part of the deposit now lies beneath Lake Daubensee. The Klein Rinderhorn rock avalanche released 37 million m3 of limestone along a dip-slope sliding plane, with a maximum runout distance of 4.3 km and estimated Fahrböschung angle of 14°. Deposits bulked to 47 million m3 running up the opposing slope, with distinct hummocky morphology in the proximal area and a distal longitudinal flow ridge. These deposits were later modified and partly obscured by ice avalanches from the nearby Altels peak. Cosmogenic 36Cl surface exposure dating revealed nearly coincident ages for both rock avalanches of 9.8 ± 0.5 ka. The large lag time between local deglaciation and failure suggests that the events were not directly triggered by deglaciation. Rather, the concurrent exposure ages, also coinciding with the nearby Kander valley rock avalanche as well as paleoseismic records from nearby lakes, strongly suggest seismic triggering.

  15. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. (United States)

    Stoffel, Markus; Hitz, Oliver M


    Rockfall and snow avalanche events often cause injury to European larch (Larix decidua Mill.) trees, giving rise to the formation of callus tissue and tangential rows of traumatic resin ducts (TRDs). We analyzed and quantified anatomical reactions of juvenile trees injured before the start of the growing season by snow avalanches (15 trees, 324 cross sections) or rockfalls (18 trees, 270 cross sections). Traumatic resin ducts were observed in the growth ring formed following injury in 94.3% of the rockfall samples and 87.3% of the snow avalanche samples. Traumatic resin ducts were formed at the beginning of the new annual ring around wounds caused by rockfalls. In contrast, in trees injured by snow avalanches, TRDs were not formed until after the formation of several rows of early earlywood (EE) tracheids (mean +/- SD = 4.19 +/- 2.56 rows). The dimensions of the EE tracheids observed in the snow avalanche samples were greatly reduced in the tissues bordering the wound, with radial width reaching an average of only 50% and lumen cross-sectional area an average of only 46% of pre-event values. It is therefore possible to differentiate injuries due to past snow avalanches from injuries due to rockfall based on anatomical growth reactions in the tissues bordering scars.

  16. Segregation in a quasi-stationary avalanche on an inclined conveyor-belt (United States)

    van der Vaart, Kasper; Gray, Nico; Ancey, Christophe


    We have carried out laboratory experiments to determine the internal structure of segregating dense granular avalanches and test the recent theoretical predictions of the existence of breaking size-segregation waves [Thornton & Gray, 2008]. Measurements were performed on a quasi-stationary avalanche that flows down an inclined upward-moving conveyor-belt. In this configuration the bottom layers of the flow are dragged upslope while upper layers are avalanching downslope due to gravity; effectively, as if the observer were moving along with an avalanche. We show that a breaking size-segregation wave is located in the flow, recirculating the particles, and causing large particles to accumulate downslope and fines upslope. The large particles at the downslope end, after being deposited and overrun, are carried upslope through the lower layers, segregate to the free-surface, and avalanche down again. Small particles segregate downwards and are dragged upslope when reaching the lower layers. Imaging of a cross-section of the bulk flow, far from the side-wall, is made possible by combining a laser light sheet and an interstitial liquid that has a matched refractive index with the particles. Thornton, A. R. & Gray, J. M. N. T. 2008 Breaking size-segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596, 261-284.

  17. Learning Media Programme

    NARCIS (Netherlands)

    Westera, Wim


    Westera, W. (2009). Learning Media Programme. Introductory presentation of Learning Media Programme for visitors of Kavala University of Technology, Kavala, Greece and National Institute of Multimedia Education, Chiba, Japan. March, 2, 2009, Heerlen, The Netherlands.

  18. River research programme

    CSIR Research Space (South Africa)

    Ferrar, AA


    Full Text Available The need for a comprehensive, multidisciplinary research programme for river ecosystems is described. The scope of the programme needs to include basic descriptions of a systems and biota, the testing and development of functional theory...

  19. Derivation of a simple analytical expression of the gain of pure argon filled CAT proportional counters

    CERN Document Server

    Chaplier, G; Megtert, S


    In previous publications, we described the intrinsic properties of CAT detectors, formed as a unique or a collection of individual single holes (gas proportional pixel detector). In our last paper, we have shown that the calculated gain of the avalanche along the electric field lines was dependent on the distance of photon absorption with respect to the symmetry axis of a single hole. On the contrary, the measured gain did not follow this dependence and it was suggested that the gain of the detector was similar to the one measured along the hole symmetry axis, irrespective of the shape of the off-axis electric field lines. We present here a simple calculation of the on-axis gain of such structures that corresponds to the measurements and takes into account the detector geometry.

  20. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy (United States)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.


    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  1. Kansas nurse leader residency programme: advancing leader knowledge and skills. (United States)

    Shen, Qiuhua; Peltzer, Jill; Teel, Cynthia; Pierce, Janet


    To evaluate the effectiveness of the Kansas Nurse Leader Residency (KNLR) programme in improving nurses' leadership knowledge and skills and its acceptability, feasibility and fidelity. The Future of Nursing Report (Institute of Medicine, 2011) calls for nurses to lead change and advance health. The 6-month KNLR programme was developed by the Kansas Action Coalition to support nurses' leadership development. Nurses (n = 36) from four nursing specialties (acute care, long-term care, public health and school health) participated in the programme. The adapted Leader Knowledge and Skill Inventory was used to assess leadership knowledge and skills. Programme acceptability, feasibility and implementation fidelity also were evaluated. The programme completion rate was 67.7% (n = 24). Programme completers had significantly improved self-assessed and mentor-assessed leadership knowledge and skills (p programme gains were maintained 3 months after programme completion. The KNLR programme effectively improved leadership knowledge and skills and was positively evaluated by participants. The implementation of the KNLR programme using a hybrid format of in-person sessions and online modules was feasible across four specialty areas in both rural and urban regions. The next steps include the development of an advanced programme. Residency programmes for new nurse leaders are critical for successful transition into management positions. © 2017 John Wiley & Sons Ltd.

  2. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands (United States)

    Chadwick, W.W.; De Roy, T.; Carrasco, A.


    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  3. Learn and gain

    CERN Document Server

    Al-Alami, Suhair Eyad Jamal


    Initiating the slogan ""love it, live it"", Learn and Gain includes eight short stories, chosen to illustrate various modes of narration, as well as to provoke reflection and discussion on a range of issues. All texts utilized here illustrate how great writers can, with their insight and gift for words, help us to see the world we live in, in new probing and exciting ways. What characterises the book, the author believes, is the integration of the skills of literary competence, communicative c...

  4. Gender gaps and gains. (United States)

    Conly, S


    Findings from studies conducted worldwide indicate that educating girls allows them to gain more control over their lives, which, in turn, means that they have fewer, healthier children. In patriarchal societies, however, this education must last 6 or 7 years to be fully beneficial. Education of girls is also among the best economic investments a country can make because it leads to increased productivity and economic growth. However, women still suffer from a gender gap that has resulted in lower literacy among women and lower school attendance and duration of schooling among girls. However, gains have been made, and the gender gap in enrollment is narrowing in some regions, such as Latin America and East Asia. The gender gap continues its stranglehold, however, in the most populous and impoverished countries of sub-Saharan Africa. Enrollment rates in secondary schools have risen faster than for primary schools worldwide, with striking gains in East Asia. In some regions, such as Latin America, the secondary school enrollment rates are actually higher for girls than for boys. Strategies to improve girls' educational participation include 1) building more schools, 2) providing "girl-friendly" facilities, 3) increasing the number of women teachers, 4) improving the quality and relevance of the curriculum, 5) promoting education among parents, 6) providing sexual health education and services to reduce pregnancy-related drop-outs, and 7) making school hours flexible to accommodate girls' schedules.

  5. A protein biosensor using Geiger mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F; Sweeney, M Mac; Sheehan, M M; Mathewson, A [National Microelectronics Research Centre, University College Cork (Ireland)


    A compact optical sensor specifically designed for protein detection is introduced in this work. The sensor takes advantage of avalanche photodiode's ultra-high sensitivity when operated in Geiger mode and is capable of detecting and quantifying very low light levels down to the single photons. The sensor has been tested with a luciferase gene reporter molecule detection system in Escherichia coli samples. The luciferase production is monitored via the APD and the luminescence amount detected is directly proportional to the amount of protein being produced. This reporter system will allow us to elucidate specific sources of proteins and to monitor the dynamics of protein activity within the cell in a real-time setting. The significant increase of photodiode breakdowns after the samples are applied to the sensor is the mechanism of detecting the bioluminescence. The degree of increase can be used to estimate the quantity of protein molecules. The sensor is packaged in a Teflon lightproof container to form a compact detection system.

  6. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)


    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  7. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. (United States)

    Milton, John G


    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Avalanche of entanglement and correlations at quantum phase transitions. (United States)

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf


    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.

  9. Avalanche photodiode photon counting receivers for space-borne lidars (United States)

    Sun, Xiaoli; Davidson, Frederic M.


    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  10. Impact ionisation measurement and modelling of long wavelength avalanche photodiodes

    CERN Document Server

    Ng, J S


    Impact ionisation coefficients are measured in In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As and excess noise characteristics are measured in sub-micron ln sub 0 sub . sub 5 sub 2 Al sub 0 sub . sub 4 sub 8 As. Photomultiplication measurements performed on a series of In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As p-i-n diodes are reported. Taking careful account of factors which could give rise to erroneous results at low fields, ln sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As ionisation coefficients are deduced at room temperature as a function of electric field. The results confirm the low field ionisation behaviour of alpha and the conventional field dependence of beta. Excess avalanche noise factors of In sub 0 sub . sub 5 sub 2 Al sub 0 sub . sub 4 sub 8 As p-i-n diodes, with i-region thicknesses ranging from 1.0 mu m to 0.1 mu m, are reported. The results indicate effective beta/alpha values lying between 0.15 and 0.23, comparable with or lower than the values reported in ...

  11. Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C.

    Directory of Open Access Journals (Sweden)

    M. L. Stewart


    Full Text Available The surficial deposits surrounding the Mount Meager volcanic complex include numerous avalanche deposits. These deposits share many attributes: (a they are nearly monolithologic and comprise mainly intermediate volcanic rock clasts, (b they lack internal structure, and (c they are very poorly sorted. Despite these similarities, the avalanche deposits represent two distinct processes. Mass wasting of the Mount Meager volcanic edifice has produced cold rock avalanche deposits, whereas gravitational collapse of active lava domes and flows has produced hot block and ash avalanche deposits. The ability to discriminate between these "hot" and "cold" avalanche deposits is a critical component in the assessment of hazards in volcanic terranes. Hot block and ash avalanche deposits can be distinguished by the presence of radially-oriented joints, breadcrust textures, and incipient welding, which are features indicative of high emplacement temperatures. Conversely, rock avalanche deposits resulting from mass wasting events may be distinguished by the presence of clasts that preserve pre-depositional weathering and jointing surfaces. Volcanic avalanches are mechanically similar to rock avalanches but pose a greater hazard due to high temperatures, increased fluidization from degassing and the potential to decouple highly mobile elutriated ash clouds. The increasing use of hazardous regions such as the Lillooet River valley requires more reliable risk assessment in order to minimize losses from future hazardous events.

  12. Valuing water gains in the Eastern Cape's Working for Water ...

    African Journals Online (AJOL)



    Jan 1, 2002 ... Valuing water gains in the Eastern Cape's Working for Water. Programme. SG Hosking* and M du Preez. Department of Economics and Economic History, University of Port Elizabeth, PO Box 1600, Port Elizabeth 6000, South Africa. Abstract. Water is one of the most important measured benefits of the ...

  13. Response of avalanche photo-diodes of the CMS Electromagnetic Calorimeter to neutrons from an Americium-Beryllium source.

    CERN Document Server

    Deiters, Konrad; Renker, Dieter


    The response of avalanche photo-diodes (APDs) used in the CMS Electromagnetic Calorimeter to low energy neutrons from an Americium-Beryllium source is reported. Signals due to recoil protons from neutron interactions with the hydrogen nuclei in the protective epoxy layer, mainly close to the silicon surface of the APD, have been identified. These signals increase in size with the applied bias voltage more slowly than the nominal gain of the APDs, and appear to have a substantially lower effective gain at the operating voltage. The signals originating from interactions in the epoxy are mostly equivalent to signals of a few GeV in CMS, but range up to a few tens of GeV equivalent. There are also signals not attributed to reactions in the epoxy extending up to the end of the range of these measurements, a few hundreds of GeV equivalent. Signals from the x-rays from the source can also be in the GeV equivalent scale in CMS. Simulations used to describe events due to particle interactions in the APDs need to take ...

  14. The national immunisation programme in the Netherlands: current status and potential future developments

    NARCIS (Netherlands)

    Abbink F; Al MJ; Berbers GAM; Binnendijk RS van; Boot HJ; Duynhoven YTHP van; Gageldonk-Lafeber AB van; Greeff SC de; Kimman TG; Meijer LA; Mooi FR; Oosten M van; Plas SM van der; Schouls LM; Soolingen D van; Vermeer-de Bondt PE; Vliet JA van; Melker HE de; Hahne SJM; Boer IM de; CIE


    The national immunisation programme in the Netherlands is very effective and safe. To improve the success and effectiveness of the immunisation programme, vaccination of other (age)groups is indicated. Extension of the programme with new target diseases can result in considerable health gain for

  15. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data (United States)

    Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; Koper, Keith D.; Hale, J. Mark; Aaron, Jordan; Larsen, Chris F.


    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5-2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10-50 s) seismic data. Intermediate- and shorter-period (1-50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2-1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes 104-105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.

