WorldWideScience

Sample records for program energy research

  1. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  2. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  3. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  4. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  5. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  6. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  7. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  8. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  9. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  10. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  11. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  12. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  13. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  14. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  15. DOE [Department of Energy] Epidemiologic Research Program

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal

  16. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  17. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1990-01-01

    The Office of Energy Research sponsors long-term research in certain fundamental areas and in technical areas associated with energy resources, production, use, and resulting health and environmental effects. This document describes these activities, including recent accomplishments, types of facilities, and gives some impacts on energy, science, and scientific manpower development. The document is intended to respond to the many requests from diverse communities --- such as government, education, and public and private research --- for a summary of the types of research sponsored by the Department of Energy's Office of Energy Research. This is important since the Office relies to a considerable extent on unsolicited proposals from capable university and industrial groups, self-motivated interested individuals, and organizations that may wish to use the Department's extensive facilities and resources. By describing our activities and facilities, we hope not only to inform, but to also encourage interest and participation

  18. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by

  19. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  20. Programs of the Office of Energy Research: Revision

    International Nuclear Information System (INIS)

    1987-06-01

    In establishing each of the Federal Agencies that have been successively responsible for energy technologies and their development - the Atomic Energy Commission, the Energy Research and Development Administration, and, currently, the US Department of Energy (DOE) - Congress made specific provisions for the conduct of advanced and fundamental research. The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research of this nature, which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the Unites States. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large. 5 figs., 6 tabs

  1. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  2. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  3. Research policy in energy sector - falsely programmed

    International Nuclear Information System (INIS)

    Wuestenhagen, H.

    1976-01-01

    The author attaches in a well-known form the nuclear energy experts as 'technocrats' and as the true masters over parlament. He speaks of extremist scientists and experts. Facit: Continuous repetition of the same irrelevent talk. (TK) [de

  4. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  5. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    1988-04-01

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  6. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  7. Energy research program 99. Program for expansion of the Danish energy research and development in the period 1999-2001

    International Nuclear Information System (INIS)

    2000-08-01

    The present 'Energy research program 99' contains descriptions of projects under The Energy Research Programme (EFP) supported by the Danish Energy Agency. The research programme covers the areas Fuel oils and natural gas, biomass, production and distribution of electric power and heating, wind energy, energy consumption in buildings, solar energy, energy conservation, fuel cells, super conductors, industrial processes and international co-operation. The manuscript is based on print-outs of the Danish input from the database Nordic Energy Index (NEI). The descriptions give project titles, summary descriptions of aims, methods etc., names, addresses, telephone and tele fax numbers of institutions etc. responsible for the projects, names of project leaders, of other involved firms, institutes or institutions, and details of the total budget and the financing of the energy research projects. (EHS)

  8. US Department of Energy Nuclear Research and Development Program

    International Nuclear Information System (INIS)

    Griffith, J.D.

    1989-01-01

    The presentation includes a discussion of nuclear power in the United States with respect to public opinion, energy consumption, economics, technology, and safety. The focus of the presentation is the advanced light water reactor strategy, liquid metal cooled reactor program, the modular high temperature gas cooled reactor program, and DOE research and test reactor facilities utilization. The discussion includes programmatic status and planning

  9. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  10. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  11. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  12. USGS research on energy resources, 1986; program and abstracts

    Science.gov (United States)

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  13. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  14. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  15. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false The Office of Energy Research Financial Assistance Program. 605.5 Section 605.5 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM § 605.5 The Office of Energy Research Financial Assistance Program. (a) DOE may issue, under the Office o...

  16. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  17. Overview of the department of energy carbon dioxide research program

    International Nuclear Information System (INIS)

    Riches, M.R.; Koomanoff, F.A.

    1985-01-01

    The goal of the Department of Energy (DOE) Carbon Dioxide Research Program is to identify possible policy options for government action in response to effects of increased CO 2 . The achievement of this goal requires a significant increase in our scientific knowledge of the atmosphere, the biosphere, the oceans, and the cryosphere-their interactions and the effects that increasing atmospheric CO 2 and other trace gases will have on them. To identify and specify valid choices, a program of directed research is required. The research areas include: Projection of future atmospheric CO 2 concentrations Estimation of Co 2 -induced global/regional climate changes Estimation of crop and ecosystem response to CO 2 -induced changes Estimation of the effect of CO 2 -induced climate changes on sea level, fisheries, and human health. This paper describes the present DOE plan to address the questions related to the global and regional rate of CO 2 -induced climate change. The objective of the plan is to define the key questions in such a way that research is directed at experiments where answers are needed rather than at experiments where answers can be easily obtained. Only through this kind of focus can we expect to provide the climate-change estimates required for the policy process

  18. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  19. Solar energy research and development: program balance. Annex, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

  20. Research program in theoretical high-energy physics. Progress report

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Guralnik, G.S.

    1979-01-01

    Last year's research program dealt with a large range of topics in high energy theoretical physics. Included in the problems studied were: flavor mixing angles in flavor gauge theory; grand unification schemes; neutral current phenomenology; charmonium decays; perturbative aspects of soft hadronic phenomena within the framework of the dual topological expansion; Regge trajectory slopes and the shape of the inclusive spectra; bound states in quantum electrodynamics; calculations of the Lamb Shift and hyperfine splitting in hydrogen (and muonium) through order α(Zα) 6 ; perturbation theory resummation techniques; collective behavior of instantons in quantum chromodynamics; 1/N expansion and mean field expansion techniques (applied to the nonlinear sigma model, classical solutions to Yang-Mills theories, and renormalized four-Fermi models of weak interactions); semiclassical calculation of Z 1 (α) in scalar QED; group theoretic studies of spontaneous symmetry breaking; fibre bundles applied to the topological aspects of gauge theories; strong-coupling expansions (as an aspect of infrared behavior, as a systematic perturbation expansion with reference to lattice extrapolation, applied to classical statistical mechanics, applied to problems with nonquadratic kinetic energy terms, and in transfer matrix formulations); eikonal methods (three-body Coulomb scattering, quark-antiquark potentials); computer augmented solutions to quantum field theory; topological excitations in two-dimensional models and WKB approximation on a lattice. A list of publications is included

  1. Long-term atomic energy research, development and utilization program

    International Nuclear Information System (INIS)

    1980-01-01

    This is the revised version of the last long-range program (June, 1972), and covers the measures and plans for promoting the research, development and utilization of nuclear power in some in some ten years ahead. The basic policy lines include the assurance of peaceful use of atomic energy, safety assurence and public support, independence and international cooperation and the planned implementation of nuclear research and development projects. The target scale of nuclear power development is estimated at 33 million kilowatts by fiscal 1985 and 60 million kilowatts by fiscal 1990, respectively. The improvement and standardization of light water reactors are to be further carried on till fiscal 1980 and after. Sodium-cooled reactors, which use the oxide fuel based on the mixture of plutonium and uranium, will be developed. A prototype reactor of about 300,000 kilowatt electric capacity will reach criticality in the second half of 1980's. The research and development of the advanced thermal reactors, for which plutonium and depleted uranium are used, will be encouraged. Multipurpose high-temperature gas-cooled reactors are also to be developed. The measures for establishing the nuclear fuel cycle including the procurement of natural and enriched uranium, the reprocessing of spent fuel, the use of plutonium and the treatment and disposal of radioactive wastes are described. Nuclear fusion, nuclear ships, the use of radiation, safety studies, fundamental studies and the training of scientists and technicians are stipulated, respectively. The promotion of nuclear research and development projects is explained in detail. (Okada, K.)

  2. Metrics Evolution in an Energy Research and Development Program

    International Nuclear Information System (INIS)

    Dixon, Brent

    2011-01-01

    All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R and D Program, which is working to improve the sustainability of nuclear energy.

  3. Large scale computing in the Energy Research Programs

    International Nuclear Information System (INIS)

    1991-05-01

    The Energy Research Supercomputer Users Group (ERSUG) comprises all investigators using resources of the Department of Energy Office of Energy Research supercomputers. At the December 1989 meeting held at Florida State University (FSU), the ERSUG executive committee determined that the continuing rapid advances in computational sciences and computer technology demanded a reassessment of the role computational science should play in meeting DOE's commitments. Initial studies were to be performed for four subdivisions: (1) Basic Energy Sciences (BES) and Applied Mathematical Sciences (AMS), (2) Fusion Energy, (3) High Energy and Nuclear Physics, and (4) Health and Environmental Research. The first two subgroups produced formal subreports that provided a basis for several sections of this report. Additional information provided in the AMS/BES is included as Appendix C in an abridged form that eliminates most duplication. Additionally, each member of the executive committee was asked to contribute area-specific assessments; these assessments are included in the next section. In the following sections, brief assessments are given for specific areas, a conceptual model is proposed that the entire computational effort for energy research is best viewed as one giant nation-wide computer, and then specific recommendations are made for the appropriate evolution of the system

  4. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  5. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  6. Applied Energy Program

    Science.gov (United States)

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research » Applied Energy Program Applied Energy Program Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact

  7. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  8. Experimental program to stimulate competitive energy research in North Dakota: Summary and significance of DOE Trainee research

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouk, Philip

    1999-07-01

    The general goals of the North Dakota DOE/EPSCoR Program are to enhance the capabilities of North Dakota's researchers to conduct nationally competitive energy-related research and to develop science and engineering human resources to meet current and future needs in energy-related areas. Doctoral students were trained and energy research was conducted.

  9. Research and development conference: California Institute for Energy Efficiency (CIEE) program

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    CIEE's first Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: building energy efficiency, air quality impacts of energy efficiency, and end-use resource planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured.

  10. Base program on energy related research. Quarterly report, August 1--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The goals of the JSR and Base Programs are accomplished by focusing research, development, demonstration, and commercialization in three major technology areas: energy programs emphasize the increased production and utilization of domestic energy resources and include enhanced oil recovery, coal beneficiation and upgrading, coalbed methane recovery, and renewable energy resources; environmental programs minimize the impact of energy production and utilization by providing technology to clean underground oily wastes, mitigate acid mine drainage, and demonstrate uses for clean coal technology (CCT) and pressurized fluidized bed combustion (PFBC) waste solids; technology enhancement activities encompass resource characterization studies, the development of improved environmental monitors and sensors, and improved techniques and models for predicting the dispersion of hazardous gas releases. Significant accomplishments under the Base Research program are reported.

  11. Energy and environment annual report 1974. [Environmental Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, C. (ed.)

    1974-01-01

    Research in the Division's environmental science program includes air pollution, water pollution, and the effects of pollutants on man and natural ecosystems. Work has focused on the chemistry and physics of particle surfaces. Using the technique of electron spectroscopy for chemical analysis (ESCA), surface reactions of sulfur and nitrogen compounds have been studied, and results include the identification of new chemical forms of nitrogen on particle surfaces and evidence for the importance of particle surfaces in the catalysis of sulfur dioxide to sulfuric acid. The Division's work in water pollution has been devoted to the study of trace metals in the estuarine environment, especially in San Francisco Bay. Studies on the effect of dredging operations on trace metals in the Mare Island ship channel and on the distribution of cadmium in Bay sediments have been performed. Research has also been conducted on the distribution of trace elements between bound states on suspended particles and in solution in Bay waters. Research is being conducted on a variety of problems relating to effects of pollutants. Biological studies seeking to discover effects of specific environmental insults such as oxidants at the cellular level have been done, and epidemiological studies have been initiated on the impacts of trace metals on human health. Theoretical studies in an attempt to develop a basis for assessing the stability of ecological systems are also being undertaken.

  12. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  13. Federal Office of Energy Research program: Survey on Markers

    International Nuclear Information System (INIS)

    Buser, M.

    2012-01-01

    Marcos Buser presented the state of the art on markers by means of a literature survey; the study has synthesized the knowledge on markers, identified gaps and contradictions in the marker programs and addressed research areas that have been covered in the past. The boundary conditions for the study were that it would take a very broad inter- and trans- disciplinary approach that incorporates results and evidences. Questions related to knowledge transfer and long-term societal issues show important gaps of knowledge, particularly regarding message transmission. The transmission process is strongly dependent on contextual understanding, and better understanding of such contextual changes is necessary for better encoding. The general findings of the survey are: - Need of synthesis has been confirmed; - Contradictions in the goals of marker strategies must be identified; - Entirety: although questions of technical nature or relating to the natural sciences are easier than societal questions, all processes must be analyzed from a inter- and trans-disciplinary point of view, and not from specific perspectives; - The importance of social sciences is greatly underestimated. The specific findings are: - Research on intrusion motivation is crucial for the design of marker programs (as well as for the configuration of a repository); - System development has to be understood, not just the development of single elements; - Findings in semiotic sciences, message transmission and misinterpretation and misuse are decisive. In the discussion, the question was raised whether the repository itself may acts as a marker, for instance because of the fact that all advanced drills apparently have a radiation detector, or, additionally, by adding symbols on the walls of the shafts. Buser underlined that knowledge transfer and long-term societal issues raises a series of questions related to stability of societies, stability of social structures, evolution of laws and regulations, transfer

  14. Office of Energy Research collaborative research programs administered by Oak Ridge Associated Universities: Annual report, FY 1987

    International Nuclear Information System (INIS)

    1988-02-01

    The US Department of Energy's (DOE) Office of Energy Research (OER) sponsors programs designed to encourage and support interaction between US colleges and universities and DOE research facilities. Faculty members, graduate students, undergraduates, and recent postgraduates participate in research and receive advanced training at DOE laboratories. Staff members from DOE laboratories visit campuses to deliver energy-related lectures and participate in seminars and classroom discussions. Oak Ridge Associated Universities (ORAU) has been involved in the developemnt and administration of these collaborative research programs since their inception. During FY 1987, ORAU administered appointments for the Office of Energy Research under the following two umbrella programs: University/DOE Laboratory Cooperative Program (Lab Co-op); Science and Engineering Research Semester (SERS). In addition, ORAU participated in a project to collect and assess information from individuals who had held research appointment as undergraduate students during a four-year period from 1979 to 1982. All of these activities are summarized in this report

  15. University of Louisville Research and Energy Independence Program

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra K. [Univ. of Louisville, KY (United States)

    2016-02-16

    The development of domestic, environmentally friendly and sustainable sources of energy and liquid fuel is a critical need for the United States (US). Kentucky (KY) is rich in natural energy and agricultural resources that could provide sustainable energy for the state and for the nation. New technology is needed to capture, store, and distribute this sustainable energy in KY. Development of KY’s sustainable energy resources will create economic benefit for the citizens of KY and can serve as a model for other states in the US. Existing technologies for solar energy collection and storage are practical for regions with high and consistent solar intensity, such as the southwest US. Solar energy is plentiful in KY, but is less intense and less regular. As such, novel innovative technology is needed to capture, store, and distribute this energy. KY also has plentiful biomass resources that can be converted to renewable fuels. In addition, the state offers low energy rates, which are conducive for any type of manufacturing industry. A manufacturing R&D center at the University of Louisville (UofL) can help attract high-tech manufacturing industries to the city of Louisville and the state of KY.

  16. Geothermal Energy Research and Development Program; Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  17. Funding of energy research: BMFT expenditures for energy research and energy technologies, 3rd program, a review and a forecast

    International Nuclear Information System (INIS)

    Jacke, S.

    1990-01-01

    Between the early sixties and late 1989, the German Federal Government spent some DM 23 billion to support research and development of the entire field of nuclear technology (such as fundamental research, industrial applications, medicine, safety technology, advanced energy systems) in the Federal Republic of Germany. Of this amount, approx. DM 11 billion was spent on the technology of nuclear power plants equipped with light water reactors, on safety research, and on the nuclear fuel cycle. Comparing the expenditures of the Federal Government for the conversion of nuclear power into electricity with the savings achieved in electricity generating costs of approx. DM 58 billion by late 1989 (the cost advantage of nuclear power being approx. Pf 5/kWh), one arrives at a cost advantage to the whole economy of approx. DM 47 billion by the date shown above; by the year 2000, this advantage will have risen to some DM 150 billion. (orig.) [de

  18. Guide to energy R and D programs for universities and other research groups

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this guide to provide researchers in universities and other research institutions with summary-level information on the various research and development programs supported by the Department. Collectively, DOE programs support a wide range of research activities - from studies on the fundamental nature of matter and energy to exploratory and advanced research on the development of new technical approaches leading to new energy technologies. The guide summarizes, in one source, basic information on DOE's energy research and development and related programs, interests and needs. It supplies information on current Federal and DOE grant and contract policies and procedures and lists the names of DOE staff, by program area, from whom additional information may be obtained

  19. PUBLIC HEARING TRANSCRIPT: FEDERAL NON-NUCLEAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM

    Science.gov (United States)

    This document presents the proceedings of three days of public hearings on the Federal Non-nuclear Energy Research and Development Program. The document is presented in three sections: (1) Future Energy Patterns and Levels of Coal Use, (2) Solar Energy and Conservation, and (3) O...