  16. A concept for optimizing avalanche rescue strategies using a Monte Carlo simulation approach (United States)

    Paal, Peter; Schweizer, Jürg


    Recent technical and strategical developments have increased the survival chances for avalanche victims. Still hundreds of people, primarily recreationists, get caught and buried by snow avalanches every year. About 100 die each year in the European Alps–and many more worldwide. Refining concepts for avalanche rescue means to optimize the procedures such that the survival chances are maximized in order to save the greatest possible number of lives. Avalanche rescue includes several parameters related to terrain, natural hazards, the people affected by the event, the rescuers, and the applied search and rescue equipment. The numerous parameters and their complex interaction make it unrealistic for a rescuer to take, in the urgency of the situation, the best possible decisions without clearly structured, easily applicable decision support systems. In order to analyse which measures lead to the best possible survival outcome in the complex environment of an avalanche accident, we present a numerical approach, namely a Monte Carlo simulation. We demonstrate the application of Monte Carlo simulations for two typical, yet tricky questions in avalanche rescue: (1) calculating how deep one should probe in the first passage of a probe line depending on search area, and (2) determining for how long resuscitation should be performed on a specific patient while others are still buried. In both cases, we demonstrate that optimized strategies can be calculated with the Monte Carlo method, provided that the necessary input data are available. Our Monte Carlo simulations also suggest that with a strict focus on the "greatest good for the greatest number", today's rescue strategies can be further optimized in the best interest of patients involved in an avalanche accident. PMID:28467434

  17. A concept for optimizing avalanche rescue strategies using a Monte Carlo simulation approach. (United States)

    Reiweger, Ingrid; Genswein, Manuel; Paal, Peter; Schweizer, Jürg


    Recent technical and strategical developments have increased the survival chances for avalanche victims. Still hundreds of people, primarily recreationists, get caught and buried by snow avalanches every year. About 100 die each year in the European Alps-and many more worldwide. Refining concepts for avalanche rescue means to optimize the procedures such that the survival chances are maximized in order to save the greatest possible number of lives. Avalanche rescue includes several parameters related to terrain, natural hazards, the people affected by the event, the rescuers, and the applied search and rescue equipment. The numerous parameters and their complex interaction make it unrealistic for a rescuer to take, in the urgency of the situation, the best possible decisions without clearly structured, easily applicable decision support systems. In order to analyse which measures lead to the best possible survival outcome in the complex environment of an avalanche accident, we present a numerical approach, namely a Monte Carlo simulation. We demonstrate the application of Monte Carlo simulations for two typical, yet tricky questions in avalanche rescue: (1) calculating how deep one should probe in the first passage of a probe line depending on search area, and (2) determining for how long resuscitation should be performed on a specific patient while others are still buried. In both cases, we demonstrate that optimized strategies can be calculated with the Monte Carlo method, provided that the necessary input data are available. Our Monte Carlo simulations also suggest that with a strict focus on the "greatest good for the greatest number", today's rescue strategies can be further optimized in the best interest of patients involved in an avalanche accident.

  18. Rock-avalanche geomorphological and hydrological impact on an alpine watershed (United States)

    Frattini, P.; Riva, F.; Crosta, G. B.; Scotti, R.; Greggio, L.; Brardinoni, F.; Fusi, N.


    Rock avalanches are large flow-like movements of fragmented rock that can cause extensive and rapid topographic changes, for which very few quantitative data are available. This paper analyses the geomorphological and hydrological impact of the 3 million m3 Thurwieser rock avalanche (2004, Italian Central Alps) by using Terrestrial Laser Scanner, airborne Lidar and GNSS data collected from 2005 to 2014. Sediment yield with respect to the normal valley regime, the dynamic and mass balance of affected glaciers, and the reorganization of superficial and groundwater flow networks are quantified. In the middle portion of the avalanche deposit, a natural sediment trap collected sediments from a new stream channel developed along the upper portion of the deposit and from a lateral drainage basin. This made possible to assess the 10-year impact of the rock avalanche on the sediment yield, which increased from about 120 to about 400 t km- 2·a- 1. The rock avalanche partially covered a glacier with a shallow debris layer that acted as a thermal insulator, limiting ice ablation and producing a 10-m high scarp between the free surface of the glacier and the debris-covered portion. A reduction of 75% of ice ablation was observed due to thermal insulation. The rock avalanche filled a tributary valley, splitting the original drainage basin in two. Under ordinary flows, seepage occurs within the avalanche deposit along the old valley axis. During high flow conditions, a new stream channel is activated along the middle and lower margin of the deposit, which has produced a new alluvial fan on the main valley floor. The fan evolution is described up to the present volume of about 2000 m3.

  19. Gaining Relational Competitive Advantages

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen


    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation...... and appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  20. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase


    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  1. Rock avalanches and glacier dynamics: a case study in the Chugach Mountains, Alaska (United States)

    Uhlmann, Manuela; Fischer, Luzia; Huggel, Christian; Kargell, Jeffrey; Korup, Oliver


    Massive rock slope failures resulting in rock avalanches in glacierized environments can have serious consequences for downstream areas. Furthermore they are important drivers of erosion. The Chugach Mountains in south-central Alaska are a vast remote and strongly glacierized area with evidence of numerous rock avalanches, although a systematic documentation and assessment of their role as geomorphic agents is missing so far. Here we use glaciers as a unique archive of rock avalanches that have deposited extensive debris sheets on glaciers. A number of well preserved rock avalanche deposits from past years and decades furthermore facilitate the quantification of hitherto poorly known historic glacier surface velocities in the region. The principal objective of this work was first to create an inventory of rock avalanches on the basis of Landsat satellite images in the Chugach Mountains, and to analyze their characteristics regarding lithology, climate, runout-distance, area and volume, as well as their spatial distribution. The runout distances of mass movements are generally larger in glacial environments than in non-glacial environments. This characteristic was also shown in the studied cases as they always travelled over glaciers, firn or snow. The distribution of the rock avalanches was compared with the occurrence of earthquakes in the region. It has been shown in this study, that especially big earthquakes trigger rock avalanches. Smaller earthquakes do not appear to have enough energy to trigger rock avalanches. Furthermore, the climate conditions were analyzed of being responsible for the spatial pattern of the rock avalanches. The south-eastern part of the Chugach Mountains is affected by high precipitation and mild temperatures. Concentration of rock avalanches occurs in the same area. To analyze glacier dynamics over more than 20 years, rock avalanche deposits on the glaciers were used to derive simple but robust measures of flow velocities over periods

  2. Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria

    Directory of Open Access Journals (Sweden)

    M. Keiler


    Full Text Available Snow avalanches pose a threat to settlements and infrastructure in alpine environments. Due to the catastrophic events in recent years, the public is more aware of this phenomenon. Alpine settlements have always been confronted with natural hazards, but changes in land use and in dealing with avalanche hazards lead to an altering perception of this threat. In this study, a multi-temporal risk assessment is presented for three avalanche tracks in the municipality of Galtür, Austria. Changes in avalanche risk as well as changes in the risk-influencing factors (process behaviour, values at risk (buildings and vulnerability between 1950 and 2000 are quantified. An additional focus is put on the interconnection between these factors and their influence on the resulting risk. The avalanche processes were calculated using different simulation models (SAMOS as well as ELBA+. For each avalanche track, different scenarios were calculated according to the development of mitigation measures. The focus of the study was on a multi-temporal risk assessment; consequently the used models could be replaced with other snow avalanche models providing the same functionalities. The monetary values of buildings were estimated using the volume of the buildings and average prices per cubic meter. The changing size of the buildings over time was inferred from construction plans. The vulnerability of the buildings is understood as a degree of loss to a given element within the area affected by natural hazards. A vulnerability function for different construction types of buildings that depends on avalanche pressure was used to assess the degree of loss. No general risk trend could be determined for the studied avalanche tracks. Due to the high complexity of the variations in risk, small changes of one of several influencing factors can cause considerable differences in the resulting risk. This multi-temporal approach leads to better understanding of the today's risk by

  3. Layer number dependence of flux avalanches in superconducting shifted strip array

    Energy Technology Data Exchange (ETDEWEB)

    Mine, A.; Tsuchiya, Y.; Miyano, S.; Pyon, S. [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tamegai, T., E-mail: [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nagasawa, S.; Hidaka, M. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)


    Highlights: • We have fabricated superconducting shifted strip arrays (SSAs) up to 4 layers. • Flux penetrations into SSAs are observed by using magneto-optical imaging. • Linear flux avalanches are observed in a wider range of overlap in the 4-layer SSAs than in the 2- or 3-layer SSAs. - Abstract: We have fabricated multi-layer superconducting shifted strip arrays (SSAs) of Nb up to 4 layers and systematically studied the vortex penetrations into these structures. We observed the vortex penetration as a function of the number of layers and the ratio of overlap between neighboring layers by using magneto-optical (MO) imaging. In the case of 2- and 3-layer SSAs, spot-like avalanches occur when the overlap is small, while linear avalanches occur when the overlap is large, consistent with our previous reports. In the 4-layer SSAs, the smallest limit of the overlap between the neighboring layers for the linear avalanche is lower. Flux penetrations parallel to the strip which were observed in the 3-layer SSA were also observed in the 4-layer SSAs with smaller ratio of overlap. Larger demagnetization effects in the middle two layers in 4-layer SSA help to make avalanches larger and more extended.

  4. The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy

    Directory of Open Access Journals (Sweden)

    P. Deline


    Full Text Available We describe a 0.5 Mm3 rock avalanche that occurred in 2008 in the western Alps and discuss possible roles of controlling factors in the context of current climate change. The source is located between 2410 m and 2653 m a.s.l. on Mont Crammont and is controlled by a densely fractured rock structure. The main part of the collapsed rock mass deposited at the foot of the rock wall. A smaller part travelled much farther, reaching horizontal and vertical travel distances of 3050 m and 1560 m, respectively. The mobility of the rock mass was enhanced by channelization and snow. The rock-avalanche volume was calculated by comparison of pre- and post-event DTMs, and geomechanical characterization of the detachment zone was extracted from LiDAR point cloud processing. Back analysis of the rock-avalanche runout suggests a two stage event.

    There was no previous rock avalanche activity from the Mont Crammont ridge during the Holocene. The 2008 rock avalanche may have resulted from permafrost degradation in the steep rock wall, as suggested by seepage water in the scar after the collapse in spite of negative air temperatures, and modelling of rock temperatures that indicate warm permafrost (T > −2 °C.

  5. Optimal design of snow avalanche passive defence structure using reliability approach to quantify buildings vulnerability (United States)

    Favier, P.; Bertrand, D.; Eckert, N.; Naaim, M.


    To protect elements at risk (humans, roads, houses, etc.) against snow avalanches, civil engineering structures, such as dams or mounds, are used. The design of such defence structures is done following a deterministic approach which considers European regulation. The minimization of expected total losses is an interesting alternative that generalizes cost-benefit approach to a continuous decision variable. For this purpose, not only the hazard magnitude but also the buildings vulnerability must be evaluated carefully. The aim of this work is therefore to combine state of the art sub-models for the probabilistic description of avalanche flows and the numerical evaluation of damages to buildings. We defined the risk as the expectation of the cost consequences of avalanches activity. Disposal consequences are quantified thanks to reliability methods. In this formulation, the accuracy of both the hazard estimation and the vulnerability calculation has to be consistent according to precision and computational costs. To do so, a numerical approach has been developed to evaluate the physical vulnerability of concrete buildings submitted to avalanche loadings. The ensuing application illustrates our approach. A reinforced concrete slab is considered to model the building with a finite element method. Reliability approach enables to produce a response spectrum of the structure against avalanche impact. Finally, vulnerability curves are built. Outcomes of the risk calculation are examined to find sensitivity on the optimal design of snow defence structures.

  6. Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington (United States)

    Crandell, Dwight Raymond; Fahnestock, Robert K.


    In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.

  7. Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland (United States)

    Techel, F.; Zweifel, B.; Winkler, K.


    Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - and Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the

  8. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site (United States)

    Veitinger, Jochen; Sovilla, Betty


    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significantly differ from its underlying, snow-free terrain. This may lead to different, and/or potentially larger release areas. To investigate this hypothesis, the relation between avalanche release area size, snow depth and surface roughness was investigated using avalanche observations of artificially triggered slab avalanches over a period of 15 years in a high-alpine field site. High-resolution, continuous snow depth measurements at times of avalanche release showed a decrease of mean surface roughness with increasing release area size, both for the bed surface and the snow surface before avalanche release. Further, surface roughness patterns in snow-covered winter terrain appeared to be well suited to demarcate release areas, suggesting an increase of potential release area size with greater snow depth. In this context, snow depth around terrain features that serve as potential delineation borders, such as ridges or trenches, appeared to be particularly relevant for release area size. Furthermore, snow depth measured at a nearby weather station was, to a considerable extent, related to potential release area size, as it was often representative of snow depth around those critical features where snow can accumulate over a long period before becoming susceptible to avalanche release. Snow depth - due to its link to surface roughness - could therefore serve as a highly useful variable with regard to potential release area definition for varying snow cover scenarios, as, for example, the avalanche

  9. Optimization and modeling of avalanche photodiode structures - Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction APD's (United States)

    Brennan, Kevin F.


    A general device model is used to optimize designs for three superlattice device avalanche photodiodes (APDs), the p-i-n, p-n homojunction, and p-n heterojunction devices. The gain, excess noise factor, bandwidth, and gain-bandwidth product are calculated in a first principles Monte Carlo investigation of the impact ionization probabilities of the electrons and holes. The performances of the three APDs are analyzed in the context of lightwave communications systems (where high gain at low noise and large bandwidth are the most critical performance criteria) and in digital applications (where devices must operate at or below 5V, in addition to providing gain at low internal noise and at large bandwidth).

  10. Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars (United States)


    unimportant, numerical solutions were obtained for the velocity distribution function and the resulting fields of concentration, particle and gas mean velocity, and particle shear stress for the steady two-dimensional saltation of spherical sand particles driven by a turbulent wind over a bed characterized by a simple relationship (the splash function) between the properties of incoming particles and those of the rebounding particles and other particles ejected fiom the bed. At the University of Rennes 1, experiments devoted to the characterization of the splash function for beds consisting of either random or ordered arrays of spheres in two- dimensions were completed. These indicated the role played by the packing geometry in the rebound and ejection of grains. Preliminary experiments on response of a three- dimensional collision bed to a collision with a single particle were performed. Data was taken with a single camera focused on the plane of collision. Here, for example, the decrease of the effective coefficient of restitution of the bed with an increase of the angle of incidence of the incoming particle has been measured. Other experiments on avalanches at Rennes studied the properties of the flows of particles that are responsible for the motion of the leeward side of a dune. In these, the dependence of the initiation of avalanches on the packing and depth of the particles was measured. Particle migration was studied in inclined flows of a binary mixture of disks and the mechanisms of diffision and segregation were isolated and characterized. The influence of side wall on dense, rapid inclined flows was measured and shown to be the reason why the angle of the free surface in such flows can exceed the static angle of repose. Future research will be devoted to a better understanding the transition between saltating (collisionless) and collisional flows as the wind speed the increases. This will involve the understanding of the evolution of the splash function as

  11. Nonlinear response and avalanche behavior in metallic glasses (United States)

    Riechers, B.; Samwer, K.


    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  12. Measuring snow properties relevant to slab avalanche release (United States)

    Reuter, Benjamin; Proksch, Martin; Löwe, Henning; van Herwijnen, Alec; Schweizer, Jürg


    The release of a slab avalanche is preceded by a sequence of fractures. The main material properties relevant for the fracture processes are the specific fracture energy of the weak layer, as also the elastic modulus and the density of the overlying slab layers. The snow micro-penetrometer (SMP) is the method of choice for snow stratigraphy measurements in the field with high resolution. Recent advances in signal processing allow us to derive the most needed material properties to model the fracture behaviour of snow. On a smaller scale, the three dimensional structure of snow samples is obtained from snow micro-tomography (CT) providing snow density directly. By modelling the mechanical behaviour of the ice matrix the elastic properties of the snow sample can be calculated. At the macro-scale, fracture mechanical field tests with particle tracking velocimetry (PTV) allow observing the in-situ fracture behaviour. Specific fracture energy and slab stiffness are derived from PTV measurement by fitting an analytical beam equation to the observed deformation field. Over the past years we were able to generate two datasets of overlapping SMP and CT as well as SMP and PTV measurements. SMP measurements and micro-tomography of snow samples show that snow density is well reproduced with current SMP signal processing algorithms. Also the specific fracture energy as derived from the SMP signal is in agreement with PTV results. The effective modulus, however, being the most sensitive parameter in fracture covers three orders of magnitude depending on measurement method. The present work discusses observed similarities and differences arising from measurement methods, theoretical assumptions and process scales. Reliable methods to determine the parameters describing the fracture process are key to snow instability modelling based on either snow cover simulations or field measurements. Preliminary modelling results from ongoing spatial variability studies illustrate the

  13. Study of gain variation as a function of physical parameters of GEM foil

    CERN Document Server

    Das, Supriya


    The ALICE experiment at LHC has planned to upgrade the TPC by replacing the MWPC with GEM based detecting elements to restrict the IBF to a tolerable value. However the variation of the gain as a function of physical parameters of industrially produced large size GEM foils is needed to be studied as a part of the QA procedure for the detector. The size of the electron avalanche and consequently the gain for GEM based detectors depend on the electric field distribution inside the holes. Geometry of a hole plays an important role in defining the electric field inside it. In this work we have studied the variation of the gain as a function of the hole diameters using Garfield++ simulation package.

  14. Study of gain variation as a function of physical parameters of GEM foil

    Energy Technology Data Exchange (ETDEWEB)

    Das, Supriya, E-mail:


    The ALICE experiment at LHC has planned to upgrade the TPC by replacing the MWPC with GEM based detecting elements to restrict the IBF to a tolerable value. However the variation of the gain as a function of physical parameters of industrially produced large size GEM foils is needed to be studied as a part of the QA procedure for the detector. The size of the electron avalanche and consequently the gain for GEM based detectors depend on the electric field distribution inside the holes. Geometry of a hole plays an important role in defining the electric field inside it. In this work we have studied the variation of the gain as a function of the hole diameters using Garfield++ simulation package.

  15. Study of gain variation as a function of physical parameters of GEM foil (United States)

    Das, Supriya; Alice Collaboration


    The ALICE experiment at LHC has planned to upgrade the TPC by replacing the MWPC with GEM based detecting elements to restrict the IBF to a tolerable value. However the variation of the gain as a function of physical parameters of industrially produced large size GEM foils is needed to be studied as a part of the QA procedure for the detector. The size of the electron avalanche and consequently the gain for GEM based detectors depend on the electric field distribution inside the holes. Geometry of a hole plays an important role in defining the electric field inside it. In this work we have studied the variation of the gain as a function of the hole diameters using Garfield++ simulation package.

  16. En Note om Programmering

    DEFF Research Database (Denmark)

    Nørmark, Kurt


    Denne note er en introduktion til programmering. Formålet er at give dig et indblik i hvad programmering egentlig er for noget. Jeg vil vise at programmering kan foregå på forskellige måder, og at der er mange forskellige udfordringer forbundet med at programmere. Noten vil ikke knytte sig til et...... bestemt programmeringssprog. Noten vil kunne supplere et egentlig undervisningsmateriale, der støtter dig i en bestemt form for programmering i et udvalgt programmeringssprog....

  17. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Jyvaeskylae (Finland)


    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  18. Non-invasive assessment of animal exercise stress: real-time PCR of GLUT4, COX2, SOD1 and HSP70 in avalanche military dog saliva

    National Research Council Canada - National Science Library

    Diverio, S; Guelfi, G; Barbato, O; Di Mari, W; Egidi, M G; Santoro, M M


    ...) in saliva changes following acute exercise stress in dogs. For this purpose, 12 avalanche dogs of the Italian Military Force Guardia di Finanza were monitored during simulation of a search for a buried person in an artificial avalanche area...

  19. Note: An avalanche transistor-based nanosecond pulse generator with 25 MHz repetition rate. (United States)

    Beev, Nikolai; Keller, Jonas; Mehlstäubler, Tanja E


    We have developed an avalanche transistor-based pulse generator for driving the photocathode of an image intensifier, which comprises a mainly capacitive load on the order of 100 pF. The circuit produces flat-top pulses with a rise time of 2 ns, a FWHM of 10 ns, and an amplitude of tens of V at a high repetition rate in the range of tens of MHz. The generator is built of identical avalanche transistor sections connected in parallel and triggered in a sequence, synchronized to a reference rf signal. The described circuit and mode of operation overcome the power dissipation limit of avalanche transistor generators and enable a significant increase of pulse repetition rates. Our approach is naturally suited for synchronized imaging applications at low light levels.

  20. Simulation of avalanche electron multiplication in photodetectors with blocked jump conductivity

    CERN Document Server

    Sinitsa, S P


    The process of the avalanche electron multiplication in silicon BIB-structure is simulated by Monte Carlo method for the regime single-photon counting. The electron acceleration in the linear electric field, the elastic scattering of electrons on longitudinal acoustic phonons the inelastic scattering of electrons on intervalley phonons and ionization of neutral impurity centers are taken into account during electron motion. The simple algorithm is proposed to calculate coordinates of all ionized centers in the avalanche and the probability function of N electron yield from the avalanche at entering one electron into the multiplication range. It is shown that this function has maximum near the average value that correlates with experimental data

  1. Note: An avalanche transistor-based nanosecond pulse generator with 25 MHz repetition rate (United States)

    Beev, Nikolai; Keller, Jonas; Mehlstäubler, Tanja E.


    We have developed an avalanche transistor-based pulse generator for driving the photocathode of an image intensifier, which comprises a mainly capacitive load on the order of 100 pF. The circuit produces flat-top pulses with a rise time of 2 ns, a FWHM of 10 ns, and an amplitude of tens of V at a high repetition rate in the range of tens of MHz. The generator is built of identical avalanche transistor sections connected in parallel and triggered in a sequence, synchronized to a reference rf signal. The described circuit and mode of operation overcome the power dissipation limit of avalanche transistor generators and enable a significant increase of pulse repetition rates. Our approach is naturally suited for synchronized imaging applications at low light levels.

  2. Possible deviations from Griffith’s criterion in shallow slabs, and consequences on slab avalanche release

    Directory of Open Access Journals (Sweden)

    F. Louchet


    Full Text Available Possible reasons for deviations from Griffith’s criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i that the usual form of Griffith’s criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith’s criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena.

  3. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity (United States)

    Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella


    A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

  4. Self-organized criticality induced by quenched disorder: Experiments on flux avalanches in NbHx films

    NARCIS (Netherlands)

    Welling, M.S.; Aegerter, C.M.; Wijngaarden, R.J.


    We present an experimental study of the influence of quenched disorder on the distribution of flux avalanches in type-II superconductors. In the presence of much quenched disorder, the avalanche sizes are powerlaw distributed and show finite-size scaling, as expected from self-organized criticality

  5. Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes

    Directory of Open Access Journals (Sweden)

    C. Vera Valero


    Full Text Available Mining activities in cold regions are vulnerable to snow avalanches. Unlike operational facilities, which can be constructed in secure locations outside the reach of avalanches, access roads are often susceptible to being cut, leading to mine closures and significant financial losses. In this paper we discuss the application of avalanche runout modelling to predict the operational risk to mining roads, a long-standing problem for mines in high-altitude, snowy regions. We study the 35 km long road located in the "Cajón del rio Blanco" valley in the central Andes, which is operated by the Codelco Andina copper mine. In winter and early spring, this road is threatened by over 100 avalanche paths. If the release and snow cover conditions can be accurately specified, we find that avalanche dynamics modelling is able to represent runout, and safe traffic zones can be identified. We apply a detailed, physics-based snow cover model to calculate snow temperature, density and moisture content in three-dimensional terrain. This information is used to determine the initial and boundary conditions of the avalanche dynamics model. Of particular importance is the assessment of the current snow conditions along the avalanche tracks, which define the mass and thermal energy entrainment rates and therefore the possibility of avalanche growth and long runout distances.

  6. Smartphone applications for communicating avalanche risk information : a study on how they are developed and evaluated by their providers

    NARCIS (Netherlands)

    Charriere, M.K.M.; Bogaard, T.A.


    Every year, people are victims of avalanches. It is commonly assumed that one way to decrease those losses is to inform about danger levels. This paper presents a study on current practices in the development and evaluation of smartphones applications that are dedicated to avalanche risk

  7. Forecasting for natural avalanches during spring opening of Going-to-the-Sun Road, Glacier National Park, Montana, USA (United States)

    Reardon, Blase; Lundy, Chris


    The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.

  8. Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes (United States)

    Valero, Cesar Vera; Wever, Nander; Bühler, Yves; Stoffel, Lukas; Margreth, Stefan; Bartelt, Perry


    Mining activities in cold regions are vulnerable to snow avalanches. Unlike operational facilities, which can be constructed in secure locations outside the reach of avalanches, access roads are often susceptible to being cut, leading to mine closures and significant financial losses. In this paper we discuss the application of avalanche runout modelling to predict the operational risk to mining roads, a long-standing problem for mines in high-altitude, snowy regions. We study the 35 km long road located in the "Cajón del rio Blanco" valley in the central Andes, which is operated by the Codelco Andina copper mine. In winter and early spring, this road is threatened by over 100 avalanche paths. If the release and snow cover conditions can be accurately specified, we find that avalanche dynamics modelling is able to represent runout, and safe traffic zones can be identified. We apply a detailed, physics-based snow cover model to calculate snow temperature, density and moisture content in three-dimensional terrain. This information is used to determine the initial and boundary conditions of the avalanche dynamics model. Of particular importance is the assessment of the current snow conditions along the avalanche tracks, which define the mass and thermal energy entrainment rates and therefore the possibility of avalanche growth and long runout distances.

  9. Risk taking in avalanche terrain: a study of the human factor contribution. (United States)

    Sole, Albert E; Emery, Carolyn A; Hagel, Brent E; Morrongiello, Barbara A


    To discover possible associations between the human factors and avalanche incidents. Self-report, intercept, and Web-based, 1-year retrospective, cross-sectional study. Mountain Equipment Co-op stores in Calgary and Vancouver, Canada. People shopping at the store and who had entered avalanche terrain in the past 12 months were invited to complete the survey (n = 447). Sex, age, sport activity, days of exposure, years of experience, socioeconomic status, level of training, risk propensity, and motivation. Experiencing an avalanche incident. Women and those traveling with women were less likely to experience an avalanche incident [odds ratio (OR) = 0.45; 95% confidence interval (CI), 0.21-0.96]. Those with the most training were more likely to report experiencing an avalanche incident (OR = 6.86; 95% CI, 2.37-19.83), but this difference was attenuated (OR = 2.25) and not statistically significant (95% CI, 0.57-8.81) after adjustment for exposure. Experience was not found to be a factor. Being motivated to seek intense experiences was found to be a factor (OR = 2.19; 95% CI, 1.03-4.66), whereas being motivated to create memorable experiences was protective (OR = 0.29; 95% CI, 0.10-0.86). The results of this study suggest that people exposing themselves to avalanche risk do so to satisfy inherited and learned motivational needs and that some motivations are associated with higher or lower risk taking than others. Training appears to be exploited so as to increase access to these benefits rather than reduce risk. Within this risk/reward paradigm, risk taking among men is moderated by the presence of a woman in the group.

  10. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector. (United States)

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide


    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  11. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington (United States)

    Glicken, Harry


    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  12. Wet snow detection by C-band SAR in avalanche forecasting


    Hopsø, Ingrid Strømsvik


    Avalanches usually occur in steep, snow-covered mountain sides under special conditions. The stability of the snowpack depends, among other things, on the melting and freezing of the snowpack. If a snow covered area has not undergone a melt/freeze-process, it could potentially be unstable due to depth hoar or buried layers of frost, and therefore pose an avalanche risk if the area is located at a steep enough mountain side. Additionally, when the snow has been wet early in the winter, it can ...

  13. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery (United States)

    Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver


    Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  14. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska


    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  15. Nano-Multiplication-Region Avalanche Photodiodes and Arrays (United States)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas


    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  16. Pulsed electron avalanche knife (PEAK) for intraocular surgery. (United States)

    Palanker, D V; Miller, J M; Marmor, M F; Sanislo, S R; Huie, P; Blumenkranz, M S


    To develop a better and more economical instrument for precise, tractionless, "cold" cutting during intraocular surgery. The use of highly localized electric fields rather than laser light as the means of tissue dissection was investigated. A high electric field at the tip of a fine wire can, like lasers, initiate plasma formation. Micrometer-length plasma streamers are generated when an insulated 25 micron (microm) wire, exposed to physiological medium at one end, is subjected to nanosecond electrical pulses between 1 and 8 kV in magnitude. The explosive evaporation of water in the vicinity of these streamers cuts soft tissue without heat deposition into surrounding material (cold cutting). Streamers of plasma and the dynamics of water evaporation were imaged using an inverted microscope and fast flash photography. Cutting effectiveness was evaluated on both polyacrylamide gels, on different tissues from excised bovine eyes, and in vivo on rabbit retina. Standard histology techniques were used to examine the tissue. Electric pulses with energies between 150 and 670 microJ produced plasma streamers in saline between 10 and 200 microm in length. Application of electric discharges to dense (10%) polyacrylamide gels resulted in fracturing of the gel without ejection of bulk material. In both dense and softer (6%) gels, layer by layer shaving was possible with pulse energy rather than number of pulses as the determinant of ultimate cutting depth. The instrument made precise partial or full-thickness cuts of retina, iris, lens, and lens capsule without any evidence of thermal damage. Because different tissues require distinct energies for dissection, tissue-selective cutting on complex structures can be performed if the appropriate pulse energies are used; for example, retina can be dissected without damage to the major retinal vessels. This instrument, called the Pulsed Electron Avalanche Knife (PEAK), can quickly and precisely cut intraocular tissues without traction

  17. Leading Gainful Employment Metric Reporting (United States)

    Powers, Kristina; MacPherson, Derek


    This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…

  18. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition. (United States)

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung


    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K.