  20. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2003-02-13

    paragraph, Dr. Feltus urged Oak Ridge National Laboratory (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

  1. Biomass energy research program 2008 - 2011; Energieforschungsprogramm Biomasse fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, S.; Binggeli, D.; Guggisberg, B.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on energy from biomass for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper describes the concept for the biomass area. Research into modern technological concepts and ways of transforming biomass into energy are discussed and main areas of research to be addressed are discussed. Three main technological areas are defined: combustion, gasification and anaerobic fermentation. Important themes to be examined include system optimisation and integration, quality assurance and the promotion of new technologies. National and international networking between research and practice is commented on, as are the possibilities for the funding of the work.

  2. HEPAP Subpanel on the US High Energy Physics Research Program for the 1990's

    International Nuclear Information System (INIS)

    1990-04-01

    The entire community of high energy physicists looks expectantly to the Superconducting Super Collider (SSC) era. The SSC is the highest priority in the US high energy physics (HEP) program, and physics at the SSC will increasingly become its focus. In this report, the High Energy Physics Advisory Panel (HEPAP) Subpanel on the US High Energy Physics Research Program for the 1990's examines how the National HEP program can go forward vigorously in the period of preparation for the SSC. The Subpanel concluded early that a viable and productive physics research program in the next decade on a range of promising fronts is essential for this field to continue to attract and educate scientists of great creativity. The Subpanel found that such a program requires both exploiting existing opportunities and undertaking some new initiatives. The recommendations are based on the ''constant budget scenario,'' which the Subpanel interprets as averaging the FY 1991 budget level over the next decade

  3. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  4. US Army Research Laboratory Directed Energy Internship Program 2014

    Science.gov (United States)

    2015-11-01

    7 1400–1800 nm. However, when making EDFs, the solubility of Er in traditional silica ( SiO2 )-based glass is low and the ions that successfully...Thus, either half or all of the energy in a pair of excited ions could be wasted. In traditional SiO2 -based Er-doped glass (Er-SD), Er is co-doped...upconversion, Er-doped SiO2 NPs (Er-NP) are doped into the glass core of a fiber. This process is thought to create a cage of Al and O ions around each Er

  5. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  6. Wind energy research program 2008 - 2011; Energieforschungsprogramm Windenergie fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on wind energy for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper takes a look at the present situation in Switzerland and discusses current developments. Key figures are quoted. National work on basic and production-oriented research is discussed. The various actors and their co-ordination are discussed. National and international networking between research and practice is commented on. Technical and commercial goals are looked at, as are the possibilities for funding the work. Finally, four areas of emphasis for research are noted.

  7. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  8. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  9. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  10. Benefit-analysis of accomplishments from the magnetic fusion energy (MFE) research program

    International Nuclear Information System (INIS)

    Lago, A.M.; Weinblatt, H.; Hamilton, E.E.

    1987-01-01

    This report presents the results of a study commissioned by the US Department of Energy's (DOE) Office of Program Analysis to examine benefits from selected accomplishments of DOE's Magnetic Fusion Energy (MFE) Research Program. The study objectives are presented. The MFE-induced innovation and accomplishments which were studied are listed. Finally, the benefit estimation methodology used is described in detail. The next seven chapters document the results of benefit estimation for the MFE accomplishments studied

  11. New energy technologies. Research program proposition; Nouvelles technologies de l'energie. Proposition de programme de recherche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO{sub 2}, the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  12. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  13. U.S. Department of Energy student research participation programs. Underrepresented minorities in U.S. Department of Energy student research participation programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of this study was to identify those particular aspects of US Department of Energy (DOE) research participation programs for undergraduate and graduate students that are most associated with attracting and benefiting underrepresented minority students and encouraging them to pursue careers in science, engineering, and technology. A survey of selected former underrepresented minority participants, focus group analysis, and critical incident analysis serve as the data sources for this report. Data collected from underrepresented minority participants indicate that concerns expressed and suggestions made for conducting student research programs at DOE contractor facilities are not remarkably different from those made by all participants involved in such student research participation programs. With the exception of specific suggestions regarding recruitment, the findings summarized in this report can be interpreted to apply to all student research participants in DOE national laboratories. Clearly defined assignments, a close mentor-student association, good communication, and an opportunity to interact with other participants and staff are those characteristics that enhance any educational program and have positive impacts on career development.

  14. Research and development program for transuranic-contaminated waste within the U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1976-01-01

    This overview examines the research and development program that has been established within the U.S. Energy Research and Development Administration (ERDA) to develop the technology to treat transuranic-contaminated waste. Also considered is the waste expected within the total nuclear fuel cycle

  15. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  16. Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

  17. US Department of Energy Office of Inspector General report on audit of program administration by the Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-02

    The objective of the audit was to determine whether Energy Research had established performance expectations, including performance criteria and metrics, and used these expectations to monitor progress for basic and applied research performed at the Department`s national laboratories. Congressional and Departmental initiatives envision improved contract and program performance by requiring program managers to set measurable performance expectations. Even though research outcomes are inherently unpredictable, performance expectations can and should be established for scopes of work, milestones, resource limits and deliverables. However, Energy Research generally did not clearly specify--at either an aggregated program or individual task level--such expectations for research at the Department`s national laboratories. While information was available in the contractor`s research proposals, Energy Research essentially relied on the contractors to initiate and execute the research without agreement on expectations. This practice provided the Department with little basis to measure and evaluate contractor performance. Energy Research agreed in part with the finding and will take action on the recommendations in the report.

  18. ECUT: Energy Conversion and Utilization Technologies program. Industry, university and research interest in the US Department of Energy ECUT biocatalysis research activity

    Science.gov (United States)

    Wilcox, R. E.

    1983-01-01

    The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.

  19. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  20. Research of nuclear energy on the 21st Century Center of Excellence (COE) Program

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Yamamoto, Ichiro

    2003-01-01

    COE is an abbreviation of 'Center of Excellence' and the '21st Century COE Program' is project begun by the Ministry of Education, Culture, Sports, Science, and Technology (MECSST) to make a trigger to grow some research strongholds with international competitive power by activating mutual competition of collages and universities. This program aims to form research and educational strongholds with the highest level in the world at every scholarship fields to a collage or a university in Japan, to intend to grow creative specialists capable of upgrading research level and leading research world, and to progress strong assistance to promote collages- and universities-making with international competitive power and individuality. In 2003 fiscal year, two research programs related to nuclear energy were selected by the Committee of 21st Century COE Program such as 'an innovative reactor supporting suitable development of the world' in the mechanical, engineering and other technology field and 'future to be cultivated by isotopes' in the interdisciplinary, composite and new region field. The first program aims to construct the concept of system of innovative reactor and separation nuclear transformation for zero release of radioactive waste and to research the necessary technologies. The second program is covered isotope science and it consists of two main researches such as 1) the fundamental researches: a) separation and creation of isotopes, b) measurement technologies with nano size and c) isotope materials, and 2) the harmonized development researches: a) environment and bioscience and b) culture information and creation of quantum computer. (S.Y.)

  1. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  2. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of

  3. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  4. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim [ed.

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  5. Education Model Program on Water-Energy Research: A New STEM Graduate Program from Development through Evaluation

    Science.gov (United States)

    McCay, D.; Fiorenza, P.; Lautz, L.

    2017-12-01

    More than half of Ph.D. scientists and engineers find employment in non-academic sectors. Recognizing the range of career options for graduate degree holders and the need to align graduate education with the expectations of prospective employers, the National Science Foundation (NSF) created the NSF Research Traineeship (NRT) program. To date, over 100 NRT programs have been funded. As these programs are implemented, it is important to assess their progress, successes, and challenges. This presentation describes the ongoing evaluation of one NRT program, "Education Model Program on Water-Energy Research" (or EMPOWER) at Syracuse University. Through seminars, mini-grants, professional development activities, field courses, internship opportunities, and coursework, EMPOWER's goal is to equip students with the skills needed for the range of career options in water and energy. In collaboration with an external evaluator, EMPOWER is examining the fidelity of the program to proposed goals, providing feedback to inform project improvement (formative assessment) and assessing the effectiveness of achieving program goals (summative assessment). Using a convergent parallel mixed method design, qualitative and quantitative data were collected to develop a full assessment of the first year of the program. Evaluation findings have resulted in several positive changes to the program. For example, EMPOWER students perceive themselves to have high technical skills, but the data show that the students do not believe that they have a strong professional network. Based on those findings, EMPOWER offered several professional development events focused on building one's professional network. Preliminary findings have enabled the EMPOWER leadership team to make informed decisions about the ways the program elements can be redesigned to better meet student needs, about how to the make the program more effective, and determine the program elements that may be sustained beyond the funding

  6. Epidemiologic research programs at the Department of Energy: Looking to the future

    International Nuclear Information System (INIS)

    1994-01-01

    The secretary of the Department of Energy (DOE) asked the National Research Council in 1989 to establish a Committee on Radiation Epidemiological Research Programs to provide scientific advice on the current status and future direction of DOE's epidemiologic research program. This report is in response to a request from the National Research Council committee to provide advice regarding the future directions of OEHS's epidemiologic research. This report begins with some of the background leading to the current activities of OEHS. In 1990, a committee (the Secretarial Panel for the Evaluation of Epidemiological Research Activities, or SPEERA) established by the secretary of the DOE recommended that DOE enter into a memorandum of understanding (MoU) with the Department of Health and Human Services that outlined the responsibilities of the two departments regarding epidemiologic research. The present report points out that the implementation of the SPEERA recommendations and the MoU by DOE have raised issues that have not been satisfactorily resolved

  7. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  8. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  9. 'Sobrietes' (2010-2013): An Interdisciplinary Research Program on the Institutionalisation of Local Energy Sobriety Policies

    International Nuclear Information System (INIS)

    Semal, Luc; Szuba, Mathilde; Villalba, Bruno

    2014-01-01

    The 'Sobrietes' program (2010-2013) initiated an interdisciplinary research work focusing on the potential institutionalisation of local energy 'sobriety' policies in Nord-Pas-de-Calais (northern France). It contributed to structuring a network of regional actors - from scientific, NGO's and institutional fields - all involved in a process of integrating the global peak oil hypothesis into their discourses and practices. This process has led to reconsider regional energy policies under a new light, in particular the energy demand reduction programmes and the search for an equitable sharing of energy resources. The energy 'sobriety' approach, understood as a voluntary and equitable reduction mechanism for energy consumption, brings forward innovative responses to social and ecological issues

  10. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  11. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    International Nuclear Information System (INIS)

    Sinclair, K.C.; Morrison, M.L.

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects

  12. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.C. [National Renewable Energy Lab., Golden, CO (United States); Morrison, M.L. [California State Univ., Sacramento, CA (United States). Dept. of Biological Sciences

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects.

  13. Status of the U.S. Department of Energy/National Renewable Energy Laboratory Avian Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K. C.

    1999-06-21

    As wind energy development expands, concern over possible negative impacts of wind farms on birds remains an issue to be addressed. The concerns are twofold: (1) possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act and/or the Endangered Species Act, and (2) the effect of avian mortality on bird populations. To properly address these concerns, the National Renewable Energy Laboratory (NREL), working collaboratively with stakeholders including utilities, environmental groups, consumer advocates, regulators, government officials, and the wind industry, supports an avian-wind interaction research program. The objectives of the program are to conduct and sponsor scientifically based research that will ultimately lead to the reduction of avian fatality due to wind energy development throughout the United States. The approach for this program involves cooperating with the various stakeholders to study the impacts of current wind plants on avian populations, developing approaches to siting wind plants that avoid avian problems in the future, and investigating methods for reducing or eliminating impacts on birds due to the development of wind energy. This paper summarizes the research projects currently supported by NREL.

  14. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  15. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  16. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  17. Geochemical, hydrological and biological cycling of energy residuals. Research plan: subsurface transport program

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1985-09-01

    Because natural processes associated with the release and the transport of organic compounds, trace metals, and radionuclides are incompletely understood, research in this area is critical if the long term scientific uncertainties about contaminant transport are to be resolved. The processes that control mobilization and attenuation of energy residuals in soils and geological strata, their hydrological transport to and within ground water regimes, and their accumulation in biological systems require research attention. A summary of DOE's core research program is described. It is designed to provide a base of fundamental scientific information so that the geochemical hydrological, and biophysical mechanics that contribute to the transport and long term fate of energy related contaminants in natural systems can be understood

  18. US Department of Energy Three Mile Island research and development program. 1985 annual report

    International Nuclear Information System (INIS)

    Brown, G.R.

    1986-04-01

    In 1985, the US Department of Energy's Three Mile Island Research and Development Program at Three Mile Island Unit 2 (TMI-2), the Idaho National Engineering Laboratory, and other supporting laboratories, concentrated on three major areas: fuel and waste handling and disposition, accident evaluation, and reactor evaluation. While the general technology being developed is of direct benefit to the recovery operations at TMI-2, this technology will be of generic benefit to the entire nuclear power industry. Others engaged in research and development, design, construction, operation, maintenance, and regulation of nuclear plants will have access to this technology to enhance plant safety and reliability

  19. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  20. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  1. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  2. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  3. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  4. Soil and groundwater remediation through the program of energy research and development at Environment Canada

    International Nuclear Information System (INIS)

    Bacchus, P.

    2005-01-01

    Research and development in groundwater and soil remediation within the federal Program of Energy Research and Development (PERD) are conducted in the context of activities related to the oil and gas industry. Contamination of groundwater and soil by the oil and gas sector affects the health of ecosystems and the economic viability of impacted lands. This paper presented an outline of remediation research and development activities associated with PERD, as well as an overview of PERD's development of improved generic remediation technologies and approaches for use by industries. In addition, issues concerning the development of key guidelines, methods and protocols for use by regulators were discussed. Science and technology efforts within PERD contribute to the development of national standards and guidelines concerning public safety and environmental needs

  5. Oil and gas activities in the program energy research and development (PERD)

    International Nuclear Information System (INIS)

    Billette, N.; Marshall, S.-L.

    2002-01-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab

  6. Oil and gas activities in the program energy research and development (PERD)

    Energy Technology Data Exchange (ETDEWEB)

    Billette, N.; Marshall, S.-L. [Natural Resources Canada, Ottawa, ON (Canada)

    2002-06-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab.

  7. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  8. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  9. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums

  10. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  11. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  12. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y.

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  13. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    International Nuclear Information System (INIS)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-01-01

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies

  14. Department of Energy Office of Energy Research Programs: Fiscal year 1996 authorization testimony presented before the Subcommittee on Energy and Environment Committee on Science

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1995-01-01

    Fusion energy is not as mature as the other energy options. However, in recent years fusion research has focused on its energy mission, and the progress has been impressive. Ten years ago, many observers questioned whether fusion in the laboratory was scientifically feasible. Today, few question fusion's basic feasibility, and the issues have shifted to its economic and environmental aspects. This is a measure of the progress the program has made. For the reasons outlined here, the author requests Congress to support at a minimum the Administration's FY96 budget request of $366 Million for fusion energy. This level permits the program to continue developing the tokamak as its principal fusion concept. The level is, however, insufficient to pursue meaningful development of specialized materials and non-tokamak alternatives which are sure to play important roles in enabling fusion to reach its highest potential attractiveness

  15. Description of how the Atomic Energy Control Board research and development program is administered

    International Nuclear Information System (INIS)

    1985-06-01

    The Regulatory Research Program should be seen as augmenting and extending the capability of in-house resources. The overall objective of the research program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating atomic energy. Within the framework of the general objective, the specific objectives are: (i) to verify information, claims or analyses from licensees in support of licensing actions; (ii) to fill gaps in knowledge to enable the Board to contribute to the establishment of health and safety requirements or guidelines or to aid in arriving at licensing decisions; (iii) to stimulate licensees to do more work on certain topics relating to health, safety or security; (iv) to develop information on the regulatory process and the evaluation of the regulatory process; (v) to develop equipment or procedures to enhance health, safety or security in those cases where the industry is not competent or inclined to do so; and (vi) to enhance the competence of the Board and its credibility in the eyes of licensees and the public

  16. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  17. Consumer behavior and energy conservation. Final report of the LINKKI research program; Kuluttajien kaeyttaeytyminen ja energiansaeaestoe. LINKKI- tutkimusohjelman loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Arvola, A.; Kasanen, P. [Helsinki Univ. (Finland). Dept. of Social Psychology

    1996-10-01

    The goal of LINKKI - the research program on consumer behavior and energy conservation - was to promote energy conservation by seeking potential and means for energy conservation in the short term in areas that are linked with consumers` activities and choices. Research has been conducted in the following sectors: home, buildings, traffic, and indirect energy consumption. This report discusses the results obtained through the program against a more general background of people`s ways of life and the various factors explaining energy consumption. The report assesses the differences discovered between households, for instance, with respect to demographic factors, life situations, motivation towards conservation, information needs, and attitudes to information. These factors were evaluated in their role as barriers to energy conservation. The research projects have surveyed various ways of disseminating information (e.g. advice, feedback on consumption, computer programs, energy labels), as well as information needs and decision-making processes existing among households. Research conducted in the sector of indirect energy consumption has produced data on conservation potential with respect to the selection of foods and the organization of leisure activities. In the sector of energy consumption in traffic, assessments have been made concerning the conservation potential that can be achieved by reorganizing activities and data transmission (e.g. distance work, flexible working time). The prerequisites for the actualization of this potential have also been studied. Similarly, the opportunities of reducing energy consumption in traffic by means of prices, taxation systems and regional ticket systems have been analyzed

  18. Nuclear research and development: a program of the Atomic Energy Corporation of South Africa Limited

    International Nuclear Information System (INIS)

    Sonnekus, D.