  19. Using GIS and Google Earth for the creation of the Going-to-the-Sun Road Avalanche Atlas, Glacier National Park, Montana, USA (United States)

    Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark


    Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.

  20. Economic modelling of a public health programme for fall prevention. (United States)

    Farag, Inez; Howard, Kirsten; Ferreira, Manuela L; Sherrington, Catherine


    despite evidence on what works in falls prevention, falls in older people remain an important public health problem. the purpose of this study was to model the impact and cost-effectiveness of a public health falls prevention programme, from the perspective of the health funder. a decision analytic Markov model compared the health benefits in quality-adjusted life years (QALYs) and costs of treatment and residential aged care with and without a population heath falls prevention programme. Different intervention costs, uptake levels and programme effectiveness were modelled in sensitivity analyses. Uncertainty was explored using univariate and probabilistic sensitivity analysis. widespread rollout of a public health fall prevention programme could result in an incremental cost-effectiveness ratio (ICER) of $A28,931 per QALY gained, assuming a programme cost of $700 per person and at a fall prevention risk ratio of 0.75. This ICER would be considered cost-effective at a threshold value of $A50,000 per QALY gained. Sensitivity analyses for programme cost and effectiveness indicated that the public health programme produced greater health outcomes and was less costly than no programme when programme costs were $A500 or lower and risk ratio for falls was 0.70 or lower. At a cost of $A2,500, the public health falls prevention programme ceases to be a cost-effective option. serious consideration should be given to implementation of a public health programme of falls prevention as a cost-effective option that enables population-wide access to the intervention strategies. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email:


    Directory of Open Access Journals (Sweden)


    Full Text Available Centre for Education and Rehabilitation of Physi­cally Handicapped Children and Adolescents Kamnik (Zavod za usposabljanje invalidne mlad­ine Kamnik; hereinafter: ZUIM perform verified or state-ap­proved programme the Rehabilitation practical pro­gramme. The programme is intended for all those young people, who have completed primary school education, but cannot continue regular schooling in secondary school pro­grammes. The programme con­sists of several equivalent parts: education, practical work, train­ing work, health, therapeutic, psychologi­cal, and other activities. For every beginner in the first month of education members of the operative team create an individualized programme, which in­cludes individualized school work, individualized training programme, and other expert activities. The programme can last for 6 years maximum, it can however be completed earlier, when the op­erative team feels the training is no longer neces­sary. Pro­gress of a young person is what matters the most, and if there is no progress, the training is brought to an end. Training of young people in the Rehabilitation practical programme is only the be­ginning. The country will have to start considering social enter­prises, which are found elsewhere in the world, for example in Scandinavian countries and in the USA.

  2. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters (United States)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.


    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  3. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si (United States)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko


    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  4. Nominal Group Technique consultation of a Pulmonary Rehabilitation Programme


    Hayley A Hutchings; Rapport, Frances L; Sarah Wright; Marcus A. Doel; Clare Clement; Lewis, Keir E.


    Objective: The purpose of the study was to determine what patients, professionals and significant others regarded as the most important positive- and challenging aspects of Pulmonary Rehabilitation Programmes for patients with Chronic Obstructive Pulmonary Disease (COPD) and to gain insight into how such programmes could be developed and improved. Method: A modified Nominal Group Technique method was used in three consultation workshops (one with COPD patients who had recently undertaken a Pu...

  5. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery

    Directory of Open Access Journals (Sweden)

    C. Huggel


    Full Text Available A massive rock/ice avalanche of about 100x106m3 volume took place on the northern slope of the Kazbek massif, North Ossetia, Russian Caucasus, on 20 September 2002. The avalanche started as a slope failure, that almost completely entrained Kolka glacier, traveled down the Genaldon valley for 20km, was stopped at the entrance of the Karmadon gorge, and was finally succeeded by a distal mudflow which continued for another 15km. The event caused the death of ca. 140 people and massive destruction. Several aspects of the event are extraordinary, i.e. the large ice volume involved, the extreme initial acceleration, the high flow velocity, the long travel distance and particularly the erosion of a valley-type glacier, a process not known so far. The analysis of these aspects is essential for process understanding and worldwide glacial hazard assessments. This study is therefore concerned with the analysis of processes and the evaluation of the most likely interpretations. The analysis is based on QuickBird satellite images, field observations, and ice-, flow- and thermo-mechanical considerations. QuickBird is currently the best available satellite sensor in terms of ground resolution (0.6 m and opens new perspectives for assessment of natural hazards. Evaluation of the potential of QuickBird images for assessment of high-mountain hazards shows the feasibility for detailed avalanche mapping and analysis of flow dynamics, far beyond the capabilities of conventional satellite remote sensing. It is shown that the avalanche was characterized by two different flows. The first one was comparable to a hyperconcentrated flow and was immediately followed by a flow with a much lower concentration of water involving massive volumes of ice. The high mobility of the avalanche is likely related to fluidization effects at the base of the moving ice/debris mass with high pore pressures and a continuous supply of water due to frictional melting of ice. The paper

  6. Simulation of a Casimir-like effect in a granular pile with avalanches

    NARCIS (Netherlands)

    Denisov, D.V.; Villanueva, Y. Y.; Wijngaarden, R.J.


    Using a modified Bak-Tang-Wiesenfeld model for sand piles, we simulate a Casimir-like effect in a granular pile with avalanches. Results obtained in the simulation are in good agreement with results previously acquired experimentally: two parallel walls are attracted to each other at small

  7. Increased danger of landslide / avalanche can be avoided; Oekt skredfare kan avverges

    Energy Technology Data Exchange (ETDEWEB)

    Jaedicke, Christian


    Climatic changes includes wilder weather, more precipitation and more occurrences of landslide / avalanche in parts of Norway. But this does not necessary means more deaths and increased material damages, if we use common sense and obey the building/construction act. (AG)

  8. Plant succession on the Mount St. Helens debris-avalanche deposit. (United States)

    Virginia H. Dale; Daniel R. Campbell; Wendy M. Adams; Charles M. Crisafulli; Virginia I. Dains; Peter M. Frenzen; Robert F. Holland


    Debris avalanches occasionally occur with the partial collapse of a volcano, and their ecological impacts have been studied worldwide. Examples include Mt. Taranaki in New Zealand (Clarkson 1990), Ksudach in Russia (Grishin et al. 19961, the Ontake volcano in Japan (Nakashizuka et al. 1993), and Mount Katmai in the state of Alaska in the United States (Griggs 1918a,b,...

  9. The role of tectonic deformation on rock avalanche occurrence in the Pampeanas Ranges, Argentina (United States)

    Penna, Ivanna M.; Abellán, Antonio; Humair, Florian; Jaboyedoff, Michel; Daicz, Sergio; Fauqué, Luis


    Both tectonic and long-term gravitational slope deformation in several mountain settings have been shown to be key drivers of large-scale slope instability. The roles of both mechanisms are investigated in this study of the Potrero de Leyes rock avalanche, one of the largest and better preserved slope failures in the Pampeanas ranges in Argentina. This rock avalanche involved 0.25 km3 of highly fractured granitic rocks cropping out on an uplifted planation surface. The rock avalanche left a lobate deposit up to 4 km run out into the piedmont. A field survey, 3D terrestrial LIDAR, photogrammetry, and gigapixel panoramic photos allowed us to map the structures on the headscarp and on the planation surface. We observed a dense network of fractures with joints sets striking NNE-SSW, ENE-WSW, and NW-SE, respectively representing foliation, Riedel, and anti-Riedel structures that developed during the Paleozoic, as suggested by previous studies. The decrease of rock mass strength caused by tectonic fracturing, the exposure of those highly fractured rocks along a tectonically active mountain front, and potential deep-seated gravitational deformation occurring along NNE-SSW foliation planes along the mountain front suggest that tectonic and gravitational processes were key causal factors leading to the occurrence of the Potrero de Leyes rock avalanche.

  10. Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA (United States)

    Ui, T.; Glicken, H.


    Various parameters of the internal structure of a debris-avalanche deposit from ancestral Mount Shasta (size and percentage of block facies in each exposure, number and width of jigsaw cracks, and number of rounded clasts in matrix facies) were measured in order to study flow and emplacement mechanisms. Three types of coherent blocks were identified: blocks of massive or brecciated lava flows or domes, blocks of layered volcaniclastic deposits, and blocks of accidental material, typically from sedimentary units underlying Shasta Valley. The mean maximum dimension of the three largest blocks of layered volcaniclastic material is 220 m, and that of the lava blocks, 110 m. This difference may reflect plastic deformation of blocks of layered volcaniclastic material; blocks of massive or brecciated volcanic rock deformated brittly and may have split into several smaller blocks. The blocks in the deposit are one order of magnitude larger, and the height of collapse 1100 m higher, than the Pungarehu debris-avalanche deposit at Mount Egmont, New Zealand, although the degree of fracturing is about the same.This suggests either that the Shasta source material was less broken, or that the intensity of any accompanying explosion was smaller at ancestral Mount Shasta. The Shasta debris-avalanche deposit covered the floor of a closed basin; the flanks of the basin may have retarded the opening of jigsaw cracks and the formation of stretched and deformed blocks such as those of the Pungarehu debris-avalanche deposit. ?? 1986 Springer-Verlag.

  11. Correlation Immunity, Avalanche Features, and Other Cryptographic Properties of Generalized Boolean Functions (United States)


    Communication theory of secrecy systems,” Bell Systems Technical Journal, vol. 28, pp. 656–715, 1949. [40] T. Siegenthaler, “Correlation immunity of nonlinear...Cryptography, coding theory , Boolean functions, generalized Boolean functions, correlation immunity, strict avalanche criterion, bent functions, cyber...information warfare, information security, communications security. 15. NUMBER OF PAGES 161 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  12. Avalanche prevention release system GAZEX as a tool to control of snow discharge in small portions

    Directory of Open Access Journals (Sweden)

    D. V. Tetekin


    Full Text Available GAZEX system is used in Russia from 2002 to release artificial avalanches. The experience of realization of this system in the Krasnaya Polyana region (the place of Olympic Winter Games of 2014 is described in the article in comparison with application of nowadays and earlier systems.

  13. Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations (United States)

    Zhang, Dansong; Dahmen, Karin A.; Ostoja-Starzewski, Martin


    Atomistic simulations of binary amorphous systems with over 4 million atoms are performed. Systems of two interatomic potentials of the Lennard-Jones type, LJ12-6 and LJ9-6, are simulated. The athermal quasistatic shearing protocol is adopted, where the shear strain is applied in a stepwise fashion with each step followed by energy minimization. For each avalanche event, the shear stress drop (Δ σ ), the hydrostatic pressure drop (Δ σh ), and the potential energy drop (Δ E ) are computed. It is found that, with the avalanche size increasing, the three become proportional to each other asymptotically. The probability distributions of avalanche sizes are obtained and values of scaling exponents fitted. In particular, the distributions follow a power law, P (Δ U )˜Δ U-τ , where Δ U is a measure of avalanche sizes defined based on shear stress drops. The exponent τ is 1.25 ±0.1 for the LJ12-6 systems, and 1.15 ±0.1 for the LJ9-6 systems. The value of τ for the LJ12-6 systems is consistent with that from an earlier atomistic simulation study by Robbins et al. [Phys. Rev. Lett. 109, 105703 (2012)], 10.1103/PhysRevLett.109.105703, but the fitted values of other scaling exponents differ, which may be because the shearing protocol used here differs from that in their study.

  14. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.


    The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)

  15. Impulse waves generated by snow avalanches: Momentum and energy transfer to a water body (United States)

    Zitti, Gianluca; Ancey, Christophe; Postacchini, Matteo; Brocchini, Maurizio


    When a snow avalanche enters a body of water, it creates an impulse wave whose effects may be catastrophic. Assessing the risk posed by such events requires estimates of the wave's features. Empirical equations have been developed for this purpose in the context of landslides and rock avalanches. Despite the density difference between snow and rock, these equations are also used in avalanche protection engineering. We developed a theoretical model which describes the momentum transfers between the particle and water phases of such events. Scaling analysis showed that these momentum transfers were controlled by a number of dimensionless parameters. Approximate solutions could be worked out by aggregating the dimensionless numbers into a single dimensionless group, which then made it possible to reduce the system's degree of freedom. We carried out experiments that mimicked a snow avalanche striking a reservoir. A lightweight granular material was used as a substitute for snow. The setup was devised so as to satisfy the Froude similarity criterion between the real-world and laboratory scenarios. Our experiments in a water channel showed that the numerical solutions underestimated wave amplitude by a factor of 2 on average. We also compared our experimental data with those obtained by Heller and Hager (2010), who used the same relative particle density as in our runs, but at higher slide Froude numbers.

  16. A new single-photon avalanche diode in 90nm standard CMOS technology

    NARCIS (Netherlands)

    Karami, M.A.; Gersbach, M.; Yoon, H.J.; Charbon, E.


    We report on the first implementation of a single-photon avalanche diode (SPAD) in 90nm complementary metal oxide semiconductor (CMOS) technology. The detector features an octagonal multiplication region and a guard ring to prevent premature edge breakdown using a standard mask set exclusively. The

  17. Analysis and simulatin of rock avalanche sequence in the Cerro Caquilluco landslide (Tacna, Peru) (United States)

    Crosta, Giovanni B.; Frattini, Paolo; Valbuzzi, Elena; Hermanns, Reginald L.