    1985-01-01

    The research and development activities of the Atomic Energy Corporation of South Africa are briefly discussed. The activities consists of the following components: geotecnics, research and development, reactor development, research reactor, radiation technology, post-reactor fuel service, safety, research computers and library service

  19. 1992 HEPAP subpanel on the US Program of High Energy Physics Research

    International Nuclear Information System (INIS)

    1992-04-01

    High energy physics seeks an understanding of the fundamental structure of matter and the laws that govern all physical phenomena. The US high energy physics community has many scientific opportunities before it. Discovering the top quark, exploring the origin of particle-antiparticle asymmetry, and elucidating the Higgs mechanism, the source of mass, are some of the most notable. We were charged with laying out programs for US high energy physics through this decade that would accord with three specific budgetary guidelines for the period FY 1994--FY 1997. This report details the scientific, technical, and resource issues involved, recommends a program for each guideline, and discusses the implications of each program. In all our plans we consider construction of the SSC to have the highest priority in the US particle physics program and to be absolutely essential for continued progress in our field into the 21st century

  20. Progress report of a research program in experimental and theoretical high energy physics, 1 January 1992--31 May 1992

    International Nuclear Information System (INIS)

    Brandenberger, R.; Cutts, D.; Fried, H.M.; Guralnik, G.; Jevicki, A.; King, K.; Lanou, R.E.; Partridge, R.; Tan, C.I.; Widgoff, M.

    1992-01-01

    This report discusses research at Brown University in experimental and theoretical high energy physics. Some of the research programs conducted are: interactions of leptons and hadrons form accelerator and astrophysical sources; hadron interactions with hydrogen and heavier nuclei; large volume detector at the Gran Sasso Laboratory; GEM collaboration at SSC; and hadron colliders and neutrino physics

  1. Report to the Congress: liquid metal fast breeder reactor program--past, present, and future, Energy Research and Development Administration

    International Nuclear Information System (INIS)

    1975-01-01

    The past, present, and future of the liquid metal fast breeder reactor (LMFBR) program, the Nation's highest priority energy program, are studied. ERDA anticipates that the operation of the first large commercial breeder will start in 1987, and that 186 commercial-size breeders will be in operation by the year 2000. The breeder program is made up of six major areas, each dealing with an important element of technology: reactor physics; fuels and materials; fuel recycle; safety; component development; plant experience; and facilities used in the LMFBR program. ERDA is implementing a new system for administering, managing, and controlling the breeder program that will provide increased program visibility and control. Federal funding for breeder development was $168 million in FY 1971, accounting for 40% of the total Federal R and D energy budget; in FY 1976 Federal funding for this program will be $474 million, only 26% of total Federal funding for energy research. Besides Federal funds, over half a billion dollars have been or will be invested by industry over the next 5 to 10 years to develop the breeder and to build a demonstration plant. Five other nations--the United Kingdom, France, Japan, West Germany, and the Soviet Union--have a high priority national energy program for developing the LMFBR. These foreign breeder programs could contribute important data and information to the U.S. program

  2. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  3. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  4. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  5. Balanced program plan: analysis for biomedical and environmental research. Volume 7. Conservation and energy efficiency

    International Nuclear Information System (INIS)

    1975-07-01

    Energy conservation technologies encompass the entire spectrum of human activities: electrical supply, industry, commercial and residential buildings, transportation and various overlapping combinations of these. This report is concerned with those conservation technologies that appear to be most important in the near and intermediate terms. Many of the specific R and D programs are contained in the preliminary ''Conservation Program Plan'' of the ERDA Assistant Administrator for Conservation. However, some projects are included that are supported by other Federal agencies and private industry. Section 1 contains a brief description of each conservation technology and an enumeration of health/safety/environmental impacts, both beneficial and adverse, that are expected to accrue from the new technology. Section 2 contains a brief discussion of problems, priorities and programs. Section 3 contains ''Problem Definitions'' and ''Program Units'' that are recommended to become a part of the ''BER Balanced Program Plan.''

  6. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  7. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  8. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  9. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W. R.

    1976-07-01

    Progress is reported in four research areas of solar bioconversion. The first program deals with the genetic selection of superior trees, physiological basis of vigor, tissue culture, haploid cell lines, and somatic hybridization. The second deals with the physiology of paraquat-induced oleoresin biogenesis. Separate abstracts were prepared for the other two program areas: biochemical basis of paraquat-induced oleoresin production in pines and biochemistry of methanogenesis. (JSR)

  10. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Progress is reported in this multidisciplinary research program. Genetic selection of superior trees, physiological basis of vigor, tissue culture systems leading to cloning of diploid and haploid cell lines are discussed in the Program A report. The physiological basis of enhanced oleoresin formation in southern pines when treated with sublethal concentrations of the herbicide paraquat was investigated in Program B. In Program C, metabolic changes in the stems of slash pine, in vivo, after application with paraquat were determined. The use of phdoem and xylem tissue slices as a laboratory model for studying paraquat associated- and normal-terpene synthesis in pines is discussed. The biochemistry and physiology of methane formation from cellulose during anaerobic fermentation are discussed in the Program D report. (DMC)

  11. Energy Program annual report, 1988

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1989-07-01

    This report is a summary of work done during FY 1988 (October 1, 1987--September 30, 1988) by the Energy Program of the Lawrence Livermore National Laboratory (LLNL). The program addresses problems relating to supply and utilization of energy in the US. Traditionally the focus of activities has been on long-range technical challenges that are unlikely to be pursued by the private sector. Individual projects making up the Energy Program are divided into three sections in this review: Nuclear Energy, Fossil Energy, and Nonfossil Energy. (Nonfossil Energy research includes work on geothermal resources and combustion chemistry.)

  12. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Brown Joergensen, B.

    1990-07-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administraton of the programs is mentioned. Finally a list of references is given. (author) 3 tabs., 24 ills.; 45 refs

  13. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.

    1986-05-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current abd finished projects. All current projects are described briefly, stating status and results obtained, whole the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally, a list of references is given. (Author)

  14. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Petersen, S.

    1988-06-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administration of the programs is mentioned. Finally a list of references is given. 11 ills., 34 refs. (author)

  15. The contribution of Risoe National Laboratory to the research development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    1985-07-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution of the organization and the administration of the programs is mentioned. Finally a list of references is given. (author)

  16. The contribution of Risoe National Laboratory to the research and development programs of the Danish Ministry of Energy

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.; Petersen, S.

    1989-04-01

    Since 1978 Risoe has been responsible for a number of projects in the research and development programs of the Danish Ministry of Energy. This report gives a review of current and finished projects. All current projects are described briefly, stating status and results obtained, while the results of finished projects are described in more detail. Risoe's contribution to the organization and the administration of the programs is mentioned. Finally a list of references is given. (author) 4 tabs., 22 ills., 33 refs

  17. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sam [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Harper, David [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Womac, Al [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  18. US Department of Energy Three Mile Island research and development program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-04-01

    Defueling of the Three Mile Island Unit 2 (TMI-2) reactor continued through 1986. This report summarizes this work and other TMI-2 related cleanup, research, and development activities. Other major topics include: core stratification sampling and other data acquisition tasks, the fuel shipping program, waste immobilization and management, decontamination and dose reduction, and future uses and applications of TMI-2 data.

  19. US Department of Energy Three Mile Island research and development program: Annual report, 1986

    International Nuclear Information System (INIS)

    1987-04-01

    Defueling of the Three Mile Island Unit 2 (TMI-2) reactor continued through 1986. This report summarizes this work and other TMI-2 related cleanup, research, and development activities. Other major topics include: core stratification sampling and other data acquisition tasks, the fuel shipping program, waste immobilization and management, decontamination and dose reduction, and future uses and applications of TMI-2 data

  20. Base Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  1. Basic-research foundations for public-education programs in energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, J B; Misch, M R

    1980-09-01

    The processes whereby people make decisions about specific behavior, the forces that operate on these decisions, and the interaction of several decisions and their modifying effect upon each other are studied. An overview of the current approach to decision study and behavior-change studies is presented. Brief papers prepared by such experts as Maccoby, Tversky, Cialdine, Margolin, Simon, Heider, Festinger, and Lervin are presented. Methodological considerations are discussed. Task B focuses on the specific issue of the purchase of energy-efficient appliances. Task C investigates individual and small-group data-quantification techniques. Task D explains monitoring of ongoing energy-relevant consumer/purchaser surveys. A cost-benefit analysis is made and discussed in Task E of other public and private information programs designed to serve the public welfare. A number of useful findings are presented with the caveat that cost-benefit analysis is not a precise technique. The application of this study to the needs of the energy-conservation program is summarized. (MCW)

  2. US Department of Energy Three Mile Island Research and Development Program: 1987 annual report

    International Nuclear Information System (INIS)

    1988-04-01

    Defueling of the Three Mile Island Unit 2 (TMI-2) reactor continued through 1987. This report summarizes this work and other TMI-2 related cleanup, research, and development activities. Other major topics include: Waste immobilization; Core transportation, receipt, and storage; Abnormal waste; Accident Evaluation and Technical Integration Programs; and Future uses and applications of TMI-2 data. While the technology being developed is of direct benefit to the recovery operations at TMI-2, it will also benefit the entire nuclear power industry

  3. Energy saving industrial products in Italy (marketing research, conservation program planning)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Clo' , A.; Goldoni, G. (Bologna Univ. (Italy))

    1989-09-01

    This article gathers the essential results of research, carried out by Nomisma for ENEA (Italian Commission for Nuclear and Alternative Energy Sources) about the market and industry structure of 7 different products for energy saving, i.e. high performance boilers, cogeneration plants, thermal insulation, organic residual combustors, heat pumps, heat recovery equipment and measuring and control instruments. The singling out of the operating firms and the collection of numerous, even if incomplete, economic and technical data, permit a first evaluation of the trend of the Italian energy saving market during the period 1983-87. This will be a useful tool in order to appraise the efficiency of past policies and direct future ones.

  4. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  5. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  6. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  7. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program research and development technology needs assessment review meeting

    International Nuclear Information System (INIS)

    1989-01-01

    On November 1--2, 1988, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Salt Lake City, Utah, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. All Operations Offices were represented by DOE staff and by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established

  8. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  9. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  10. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  11. Progress report for a research program in theoretical high-energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Guralnik, G.S.; Kang, K.; Tan, C.I.

    1977-01-01

    Last year's research program dealt with a variety of topics including hadron dynamics (Pomeron interaction in the eikonal approximation, estimates of all eikonal pionization graphs, study of the critical behavior in Reggeon field theory, status of Regge pole models in KN scattering); phenomenology of renormalizable gauge theory (tests of flavor mixing, dimuon events, SU(3) gauge model with unmixed quarks, lepton models, CP violation, neutrino magnetic moment); spectral sum rules (axial-vector masses, mixing angles); application of the self-consistent field approximation to relativistic quantum field theory; topics in gravitation and cosmology; as well as other studies involving elementary particle interactions. A list of publications is included

  12. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  13. Report of cooperative research programs in the field of ion-beam breeding between Japan Atomic Energy Agency and Malaysian Nuclear Agency (Bilateral cooperative research)

    International Nuclear Information System (INIS)

    Ahmad, Zaiton; Oono, Yutaka

    2016-03-01

    This report summarizes Bilateral Cooperative Research between Japan Atomic Energy Agency and Malaysian Nuclear Agency (a representative of the Government of Malaysia) implemented from 2002 to 2012 under 'THE IMPLEMENTING ARRANGEMENT BETWEEN THE GOVERNMENT OF MALAYSIA AND THE JAPAN ATOMIC ENERGY AGENCY ON THE RESEARCH COOPERATION IN THE FIELD OF RADIATION PROCESSING'. The research activities in two Cooperative Research Programs, 'Mutation Induction of Orchid Plants by Ion Beams' and 'Generating New Ornamental Plant Varieties Using Ion Beams' performed 2002-2007 and 2007-2012, respectively, are contained. The lists of steering committee meetings, irradiation experiments, and publications/presentations of each program are also attached in the Appendixes. (author)

  14. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    International Nuclear Information System (INIS)

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector

  15. Japan's Sunshine Project. Summary of solar energy research and development program (1983 edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    The Sunshine Program is managed by the promotion center established by the Agency of Industrial Science and Technology of the Ministry of International Trade and Ministry, and is allocated for fiscal 1983 a budget of 8.9 times 1-billion yen. The program is to come to a conclusion in 2000. The program covers not only photovoltaic power generation but also many other fields in which research and development efforts bear fruits of success in practical application one after the other. At the current stage, the target is the test run of a crystalline solar cell mass production line (500kW/year). Basic studies and development will also proceed for the practicalization of amorphous solar cells. For photovoltaic power generation, four demonstration systems and two central power plants will be constructed and operated. Two solar thermal power generation systems each capable of 1000kWe will be tested and operated. Solar systems will be constructed and operated for industrial process heating. Articles on photovoltaic power generation in this book cover the basic study of solar cells, development of crystalline/amorphous solar cells, development of mass production technology, and development of system technology. Reference is also made to the state of development of solar thermal power generation and solar thermal heating/cooling. (NEDO)

  16. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  17. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  18. Base program on energy related research. Quaterly report, February 1, 1997--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Progress in four major research areas is summarized in this report. In the area of oil and gas, subtasks reported on are miscible-immiscible gas injection processes, development of a portable data acquisition system and coalbed methane simulator, tank bottom waste processing using the TaBoRR Process, and bench-scale testing and verification of pyrolysis concept for remediation of tank bottoms. Advanced systems applications research includes design, assembly, and testing of a bench-scale fuel preparation and delivery system for pressurized application using coal fines. Five subtasks are reported on for the environmental technologies research area: (1) conditioning and hydration reactions associated with clean coal technology ash disposal/utilization, (2) remediation of contaminated soils, (3) the Syn-Ag Process: coal combustion ash management option, (4) the Maxi-Acid Process: in-situ amelioration of acid mine drainage, and (5) PEAC value-added project. Under applied energy science, heavy oil/plastics co-processing activities and fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas are described. Information supplied for each subtask includes an account status report, which includes budget and schedule data, and a brief project summary consisting of research objectives, accomplishments, and activities scheduled for the next quarter. 2 tabs.

  19. Synthesis report regarding the Forest Industry Program 1997-2002[Energy research]; Skogsindustriell energiforskning syntesrapport 1997-2002

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders; Olle, Nystroem

    2003-07-01

    This synthesis report commissioned by the Thermal Engineering Research Institute (Varmeforsk) constitutes a summary of the Forest Industry Program up to and including turn of the year 2002/2003. According to the assignment the resulting reports of the program has specifically been related to the present and expected EU-directives and, as a base for interpretation, national rules and regulations of relevance to the programme. Also there is a discussion, from a broad perspective, of the value and usefulness of these reports as well as of how the resources should be spent and prioritised in a coming program. As a basis for the analysis a survey of the program directions and the aims descriptions for the periods 97-98, 99-00 and 01-02 has been carried out. Throughout the three periods there is a tendency going from specific areas of interest to a more general approach which in the last program period has resulted in program directions emphasizing utilization of energy, energy integration and coordination with industry and enterprises outside the forest industry where it applies. A survey of the relevant EU-directives has been carried out. A division was made between directives related to legislation overall, permits related to combustion, operation of combustion plants and landfilling of refuse. In total 26 reports have been summarized and evaluated. They include some, which, at the time of finishing the present report, had not yet been published. The overall result has been synthesized in a discussion covering contents, aims, fulfillment and value of the reports. The work have been structured and presented based on some main activity areas that have been possible to identify from the program directions and policy statements, they are: combustion efficiency, improved energy utilization and novel concepts. Some reports, which have not been possible to arrange under these headings and furthermore are difficult to associate with the main areas defined are covered under a

  20. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  1. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    International Nuclear Information System (INIS)

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  2. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  3. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  4. Progress report for a research program in theoretical high-energy physics

    International Nuclear Information System (INIS)

    Feldman, D.