    The Cerro Caquilluco (Tacna, Peru) rock avalanche complex has a total volume of about 15 km3 and a length of 43 km, extending from 3900 m a.s.l to 530 m a.s.l.. Based on geomorphological interpretation and lithological evidences, we reconstructed a possible rock-avalanches sequence consisting of at least nine major events. For each event, we calculated the mobilized volumes through the comparison of pre- and post-failure morphology. We argue that the first rock avalanche event corresponds to the Cerrillos Negros rock avalanche, characterized by a distal tongue shaped lobe, 11 km long, 3 km wide and 25 to 60 m thick (rough volume estimate 1.15 km3), deposited along the piedmont surface (average slope: 2° ). The reconstruction of pristine pre-failure morphology was accomplished by mimicking the preserved morphology close to the source area, and by removing the deposited volumes from the rock avalanche path. For this, we made the hypothesis that the old paleosurface was already eroded by valleys progressively moving upstream during a wetter climate, as suggested by Hoke et al (2007) for similar conditions in northern Chile. The reconstruction of the pre-event morphology required several attempts to fit the eroded and the deposited volumes. Finally, a total mobilized volume of about 10.2 km2 was obtained for this event. For the successive scenarios of slide retrogression, we used the morphologies obtained by previous scenarios as pre-failure morphologies, and we calculated, by difference with current topography, the lobe volumes. The volumes of single rock avalanche episodes decrease from the first to the last event, roughly following a power-law decay. This behavior is comparable to that described by Utili and Crosta (2011) for retrogressive instabilities in rocky cliffs. The rock-avalanche events have been simulated, to verify the different scenarios in terms of spreading area and maximum runout, by using SPH (Smooth Particle Hydrodynamics) and Finite Element codes

  18. From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland) (United States)

    Pedrazzini, Andrea; Jaboyedoff, Michel; Loye, Alexandre; Derron, Marc-Henry


    Sackung is a widespread post-glacial morphological feature affecting Alpine mountains and creating characteristic geomorphological expression that can be detected from topography. Over long time evolution, internal deformation can lead to the formation of rapidly moving phenomena such as a rock-slide or rock avalanche. In this study, a detailed description of the Sierre rock-avalanche (SW Switzerland) is presented. This convex-shaped postglacial instability is one of the larger rock-avalanche in the Alps, involving more than 1.5 billion m3 with a run-out distance of about 14 km and extremely low Fahrböschung angle. This study presents comprehensive analyses of the structural and geological characteristics leading to the development of the Sierre rock-avalanche. In particular, by combining field observations, digital elevation model analyses and numerical modelling, the strong influence of both ductile and brittle tectonic structures on the failure mechanism and on the failure surface geometry is highlighted. The detection of pre-failure deformation indicates that the development of the rock avalanche corresponds to the last evolutionary stage of a pre-existing deep seated gravitational slope instability. These analyses accompanied by the dating and the characterization of rock avalanche deposits, allow the proposal of a destabilization model that clarifies the different phases leading to the development of the Sierre rock avalanche.

  19. Post-glacial rock avalanche causing epigenetic gorge incision (Strassberg gorge, Eastern Alps). (United States)

    Sanders, Diethard


    In the western part of the Eastern Alps, the Strassberg gorge 1.5 km in length and down to 100 m in depth shows a marked asymmetry in height of its right/left brinklines. The gorge is incised into Upper Triassic dolostones, and parallels an older valley filled with Quaternary deposits. Upstream, the valley-fill consists of (a) glacial till (Last Glacial Maximum, LGM), overlain by (b) a rock avalanche deposit (RAD) at least a few tens of meters thick, and (c) alluvial deposits shed over the RAD (except for projecting boulders); the RAD is locally also downlapped by scree slopes. Downstream, the valley-fill consists of glacio-fluvial deposits overlain by LGM till and, on top, the RAD. The rock avalanche defaced from the west slope of mount Hohe Munde (2662 m asl), and consists exclusively of clasts of Wetterstein Limestone (Triassic p. p.). Rock avalanche defacement was tied to a system of NW-SE trending strike-slip faults (Telfs fault zone). The rock avalanche descended before the old valley was significantly cleared of glaciofluvial/glacial deposits of the LGM. On a plateau west of the present bedrock gorge, LGM till is veneered over a large area by RAD; the till and the RAD both were later involved in slumping. The RAD covers a total planview area of ~3.7 square kilometers. The fahrböschung of the rock avalanche is reconstructed between 16°-14.5°. In its proximal part, the rock avalanche propagated by dynamic fragmentation; in the distal part, propagation was by sheet-like 'plug flow', perhaps in part over a snow cover. The filling of the old valley by the RAD led to: (a) formation and filling of a small intramontane basin directly upstream, and (b) incision of the present Strassberg gorge along a course westward-parallel to the old valley. Mean rates of bedrock incision required to form the deepest reach of the present canyon range from 1 cm/a (since 10 ka) to 0.7 cm/a (since 15 ka). In the considered area, talus breccias of pre-LGM age locally show zones of

  20. Greek Teachers Programme 2015

    CERN Multimedia

    Hoch, Michael


    The 3rd edition of this year's Greek Teachers Programme was co-organized by CERN Education Group and the Hellenic Physical Society and took place from 8 to 12 November 2015. The programme targets physics high-school teachers from all over Greece. It aims to help teachers inspire the next generation of scientists and engineers by motivating their students to understand and appreciate how science works at the world's largest physics laboratory, whereby increasing their interest in pursuing studies in STEM fields in secondary and post-secondary education. 33 teachers took part in this programme which comprised lectures by Greek members of the CERN scientific community, with visits to experimental facilities, hands-on activities and dedicated sessions on effective and creative ways through which participants may bring physics, particle physics and CERN closer to their school classroom. In 2015, more than 100 teachers took part in the three editions of the Greek Teachers Programme.

  1. The VIDA programme

    DEFF Research Database (Denmark)

    Jensen, Bente; Iannone, Rosa Lisa

    This case study describes the VIDA programme (knowledge-based efforts for socially disadvantaged children in daycare), an innovative professional development programme for those working with 3-6-year-old children in Denmark. The case study is part of WP3’s work on ‘Professional Development: Impact...... and Innovation’ within the project ‘Curriculum Quality Analysis and Impact Review of European Education and Care’ (CARE). The programme at the centre of this case builds on theory drawn from research on child development, social disadvantage related to issues of social inequality, and research on organisational...... programme period (2010-2013) and beyond?; 2) What is the impact of the VIDA approach to professional development on i) educators’ practices regarding high quality ECEC (output), ii) child outcomes (outcome), and iii) improved practice at the municipal level (impact in a broader sense)?; and 3) Which factors...

  2. Elukestva õppe programm : Erasmus+

    Index Scriptorium Estoniae


    Erasmus+ programm liidab senised koostööprogrammid „Euroopa elukestva õppe programm“, „Euroopa Noored“ ning Euroopa komisjoni rahvusvahelised kõrgharidusprogrammid. Elukestva õppe programmi 2013 kokkuvõte

  3. SPIC Undergraduate Programme

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. SPIC Undergraduate Programme. P K Subrahmanyam. Information and Announcements Volume 3 Issue 12 December 1998 pp 108-110. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Motivation programmes of organizations


    Pízová, Tereza


    The Bachelor Thesis "'Motivation Programmes of Organizations" focuses on an extremely important area within personnel management. Employee motivation is crucial to the effective operation of businesses. Motivation programmes assist in increasing and maintaining employee motivation and demonstrate an organization's interest in its employees. This piece is on one hand concerned with theoretical foundations of motivation, describing theories and concepts important to the area of human behaviour ...

  5. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin


    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  6. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan (United States)

    Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.


    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  7. Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China (United States)

    Qi, Shengwen; Xu, Qiang; Zhang, Bing; Zhou, Yuande; Lan, Hengxing; Li, Lihui


    The May 12, 2008 Wenchuan, China Earthquake which measured M w = 8.3 according to Chinese Earthquake Administration - CEA ( M w = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes. Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces. Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented.

  8. Addressing frequency and magnitude of recent snow avalanches in Northern Iceland and Western Norway by using dendrogeomorphology (United States)

    Decaulne, Armelle; Eggertsson, Ólafur; Laute, Katja; Sæmundsson, Şorsteinn; Beylich, Achim A.; Páll Jónsson, Helgi


    Snow avalanches are common in mountain areas of various kinds of cold environments. The more or less severity of wintry conditions determines the thickness, durability and stability of snow cover during the cold season. Winter conditions therefore influence the frequency and magnitude of snow avalanches. The aim of this research is (i) to use dendrogeomorphology as a proxy to extract the chronology of snow avalanches on colluvial surfaces (talus and cones) by analysing the tree-ring growth, and (ii) to study the various impacts snow avalanches on trees, i.e. the formation and dating of reaction wood. The study sites are located in Northern Iceland (Dalsmynni, Ljósavatnskarð and Fnjóskadalur valleys), and in Western Norway (Erdalen and Bødalen valleys). All sites are typical U-shaped valleys with important bedrock valley walls that develop downslope in slope accumulations, swept by numerous snow avalanches leaving geomorphological evidence of a significant activity. The currently investigated tree specie is Betula sp., birches being common in both areas. The results provide a temporal catalogue of snow-avalanche events during the last ± 100 years in areas with shortest historical records, and determine the changes in snow-avalanches regime during the same period. This can be correlated with snow-cover changes in the upper catchment areas. Such results are of interest for (i) the understanding of global changes on snow-avalanche activity in cold mountain areas, and (ii) getting a better knowledge of past frequency and magnitude of snow avalanches in areas of poor historical records, in relation with natural hazards.

  9. PACEM: a new concept for high avalanche-ion blocking (United States)

    Veloso, J. F. C. A.; Amaro, F. D.; Azevedo, C. D. R.; dos Santos, J. M. F.; Breskin, A.; Lyashenko, A.; Chechik, R.


    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10 -4 and 10 -5 at typical operation conditions of TPCs and GPMs, respectively.

  10. PACEM: a new concept for high avalanche-ion blocking

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, J.F.C.A. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal)], E-mail:; Amaro, F.D. [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Azevedo, C.D.R. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal); Santos, J.M.F. dos [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Breskin, A.; Lyashenko, A.; Chechik, R. [Department of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot (Israel)


    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10{sup -4} and 10{sup -5} at typical operation conditions of TPCs and GPMs, respectively.

  11. Calm child programme. (United States)

    Gobrial, Ereny; Raghavan, Raghu


    Children with autism spectrum disorder (ASD) and intellectual disabilities (IDs) are more vulnerable to experiencing anxiety disorders. Parental involvement in intervention is crucial for successful management of the interventions in the population of people with ASDs. This article describes the design and evaluation of parenting programme for anxiety disorders in children and young people with ASD and ID. In phase 1 semi-structured interviews were conducted to explore management strategies for anxiety at home and in school settings. A total of 34 participants (14 parents, 20 teachers) participated in the interviews. A Delphi process was conducted with health professionals to develop consensus on appropriate anxiety interventions. In phase 2 the intervention programme was implemented by seven parents who also participated in focus group to evaluate the developed programme. A parental programme, calm child programme (CCP), was developed, implemented and evaluated. The evaluations show significant decrease in children's anxiety as a result of implementing the programme. This study contributes further evidence to parental involvement in interventions for children and young people with ASD and IDs. The CCP is a useful and cost-effective approach in enabling parents to provide anxiety interventions in a home setting.

  12. NHS Lanarkshire's leadership development programme's impact on clinical practice. (United States)

    Sutherland, Angela M; Dodd, Frances


    The purpose of this paper is to explore the effect of a clinical leadership programme on senior clinicians within National Health Service Lanarkshire, in terms of key constituents for fostering leadership development, specific skills developed and impact this has had on clinical practice. A qualitative research design was employed over several stages, involving 44 senior clinical managers, with member validation substantiating findings and thematic analysis used to analyse data collected. The programme's impact was evident in acknowledged change to participants' attitude, behaviour and performance with examples conveyed to demonstrate both the effect on clinical practice and perceived organisational benefits gained. The use of role play, scenario planning and enquiry-based learning approaches were deemed critical in achieving such change. Time constraints merited two different cohorts being examined simultaneously during the various stages of the programme. A longitudinal study is underway encompassing the evaluations of several cohorts through various stages of the programme to enable time-based comparisons to be made and enhance the rigour and scrutiny of the programme's impact on clinical practice. The paper is foremost in determining structure and processes employed on the programme, specific leadership skills developed, subsequent effect on clinical practice and perceived organisational benefits gained but not necessarily contemplated by staff prior to embarking on the programme, such as the emergence of communities of practice.

  13. Wet and full-depth glide snow avalanche onset monitoring and detection with ground based Ku-band radar (United States)

    Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena


    Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones

  14. The INTEGRAL Core Observing Programme

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Lund, Niels


    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements...... of the observing programme....

  15. Perceptions of Science Graduating Students on their Learning Gains (United States)

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne


    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate science students about to graduate from two Australian research-intensive institutions. For each skill, students rated on a four-point Likert scale their perception of the importance of developing the skill within the programme, how much they improved it throughout their undergraduate science programme, how much they saw the skill included in the programme, how confident they were about the skill, and how much they will use the skill in the future. Descriptive statistics indicate that overall, student perception of importance of these skills was greater than perceptions of improvement, inclusion in the programme, confidence, and future use. Quantitative skills and ethical thinking were perceived by more students to be less important. t-Test analyses revealed some differences in perception across different demographic groups (gender, age, graduate plans, and research experience). Most notably, gender showed significant differences across most skills. Implications for curriculum development are discussed, and lines for further research are given.

  16. First characterisation of the "Rumi-Pana" rock avalanche deposits (Famatina Range, La Rioja, Argentina) (United States)

    Santiago Pullarello, José; Derron, Marc-Henri; Penna, Ivanna; Leiva, Alicia; Jaboyadoff, Michel


    Active mountain fronts are subject to large scale slope collapses which have the capacity to run long distances on piedmont areas. Along time, fluvial activity and other gravitatory processes can intensively erode and mask primary features related to the collapses. Therefore, to reconstruct the history of their occurrence, further analyses are needed, e.g. sedimentologic analyses. This work focuses on the occurrence of large rock avalanches in the Vinchina region, La Rioja (28°43'27.81'' S / 68°00'25.42'' W) on the western side of the Famatina range(Argentina). Here, photointerpretation of high resolution satellite images (Google Earth) allowed us to identify two rock avalanches, main scarps developed at 2575 and 2750 m a.s.l. . There are no absolute ages for these deposits, however, comparing their preservation degree with those dated further north (in similar climatic and landscape dynamics contexts [i]), we can suggest these rock avalanches took place during the Pleistocene. We carried out a fieldwork survey in this remote area, including classical landslide mapping, structural analysis, deposits characterization and sampling. The deposits reach the valley bottom (at around 1700 m a.s.l.) with runouts about 5 and 5.3 km long. In one of the cases, the morphology of the deposit is well preserved, allowing to reconstruct accurately its extension. However, in the second case, the deposits are strongly eroded by courses draining the mountain front, therefore further analyses should be done to reconstruct its extension. In addition to morphologic interpretations, a multiscale grain-size analysis was done to differentiate rock avalanches from other hillslope deposits: (1) 3D surface models of surface plots (5x5m) have been built by SfM photogrammetry; 2) classical sieving and 3) laser grain-size analysis of deposits. Samples were collected on different parts of the slope, but also along cross sections through the avalanche deposit. This deposits characterization will

  17. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs. (United States)

    Diverio, Silvana; Barbato, Olimpia; Cavallina, Roberta; Guelfi, Gabriella; Iaboni, Martina; Zasso, Renato; Di Mari, Walter; Santoro, Michele Matteo; Knowles, Toby G