    1978-01-01

    Last year's research program dealt with a variety of topics including small-p/sub perpendicular/ hadronic phenomenology (dual topological unitarization, Pomeron-f identity hypothesis, t-channel approach to diffraction peak and hadron size, tunneling in Reggeon field theory); bound-state problems in quantum electrodynamics (positronium decay, hyperfine splitting of positronium and muonium); quantum field theory (graph counting, strong-coupling solutions for eikonal problems with SU(2) constraints, unitarity restriction and semi-classical solutions, quark confinement); unified gauge models of weak and electromagnetic interactions (Weinberg-Salam model, exclusion of effective V/sub e/V/sub N/ + A/sub e/A/sub N/ neutral-current interaction, Cabibbo angle and quark mass ratios); bound-state mean field theory (structural equivalence of two-dimensional four-fermion and Yukawa-like models, renormalization of four-dimensional four-fermion models, Fermi theory of weak interactions as a Yang-Mills theory); acoustic detection of cosmic neutrinos; topics in gravitation and cosmology; as well as other studies involving the interactions of elementary particles. A list of publications is included

  5. Fossil energy program. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  6. A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tian-Sen [Prairie View A& M Univ., Prairie View, TX (United States); Saganti, Premkumar [Prairie View A& M Univ., Prairie View, TX (United States)

    2017-02-17

    During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv) established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities

  7. Progress report for a research program in theoretical high-energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Jevicki, A.; Kang, K.; Tan, C.I.

    1983-01-01

    This year research has dealt with a wide range of topics in High-Energy Theoretical Physics. New results have been reached in: geometric structures of symmetry breaking, contracted symmetry groups; continuum strong-coupling methods, fermions in the quenched approximation, treatment of isotopic (color) degrees of freedom, field-theoretic methods for turbulence; axioms and the naturalness of the U(1) symmetry, automatic and color anomalous U(1) symmetries, monopoles and constraints on grand unified model; numerical methods for large N theories, loop-space dynamics, quantum gravity, duality transformations in -models and supergravity; the physical basis of the Adler-Bell-Jackiw anomaly, continuum limit of quantum lattice gravity; electron localization in external magnetic fields; large N phase diagrams and universality, variational methods for studying phase transitions in lattice gauge theories, large-N QCD with matter fields present; valence approximation to lattice QCD, Monte-Carlo evaluation of hadron masses. Much effort has been expended by the members of our group in numerical, computer-augmented calculations, and large-N gauge theories, lattice QCD, fermions and chiral-symmetry breaking. New areas such as quantum gravity, supergravity, and supersymmetry have also geen approached

  8. Progress report for a research program in theoretical high energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Jevicki, A.; Kang, Kyungsik; Tan, Chung-I.

    1988-01-01

    This year's research has dealt with: galaxy and cluster from formation with and proton decay catalyzed by cosmic strings; dynamics of inflationary models; the contraction of gauge groups; the narrow e + e/sup /minus// and two photon peaks in heavy ion scattering; the application of the strong coupling-by-infrared extraction method and the strong coupling approximation or ordered exponentials; the operator construction of the interacting superstring theory; S-matrix formalism for the effective action in strings; general σ-model with general non-renormalizable interactions; gauge models that include the axion and majoron; high energy hadron-hadron scattering models; axion emission from supernova; flavor symmetry and mixings; a nonperturbative study of QCD; finite-temperature structure of superstring theories; rising total cross-sections in the dual parton model; a new class of solutions to the open-bosonic-string field equations; tachyons and perturbative unitarity; closed string field theory from an on-shell effective action; 2-dimensional conformal field theories and non-linear σ-models describing strings. 16 refs

  9. Information support of Energy Research and Development Administration's environmental program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ulrikson, G.U.

    1975-01-01

    The primary function of the Information Center Complex (ICC) is to develop and correlate the information activities of the energy and related environmental research projects at ORNL and to systematize operations to achieve maximum response to the information needs of funding agencies and user community. The development of new data bases and information services as need arises is a major responsibility of ICC. Interactions among segments of ICC provide for a wide range of analysis and synthesis of knowledge, resulting in a synergistic effect. Present methods used to retrieve environmental information from the scientific literature are reviewed with respect to specific procedures employed by ICC, and the use of highly specialized data bases in relation to manual and computerized sources is discussed. Procedures employed for different types of queries and the search strategy utilized are summarized indicating the extent of coverage from the various data bases. The ICC matrix organization is described. This organizational structure is representative of the subject area disciplines which contribute to biomedical and environmental information and an intersecting structure which provides for the accomplishment of mission-oriented tasks overlapping general disciplines. The advantages of a matrix organization are discussed

  10. Progress report for a research program in theoretical high-energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Guralnik, G.S.; Jevicki, A.; Kang, K.; Tan, C.I.

    1980-01-01

    The past year's research has dealt with a wide range of topics in High-Energy Theoretical Physics. Important new results have been found in the fields of large-N expansions in quantum field theories via an effective Hamiltonian technique, and by the method of classical field equations supplemented by quantum boundary conditions; finite lattice QCD at N/sub c/ = infinity; neutrino oscillations and natural flavor conservation in gauge theory; the vanishing of the renormalized effective potential in phi 4 4 theory; a new method for treating singular differential equations; and an infrared cluster expansion in quantum field theory. In addition, substantial progress has been made in the analyses of lattice gauge theories; studies of factorization properties of mass and infrared singularities in QCD: non-hermitian quantum problems in the context of Gribov field theories; symmetry breaking via contracted groups; the calculation of Cabibbo-type angles and grand unification theories; and strong-coupling methods in gauge and nongauge field theories, using a systematic, lattice-formulated, perturbation theory, and by the extraction of relevant infrared structure

  11. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  12. Energy research program: energy in buildings for the years 2008-2011; Energieforschungsprogramm. Energie in Gebaeuden fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Filleux, Ch.

    2009-08-15

    In Switzerland, existing buildings account for approximately 50% of primary energy consumption. Climate change, as well as the demand on supply, require that Swiss construction practices be immediately adapted. For new buildings, innovative technologies are now widely available. However, their integration into new construction is still too slow due to the fact that current construction practices still lack a holistic approach. Today there also lacks practical solutions for renovations of existing buildings. Therefore, the great challenge for research and development today are 1.5 million pre-existing buildings, which will dictate the future energy consumption for decades. The Federal Energy Research Commission (CORE) has recognized the situation and has considered these issues in its 2008 - 2011 concept for federal energy research. The present research programme Energy in Buildings of the Swiss Federal Office of Energy focuses on the long-term objectives of CORE. This results in the following actions in the building sector: (a) Reducing energy consumption and improving energy efficiency; (b) Integration of renewable energy sources; (c) Reduction of CO{sub 2} emissions through the use of improved technologies. The research programme is therefore focused on concepts and technologies that have long-term objectives, without neglecting the short and medium term goals. The objectives for the period 2008 - 2011 are: (i) Concepts for buildings and housing developments concerning the development of construction methods that are compatible with the goal of a 2,000-watt society (preservation of architectural diversity, use of passive solar energy and daylight); (ii) Concepts, technologies and planning tools for the improvement of energy systems in buildings; (iii) Heating, cooling and ventilation systems in buildings that are compatible with the goal of a 2,000-watt society (efficient cooling systems, heat pumps, etc.); (iv) Increase in efficient use of electricity in

  13. Research for energy

    International Nuclear Information System (INIS)

    Garbers, C.F.

    1983-01-01

    This paper deals with energy R D and its funding in the South African public sector. The objectives of the National Programme for Energy Research are discussed within the framework of the country's manpower and financial needs and limitations. It is shown that energy research is multidisciplinary where the focus is on infrastructure development within the constraints of technical, economic and environmental factors. Possible mechanisms to cater for the country's energy research funding are suggested

  14. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  15. Ecological Research Division, Marine Research Program

    International Nuclear Information System (INIS)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States

  16. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Wang, T.W.

    2000-01-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  17. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Gone, J.K. [TRR-II Project Team, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Wang, T.W. [Division of Health Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2000-05-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  18. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, Oum Keltoum [National School of Mineral Industry, ENIM, BP 753, Agdal, 10000 Rabat (Morocco)

    2008-07-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R

  19. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    International Nuclear Information System (INIS)

    Bouhelal, Oum Keltoum

    2008-01-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R and D

  20. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  1. Progress report of a research program in experimental high energy physics

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.; Cutts, D.

    1990-01-01

    An experimental program in strong and electro-weak interaction physics of elementary particles is being carried out using electronic detection techniques. Experiments have been performed at Brown, Brookhaven, and Fermilab. The work described in this report by the Electronic Detector Group addresses the following: neutrino interactions and intrinsic properties, preparations for experiments (''D--ZERO'') at the FNAL 2 TeV bar pp Collider, new detection techniques for neutrino properties

  2. A research program in experimental high energy physics: Task C, Progress report

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.; Cutts, D.

    1988-01-01

    An experimental program in strong and electro-weak interaction physics of elementary particles is being carried out using electronic detection techniques. Experiments have been performed at Brown, Brookhaven, and Fermilab. The work described in this report by the /electronic Detector Group addresses the following: electroweak parameters via neutrino interactions, preparations for experiments (''D-ZERO'') at the FNAL 2 TeV /bar p/p Collider, new detection techniques for neutrino properties

  3. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  4. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM. ANNUAL REPORT TO THE DEPARTMENT OF ENERGY, DECEMBER 1998.

    Energy Technology Data Exchange (ETDEWEB)

    OGEKA,G.J.

    1998-12-31

    In FY 1998, the BNL LDBD Program funded 20 projects, 4 of which were new starts, at a total cost of $2,563,681. The small number of new starts was a consequence of severe financial problems that developed between FY 1997 and 1998. Emphasis was given to complete funding for approved multi-year proposals. Following is a table which lists all of the FY 1998 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which follow. A total of 17 informal publications (abstracts, presentations, BNL reports and workshop papers) were reported and an additional 13 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for a patent. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. In conclusion, a significant measure of success is already attributable to the FY 1998 LDBD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  5. Research using energy landscape

    International Nuclear Information System (INIS)

    Kim, Hack Jin

    2007-01-01

    Energy landscape is a theoretical tool used for the study of systems where cooperative processes occur such as liquid, glass, clusters, and protein. Theoretical and experimental researches related to energy landscape are introduced in this review

  6. First Order Estimates of Energy Requirements for Pollution Control. Interagency Energy-Environment Research and Development Program Report.

    Science.gov (United States)

    Barker, James L.; And Others

    This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…

  7. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  8. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  10. Laboratory Directed Research and Development Program: Annual report to the Department of Energy

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1994-12-01

    Project program summaries are presented for: effect of bacterial spore protein on mutagenesis; cellular toxicity of coaine and cocaethylene; calcinfication in marine alga (global carbon cycling); advanced permanent magnet materials; a high flux neutron source; genetics of drug addiction; microdialysis; analysis of powder diffraction data; accelerator technology; nucleic acids and proteins and their interactions, by small-angle XRD; enhancement of microplanar beam radiation therapy of gliosarcoma; relaxographic and functional MRI; low-temperature infrared laser absorption spectroscopy; photodesorption of H 2 ; helical magnet for RHIC; novel microporous solids; chemistry and physics of stratospheric aerosols (ozone depletion); rf source for linear colliders; resonance Raman detection of VOCs; synthesis of plant fatty acids with unusual double bond positions; outer surface proteins of the Lyme disease spirochete; multiwire proportional chambers for collider muons; self-organized criticality; PCR-SSCP detection of genetic changes at single cell level; proton facility for cancer therapy; and visible free-electron laser experiment

  11. Laboratory Directed Research and Development Program: Annual report to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1994-12-01

    Project program summaries are presented for: effect of bacterial spore protein on mutagenesis; cellular toxicity of coaine and cocaethylene; calcinfication in marine alga (global carbon cycling); advanced permanent magnet materials; a high flux neutron source; genetics of drug addiction; microdialysis; analysis of powder diffraction data; accelerator technology; nucleic acids and proteins and their interactions, by small-angle XRD; enhancement of microplanar beam radiation therapy of gliosarcoma; relaxographic and functional MRI; low-temperature infrared laser absorption spectroscopy; photodesorption of H{sub 2}; helical magnet for RHIC; novel microporous solids; chemistry and physics of stratospheric aerosols (ozone depletion); rf source for linear colliders; resonance Raman detection of VOCs; synthesis of plant fatty acids with unusual double bond positions; outer surface proteins of the Lyme disease spirochete; multiwire proportional chambers for collider muons; self-organized criticality; PCR-SSCP detection of genetic changes at single cell level; proton facility for cancer therapy; and visible free-electron laser experiment.

  12. Outline of research program on thorium fuel supported by grant-in-aid for energy research of ministry of education, science and culture

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    Since 1980, the Research Program on Thorium Fuel has been performed under the support of Grant-in-Aid for Energy Research of the Ministry of Education, Science and Culture of Japanese Government on the university basis including several tens professors. The main results have been published in the English-written report, ''Research on Thorium Fuel (SPEY-9, 1984)''. This report describes the outline and review of the symposium held on January 31, 1984. It consists of nuclear data, reactor physics, thorium fuel, irradiation of thorium, down-stream, biological effect, molten salt reactor engineering and others. It has been the first trial to perform such a big systematic cooperative studies in nuclear field on the university basis in Japan. (author)

  13. The Department of Energy's Comprehensive Test Bank Treaty Research and Development Program

    International Nuclear Information System (INIS)

    Simons, D.; Stump, B.; Breding, D.; Casey, L.; Walker, L.; Zucca, J.; Harris, D.; Hannon, J.; Denny, M.; Patton, H.

    1995-01-01

    The U.S. DOE sponsored research investigating atmospheric infrasound as a means of detecting both atmospheric and underground nuclear tests. Various detection schemes were examined and were found to be effective for different situations. It has been discovered that an enhanced sensitivity is realizable for the very lowest frequency disturbances by detecting the infrasound at the top of the atmosphere using radio sound techniques. These techniques are compared to more traditional measurement schemes

  14. Danish energy research

    International Nuclear Information System (INIS)

    1976-04-01

    Review of current Danish research and development on energy, with the main weight laid on public financing. Based on this review, a proposal is presented for extended research and development i Denmark. (B.P.)

  15. Research program in experimental high energy physics. Progress report, 1 January-31 December 1986

    International Nuclear Information System (INIS)

    Widgoff, M.

    1986-01-01

    During the past year, analysis has continued on the data of SLAC experiments BC72/73/75, studying the interactions in hydrogen of 20 GeV polarized photons. Results have been obtained on photoproduction of charm and on the lifetimes of charmed particles, and inclusive γp interactions are being studied in detail in this high statistics sample. The hybrid detector built by the Tau Neutrino Collaboration, with a Tohoku one-meter holographic freon bubble chamber as target, has had a successful first run at the Tevatron (E745), and data obtained on muon neutrino interactions at high energies are being analyzed. The system is being upgraded for a second phase of running in the Tevatron muon neutrino beam and for eventual use with the Direct Neutral Lepton Facility, in a search for direct observation of tau neutrino interactions (E636) if and when this facility becomes available. Meanwhile, analysis of data on some aspects of interactions of hadrons with protons and heavier nuclei is continuing (Fermilab E565, E570, E E154). Monte Carlo studies of various calorimeter designs have been carried out, with a view to finding ways to employ absorber materials other than uranium effectively, by making use of a software technique to substitute for the compensating effect of uranium. The technique will be investigated in an experiment at CERN whose aim is to test this procedure for the HERA H-1 calorimeter. The group at Brown has joined a collaboration to carry out experiments in high energy physics, with relevance to cosmic rays and astrophysics, in the new underground laboratory being prepared at Gran Sasso. This collaboration will build a detector (LVD) which includes a large volume of liquid scintillator together with a multilayered omnidirectional tracking system of high angular resolution

  16. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  17. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  18. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  19. Progress report of a research program in experimental high energy physics, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    Widgoff, M.