    Saving human lives is of paramount importance in avalanche rescue missions. Avalanche military dogs represent an invaluable resource in these operations. However, their performance can be influenced by several environmental, social and transport challenges. If too severe, these are likely to activate a range of responses to stress, which might put at risk the dogs' welfare. The aim of this study was to assess the physiological and behavioural responses of a group of military dogs to a Simulated Avalanche Search and Rescue mission (SASR). Seventeen avalanche dogs from the Italian Military Force Guardia di Finanza (SAGF dogs) were monitored during a simulated search for a buried operator in an artificial avalanche area (SASR). Heart rate (HR), body temperature (RBT) and blood samples were collected at rest the day before the trial (T0), immediately after helicopter transport at the onset of the SASR (T1), after the discovery of the buried operator (T2) and 2h later (T3). Heart rate (HR), rectal body temperature (RBT), cortisol, aspartate aminotransferase (AST), creatine kinase (CK), non-esterified fatty acids (NEFA) and lactate dehydrogenase (LDH) were measured. During the search mission the behaviour of each SAGF dog was measured by focal animal sampling and qualitatively assessed by its handler and two observers. Inter-rater agreement was evaluated. Snow and environmental variables were also measured. All dogs successfully completed their search for the buried, simulated victim within 10min. The SASR was shown to exert significant increases on RBT, NEFA and cortisol (Pdog's search mission ability was found only for motivation, signalling behaviour, signs of stress and possessive reward playing. More time signalling was related to shorter search time. In conclusion, despite extreme environmental and training conditions only temporary physiological and behavioural changes were recorded in the avalanche dogs. Their excellent performance in successful simulated SASR

  18. Modelling rock-avalanche induced impact waves: Sensitivity of the model chains to model parameters (United States)

    Schaub, Yvonne; Huggel, Christian


    New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. Usually natural hazards are assessed as single hazardous processes, for the above mentioned reasons, however, development of assessment and reproduction methods of the hazardous process chain for the purpose of hazard map generation have to be brought forward. A combination of physical process models have already been suggested and illustrated by means of lake outburst in the Cordillera Blanca, Peru, where on April 11th 2010 an ice-avalanche of approx. 300'000m3 triggered an impact wave, which overtopped the 22m freeboard of the rock-dam for 5 meters and caused and outburst flood which travelled 23 km to the city of Carhuaz. We here present a study, where we assessed the sensitivity of the model chain from ice-avalanche and impact wave to single parameters considering rock-/ice-avalanche modeling by RAMMS and impact wave modeling by IBER. Assumptions on the initial rock-/ice-avalanche volume, calibration of the friction parameters in RAMMS and assumptions on erosion considered in RAMMS were parameters tested regarding their influence on overtopping parameters that are crucial for outburst flood modeling. Further the transformation of the RAMMS-output (flow height and flow velocities on the shoreline of the lake) into an inflow-hydrograph for IBER was also considered a possible source of uncertainties. Overtopping time, volume, and wave height as much as mean and maximum discharge were considered decisive parameters for the outburst flood modeling and were therewith

  19. Ultraviolet AlGaN-based Avalanche Photo Diode Grown over Single Crystal Bulk AlN Substrates Project (United States)

    National Aeronautics and Space Administration — Premature breakdown is a key obstacle in developing AlGaN-based avalanche photo diodes (APD) for ultraviolet (UV) light detection. Novel materials growth techniques,...

  20. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Directory of Open Access Journals (Sweden)

    R. Sailer


    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  1. High-Speed Radiation Tolerant Avalanche Photodiodes Based on InGaN for Space Altimeter Systems Project (United States)

    National Aeronautics and Space Administration — High-performance, radiation-tolerant detectors are required for the time-of-flight laser based rangefinders. Avalanche photodiodes (APDs) are conventionally chosen...

  2. HgCdTe Infrared Avalanche Photodiode Single Photon Detector Arrays for the LIST and Other Decadal Missions Project (United States)

    National Aeronautics and Space Administration — Develop a HgCdTe avalanche photodiode (APD)  SWIR/IR linear mode photon counting (LMPC) array detector system in support of the LIST lidar. Provide a new type...

  3. Snow-avalanche modeling and hazard level assessment using statistical and physical modeling, DSS and WebGIS: case study from Czechia (United States)

    Blahut, J.; Balek, J.; Juras, R.; Klimes, J.; Klose, Z.; Roubinek, J.; Pavlasek, J.


    Snow-avalanche modeling and hazard level assessment are important issues to be solved within mountain regions worldwide. In Czechia, there are two mountain ranges (Krkonoše and Jeseníky Mountains), which suffer from regular avalanche activity every year. Mountain Rescue Service is responsible for issuing avalanche bulletins. However, its approaches are still lacking objective assessments and procedures for hazard level estimations. This lack is mainly caused by missing expert avalanche information system. This paper presents preliminary results from a project funded by the Ministry of Interior of the Czech Republic. This project is focused on development of an information system for snow-avalanche hazard level forecasting. It is composed of three main modules, which should act as a Decision Support System (DSS) for the Mountain Rescue Service. Firstly, snow-avalanche susceptibility model is used for delimiting areas where avalanches can occur based on accurate statistical analyses. For that purpose a waste database is used, containing more than 1100 avalanche events from 1961/62 till present. Secondly, a physical modeling of the avalanches is being performed on avalanche paths using RAMMS modeling code. Regular paths, where avalanches occur every year, and irregular paths are being assessed. Their footprint is being updated using return period information for each path. Thirdly, snow distribution and stability models (distributed HBV-ETH, Snowtran 3D, Snowpack and Alpine 3D) are used to assess the critical conditions for avalanche release. For calibration of the models data about meteo/snow cover data and snowpits is used. Those three parts are being coupled in a WebGIS platform used as the principal component of the DSS in snow-avalanche hazard level assessment.

  4. External Mobility Programme

    CERN Multimedia

    HR Department


    Every year, a significant number of highly-skilled staff members leave the Organization and offer their talents on the European job market. CERN is launching a programme aiming to help staff members to whom the Organization cannot offer an indefinite contract in the transition towards their next employment. The programme, which is based on the establishment of a number of partnerships with potential employers in the private sector, will run on a voluntary basis. Staff members who have received confirmation that they will not be offered an indefinite contract and who are interested in availing themselves of the opportunities offered by the programme, are invited to enrol by following the procedure described at: Applications will be processed in the strictest confidence by the Human Resources Department and eligible profiles will then be made available to partner companies for recruitment purposes. Any subsequent ...

  5. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)


    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  6. Centerline Depletion in Direct-Chill Cast Aluminum Alloys: The Avalanche Effect and Its Consequence for Turbulent Jet Casting (United States)

    Wagstaff, Samuel R.; Allanore, Antoine


    Avalanche dynamics of sedimenting grains in direct-chill casting of aluminum ingots is investigated as a primary driving force for centerline segregation. An analytical model predicting the importance of avalanche events as a function of casting parameters is proposed and validated with prior art results. New experimental results investigating the transient and steady-state centerline segregation of DC casting with a turbulent jet are reported.

  7. Computer mathematics for programmers

    CERN Document Server

    Abney, Darrell H; Sibrel, Donald W


    Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p

  8. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002....... The PM10 results from 2000 are spares, only TSP are thus included in this report. The data sets for year 2000 is complete for many stations. The monitoring programme consists of 10 stations plus 2 extra stations under the Municipality of Copenhagen. The SO2 and lead levels are still decreasing and far...

  9. Change in snow avalanche and debris flow hazards in the region of Krasnaya Polyana as the result of anthropogenic activity (United States)

    Shnyparkov, A. L.; Seliverstov, Y. G.; Sokratov, S. A.; Koltermann, K. P.


    The first evaluations of the snow avalanches and debris flow danger in the region of Krasnaya Polyana (Winter Olympic Games 2014 site) were made by the staff of LSADF in 1960s. In those times the danger was estimated as medium and low. Active development of the region started in 2000, when the ski (mountain climatic health) resort Alpika Service was constructed at the north slope of Aibga mountain range. Then the Alpine resorts Rosa Khutor and Gornaya Karusel [Mountain Carousel] were put into operation on the same slope. OAO Gazprom was also developing its own ski resort at the neighbouring Psekhako ridge. As the result of deforestation the quantity of small snow avalanches increased on the Aibga slopes. Skiers were caught several times by avalanches initiated by them in the reported avalanche events. The construction of ski runs, motorways, roads, as well as building of other related infrastructure has resulted in considerable change in relief. The sediment capping was dumped into stream canals, which resulted in the formation of debris flows, threatening the infrastructure of the ski resorts. The relief change related to the on going Olympic constructions is especially pronounced, when newly formed landfilling on some slopes becomes the material for landslides and debris flows and beds for avalanches. Thus, the degree of snow avalanche and debris flows danger increased considerably in the recent years, requiring originally unplanned mitigation measures.

  10. Short-term spatial and temporal forecast of dry snow avalanches of sublimation recrystallization and mixed origin

    Directory of Open Access Journals (Sweden)

    Yu. B. Andreev


    Full Text Available A possibility of space-temporary short-term forecast-diagnosis of dry sublimative recrystallization and mixed (recrystallization plus fresh snow avalanches is under consideration. The special discriminate analog–macrophysical models of the short-term background forecast is verified on correlation degree with probabilistic zoning of avalanche site № 22 in Khibiny. Аs a result we have correlation coefficients of order –(0.6÷0.7. The statistical significance of correlation coefficients (an order of 0.02–0.07 are checked and a conclusion on likelihood of assumed hypothesis is made. So by the current and predicted meteorological data such kind of forecast for such genetic avalanche types release in concrete sites becomes possible. The short-term forecast function transformation of the examined in the article avalanche types into long-term ones by averaging perennial realized forecast function values on slipping optimal 5-years intervals shows avalanche activity trend with probable 8–10 and 32-years harmonics during selected observation period. But in comparison with purely dry and wet fresh snow avalanches forecast analysed before the examined here above types are less precisely predicted. So it is needed an improvement of correspondent forecast functions on the base of theory contribution and future observations by increasing their series

  11. Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.


    On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation for this interpretive journal paper is: Coe, J.A., Baum, R.L., Allstadt, K.E., Kochevar, B.F., Schmitt, R.G., Morgan, M.L., White, J.L., Stratton, B.T., Hayashi, T.A., and Kean, J.W., 2016, Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek Valley, western Colorado: Geosphere, v. 12, no. 2, p. 607-631,  doi:10.1130/GES01265.1. 

  12. Assessing the value of real-time snow and avalanche information (United States)

    Zeidler, Antonia; Adams, Marc; Schuster, Martin; Berner, Martin; Nagy, Wilhelm


    This poster presentation shows first results from a pilot study on exploring the possibilities of using existing and new information and communication technologies (ICT) for snow and avalanche assessments. Today, ICT solutions allow the utilisation of information at a high spatiotemporal resolution, due to the widespread availability of internet access, high computing power and affordable mobile devices. Therefore, there is an increasing request for up to date information on snow and avalanche decision-making. However, there are challenges that need to be addressed from different view points. These include topics in the field of technological feasibility of providing a stable network, exchanging trustworthy information and motivation of experts to participate. This contribution discusses the lessons-learnt, from the establishment of a platform to the user-experience.

  13. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors. (United States)

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia


    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  14. Mapping snow avalanche risk using GIS technique and 3D modeling in Ceahlau Mountain (United States)

    Covasnianu, A.; Grigoras, I. R.; State, L. E.; Balin, D.; Hogas, S.; Balin, I.


    This study consisted in a precise mapping project (GPS field campaign and on-screen digitization of the topographic maps at 1:5.000 scale) of the Ceahlau mountain area in Romanian Carpathians in order to address the snow avalanche risk management, surveying and monitoring. Thus we considered the slope, aspect, altitude, landforms and roughness derived from a high resolute numerical terrain model (31 km2 at 1: 5.000 scale resulted in a spatial resolution of 3 m by the help of Topo to Raster tool). These parameters were classified according to a model applied into Tatra Mountains and used over Ceahlau Massive. The results were adapted and interpreted considering to the European Avalanche Hazard Scale. This work was made in the context of the elaboration of Risk Map and is directly concerning both the security of tourism activities but also the management of the Natural Park Ceahlau. The extension of this method to similar mountain areas is ongoing.

  15. Performance and simulation of a double-gap resistive plate chamber in the avalanche mode

    CERN Document Server

    Ahn Sung Hwan; Hong Byung Sik; Hong Seong Jong; Ito, M; Kang, T I; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee Hyup Woo; Lee, K B; Lee Kyong Sei; Lee Seok Jae; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee June Tak; Ryu, M S; Sim Kwang Souk


    We present a detailed analysis of the time and the charge signals of a prototype double-gap resistive plate chamber for the endcap region of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The chamber was built with relatively low-resistivity bakelite. The time and the charge results demonstrate that the high- voltage plateau, which satisfies various CMS requirements for the efficiency, the noise cluster rate, the fraction of the large signal, and the streamer probability, can be extended at least up to 400 V with the present design. In addition, a simple avalanche multiplication model is studied in detail. The model can reproduce the experimental charge spectra reasonably well. The charge information enables us to estimate the effective Townsend coefficient in avalanche-mode operation.

  16. Impulse waves due to avalanche impact into Kuehtai reservoir; Impulswellen infolge Lawineneinstoss in den Speicher Kuehtai

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Helge; Pfister, Michael; Boes, Robert [ETH Zuerich (CH). Versuchsanstalt fuer Wasserbau, Hydrologie und Glaziologie (VAW); Perzlmaier, Sebastian; Reindl, Robert [Tiroler Wasserkraft AG (TIWAG), Innsbruck (Austria). Bereich Engineering Services


    The Tyrolean Hydropower Company TIWAG-Tiroler Wasserkraft AG plans the Kuehtai reservoir as an addition to the existing pump-storage scheme Sellrain-Silz. Two relevant natural hazards potentially affecting the dam were identified: an avalanche near the dam axis and a rockslide further upstream, both possibly impinging the reservoir at full supply level and thereby generating impulse waves. A preliminary analysis based on literature led to the conclusion that dam overtopping cannot be excluded. The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zurich was therefore assigned to perform related hydraulic model tests. However, no overtopping occurred in these model tests, such that no measures as breakwater or increase of the freeboard were required. The article discusses the effect of avalanche generated impulse waves and compares an analytical estimation with results derived from the model tests. (orig.)

  17. Utilisation du foncier agricole à des fins de culture de Jatropha dans le Bassin arachidier sénégalais: une démarche controversée et des gains pas à la hauteur des attendus du programme

    Directory of Open Access Journals (Sweden)

    Aminata Ndour


    Full Text Available Durant les années 2000, le secteur énergétique mondial a connu un tourment décisif du fait de la diminution des réserves, de la demande importante et surtout de la fluctuation des prix du pétrole. Le Sénégal, pays dépendant encore des énergies fossiles, s’est engagé dans une politique de diversification énergétique. Par conséquent, un programme biocarburant est initié. Le Bassin Arachidier est un des espaces sollicités pour l’application des politiques de promotion des biocarburants. Une zone du production agricole a accueilli une innovation énergétique. Ce fait marquant a guidé nos interrogations sur les problèmes énergétiques qui ont incité la culture de Jatropha dans le Bassin Arachidier. De façon spécifique, notre analyse de la filière Jatropha précise les stratégies déployées. Il est questions dans ce cas d’étudier les effets de Jatropha sur l’espace de production et les conditions de vie des agriculteurs, des risques de réduction des superficies de cultures traditionnelles.

  18. 1000-V, 300-ps pulse-generation circuit using silicon avalanche devices (United States)

    Benzel, D. M.; Pocha, M. D.


    A Marx configured avalanche transistor string and a pulse rise-time peaking diode are used to generate pulses of >1000 V into a 50-Ω load with rise times of less than 300 ps. The trigger delay of this circuit is about 7-10 ns, with jitter <100 ps. This circuit has been used to generate pulses at a repetition rate up to 5 kHz.

  19. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José


    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  20. Non-avalanche-related snow immersion deaths: tree well and deep snow immersion asphyxiation. (United States)

    Van Tilburg, Christopher


    Non-avalanche-related snow immersion death (NARSID), or snow immersion asphyxiation, is a significant winter mountain hazard for skiers and snowboarders. This phenomenon occurs predominately in western North America, where large tree wells and deep snowpacks develop. Although statistics are difficult to procure, snow immersion asphyxiation has resulted in more than 70 documented deaths in the past 2 decades. The primary purpose of this review is to examine the existing literature on NARSID to help prevent such dangerous accidents through educating wilderness medicine professionals and fostering public awareness. The exact duration of burial to time of death and the cause of death are not precisely known but can be postulated from accident reports, experimental snow burial studies, and avalanche literature. In most cases, death probably occurs within 15 to 30 minutes from the time of burial. However, survival after prolonged burial in a tree well and deep snow is possible. The cause of death is asphyxiation, probably due to one of the mechanisms that produce asphyxia in avalanche burial victims: positional asphyxia, airway obstruction, or carbon dioxide displacement asphyxia. Prevention of snow immersion asphyxiation begins with skiers and snowboarders staying within the limits of their skills, using the proper tools for deep powder, staying in control at all times, and employing a buddy system. A skier or snowboarder who falls near or into a tree well should tuck, roll, and try to land upright, grab the tree trunk or a branch, and yell or blow a whistle to alert partners. If buried upside down, the person should stay calm and create an air pocket, which is probably of paramount importance. Skiers and snowboarders should use avalanche safety equipment to lessen the risk of snow submersion asphyxiation. Copyright 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  1. Runout of the Socompa volcanic debris avalanche, Chile : a mechanical explanation for low basal shear resistance


    Davies, T.; McSaveney, M.; Kelfoun, Karim


    We propose a mechanical explanation for the low basal shear resistance (about 50 kPa) previously used to simulate successfully the complex, well-documented deposit morphology and lithological distribution produced by emplacement of the 25 km(3) Socompa volcanic debris avalanche deposit, Chile. Stratigraphic evidence for intense basal comminution indicates the occurrence of dynamic rock fragmentation in the basal region of this large granular mass flow, and we show that such fragmentation gene...

  2. Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal


    K. Fujita; H. Inoue; T. Izumi; S. Yamaguchi; A. Sadakane; S. Sunako; K. Nishimura; W. W. Immerzeel; J. M. Shea; R. B. Kayastha; T. Sawagaki; D. F. Breashears; H. Yagi; A. Sakai


    Coseismic avalanches and rockfalls, as well as their simultaneous air blast and muddy flow, which were induced by the 2015 Gorkha earthquake in Nepal, destroyed the village of Langtang. In order to reveal volume and structure of the deposit covering the village, as well as sequence of the multiple events, we conducted an intensive in situ observation in October 2015. Multitemporal digital elevation models created from photographs taken by helicopter and unmanned aerial vehic...

  3. Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru) (United States)

    Valderrama, Patricio; Roche, Olivier; Samaniego, Pablo; van Wyk de Vries, Benjamin; Bernard, Karine; Mariño, Jersy


    Catastrophic volcanic landslides can involve different parts of a volcano that can be incorporated into any resulting debris avalanche. The different material properties may influence the mechanical behaviour and, hence, the emplacement mechanisms of the different avalanche units. We present data from a coupled hydrothermal- and magmatic-related volcanic landslide at Tutupaca volcano (Peru). Around ad 1802, the hydrothermal system under Tutupaca's growing dacite dome failed, creating a debris avalanche that triggered a large explosive eruption. A typical debris avalanche hummocky unit is found, formed out of rock from the dome foot and the underlying hydrothermally altered lavas. It is covered by a more widespread and remarkable deposit that contains remnants of the hot dome core and the inner hydrothermal material. This deposit has ridges 20-500-m long, 10-30-m wide and 1-5-m high, regularly spaced and that fan slightly outward. Cross sections exposed within the ridges reveal coarser cores and finer troughs, suggesting grain size segregation during emplacement. Ridge morphology and granulometry are consistent with fingering known to occur in granular flows. The ridges are also associated with large blocks that have evidence of differential movement compared with the rest of the flowing mass. The presence of both ridged and hummocky deposits in the same event shows that, as different lithologies combine and collapse sequentially, materials with different mechanical properties can coexist in one landslide, leading to contrasting emplacement dynamics. The different structures thus highlight the complexity of such hazardous volcanic events and show the difficulty we face with modelling them.

  4. Dynamics of Air Avalanches in the Access Pit of an Underground Quarry


    Perrier, F; Morat, P; Le Mouël, J.-L.


    International audience; Temperature measurements have been performed in the vertical access pit of an underground quarry. During autumn, air avalanches induce an initial thermal feedback and a stationary mixing state characterized by spatially coherent broad-band fluctuations with a standard deviation of about 0:2 C, linearly increasing with the inside-minus-outside temperature difference. Phase changes of water are shown to contribute to the onset condition, the feedback, and the stationary ...

  5. Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases


    Victor F. Tarasenko; ZHANG Cheng; Baksht, Evgenii Kh.; Burachenko, Alexander G.; Shao, Tao; Dmitry V. Beloplotov; Lomaev, Mikhail I.; Yan, Ping; Kozyrev, Andrey V.; Natalia S. Semeniuk


    Supershort avalanche electron beam (SAEB) plays an important role in nanosecond-pulse discharges. This paper aims at reviewing experiments results on characteritics of SAEB and its spectra in different gases in nanosecond-pulse discharges. All the joint experiments were carried in the Institute of High Current Electronics of the Russian Academy of Sciences and the Institute of Electrical Engineering of the Chinese Academy of Sciences. In these experiments, the generation of a SAEB in SF6 in a...

  6. Women's attitudes towards a pre-conception healthy lifestyle programme. (United States)

    Funk, K L; LeBlanc, E S; Vesco, K K; Stevens, V J


    Nearly half of US women begin pregnancy overweight or obese and more than half of overweight or obese pregnant women experience excessive gestational weight gain. Recent lifestyle intervention programmes have helped women avoid excessive weight gain during pregnancy, but helping women lose weight before pregnancy may be a more effective way to improve pregnancy outcomes. This study assessed women's attitudes towards pre-conception diet and weight management interventions. An anonymous survey was conducted in patients waiting in a health maintenance organization's obstetrics and primary care waiting rooms. It focused on attitudes towards participating in a pre-conception, lifestyle change programme. Eighty percent of the 126 women surveyed were pregnant or considering pregnancy within 5 years. Of the 126 respondents, 60 (48%) were overweight or obese. Of these, 96% rated healthy diet and healthy weight before pregnancy as very important or important and 77% favoured a healthy lifestyle programme (diet, weight management and physical activity) before becoming pregnant. Likewise, overweight or obese women reported being likely or highly likely to participate in specific intervention programme aspects such as keeping phone appointments (77%), using a programme website (70%) and keeping food and exercise records (63%). Survey results show that women in this population believe that adopting a healthy lifestyle and losing weight are important before pregnancy and that they are enthusiastic about programmes that will help them achieve those goals in preparation for pregnancy. © 2015 World Obesity.

  7. Diversity Gain through Antenna Blocking

    Directory of Open Access Journals (Sweden)

    V. Dehghanian


    Full Text Available As part of the typical usage mode, interaction between a handheld receiver antenna and the operator's RF absorbing body and nearby objects is known to generate variability in antenna radiation characteristics through blocking and pattern changes. It is counterintuitive that random variations in blocking can result in diversity gain of practical applicability. This diversity gain is quantified from a theoretical and experimental perspective. Measurements carried out at 1947.5 MHz verify the theoretical predictions, and a diversity gain of 3.1 dB was measured through antenna blocking and based on the utilized measurement setup. The diversity gain can be exploited to enhance signal detectability of handheld receivers based on a single antenna in indoor multipath environments.

  8. Heritability of gestational weight gain

    DEFF Research Database (Denmark)

    Andersson, Elina Scheers; Silventoinen, Karri; Tynelius, Per


    Gestational weight gain (GWG) is a complex trait involving intrauterine environmental, maternal environmental, and genetic factors. However, the extent to which these factors contribute to the total variation in GWG is unclear. We therefore examined the genetic and environmental influences...

  9. Computer Programmer/Analyst. (United States)

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This publication contains 25 subjects appropriate for use in a competency list for the occupation of computer programmer/analyst, 1 of 12 occupations within the business/computer technologies cluster. Each unit consists of a number of competencies; a list of competency builders is provided for each competency. Titles of the 25 units are as…

  10. En model for programmer

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    Dette undervisningsmateriale beskriver en model for, hvordan programmer er opbygget. Materialet er skrevet til brug i det gymnasiale forsøgsfag Informationsteknologi. Seneste version af dette undervisningsmateriale kan findes på http:// Tak til Elisabeth Husum for en kritisk...

  11. (ARV) treatment training programme

    African Journals Online (AJOL)


    successful ARV programme requires that all components of a functional management system be put in place for effective and efficient functioning.This would include logistics, human resources, financial planning, and monitoring and ..... which service recipients were surveyed on the quality of service delivery noted above.

  12. Progressive Retirement Programme

    CERN Multimedia

    HR Department


    Following discussion at the Standing Concertation Committee at its meeting on 30 January 2007, the Director-General has approved the extension of the Progressive Retirement Programme with effect from 1 April 2007 until 31 March 2008. Human Resources Department Tel. 74484/74128

  13. The European Programme Manager

    DEFF Research Database (Denmark)

    Larson, Anne; Bergman, E.; Ehlers, S.

    The publication is a result of a cooperation between organisations in six European countries with the aim to develop a common European education for programme managers. It contains of a description of the different elements of the education together with a number of case-studies from the counties...

  14. The ONTARGET trial programme

    DEFF Research Database (Denmark)

    Unger, Thomas; Kintscher, Ulrich; Kappert, Kai


    The ONTARGET trial programme tested the effects of the angiotensin AT1 receptor blocker (ARB), telmisartan, alone or in combination with the angiotensin converting enzyme (ACE) inhibitor, ramipril, in more than 25.000 patients at high cardiovascular risk including diabetes on a combined endpoint...

  15. The Productive Programmer

    CERN Document Server

    Ford, Neal


    Anyone who develops software for a living needs a proven way to produce it better, faster, and cheaper. The Productive Programmer offers critical timesaving and productivity tools that you can adopt right away, no matter what platform you use. Master developer Neal Ford details ten valuable practices that will help you elude common traps, improve your code, and become more valuable to your team.

  16. SET-Routes programme

    CERN Multimedia

    Marietta Schupp, EMBL Photolab


    Dr Sabine Hentze, specialist in human genetics, giving an Insight Lecture entitled "Human Genetics – Diagnostics, Indications and Ethical Issues" on 23 September 2008 at EMBL Heidelberg. Activities in a achool in Budapest during a visit of Angela Bekesi, Ambassadors for the SET-Routes programme.

  17. cardiovascular disease intervention programme

    African Journals Online (AJOL)

    Changes in smoking during a community-based cardiovascular disease intervention programme. The Coronary Risk Factor Study. H. J. STEENKAMP, P. L. JOOSTE, P. C. J. JORDAAN,. A. S. P. SWANEPOEL, J. E. ROSSOUW. Summary. A prospective anti-smoking clinical trial was conducted as part of a coronary risk factor ...

  18. Delivery of the Nutrition Supplementation Programme in the Cape ...

    African Journals Online (AJOL)

    The Nutrition Supplementation Programme. (NSP) aims to help underweight children gain weight and empower parents to tackle malnutrition. Objective. To study mothers' experience with the NSP, and assess this in relation to South Africa's emphasis on human rights. Subjects and methods. Seven focus group discussions ...

  19. Quality Assurance of Joint Programmes. ENQA Workshop Report 19 (United States)

    Frederiks, Mark; Grifoll, Josep; Hiltunen, Kirsi; Hopbach, Achim


    In view of the Bologna ministerial conference to be held in April 2012 in Bucharest, ENQA organised a seminar in September 2011 on Quality Assurance of Joint Programmes in collaboration with the Austrian Accreditation Council (OAR). The purpose of this seminar was twofold: first, to analyse the experience already gained in quality assurance of…

  20. Supporting Parent Engagement in Programme-Wide Behavioural Intervention Implementation (United States)

    Cummings, Katrina P.


    Positive behaviour intervention and support (PBIS) models are evolving as an effective means to promote social and emotional competence among young children and address challenging behaviours. This study was designed to gain insights into parental involvement in programme-wide implementation of the "Pyramid" model. Interviews were…

  1. Practical implications of having a dedicated heart failure programme

    NARCIS (Netherlands)

    Lucas, C.M.H.B.; Cleuren, G.V.J.; Jaarsma, Trijntje (Tiny); Van Rees, C.; Kirchhof, C.J.H.J.


    : Background: The prevalence of heart failure (HF) is gaining epidemic proportions. Recent data stress the importance of multidisciplinary strategies for the management of HF patients, but the practical consequences of such programmes remain unclear. Objective: To describe our experience with a

  2. Professor Glyn O. Phillip's legacy within the IAEA programme on radiation and tissue banking. (United States)

    Morales Pedraza, Jorge


    Professor Phillips began his involvement in the implementation of this important IAEA programme, insisting that there were advantages to be gained by using the ionizing radiation technique to sterilize human and animal tissues, based on the IAEA experience gained in the sterilization of medical products. The outcome of the implementation of the IAEA programme on radiation and tissue banking demonstrated that Professor Phillips was right in his opinion.