    1984-01-01

    An experimental program to study the interactions of hadrons, photons, and neutrinos is being carried out using hybrid systems which include bubble chambers as visible targets and counter spectrometers for particle detection, identification, and momentum measurements. Experiments have been run in both positive and negative hadron beams at Fermilab, and with polarized photons at SLAC. Experiments with neutrino beams at Tevatron II at Fermilab are in preparation. We have been analyzing the film and counter data of our one-million-picture exposure for the study of π+-, K + and p interations in hydrogen and magnesium, silver and gold, at a beam momentum of 200 GeV/c, as well as continuing the physics analysis of our earlier FNAL experiments on π + p, K + p, and pp interactions at 147 GeV/c. During the past year analysis has continued on the data of SLAC experiments studying the interactions in hydrogen of 20 GeV polarized photons. Results have been obtained on photoproduction of charm and on the lifetimes of charmed particles, and on vector meson and strange particle production. Inclusive γp interactions are being studied in detail in this high statistics sample. Another experiment, was run at 10.5 GeV, to search for evidence of a predicted threshold enhancement in the charm photoproduction cross section. Preparations are in progress for neutrino interaction studies at Tevatron II. An experiment will run starting early in 1985 in the wide band neutrino beam with hybrid system designed for the tau neutrino search to be run with the beam dump

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  2. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  3. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  4. Research on spherically converging ion-beam fusion neutron source for the fundamental research of atomic energy. JAERI's nuclear research promotion program, H10-050. Contract research

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Inoue, Nobuyuki; Yamazaki, Tetsuo

    2002-03-01

    Potential well formation due to space charge associated with spherically converging ion beams plays a key and essential role in the beam-beam colliding fusion, which is the major mechanism of the Inertial Electrostatic Confinement Fusion (IECF) devices. Many theoretical results so far predicted strongly localized potential well formation, and actually for the past 30 years, many experiments were dedicated to clarify this mechanism, but neither could provide definitive evidence. In this study, we succeeded for the first time in the world in observing the double-well potential profile by use of the laser-induced fluorescence method that makes use of Stark effects, which put a period to the controverse for 30 years on the existence of the double-well potential profile. Furthermore, aiming at demonstrating a numerical prediction of a strongly nonlinear dependence of the fusion reaction rate on the discharge current on negligence of the charge exchange processes, triple-grid auxiliary system was introduced in order to reduce the operating gas pressure, with a successful result of reducing the pressure down to 1/5 of the conventional one required for glow discharge with single-grid system. Also, we measured accelerated atoms' kinetic energies through Doppler shift spectroscopy, and found the maximum energy increases proportionally to the applied voltage, which implies an enhancement of the fusion reaction cross-section with an increasing applied voltage in the near future. (author)

  5. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  6. Energy research for tomorrow

    International Nuclear Information System (INIS)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard

    2011-04-01

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial application and

  7. Energy research for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard (eds.)

    2011-04-15

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial

  8. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  9. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-01-01

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management

  10. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  11. DIII-D Research Operations annual report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Evans, T.E. [eds.

    1992-03-01

    This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  13. Energy in Ireland: context, management and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the framework of the climatic change and the fossil fuels shortage, the Ireland defined a new energy policy. The priority is the energy supply security and the research programs present a great interest in the ocean energies, which represent an important source in Ireland. The report presents the context, the irish energy policy, the research programs on energy and the different actors of the domain. (A.L.B.)

  14. A proposed programme for energy risk research

    International Nuclear Information System (INIS)

    1979-01-01

    The report consists of two parts. Part I presents an overview of technological risk management, noting major contributions and current research needs. Part II details a proposed program of energy research, including discussions of some seven recommended projects. The proposed energy risk research program addresses two basic problem areas: improving the management of energy risks and energy risk communication and public response. Specific recommended projects are given for each. (Auth.)

  15. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  16. Renewable Energy Certificate Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwendolyn S. Andersen

    2012-07-17

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  17. A contribution of the FVEE to the 6th German energy research program. Research projects in the area of renewable energy sources, energy efficiency and system integration; Beitrag des FVEE zum 6. Energieforschungsprogramm der Bundesregierung. Forschungsaufgaben in den Bereichen erneuerbare Energien, Energieeffizienz und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Stryi-Hipp, Gerhard; Stadermann, Gerd (comps.)

    2010-10-15

    Due to the increasing climate change, increasing dependence of imports from constant scarce fossil and nuclear energy resources and due to the strongly fluctuating energy prices, fundamental settings of the agenda for the power supply are placed at present in Germany and Europe. In the contribution under consideration, the Renewable Energy Research Association (Berlin, Federal Republic of Germany) recommends ways to the research and development of a power system in which renewable energies and energy efficiency play a central role. For the 6th energy research program of the Federal Government two principles can be derived: (a) The energy research must be intensified clearly and permanently; (b) In the energy research a clear stabilization of the renewable energies and the energy efficiency have to be performed, since they are the most important contributions to the future energy system.

  18. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  19. Consumer energy research review. A compendium of selected studies and their implications for policy formulation and program design

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, J.R.B.; McDougall, G.H.G. (comps.)

    1982-01-01

    This bibliography covers studies of consumers of energy, their attitudes and patterns of consumption. Annotations are given in outline form with respect to the study's objectives, major findings, and implications for consumer energy policy and research. If the study was a survey, the location and nature of sample are given. Literature from Canada and the U.S.A. is included.

  20. Fermilab Research Program Workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1984-05-01

    The Fermilab Research Program Workbook has been published annually for the past several years to assist the Physics Advisory Committee in the yearly program review conducted during its summer meeting. While this is still a major aim, it is hoped that the Workbook will also prove useful to others seeking information on the current status of Fermilab experiments and the properties of beams at the Laboratory. In addition, short summaries of approved experiments are also included

  1. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  2. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  3. Swiss energy research program on energy economics basics for 2008-2011; Energieforschungsprogramm. Energiewirtschaftliche Grundlagen (EWG) fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, N. A.

    2009-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) introduces the energy research programme on energy economics basics for the years 2008 - 2011. The programme is very interdisciplinary and uses many theoretical and empirical methods from the areas of micro and macro-economy, political science and socio-psychology. The budget available for research in this area is discussed and the various institutions involved are noted. Both public and private funding is discussed. The main areas of research being targeted for the period 2008 - 2011 in the areas of energy policy and applied research are discussed. These include improvements in the methods used for energy perspectives and innovation as well as social and individual factors influencing the use of energy.

  4. Energy Program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, I.Y. (ed.)

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  5. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  6. Tansmutation Research program

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  7. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  8. Marine biosurfaces research program

    Science.gov (United States)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  9. Progress report of a research program in experimental and theoretical high energy physics, 1 June 1992--May 31, 1993

    International Nuclear Information System (INIS)

    Brandenberger, R.; Cutts, D.; Fried, H.M.

    1993-01-01

    The main emphasis in the theoretical program has been in the area of string theory; also investigated were confinement and other aspects of QCD, electroweak symmetry breaking, and electroweak baryogenesis. The research program in computational physics concentrated on the development of the source Galerkin method of numerical quantum field theory. One portion of the experimental program dealt with interactions of leptons and hadrons from accelerator and astrophysics sources. A description of the Large Volume Detector at Gran Sasso and its use as a stellar collapse monitor is given, along with an account of research and development on resistive plate counters. The rest of the experimental program concerns hadron collider and neutrino physics, with major emphasis on the D0 experiment at the TeVatron. The commissioning of the D0 detector and its operation are described, along with D0 analysis. Also reported is a novel cryogenic technique utilizing superfluid helium for neutrino calorimetry. 122 refs., 7 tabs., 23 figs

  10. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure

  11. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  12. Controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Plasma Physics and Controlled-Fusion Research Program at the Lawrence Berkeley Laboratory is divided into five projects: Plasma Production and Heating Experiments, Plasma Theory, Atomic Physics Studies, the Tormac Project, and Neutral-Beam Development and Technology listed in order of increasing magnitude, as regards manpower and budget. Some cross sections and yields are shown in atomic physics

  13. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  14. Advanced maintenance research programs

    International Nuclear Information System (INIS)

    Marston, T.U.; Gelhaus, F.; Burke, R.

    1985-01-01

    The purpose of this paper is to provide the reader with an idea of the advanced maintenance research program at the Electric Power Research Institute (EPRI). A brief description of the maintenance-related activities is provided as a foundation for the advanced maintenance research projects. The projects can be divided into maintenance planning, preventive maintenance program development and implementation, predictive (or conditional) maintenance, and innovative maintenance techniques. The projects include hardware and software development, human factors considerations, and technology promotion and implementation. The advanced concepts include: the incorporation of artificial intelligence into outage planning; turbine and pump maintenance; rotating equipment monitoring and diagnostics with the aid of expert systems; and the development of mobile robots for nuclear power plant maintenance

  15. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  16. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  17. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  18. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  19. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  20. Energy Analysis Program 1990 annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ''Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings

  1. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  2. Optimiturve research program in 1991

    International Nuclear Information System (INIS)

    Leinonen, A.

    1992-01-01

    The target of the program is to develop a peat production method, based on solar energy, by which it is possible to double the present annual hectare yield. It has been estimated that if the target of the program can be fulfilled it is possible to decrease the production costs by about 20 %. The target has been strived by intensification of utilization of solar radiation, by improving the collection rate of dry peat, by decreasing the rain effects on production, by lengthening the production season and by decreasing the storage losses. Three new peat production methods have so far been developed in the Optimiturve research program, by which it is possible to obtain the targets of the program. These methods are the new sod peat production method, the ridge drying method and the Multi method

  3. Swedish wind energy research program VKK, Annual report 2000/2001; Vindkraftsprogrammet VKK. Laegesrapport verksamhetsaaret 2000/2001

    Energy Technology Data Exchange (ETDEWEB)

    Thor, S.E.

    2001-11-01

    This report describes the results that have been achieved during the period July 1, 2000 to June 30, 2001, the last year in the three-year period of the present research programme financed by the Swedish Energy Administration. The yearly budget amounts to 15.6 MSEK (about 1.5 MUSD)

  4. NRL HIFAR research program

    International Nuclear Information System (INIS)

    1989-01-01

    The use of a beam of heavy ions to ignite a thermonuclear pellet places severe constraints on beam emittance throughout the accelerator system. Nonlinearities which occur during beam transport, acceleration, and focusing, can cause emittance growth which limits spot intensity. Because of the high beam intensities required to achieve ignition, details of the self-consistent evolution of nonlinear space charge forces are generally important in this process. Computer simulations have, in turn, become an important tool in examining beam dynamics in this nonlinear regime. The Naval Research Laboratory HIFAR research program has been a major contributor to the successful use of numerical simulation to understand the detailed mechanisms by which space charge nonlinearities can contribute to emittance growth and the dilution of beam intensity. This program has been conducted in close cooperation with LLNL and LBL personnel to maximize support for those programs. Codes developed at NRL have been extensively shared and models developed at the other laboratories have been incorporated in the NRL codes. Because of the collaborative nature of much of the work over the past year, which has emphasized the development of numerical tools and techniques for general use, progress has generally resulted from shared efforts. The work, as reported here, emphasizes those contributions which can be attributed primarily to the NRL effort

  5. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  6. Canadian wind energy program

    Energy Technology Data Exchange (ETDEWEB)

    Templin, R J; South, P

    1976-01-01

    Several aspects of recent work at the National Research Council of Canada on the development of vertical-axis turbines have been reviewed. Most of this work, during the past year or more, has been in support of the design of a 200 kW unit now being built for experimental operation on the Magdelen Islands in the Gulf of St. Lawrence. Results of small and large scale aeroelastic wind tunnel model experiments have confirmed that very large scale vertical-axis wind turbines are feasible, especially if designed for normal operation at constant rotational speed. A computer model of a simple mixed power system has indicated that substantial cost savings may be possible by using wind energy in Canadian east coast regions. 4 refs., 11 figs., 1 tab.

  7. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  8. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  9. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  10. The International Atomic Energy Agency (IAEA) research program to improve safety assessment methodologies for near-surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Kozak, M.W.

    2000-01-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Program in November 1997 on Improvement of Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM). The purpose of this paper is to describe the program and its goals, and to describe achievements of the program to date. The main objectives of the ISAM program are outlined. The primary focus of ISAM is on the practical application of safety assessment methodologies. Three kinds of practical situations are being addressed in the program: safety assessments for large vaults typical of those in Western Europe and North America, smaller vaults for medium and industrial wastes typical in eastern Europe and the former Soviet Union, and a proposed borehole technology for disposal of spent sources in low-technology conditions. (author)

  11. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  12. State Energy Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s State Energy Program (SEP) provides funding and technical assistance to states, territories, and the District of Columbia to enhance energy security, advance state-led energy initiatives, and maximize the benefits of decreasing energy waste.

  13. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  14. Fiscal 1999 research report. Basic research for promotion of joint implementation programs (Basic research on energy efficiency at Novolipetsk Iron and Steel Works); 1999 nendo Novolipetsk seitetsushosho energy kihon chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A survey is conducted about whether energy efficiency improving facilities will be appropriately accommodated by the sintering process, blast furnace process, steelmaking process, and the energy process that consume energy in large quantities at the Novolipetsk Iron and Steel Works which represents Russia's steelmaking plants, which is for scouting out a project to develop into a joint implementation activity in the future. The result shows that the amount of natural gas for domestic power generators in the steelworks or the amount of power to be purchased will be reduced when large-scale exhaust heat recovery facilities are adopted. A study of the energy profile shows that there is no problem to impede the implementation of this program. Regarding the introduction of energy saving measures into the respective processes, the results of investigations conducted into the respective processes are subjected to a macroscopic study. The facilities involved include a sintering cooler exhaust heat recovery facility, hot blast furnace waste heat recovery facility, TRT (power generation by blast furnace top-pressure recovery turbines) facility, and an LDG (basic oxygen gas) recovery facility. Upon adoption of all these facilities, there will be a reduction in green effect gas (CO2) emissions of approximately 410,000 tons/year, for which a total of 20.9-billion yen will have to be invested. (NEDO)

  15. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department's environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department's environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C

  16. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  17. [Medium energy meson research

    International Nuclear Information System (INIS)

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p bar p annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report

  18. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  19. Annual report to the Atomic Energy Control Board on the Regulatory Research and Support Program April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1996-03-01

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. During Fiscal Year 1994/95, a total of $3.245M was spent of RSP research and support work. The range of activities included projects in the general fields of nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, regulations and regulatory process development, and other special support services. Some of this work was organized into sub-program groups, each of which addresses research and support effort in theme-related areas. Five sub-programs were launched during the year bringing to eight the total number of such sub-programs. Areas addressed in the sub-programs are environmental impact assessment and management, safety critical software, seismologic studies, pressure boundary integrity, integrity of containment and safety-related structures, human factors, internal dosimetry, and health effects in human populations. During the year, there were a total of 157 active projects

  20. Component fragility research program

    International Nuclear Information System (INIS)

    Tsai, N.C.; Mochizuki, G.L.; Holman, G.S.

    1989-11-01

    To demonstrate how ''high-level'' qualification test data can be used to estimate the ultimate seismic capacity of nuclear power plant equipment, we assessed in detail various electrical components tested by the Pacific Gas ampersand Electric Company for its Diablo Canyon plant. As part of our Phase I Component Fragility Research Program, we evaluated seismic fragility for five Diablo Canyon components: medium-voltage (4kV) switchgear; safeguard relay board; emergency light battery pack; potential transformer; and station battery and racks. This report discusses our Phase II fragility evaluation of a single Westinghouse Type W motor control center column, a fan cooler motor controller, and three local starters at the Diablo Canyon nuclear power plant. These components were seismically qualified by means of biaxial random motion tests on a shaker table, and the test response spectra formed the basis for the estimate of the seismic capacity of the components. The seismic capacity of each component is referenced to the zero period acceleration (ZPA) and, in our Phase II study only, to the average spectral acceleration (ASA) of the motion at its base. For the motor control center, the seismic capacity was compared to the capacity of a Westinghouse Five-Star MCC subjected to actual fragility tests by LLNL during the Phase I Component Fragility Research Program, and to generic capacities developed by the Brookhaven National Laboratory for motor control center. Except for the medium-voltage switchgear, all of the components considered in both our Phase I and Phase II evaluations were qualified in their standard commercial configurations or with only relatively minor modifications such as top bracing of cabinets. 8 refs., 67 figs., 7 tabs

  1. ORNL results for Test Case 1 of the International Atomic Energy Agency's research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    International Nuclear Information System (INIS)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-01-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled '''The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.'' The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault

  2. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  3. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  4. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  5. Gas Research Institute research program summary: Goals and accomplishments

    International Nuclear Information System (INIS)

    1991-07-01

    Gas Research Institute's research and development programs pursue technologies that maximize the value of gas energy services while minimizing the cost of supplying and delivering gaseous fuels. Four program areas, Supply Options, End Use, Gas Operations, and Crosscutting Research, are described in the report, together with related project titles and numbers. Also included are summaries of 1990 research results, research collaboration and supported work, and patents and licensing agreements. Glossaries of budget and program terms and of acronyms and abbreviations often used in the GRI literature are added

  6. The health physics programs in low-level radioactive waste management at the Institute of Nuclear Energy Research, Republic of China

    International Nuclear Information System (INIS)

    Chen, W-L.

    1986-01-01

    The primary mission of the health physics programs in low-level radioactive management is to ensure radiation safety for personnel and environment of the Institute of Nuclear Energy Research (INER), and also for the general public surrounding INER. In view of the above, the Health Physics programs in low-level radioactive waste management are divided into three sub-programs: the radiation control program, the environmental survey and bioassay program, and the radiation dosimetry supporting program. The general guidelines, responsibilities, and performance of these programs will be discussed in this paper in the following order. The responsibility of radiation control group is to conduct area monitoring and radiation surveillance for the radioactive waste treatment workers. It includes the control of radiation field level of the working area, servicing personnel dosimeters, instruction on radiation safety, and handling of radiation accidents. The responsibility of the environmental survey and bioassay group is to perform environmental surveys and bioassays. Environmental gamma monitoring stations were installed both on-site and off-site at INER. For bioassays, urine samples are taken from radioactive waste treatment workers, and for internal contamination checks of workers, total body counting systems are being used. The main responsibility of the radiation dosimetry group is to provide radiation dosimetrical support to the radiation control group and the environmental survey and bioassay group. Some typical work of the radiation dosimetry group is the qualitative assay and quantitative determination of radioactive samples, and calibration of dosimeters and survey meters

  7. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  8. Strategic bioenergy research. A knowledge compilation and synthesis of research projects funded by the Swedish Energy Agency's fuel program 2007-2011; Strategisk bioenergiforskning. En kunskapssammanstaellning och syntes av forskningsprojekt finansierade av Energimyndighetens braensleprogram 2007-2011

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Gustavsson, Mathias; Hoeglund, Jonas; Hellsten, Sofie; Martinsson, Fredrik; Stadmark, Johanna [IVL Svenska Miljoeinstitutet, Stockholm (Sweden)

    2012-11-01

    During 2007-2011 the Swedish Energy Agency has run the program 'Sustainable supply and processing of biofuels'. To summarise the state of knowledge, identify knowledge gaps and analyse the results in a broader context, three different synthesis reports have been performed in the program's final phase. This report is one of these synthesis reports and concerns the area of strategic bioenergy research. In this context, 'strategic' means research that is of significance from the system, marketing and/or policy perspective. The work is based on research conducted mainly in the research programme 'Sustainable supply and processing of biofuels'. This report constitutes the final report of the synthesis project on strategic bioenergy research and includes knowledge compilation, identification of knowledge gaps and synthesis. The results of the synthesis project provide a basis for planning new research programs in the auspices of the Swedish Energy Agency. The two other synthesis projects concern forest fuels as well as energy crops and fuel quality. The report covers a rather broad field of research, e.g. environmental impact, carbon balances, nitrous oxide, bioenergy systems, scenarios, trade and marketing, standardization and certification. The work has been based on project plans and publications for a predefined number of projects, as well as on interviews and discussions with project leaders. Furthermore, several seminars and workshops also provided information for the compilation. Other studies have also been taken into account to some extent.

  9. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  10. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  11. General program of energy research: innovation in hard coal, 1974-1977. New drivage systems. Rahmenprogramm energieforschung: innovation steinkohle, 1974-1977. Neue vortriebssysteme. Volume 1, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    During the four year period of the program, initiated by the German Federal government, 19 research and machine development projects in the field of road heading machines were subsidized. The Juelich energy research project management oversaw the progress of the programs. Projects for developing new machines at a total cost of 0.1 to 3.2 million DM per project were subsidized by 50%. The developed machinery includes the Roboter, WAV 200 and AM 50 high powered road cutter loaders, HSV 4 and Hausherr Mini ripper hydraulic percussion hammer heading machines, the DEMAG/SVM full face tunneling machine with a cutting head of 6 m in diameter, efficient drilling and blasting equipment for road drivage in rock and mechanized systems for achieving efficient support work, and keeping pace with the speed of mine drivage.

  12. Fiscal 1999 research report. Basic research for promotion of joint implementation programs (Research on energy saving plan for NORSI Refinery); 1999 nendo NORSI seiyusho sho energy keikaku chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is a feasibility study desired to connect to a joint implementation program in the future, which plans to modify the oil refining system now in existence at the NORSI Refinery in the Russian Federation. The modification plan for energy efficiency improvement consists of (1) the reconstruction of the heat exchanger network, addition of three high-efficiency heating furnaces, and the introduction of stripping steam into the pre-distillation tower for the atmospheric/vacuum distillation system, (2) the addition of two combined heat exchangers, replacement of the reboiler with a steam reboiler, and the use of reflux line in the deethanization tower for the reforming section of the catalytic reforming unit, and (3) the addition of combined heat exchangers and the installation of two high-efficiency heater furnaces for the hydrodesulfurization unit for kerosene and light oil. The plan requires 40,470,000 dollars, and will save 48,000 tons/year in terms of oil and reduce CO2 emissions by 120,000 tons/year. No settlement has been reached, however, about financing, agreement to cost performance, or apportioning of the amount of reduction in CO2 emissions to the parties involved in case of transfer under a joint implementation program. It is desired that these problems will be solved for the promotion of the project. (NEDO)

  13. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  14. Fossil Energy Materials Program conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. (comp.)

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  15. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program, research and development technology needs assessment review meeting for FY 1990, September 1989, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    On September 20--21, 1989, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Oak Ridge, Tennessee, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. Consistent with the ongoing reevaluation of DOE's plans for environmental restoration and waste management, an attempt was made to relate the needs developed in this meeting to the needs expressed in the draft Applied Research, Development, Demonstration, Testing, and Evaluation Plan. Operations Offices were represented either by DOE staff or by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established.

  16. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  17. Achievement report for fiscal 1983 on Sunshine Program-entrusted research and development. Survey and research on patent information (Hydrogen energy); 1983 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    For the purpose of propelling forward the Sunshine Program smoothly and efficiently, a survey is conducted on inventions related to the contents of researches being conducted under the Sunshine Program. The survey covers hydrogen energy-related patents laid open in 1983. As the result of the survey, it is learned that, among the patents related to thermochemical or photochemical processes, those that relate to hydrogen production technologies using the photochemical process is found to be on the increase. There is a remarkable increase also in the number of patents related to metallic hydrides, as in the preceding year. As for their contents, many involve containers for hydrogenation heat utilization, but now novel hydrogen storage alloys are also evoking interest. As for the hydrogen fuel cell, there is an increase in the number of applications for the phosphoric acid fuel cell and molten carbonate fuel cell which are expected to be introduced into the power system. As for the hydrogen engine, the number of applications concerning alcohol-reformed gas engines is approximately three times larger than that of the preceding year. In relation with the hydrogen combustion system, many patents relate to catalytic combustion. This is probably because the technique has come to be recognized as a controlled burning method which has in itself a measure to inhibit NOx emissions. (NEDO)

  18. Energy Program annual report, 1991

    International Nuclear Information System (INIS)

    Pasternak, A.

    1992-08-01

    The Energy Program emphasizes applied R ampersand D for energy technologies that will be important to the US in the next fifty years and which may be important long after that. Historically, we have focused on coal gasification; the development of alternative liquid fuels from oil shale, coal, and natural gas; transportation uses of electric power from refuelable batteries; geothermal energy; and support of nuclear energy through the development of new technologies for the disposal of high-level nuclear waste. Our current program addresses three objectives of the National Energy Strategy: (1) To enhance energy security by ensuring stable costs, increasing energy supplies, and developing alternatives to Middle East oil. (2) To improve environmental quality by implementing energy technologies that effect better air and water quality, improve land use, and protect global environmental systems. (3) To encourage economic growth through technologies that reduce the costs of energy production, storage, transport, transmission, and distribution; promote efficiency by reducing costs and end-user services; and strengthen resiliency and flexibility of energy systems. We have just begun a major program to commercialize the technology to extract oil from the large US reserves (greater than 700 billion barrels) of oil shale. Perhaps the single greatest barrier to the public acceptance of nuclear power is the perceived lack of a technical solution to the permanent disposal of wastes. We have developed new concepts that are aimed at improving the likelihood of technical assurance of long-term containment

  19. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  20. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  1. Research program in theoretical high-energy physics. Task A progress report, January 1-December 31, 1986

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Jevicki, A.; Kang, K.; Tan, C.I.

    1986-01-01

    This year's research has dealt with a side range of theoretical optics of current interest. New results include: an operator formulation of the covariant interacting string field theory of Witten the string and nonlinear sigma model connection; Kac-Moody and Virasoro algebras and their applications to string theories; compactified strings on group manifold as non-linear sigma models with Wess-Zumino terms and BRST quantization simplicial lattice formulation of gravity and strings; numerical studies of Polyakov strings and their Hausdorff dimensions; stability of vacuum energies for strings compactified on various tori; tests for topological features of string interactions for hadronic processes. Studies in strong coupling phenomena and the continuum description by the technique of infrared extraction, the structure of non-semisimple gauge theories and contracted gauge theories have been continued. Problems associated with the family structure of quarks and leptons, and the interface between cosmology and the grand unification of particle interactions have also been addressed: predictions on the fourth generation quarks; gauge model of fermion flavors and breaking patterns at axion scale; massive neutrinos and oscillations calculability problem in flavor mixings; axion emission for representative types of stars

  2. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  3. Annual report to the Atomic Energy Control Board on the regulatory research and support program April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. During Fiscal Year 1995/96, a total of $3,029M was spent on RSP research and support work. The range of activities included projects in the general fields of nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, regulations and regulatory process development, and other special support services. Some of this work was organized into sub-program groups. Four sub-programs were launched during the year bringing to twelve the total number. Areas addressed in the sub-programs are environmental impact assessment and management, safety-related computerized systems, seismologic studies, pressure boundary integrity, integrity of containment and safety-related structures, human factors, internal dosimetry, health effects in human populations, physics and fuel studies, probabilistic safety assessment, emergency preparedness, and radiobiology. During the year, there were a total of 118 active projects. This number included projects planned for the year, others which remained incomplete from the previous year and a significant number of projects which were initiated in response to new, high-priority needs. This report presents information on the scope of RSP activities during the year and describes how the program was managed, organized and implemented. Overviews are presented of research and support work undertaken in each field of activity and some highlights of results obtained are included. (Abstract Truncated)

  4. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  5. Program energy research and energy technologies. Annual report 1987. Fossil energy carriers, renewable energy sources, efficient use of energy. Programm Energieforschung und Energietechnologien. Jahresbericht 1987. Fossile Energietraeger, erneuerbare Energiequellen, rationelle Energieverwendung

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    After a general introduction and a short overview of financial contributions in 1987 there is a description of the projects sponsored. The main section contains project descriptions of the partial programmes Fossil Energy Carriers, Renewable Energy Sources and Efficient Use of Energy. The ordering of the wide-ranging material is carried out essentially via two indices: the index of project numbers and the index of companies. Then an overview is given of final reports published in 1987. A list of 1987 patents forms the final section.

  6. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  7. Research Programs & Initiatives

    Science.gov (United States)

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  8. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  9. 7. Framework Research Program

    International Nuclear Information System (INIS)

    Donghi, C.; Pieri, Alberto; Manzini, G.

    2006-01-01

    The UE it means to face the problem of the deficiency if investments in the RS field. In particular politics of research are turned to pursue three main goals: the strengthening of the scientific excellence in Europe; the increase of total investments for research; the realization of European space of research [it

  10. Equipment qualification research program: program plan

    International Nuclear Information System (INIS)

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump

  11. Decontamination Systems Information and Research Program

    International Nuclear Information System (INIS)

    Berg, M.; Sack, W.A.; Gabr, M.

    1994-01-01

    The Decontamination Systems Information and Research Program at West Virginia University consists of research and development associated with hazardous waste remediation problems at the Department of Energy complex and elsewhere. This program seeks to facilitate expedited development and implementation of solutions to the nation's hazardous waste clean-up efforts. By a unique combination of university research and private technology development efforts, new paths toward implementing technology and speeding clean-ups are achievable. Mechanisms include aggressive industrial tie-ins to academic development programs, expedited support of small business technology development efforts, enhanced linkages to existing DOE programs, and facilitated access to hazardous waste sites. The program topically falls into an information component, which includes knowledge acquisition, technology evaluation and outreach activities and an R and D component, which develops and implements new and improved technologies. Projects began in February 1993 due to initiation of a Cooperative Agreement between West Virginia University and the Department of Energy

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  13. Research on wind energy

    CSIR Research Space (South Africa)

    Szewczuk, S

    2012-10-01

    Full Text Available heights; short-term predictions ? CSIR 2012 Slide 9 Innovation & preliminary wind energy technology tree ? South African Industry?s propensity to innovate is in the same league as their counterparts in Europe. To state this differently, South African...? ? CSIR 2012 Slide 18 Modular form of electrification in rural communities Project funded by the Royal Danish Embassy in Pretoria and carried out by: ? eThekwini (Durban) Municipality ? Ris? DTU (Danish National Laboratory for Sustainable Energy...

  14. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  15. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flapper, Joris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-02-01

    water usage in individual dairy plants, augment benchmarking activities in the market places, and facilitate implementation of efficiency measures and strategies to save energy and water usage in the dairy industry. Industrial adoption of this emerging tool and technology in the market is expected to benefit dairy plants, which are important customers of California utilities. Further demonstration of this benchmarking tool is recommended, for facilitating its commercialization and expansion in functions of the tool. Wider use of this BEST-Dairy tool and its continuous expansion (in functionality) will help to reduce the actual consumption of energy and water in the dairy industry sector. The outcomes comply very well with the goals set by the AB 1250 for PIER program.

  16. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  17. The AECL research and development program

    International Nuclear Information System (INIS)

    Hart, R.G.; Woods, A.D.B.

    1980-02-01

    The research and development program of the Atomic Energy of Canada Research Company is briefly described. Goals and objectives are emphasized, some recent highlights are given and the importance of technology transfer is discussed. A short representative bibliography is included. (auth)

  18. Environmental research program. 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of the Environmental Research Program is to contribute to the understanding of the formation, mitigation, transport, transformation, and ecological effects of energy-related pollutants on the environment. The program is multidisciplinary and includes fundamental and applied research in chemistry, physics, biology, engineering, and ecology. The program undertakes research and development in efficient and environmentally benign combustion, pollution abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group investigates combustion, atmospheric processes, flue-gas chemistry, and ecological systems.

  19. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  20. NCI: DCTD: Biometric Research Program

    Science.gov (United States)

    The Biometric Research Program (BRP) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  1. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  2. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  3. Human Research Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Strategically, the HRP conducts research and technology development that: 1) enables the development or modification of Agency-level human health and performance...

  4. Progress report of a research program in experimental and theoretical high energy physics, 1 November 1993--31 October 1994

    International Nuclear Information System (INIS)

    Brandenberger, R.; Cutts, D.; Fried, H.M.

    1994-01-01

    This paper reports on the following tasks: theoretical high-energy physics; computational physics; interactions of leptons and hadrons from accelerator and astrophysical sources; and hadron collider and neutrino physics

  5. Annual report to the Atomic Energy Control Board on the regulatory research and support program April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1996-10-01

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. During Fiscal Year 1995/96, a total of $3,029M was spent on RSP research and support work. The range of activities included projects in the general fields of nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, regulations and regulatory process development, and other special support services. Some of this work was organized into sub-program groups, each of which addresses research and support effort in theme-related areas. Four sub-programs were launched during the year bringing to twelve the total number of such sub-programs. Areas addressed in the sub-programs are environmental impact assessment and management, safety-related computerized systems, seismologic studies, pressure boundary integrity, integrity of containment and safety-related structures, human factors, internal dosimetry, health effects in human populations, physics and fuel studies, probabilistic safety assessment, emergency preparedness, and radiobiology. During the year, there were a total of 118 active projects. This number included projects planned for the year, others which remained incomplete from the previous year and a significant number of projects which were initiated in response to new, high-priority needs. This report presents information on the scope of RSP activities during the year and describes how the program was managed, organized and implemented. Overviews are presented of research and support work undertaken in each field of activity and some highlights of results obtained are

  6. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  7. Fiscal 1999 report on basic research for promotion of joint implementation programs. Basic research on energy saving for Sendzimira ironworks; 1999 nendo Sendzimira seitetsusho sho energy kihon chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The energy consuming blast furnace, sintering mill, converter, and the steel mill of the above-named Polish ironworks are subjected to a survey pursuant to the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. The in-house power station is also checked for total energy consumption. In parallel with energy profile investigation, feasibility is studied, from a macroscopic point of view, of introducing large exhaust heat recovery facilities and energy saving facilities into the ironmaking, steelmaking, and energy processes. It is then found that, as far as the energy profile is concerned, there is no problem to impede the implementation of the energy saving program when coal consumption is reduced at the in-house power station. As energy saving measures for the respective processes, top pressure recovery turbine installation, air heating furnace exhaust heat recovery, sintering cooler exhaust heat recovery, and converter exhaust gas recovery are suggested. When these measures are fully implemented, there will be an annual greenhouse gas reduction of 180,000 tons. Although profitable investment is near impossible now that energy price is so low, yet the project may realize if low interest loans are available. (NEDO)

  8. Regulatory research program for 1987/88

    International Nuclear Information System (INIS)

    1987-01-01

    The regulatory research program of Canada's Atomic Energy Control Board (AECB) is intended to augment the AECB's research program beyond the capability of in-house resources. The overall objective of the research program is to produce pertinent and independent information that will assist the Board and its staff in making correct, timely and credible decisions on regulating nuclear energy. The program covers the following areas: the safety of nuclear facilities, radioactive waste management, health physics, physical security, and the development of regulatory processes. Sixty-seven projects are planned for 1987/88; as well, there are some projects held in reserve in case funding becomes available. This information bulletin contains a list of the projects with a brief description of each

  9. Research on Automatic Programming

    Science.gov (United States)

    1975-12-31

    Sequential processes, deadlocks, and semaphore primitives , Ph.D. Thesis, Harvard University, November 1974; Center for Research in Computing...verified. 13 Code generated to effect the synchronization makes use of the ECL control extension facility (Prenner’s CI, see [Prenner]). The... semaphore operations [Dijkstra] is being developed. Initial results for this code generator are very encouraging; in many cases generated code is

  10. Nuclear energy research initiative, an overview of the cooperative program for the risk-informed assessment of regulatory and design requirements for future nuclear power plants

    International Nuclear Information System (INIS)

    Ritterbusch, Stanley E.

    2000-01-01

    EPRI sstudies have shown that nuclear plant capital costs will have to decrease by about 35% to 40% to be competitive with fossil-generated electricity in the Unite States. Also, the ''first concrete'' to fuel load construction schedule will have to be decreased to less than 40 months. Therefore, the U. S. Department of Energy (DOE) initiate the Nuclear Energy Research Initiative (NERI) and ABB CENP proposed a cooperative program with Sandia National Laboratory (SNL) and Duke Engineering and Services (DE and S) to begin an innovative research effort to drastically cut the cost of new nuclear power plant construction for the U. S. de-regulated market place. This program was approved by the DOE through three separate but coordinated ''cooperative agreements.'' They are the ''Risk-Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants'' (Risk-Informed NPP), the ''Smart Nuclear Power Plant Program'' (Smart-NPP), and ''Design, Procure, Construct, Install and Test'' (DPCIT) Program. DOE funded the three cooperative agreements at a level of $2.6 million for the first year of the program. Funding for the complete program is durrently at a level $6.9 million, however, ABB CENP and all partners anticipate that the scope of the NERI program will be increased as a result of the overall importance of NERI to the U. S. Government. The Risk-Informed NPP program, which is aimed at revising costly regularory and design requirements without reducing overall plant safety, has two basic tasks: ''development of Risk-Informed Methods'' and ''strengthening the Reliability Database.'' The overall objective of the first task is to develop a scientific, risk-informed approach for identifying and simplifying deterministic industry standards, regulatory requirements, and safety systems that do not significantly contribute to nuclear power plant reliability and safety. The second basic task is to develop a means for strengthening the reliability database

  11. Epidemiologic research program: Selected bibliography

    International Nuclear Information System (INIS)

    1993-05-01

    This bibliography is a current listing of scientific reports from epidemiologic and related activities sponsored by the Department of Energy. The Office of Epidemiology and Health Surveillance now is the departmental focal point for these activities and any others relating to the study of human health effects. The Office's mission is evolving to encompass the new role of the Department in environmental restoration, weapons dismantlement and nuclear material storage, and development of new energy technologies. Publications in these areas will be included in future editions of the bibliography. The present edition brings the listing up to date, and should facilitate access to specific reports. The program has been divided into several general areas of activity: the Radiation Effects Research Foundation, which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki; mortality and morbidity studies of DOE workers; studies on internally deposited alpha emitters; medical/histologic studies; studies on the genetic aspects of radiation damage; community health surveillance studies; and the development of computational techniques and of databases to make the results as widely useful as possible

  12. Implementing Energy-Efficient and Environment-Safe Programs in the Management of European University Campuses and Research Laboratories

    DEFF Research Database (Denmark)

    Faucher, P.; Almeida, A. de; Apostolidou, E.

    1998-01-01

    A network of universities in Europe has collected data on the energy use and other environmental impacts from the universities themselves. The idea is to increase the environmental awareness among the students as well as the staff, and hopefully lead to actions to reduce the impact. Campuses...

  13. The Joint NASA/Goddard-University of Maryland Research Program in Charged Particle and High Energy Photon Detector Technology

    Science.gov (United States)

    Ipavich, F. M.

    1990-01-01

    The Univ. of Maryland portion investigated the following areas. The Space Physics Group performed studies of data from the AMPTE/CCE spacecraft CHEM experiment and found that the ratio of solar wind to photospheric abundances decreased rather smoothly with the first ionization potential (FIP) of the ion with the low FIP ion being about a factor of two overabundant. Carbon and hydrogen fit this trend particularly well. Several occurrences were analyzed of field aligned beams observed when CCE was upstream of the Earth's bow shock. Also using CHEM data, ring current intensity and composition changes during the main and recovery phases of the great geomagnetic storm that occurred in February 1986 was examined in detail. Still using CHEM data, ring current characteristics were examined in a survey of 20 magnetic storms ranging in size from -50 nT to -312 nT. A study was done of energetic ion anisotropy characteristics in the Earth's magnetosheath region using data from the UMD/MPE experiment on ISEE-1. The properties were analyzed of approx. 30 to 130 keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE-3 spacecraft during 1978 to 1979. Work from NASA-Goddard include studies from the High Energy Cosmic Ray Group, Low Energy Cosmic Ray Group, Low Energy Gamma Ray Group, High Energy Astrophysics Theory Group, and the X ray Astronomy Group.

  14. Biological Defense Research Program

    Science.gov (United States)

    1989-04-01

    difference between life and death. Some recent examples are: BDRP developed VEE vaccine used in Central America, Mexico , and Texas (1969- 1971.) and Rift...Complex, is adn area owned by the Bureau of Land Management, which is available for grazina, and with specific permission, for use by DPG. 2.3...2.01 A Large European Laboratory, 1944-1950 50.00 Tuberculosis Laboratory 4 Technicians, Canada, 1947-1954 19.00 Research Institutes, 1930-1950 4.10

  15. Military Vision Research Program

    Science.gov (United States)

    2011-07-01

    Bietti Eye Foundation, IRCCS Rome, Italy . Word count: 2879 Corresponding author: Reza Dana, M.D., M.P.H., M.Sc. Schepens Eye Research...Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 3 Bietti Eye Foundation, IRCCS Rome, Italy . Word count: 2879...with differentiated properties. Exp Eye Res. 62, 155-169. 18. Marneros A.G., Fan J., Yokoyama Y., Gerber H.P., Ferrara N., Crouch R.K., Olsen B.R

  16. Foreign energy conservation integrated programs

    International Nuclear Information System (INIS)

    Lisboa, Maria Luiza Viana; Bajay, Sergio Valdir

    1999-01-01

    The promotion of energy economy and efficiency is recognized as the single most cost-effective and least controversial component of any strategy of matching energy demand and supply with resource and environmental constraints. Historically such efficiency gains are not out of reach for the industrialized market economy countries, but are unlikely to be reached under present conditions by developing countries and economics in transition. The aim of the work was to analyze the main characteristics of United Kingdom, France, Japan, Canada, Australia and Denmark energy conservation integrated programs

  17. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  18. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  19. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  20. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  1. Energy research, national and international

    International Nuclear Information System (INIS)

    Rhijn, A.A.T. van

    1976-01-01

    The Dutch Energy Research Programme inaugurated by the National Steering Group for Energy Research (LSEO) is discussed. Three types of criteria to be borne in mind in the selection of new directions in development are considered: the setting of targets for energy policy: the general central social and economic aims of the country; and the scientific, financial and organisational possibilities. International aspects are reviewed with reference to the IEA, CERN, Euratom, ELDO and ESRO. (D.J.B.)

  2. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  3. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  4. Conservation and Renewable Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1991-05-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1991. Information on documents published prior to 1986 can be obtained from ORNL. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  5. Overview of energy-conservation research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  6. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  7. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  8. Progress report of a research program in experimental high energy physics. Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.

    1984-01-01

    An experimental program in strong and electro-weak interaction physics of elementary particles is being carried out using electronic detection techniques. Experiments have been performed or are being prepared utilizing the accelerators of the laboratories at Brookhaven and Fermilab. The experiments described in this report by the Electronic Detector Group include the following: (1) experiments to measure neutrino-electron scattering and other neutral current phenomena, (2) preparations for experiments at the FNAL anti P P Collider, (3) neutrino oscillation experiments at BNL, and (4) a monopole search

  9. Research results of the Optimiturve research program in 1991

    International Nuclear Information System (INIS)

    Alakangas, E.

    1992-01-01

    Optimiturve research program is one of the energy research programs funded by the Ministry of Trade and Industry of Finland. The main target of the program is double the annual hectare yield of peat dried by solar radiation to decrease the peat production costs, to speed up the circulation of capital invested to peat production with the aid of a new production method developed in this research, and hence improve the price competitivity of peat. The targets of the research program are expected to be completed by improving the drying of peat, the efficiency of the peat production machinery, and by developing peat production techniques. The program was started in 1988, and the targets are to be fulfilled up to year 1993. The research program is carried out in cooperation with universities, research organizations and peat producers. This publication consists of the results of the ongoing projects in the Optimiturve research program in 1991. The aim, the contents and the main results of the 18 projects are presented. At the end of this publication there is a list of the reports published in Reports series

  10. MaTech - the BMFT ''new materials'' materials research program - 1994 annual report about new materials for innovative information technology, energy technology, traffic engineering, medical engineering and production engineering applications, and about general materials research and new fields

    International Nuclear Information System (INIS)

    Lillack, D.; Gilbert, I.; Runte, S.

    1995-01-01

    This annual report gives a survey of projects supported within the framework of the Matfo and Ma-Tech programs. These projects focus on research into materials for innovative: 1. information technology, 2. energy technology, 3. traffic engineering, 4. medical engineering, and 5. production engineering applications and on 6. general materials research and new fields. The descriptions of individual projects indicate project goals and work schedules, names of important sub-contractors, and total costs and the funds contributed by BMFT. Information added in an annex includes inter alia a list of publications, lectures, contracts, or patents resulting from project activities in the year 1994. (MM) [de

  11. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  12. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  13. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  14. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  15. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  16. Public Engagement in Energy Research

    NARCIS (Netherlands)

    Jellema, Jako; Mulder, Henk A. J.

    Public Engagement in Research is a key element in "Responsible Research and Innovation"; a cross-cutting issue in current European research funding. Public engagement can advance energy R&D, by delivering results that are more in-line with society's views and demands; and collaboration also unlocks

  17. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  18. Research waste management program - An action proposal

    International Nuclear Information System (INIS)

    Costa Ramos, A.; Esposito, I.

    1997-01-01

    The Brazilian Nuclear Energy Commission planned prepared and established a Research Waste Management Program, started in 1996, in order to map, to analyze and to solve the common problems in the research field. The specific study done included a large number of academic institutions. The procedures, results and operational methodology used by the Team linked to the Program, in one of the research institutions studied where corrective actions were implemented to avoid unnecessary dose to the public, will be discussed in this article. (author)

  19. High Energy Physics Division semiannual report of research activities, January 1, 1990--June 30, 1990

    International Nuclear Information System (INIS)

    1990-12-01

    This report discusses research programs at ANL in High Energy Physics. The major categories of this research are: experimental programs; theoretical program; experimental facilities research; accelerator research and development; and SSC detector research and development

  20. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  1. Progress report of a research program in experimental high-energy physics, 1 January 1983-31 December 1983

    International Nuclear Information System (INIS)

    Widgoff, M.; Shapiro, A.M.

    1983-01-01

    An experimental program to study the interactions of hadrons and photons is being carried out using hybrid systems which include bubble chambers as visible targets as well as counter spectrometers for particle detection, measurement and identification. Experiments are now being carried out at Fermilab and SLAC, and an experiment on neutrino interactions has been approved for the Tevatron at Fermilab. We have been analyzing the film of our one-million-picture 1982 exposure for the study of π/sup +-/, K + and p interactions in hydrogen and in magnesium, silver and gold, at a beam momentum of 200 Gev/c (FNAL Experiments E-565 and E-570). Preliminary results confirm the positive charge excess observed among relativistic particles in our test run of 1981. During the past year analysis has continued on the data of SLAC experiments BC 72/73, investigating the interactions with hydrogen of 20 GeV polarized photons. Results have been obtained and published on the photoproduction of charm and on the lifetimes of charmed particles. Analysis is also in progress on production of vector mesons and strange particles. The study of charm photoproduction and decay is being extended in SLAC experiment BC 75. An initial run of over 600,000 pictures was obtained in the SLAC Hybrid Facility in Spring 1983 with substantially improved resolution in the bubble chamber. Extensive work continues on the analysis of our earlier FNAL experiments on π/sup +-/p, K + p, and pp interactions at 147 GeV/c (FNAL Experiment E-299). Preparations are in progress for our approved Tevatron II experiment designed to study neutrino interactions and particularly the production of tau neutrinos, using a neutrino beam produced by beam dump techniques and employing a hybrid system with a new one-meter holographic bubble chamber

  2. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  3. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  4. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  5. Physics program at SPEAR energies

    International Nuclear Information System (INIS)

    Seiden, A.

    1982-01-01

    The author presents below a partial review of the physics program remaining to be completed over the SPEAR energy range along with examples of the running time needed for selected topics. The topics discussed are: meson spectroscopy from the psi; details of production and decay for the n/sub c/; charmed hadron spectroscopy; weak decays of D and F; and mechanism of e/sup +/e/sup -/ → qq-bar → Hadron States

  6. Program of Research in Aeronautics

    Science.gov (United States)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  7. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  8. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  9. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  10. Summaries of research in high energy physics

    International Nuclear Information System (INIS)

    1987-11-01

    The compilation of summaries of research and technology R and D efforts contained in this volume is intended to present a detailed narrative description of the scope and nature of the HEP activities funded by the Department of Energy in the FY 1985/FY 1986 time period. Topic areas covered include the following: experimental research using the accelerators and particle detector facilities and other related research; theoretical research; conception, design, construction, and operation of particle accelerators and detectors facilities; and research and development programs intended to advance accelerator technology, particle detector technology, and data analysis capabilities

  11. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  12. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  13. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  14. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Survey on patent and information (Hydrogen energy); 1982 nendo tokkyo joho chosa kenkyu seika hokokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Patents related to the research under the Sunshine Program are surveyed so as to ensure that the program be promoted smoothly and efficiently. Since the scope of the hydrogen energy technology is extensive, branches supposed to be relatively important only are surveyed, which include the production of hydrogen (thermochemical process, photochemical process, and electrolysis), storage and transportation of hydrogen, safety of hydrogen, hydrogen fuel cells, hydrogen-fueled engines, and hydrogen combustion devices. The basic policy to follow in the extraction of necessary patents is that all related to the hydrogen energy technology be collected from as many fields as possible. However, it is impossible to read all the laid-open patents. Under such circumstances, out of the items in IPC (International Patent Classification) used by the Patent Agency, those deemed to be closely related to the hydrogen energy technology are designated and, when the classification item attached to the official gazette matches one of the IPC classification items, it is extracted as a desired item after deliberation of its relationship with the hydrogen energy technology. (NEDO)

  15. Tritium radiobiology research in the US DOE program

    International Nuclear Information System (INIS)

    Carsten, A.L.

    1986-01-01

    The history of the original US Atomic Energy Commission, its replacement, the Energy Research and Development Administration, and the present Department of Energy's interest and sponsorship of tritium radiobiology is reviewed beginning in 1971 and continuing through 1986. In particular, the four remaining US Department of Energy, Division of Health and Environmental Research programs are described in some detail

  16. GRI's Devonian Shales Research Program

    International Nuclear Information System (INIS)

    Guidry, F.K.

    1991-01-01

    This paper presents a summary of the key observations and conclusions from the Gas Research Institute's (GRI's) Comprehensive Study Well (CSW) research program conducted in the Devonian Shales of the Appalachian Basin. Initiated in 1987, the CSW program was a series of highly instrumented study wells drilled in cooperation with industry partners. Seven wells were drilled as part of the program. Extensive data sets were collected and special experiments were run on the CSW's in addition to the operator's normal operations, with the objectives of identifying geologic production controls, refining formation evaluation tools, and improving reservoir description and stimulation practices in the Devonian Shales. This paper highlights the key results from the research conducted in the CSW program in the areas of geologic production controls, formation evaluation, stimulation and reservoir engineering, and field operations. The development of geologic, log analysis, and reservoir models for the Shales from the data gathered and analysis, and reservoir models for the Shales from the data gathered and analyzed during the research is discussed. In addition, on the basis of what was learned in the CSW program, GRI's plans for new research in the Devonian Shales are described

  17. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  18. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  19. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ANNUAL REPORT TO THE DEPARTMENT OF ENERGY FOR FISCAL YEAR 1999. THE DEPARTMENT OF ENERGY, DECEMBER 1999.

    Energy Technology Data Exchange (ETDEWEB)

    PAUL,P.; FOX,K.J.

    2000-07-01

    In FY 1999, the BNL LDRD Program funded 33 projects, 25 of which were new starts, at a total cost of $4,525,584. A table is presented which lists all of the FY 1999 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which are given. A total of 29 informal publications (abstracts, presentations, reports and workshop papers) were reported and an additional 23 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for patents. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. The complete summary of follow-on activities is as follows: Information Publications--29, Formal Papers--23, Grants/Proposals/Follow-on Funding--7. In conclusion, a significant measure of success is already attributable to the FY 1999 LDRD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  1. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  2. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  3. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  4. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on energy saving for VSZ ironworks; 1999 nendo VSZ seitetsusho shoene chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The Slovak ironworks is subjected to a survey pursuant to the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. A feasibility study is conducted about the installation of important energy saving facilities in the energy consuming sectors which are the coke plant, the sintering plant, and the blast furnace. Considered are CDQ (coke dry quench) and CMC (coal moisture control) for the coke plant, cooler exhaust heat recovery and an ignition burner for the sintering plant, and TRT (top pressure recovery turbine) for the blast furnace. The energy saving effects of CDQ, cooler exhaust heat recovery, ignition burner, and TRT are to be 2269, 183, 227, and 320 TJ/year, respectively, totalling 2999 TJ/year; and their CO2 reduction effects are 218,433, 17,329, 39,537, and 30,263 t-CO2/year, respectively, amounting to 387,349 t-CO2/year including 81,787 t-CO2/year from CMC. The ROI (return of investment) is quite low and is 0.074-0.002, this because of the electricity price being so low as 1/2-1/3 of that in Japan. Further studies including a study of funding are desired because the facilities to be installed will favor the environment and because the currently government controlled special energy price may be raised in the future. (NEDO)

  5. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  6. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  7. Containment integrity research program plan

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents a plan for research on the question of containment performance in postulated severe accident scenarios. It focuses on the research being performed by the Structural and Seismic Engineering Branch, Division of Engineering, Office of Nuclear Regulatory Research. Summaries of the plans for this work have previously been published in the ''Nuclear Power Plant Severe Accident Research Plan'' (NUREG-0900). This report provides an update to reflect current status. This plan provides a summary of results to date as well as an outline of planned activities and milestones to the contemplated completion of the program in FY 1989

  8. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  9. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  10. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  11. Annual report to the Atomic Energy Control Board on the Regulatory Research and Support Program April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1996-03-01

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. Represented in this report is a cataloging of seven appendices. The membership of active review panels is given in Appendix A. Appendix B contains summary descriptions and information on the status of individual projects. Appendix C presents a list of those projects which were within the overall RSP but were not active during the year. Appendix D lists the projects undergoing review of final report or post-project evaluation. All projects which were worked on during the year are listed in Appendix E. Specific objectives set for the RSP for Fiscal Year 1994/95 and the degree to which the objectives were achieved are outlined in Appendix F. Appendix G lists the INFO-series reports that were published during Fiscal Year 1994/95. 157 tabs

  12. Annual report to the Atomic Energy Control Board on the Regulatory Research and Support Program April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Regulatory Research and Support Program (RSP) is intended to augment and extend activities, undertaken by the Atomic Energy Control Board, beyond what would be possible with in-house resources. The overall objective of the research and support activity is to produce pertinent and independent information that will assist the Board and its staff in making sound, timely and credible decisions for the regulation of nuclear facilities and materials. Represented in this report is a cataloging of seven appendices. The membership of active review panels is given in Appendix A. Appendix B contains summary descriptions and information on the status of individual projects. Appendix C presents a list of those projects which were within the overall RSP but were not active during the year. Appendix D lists the projects undergoing review of final report or post-project evaluation. All projects which were worked on during the year are listed in Appendix E. Specific objectives set for the RSP for Fiscal Year 1994/95 and the degree to which the objectives were achieved are outlined in Appendix F. Appendix G lists the INFO-series reports that were published during Fiscal Year 1994/95. 157 tabs.

  13. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  14. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  15. Energy Programs at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.

    1999-05-11

    Energy availability in a country is of great importance to its economy and to raising and maintaining its standard of living. In 1994, the United States consumed more than 88 quadrillion Btu (quads) of energy and spent about $500 billion on fuels and electricity. Fortunately, the United States is well endowed with energy sources, notably fossil fuels, and possesses a considerable nuclear power industry. The United States also has significant renewable energy resources and already exploits much of its hydropower resources, which represent 10% of electricity production. Nevertheless, in 1994, the United States imported about 45% of the petroleum products it consumed, equivalent to about 17 quads of energy. This dependence on imported oil puts the country at risk of energy supply disruptions and oil price shocks. Previous oil shocks may have cost the country as much as $4 billion (in 1993 dollars) between 1973 and 1990. Moreover, the production and use of energy from fossil fuels are major sources of environmental damage. The corresponding situation in many parts of the world is more challenging. Developing countries are experiencing rapid growth in population, energy demand, and the environmental degradation that often results from industrial development. The near-term depletion of energy resources in response to this rapid growth runs counter to the concept of ''sustainable development''--development that meets the needs of today without compromising the ability of future generations to meet their own needs. Energy research and development (R&D) to improve efficiency and to develop and deploy energy alternatives may be viewed, therefore, as an insurance policy to combat the dangers of oil shocks and environmental pollution and as a means of supporting sustainable development. These considerations guide the energy policy of the United States and of the U.S. Department of Energy (DOE). In its strategic plan, DOE identifies the fostering of &apos

  16. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  17. Safety research program of NUCEF

    International Nuclear Information System (INIS)

    Naito, Y.

    1996-01-01

    To contribute the safety and establishment of advanced technologies in the area of nuclear fuel cycle, Japan Atomic Energy Research Institute (JAERI) has constructed a new research facility NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) as the center for the research and development, particularly on the reprocessing technology and transuranium (TRU) waste management. NUCEF consist of three buildings, administration building, experiment building A and B. Building A has two experiment facilities STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility). The experiment building B is referred to as BECKY (Back-end Fuel Cycle Key Elements Research Facility). Researches on the reprocessing and the waste management are carried out with spent fuels, high-level liquid waste, TRU etc. in the α γ cell and glove boxes. NUCEF was constructed with the following aims. Using STACY and TRACY, are aimed, (1) research on advanced technology for criticality safety control, (2) reconfirmation of criticality safety margin of the Rokkasho reprocessing plant. Using BECKY, are aimed, (1) research on advanced technology of reprocessing process, (2) contribution to develop the scenario for TRU waste disposal, (3) development of new technology for TRU partitioning and volume reduction of radioactive waste. To realize the above aims, following 5 research subjects are settled in NUCEF, (1) Criticality safety research, (2) Research on safety and advanced technology of fuel reprocessing, (3) Research on TRU waste management, (4) Fundamental research on TRU chemistry, (5) Key technology development for TRU processing. (author)

  18. Fiscal 1999 report on basic research for promotion of joint implementation programs. Basic research on introduction of energy saving facilities into Bulgaria's Kremikovtzi Steelworks; 1999 nendo Bulgaria Kremikovtzi seitetsusho no sho energy setsubi donyu kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The plant undergoes a survey for higher energy efficiency, pursuant to the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. Dry quenching and coal moisture control are investigated for the coke oven; exhaust heat recovery and high efficiency ignition burner for the sintering machine; top pressure recovery power generation and hot stove exhaust heat recovery for blast furnace; gas recovery for the converter; scrap preheating for the electric furnace; continuous casting and soaking pit efficiency improvement for the blooming process; hot charge and heating furnace efficiency improvement for the hot strip mill reheating furnace; and furnace efficiency improvement and hydrogen annealing applicability for the annealing furnace. The energy saving effects of the above are calculated under conditions that one more of the same be added to the continuous slab casting unit and that a continuous bloom casting unit be constructed for the continuous casting of the whole, and that hydrogen annealing be adopted. A reduction of 141,900toe/year is to be achieved, which occupies 6% of the energy consumption of the whole steelworks. A greenhouse gas reduction of 333,600t-CO2/year is feasible. Now that privatization is under way for business reconstruction and rationalization, suggestions will be presented in consideration of the order of priority of investment recovery effects with attention paid to the privation program. (NEDO)

  19. Fiscal 1999 report. Basic research for promotion of joint implementation programs (Basic research on energy saving at Tehran Oil Refinery); 1999 nendo Tehran seiyusho ni kansuru sho energy chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    An energy saving survey was conducted for the oil refining equipment of the Tehran Oil Refinery, Islamic Republic of Iran, for the prevention of global warming due to greenhouse gas emissions. Examined were an atmospheric pressure distiller, vacuum distiller, vis breaker, naphtha hydrodesulfurizer and naphtha catalytic modifier, light oil vacuum hydrocracker, hydrogen producing unit, asphalt producing unit, boiler facilities, etc., which had all been augmented in 1974. According to the energy saving modification scheme, energy efficiency improvement will be achieved by fully utilizing the existing facilities but not by replacing them all. The outcome of a feasibility study predicts that flue gas O2 control will take approximately a year for completion and main modification programs will take approximately 3-5 years for completion. The total investment required is estimated at approximately 1.5-billion yen, and the sum of fuel to be saved is estimated at approximately 0.6-billion yen/year. As for CO2 reduction, approximately 260-thousand tons/year is expected against the baseline of approximately 1380-thousand tons/year. (NEDO)

  20. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Power, Thermal and Control Technologies and Processes Experimental Research

    Science.gov (United States)

    2015-08-01

    a variable-speed screw compressor (Fairchild Controls Corporation) controlled by a Yaskawa A-1000 motor drive. Screw compressors are appropriate...public release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR FORCE...RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

  1. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2015-10-01

    STUDENT ENGAGEMENT Welcome 2 UNMC 3 Omaha 4 Arrival 5-6 Living 7 Events 8...Graduates 9-11 Channing Bunch, M.B.A Director of Recruitment and Student Engagement channing.bunch...Program, Eppley Institute, Office of Research and Development, and Recruitment and Student Engagement Responses to Nebraska Prostate

  2. Survey and research achievement report for fiscal 1980 on patent and information under Sunshine Program. Survey of information on new energy technology development (Solar energy); 1980 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa (taiyohen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Solar energy as defined by the United States includes hydroelectric power, biomass, and the ocean. The short-term strategy deals with passive solar air-conditioning, hydroelectric power, and biomass direct combustion. The medium-term strategy involves positive heating and wind power. The long-term strategy covers heat for agriculture, photovoltaic power, and OTEC (ocean thermal energy conversion), and the ultralong-term strategy covers power generation in space and photochemical conversion. Canada is behind other countries in the conversion of solar energy into power, and solar energy is used but passively as heat source, this because this country is rich in other resources. In West Germany, solar energy may be exploited for hot-water supply and heating at high latitudes, but it is not likely that it will be used for power generation. Home heating offers some appeal since potential demand for it is great. In Britain, the use of solar energy is not a pressing matter, this because systems for effective use of coal have long been established at homes, society, and industries in this country, rich in coal resources and enjoying oil from the North Sea oil field. France's efforts include biomass exploitation. In its development efforts, importance is attached to home heating, hot-water supply, and biomass. Next comes the conversion into power of solar energy. Photocells are also a subject of research and development. (NEDO)

  3. Survey and research achievement report for fiscal 1980 on patent and information under Sunshine Program. Survey of information on new energy technology development (Solar energy); 1980 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa (taiyohen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Solar energy as defined by the United States includes hydroelectric power, biomass, and the ocean. The short-term strategy deals with passive solar air-conditioning, hydroelectric power, and biomass direct combustion. The medium-term strategy involves positive heating and wind power. The long-term strategy covers heat for agriculture, photovoltaic power, and OTEC (ocean thermal energy conversion), and the ultralong-term strategy covers power generation in space and photochemical conversion. Canada is behind other countries in the conversion of solar energy into power, and solar energy is used but passively as heat source, this because this country is rich in other resources. In West Germany, solar energy may be exploited for hot-water supply and heating at high latitudes, but it is not likely that it will be used for power generation. Home heating offers some appeal since potential demand for it is great. In Britain, the use of solar energy is not a pressing matter, this because systems for effective use of coal have long been established at homes, society, and industries in this country, rich in coal resources and enjoying oil from the North Sea oil field. France's efforts include biomass exploitation. In its development efforts, importance is attached to home heating, hot-water supply, and biomass. Next comes the conversion into power of solar energy. Photocells are also a subject of research and development. (NEDO)

  4. Photovoltaic Energy Program Overview, Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, P.

    2001-03-02

    This ''annual report'' details the FY 2000 achievements of the U.S. Department of Energy PV Program in the categories of Research and Development, Technology Development, and Systems Engineering and Applications. Highlights include development of a record-breaking concentrator solar cell that is 32.4% efficient; fabrication of a record CIGS (copper indium gallium diselenide) cell at 18.8% efficiency; sharing an R and D 100 award with Siemens Solar Industries and the California Energy Commission for development and deployment of commercial CIS thin-film modules; and support for the efforts of the PV Industry Roadmap Workshop.

  5. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  6. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  7. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  8. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Science.gov (United States)

    2012-03-12

    ... DEPARTMENT OF ENERGY [Docket No. EESEP0216] State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and... (SEP) and Energy Efficiency and Conservation Block Grant (EECBG) program, in support of energy...

  9. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  10. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  11. High energy physics program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    1992-12-01

    The Texas A ampersand M experimental high energy physics program has been supported since its inception by DOE Contract DE-AS05-81ER40039. During that period we established a viable experimental program at a university which before this time had no program in high energy physics. In 1990, the experimental program was augmented with a program in particle theory. In the accompanying final report, we outline the research work accomplished during the final year of this contract and the program being proposed for consideration by the Department of Energy for future grant support. Some of the particular areas covered are: Collider detector at Fermilab program; the TAMU MACRO program; SSC R ampersand D program; SSC experimental program; and theoretical physics program

  12. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  13. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  14. Department of Energy's uranium-enrichment program. Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, Second Session, June 24, 1982

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Shelby T. Brewer of DOE and representatives of Boeing, Goodyear Aerospace, and Garrett/AI, all companies participating in the enrichment program, were the principal hearing witnesses. Funding questions focused on recent declines in demand for enrichment services and options for keeping the program cost-effective. Although the customers of enrichment services are the US military and both US and foreign utilities, the discussion centered on the civilian market. Dr. Brewer described the gaseous diffusion, gas centrifuge, and advanced separation technologies and US efforts to maintain a competitive position. The private-sector view stresses the opportunity that gas-centrifuge technology has for decoupling enrichment from the energy-intensive gaseous diffusion process, which the companies see as crucial to US world leadership in nuclear technology

  15. NASA Earth Systems, Technology and Energy Education for Minority University and Research Education Program Promotes Climate