  3. Lee slope sediment processes leading to avalanche initiation on an aeolian dune (United States)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.


    In order to detail the governing conditions through which a slipface matures to the point of failure, dry sand avalanches were observed in the Dune Simulation Wind Tunnel on a 1:1 replica transverse dune with a crest height of approximately 1.2 m. Areal distributions of grainfall and reptation were measured using traps. Changes in the slipface elevation were observed using 3-D laser scanning with a vertical accuracy of 0.096 mm for approximately every 1 mm2 of surface area. Grainfall decayed exponentially from the brink with a constant rate across all wind velocities. Reptation removed sediment from areas close to the brink and deposited it downslope, creating low amplitude, cross-slope ripples on the slipface. A critical length scale separating grainscale and bulk sediment behavior is identified, and it defines the lower limit to the validity of angle of repose measurements. Avalanche initiation occurred in an area of steep surface slope below a sediment bulge, with distance from the brink independent of wind velocity. The time between avalanches was found to be constant for constant wind velocity.

  4. A Convolutional Neural Network Approach for Assisting Avalanche Search and Rescue Operations with UAV Imagery

    Directory of Open Access Journals (Sweden)

    Mesay Belete Bejiga


    Full Text Available Following an avalanche, one of the factors that affect victims’ chance of survival is the speed with which they are located and dug out. Rescue teams use techniques like trained rescue dogs and electronic transceivers to locate victims. However, the resources and time required to deploy rescue teams are major bottlenecks that decrease a victim’s chance of survival. Advances in the field of Unmanned Aerial Vehicles (UAVs have enabled the use of flying robots equipped with sensors like optical cameras to assess the damage caused by natural or manmade disasters and locate victims in the debris. In this paper, we propose assisting avalanche search and rescue (SAR operations with UAVs fitted with vision cameras. The sequence of images of the avalanche debris captured by the UAV is processed with a pre-trained Convolutional Neural Network (CNN to extract discriminative features. A trained linear Support Vector Machine (SVM is integrated at the top of the CNN to detect objects of interest. Moreover, we introduce a pre-processing method to increase the detection rate and a post-processing method based on a Hidden Markov Model to improve the prediction performance of the classifier. Experimental results conducted on two different datasets at different levels of resolution show that the detection performance increases with an increase in resolution, while the computation time increases. Additionally, they also suggest that a significant decrease in processing time can be achieved thanks to the pre-processing step.

  5. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    Full Text Available We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain. Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  6. Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington (United States)

    Beach, G. L.; Dzurisin, D.


    The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.

  7. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches (United States)

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.


    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  8. Implementation and Evaluation of a Formal Academic-Peer-Mentoring Programme in Higher Education (United States)

    Cornelius, Vanessa; Wood, Leigh; Lai, Jennifer


    Formal mentoring programmes continue to gain popularity in higher education, mirroring trends in industry. The study described in this article examines the design features of a formal mentoring programme for first year undergraduates and focused on three key aspects--the matching process, training and orientation, and interaction frequency. The…

  9. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Directory of Open Access Journals (Sweden)

    Yaoran Li

    Full Text Available Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4 were larger than gains in the capacity of the central executive (d = 1.6 that in turn were larger than gains in phonological memory span (d = 1.1. First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  10. Developmental gains in visuospatial memory predict gains in mathematics achievement. (United States)

    Li, Yaoran; Geary, David C


    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  11. Raspberry Pi cookbook for Python programmers

    CERN Document Server

    Cox, Tim


    ""Raspberry Pi Cookbook for Python Programmers"" is written in a Cookbook format, presenting examples in the style of recipes.This allows you to go directly to your topic of interest, or follow topics throughout a chapter to gain a thorough in-depth knowledge.The aim of this book is to bring you a broad range of Python 3 examples and practical ideas which you can develop to suit your own requirements. By modifying and combining the examples to create your own projects you learn far more effectively with a much greater understanding. Each chapter is designed to become a foundation for further e

  12. Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, U.S.A. (United States)

    Reardon, B.A.; Pederson, G.T.; Caruso, C.J.; Fagre, D.B.


    Natural snow avalanches have periodically damaged infrastructure and disrupted railroad and highway traffic at the southwestern corner of Glacier National Park, Montana. The 94-year history of these disruptions constitutes an uncommon record of natural avalanches spanning over nine decades and presents a unique opportunity to examine how natural avalanche frequency and minimum extent have varied over time due to climatic or biophysical changes. This study compared the historic record of natural avalanches in one avalanche path with tree-ring evidence of avalanches from 109 cross sections and increment cores collected in the same path. Results from combined historic and tree-ring records yielded 27 avalanche years in the 1910-2003 chronology, with the historic record alone underestimating avalanche years by half. Mean return period was 3.2 years. Interpolated maps allowed for more spatially precise estimates of return periods throughout the runout zone than previous studies. The maps show return periods increase rapidly downslope from 2.3 to 25 years. Avalanche years were associated with positive Snow Water Equivalent anomalies at a nearby snow course. Minimum avalanche extent was highly variable but not associated with snowpack anomalies. Most avalanche years coincided with years in which the mean January-February Pacific Decadal Oscillation (PDO) and El Nin??o-Southern Oscillation (ENSO) 3.4 indices were neutral. The findings suggest that changes in Pacific climate patterns that influence snowfall could also alter the frequency of natural snow avalanches and could thus change disturbance patterns in the montane forests of the canyon. ?? 2008 Regents of the University of Colorado.

  13. Examining spring wet slab and glide avalanche occurrence along the Going-to-the-Sun Road corridor, Glacier National Park, Montana, USA (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase


    Wet slab and glide snow avalanches are dangerous and yet can be particularly difficult to predict. Wet slab and glide avalanches are presumably triggered by free water moving through the snowpack and the subsequent interaction with layer or ground interfaces, and typically occur in the spring during warming and subsequent melt periods. In Glacier National Park (GNP), Montana, both types of avalanches can occur in the same year and affect the spring opening operations of the Going-to-the-Sun Road (GTSR).

  14. Experimental and numerical investigation of a RC wall loaded by snow-like avalanche pressure signal (United States)

    Ousset, Isabelle; Bertrand, David; Brun, Michaël; Limam, Ali; Naaïm, Mohamed


    Nowadays, civil engineering structures exposed to snow avalanches are mostly designed considering static loadings involving large safety factors. These latters highlight the lack of knowledge about the effects of the loading generated by a snow flow, and generally lead to oversize the civil structure. Indeed, the transient nature of the loading signal and also the composition of the snow flow can generate dynamic phenomena which cannot be taken into account considering only static loadings. The case of the avalanche of the Taconnaz (France), which occurred in 1999 and where important parts of the defense structure were destroyed, showed that static design approaches can lead to underestimate the potential effect of the snow flow. Thus, in order to give some new insights about this issue, the effect of the temporal variations of the snow loading on the mechanical behavior of an idealized defense structure is investigated. Therefore, a reinforced concrete (RC) wall with a L-like shape has been considered which is supposed to represent a part of the defense structure situated in Taconnaz. Static pushover tests, carried out in laboratory conditions on 1/6 scale physical model of the RC structure, allowed obtaining the capacity of the tested structure (Berthet-Rambaud et al. (2007)). Finite Element (FE) models have been developed and calibrated from the previous experimental data. The FE approach allows simulating the dynamic mechanical response of the structure. The effect of the transient nature of the loading of the avalanche has been explored applying out-of-plan dynamic loadings on the RC wall. In order to be as close as possible of a "field" snow avalanche, the imposed time evolution of the loading has been generated from in situ measurements recorded at the French experimental site "le col du Lautaret" (Thibert et al. (2008)). The RC mechanical behaviour has been described by four nonlinear constitutive laws. The four behaviour laws are compared and analyzed for

  15. LiDAR-based characterization of the Mt Shasta debris avalanche deposit (United States)

    Tortini, R.; Carn, S. A.; van Wyk de Vries, B.


    The failure of destabilized volcano flanks, due either to tectonic activity on basement structures underlying the volcanic edifice, magmatic intrusion or external forcing (e.g. weather events), is a likely occurrence during the lifetime of a stratovolcano. Flank failure can generate large debris avalanches, and the significant hazards associated with volcanic debris avalanches in the Cascade range were demonstrated by the collapse of Mt St Helens (WA, USA), which triggered its devastating explosive eruption in May 1980. Mt Shasta is a 4,317 m high, snow-capped, steep-sloped stratovolcano located in Northern California. The most voluminous of the Cascade volcanoes, the current edifice began forming on the remnants of an ancestral Mt Shasta that collapsed approximately 300,000 to 380,000 years ago producing one of the largest debris avalanches known on Earth. The debris avalanche deposit (DAD) covers a surface of 450 km2 across the Shasta valley, for a total volume of approximately 26 km3. A LiDAR point cloud and orthophoto of the Shasta DAD surveyed by the NCALM consortium provides a new topographic dataset of the area with unprecedented resolution. This will permit the identification of subtle topographic features of the Shasta DAD not apparent in the field or in coarser resolution datasets. Statistical measures of the LiDAR-derived digital elevation model, such as surface texture, will be used to detect and characterize the hummock topography, differentiate between various DAD facies and geomorphic units, and extract the morphological parameters for subsequent analogue and numerical modeling of the debris avalanche. This work aims to improve our understanding of the Mt Shasta DAD morphology and its dynamics, and provide insight into the cause, timing of events and mode of emplacement of the DAD. The Cascade range includes numerous large extinct, dormant or active stratovolcanoes, and knowledge of the link between basement structures and the Mt Shasta DAD will

  16. Volcanic debris avalanche transport and emplacement: water content and fragmentation vs disaggregation (United States)

    Roverato, Matteo


    Volcanic Debris Avalanches are voluminous, heterogeneous mass-flows of poorly sorted sediments (micron - 10's m) that move downslope under the effect of gravity. They travel with extremely high velocity for long distances with very potential high destructive power. These flows may reach initial velocities as high as 100m/s, travel for several tens of kilometers, and spread over broad sectors. They are commonly considered as inertial dry grain flows where particle-particle interaction can be within a frictional and/or collisional regime. It is largely assumed that fragmentation of particles within a debris avalanche occurs primarily at the moment of the edifice failure, due to sudden material decompression and dilation. Following failure, the dislodged mass starts to slide or glide downslope, and progressive disaggregation begins. Only minimal fragmentation is thought to occur during flow due to grain-grain contact. Thus, the main process responsible for generating an interclast matrix during transport is the disaggregation of already fractured clasts and megaclasts, particularly those that are already diamictons. However, data obtained from the Pungarehu volcanic debris avalanche deposit (VDAD) illustrate that fragmentation of intact rock may also occur during debris avalanche motion and through collisional and frictional grain-grain contacts experienced during long-runout flow. More, depending on their water and clay content, these granular and block-sliding flows may transform into a debris flow with distance from source, changing completely their flow behaviour and enhancing their run-out and hazard impacts. Pungarehu VDAD (ca. 25 Ka cal.) was emplaced by the largest known collapse of the Taranaki volcano (New Zealand) occurred near the Last Glacial Maximum (LGM), with snow and ice cover, fluids circulation, hydrothermal alteration and substantial groundwater present. This VDAD appears to encompass a range of flow behaviour from proximal unsaturated and unmixed

  17. Mammographic screening programmes in Europe

    DEFF Research Database (Denmark)

    Giordano, Livia; von Karsa, Lawrence; Tomatis, Mariano


    To summarize participation and coverage rates in population mammographic screening programmes for breast cancer in Europe.......To summarize participation and coverage rates in population mammographic screening programmes for breast cancer in Europe....

  18. Study of the quasi-tragic snow-avalanche event occurred on August 2009 at Aconcagua Provincial Park, Mendoza, Argentina (United States)

    Leiva, J. C.; Casteller, A.; Martínez, H. H.; Norte, F. A.; Simonelli, S. C.


    Snow avalanches commonly threaten people and infrastructure in mountainous areas worldwide. Winter precipitation events in the Central Andes are caused by the interaction of the atmospheric general circulation and their steep orography. Almost every winter season snow storms and winds cause the blockage of routes and lead to the snowpack conditions that generate avalanche events. The amount of winter snow accumulation is highly variable and is one of the most important factors for assessing the impacts of climate change not only on the water availability, but also to plan future mitigation measures to reduce the avalanche hazard. The authors have conducted studies on snow avalanches that regularly affect the international route linking Mendoza (Argentina) with Santiago de Chile (Chile) but none of them was done at the Aconcagua Provincial Park The park is nearby this route, about 13 km kilometers east from the international border, which in this sector of the Andes coincides with the continental divide. On the night of 17 August 2009, seven people were caught by an avalanche that hit the Aconcagua Park rangers refuge (32° 48' 40'' S, 69° 56' 33'' W; 2950 masl).This paper describes the meteorological and snow precipitation conditions originating the event. On August 14 th. the synoptic surface and upper-air conditions from NCEP reanalysis were those associated with a severe Zonda wind occurrence in the region, that is: a 500 hPa level trough, a deep low-pressure surface system located over the Pacific Ocean close to the Chilean coast, approximately over 48 ° S and 80° W, and a jet stream at middle upper-air levels. The avalanche event occurred during a new and very heavy snowfall a while more than two days later of these extreme episodes. The topographical characteristics of the avalanche path, the snow storm intensity and the snow accumulation on the avalanche starting zone allowed the authors to simulate the avalanche flow. Snow storm intensity and snow

  19. The ATLAS Forward Proton Programme

    CERN Document Server

    Trzebinski, M; The ATLAS collaboration


    The ATLAS Forward Proton Programme - talk for the Low-x 2012 Meeting Quartic anomalous couplings measurement at μ = 46 and a total luminosity of 300 fb−1 is possible. The full AFP simulation in presence of pile-up confirms the gain in sensitivity between one and two orders of magnitude with respect to the standard (non-AFP) ATLAS methods. The use of the AFP allows reaching the values expected in Higgs-less or extra-dimension models. The production of exclusive dijet for μ = 23 and a total luminosity of 40 fb−1 the measurement is possible and interesting due to the huge model uncertainties at present level of the theory understanding. The measurement of the W asymmetry in a specific configuration at low μ allows to get a decisive understanding on the diffractive exchange. For all physics cases, AFP capabilities in terms of proton tagging and timing resolution are key and unique features unprecedented sensitivity to quartic anomalous coupling or novel QCD measurements.

  20. Snowpack displacement measured by terrestrial radar interferometry as precursor for wet snow avalanches (United States)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves


    Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding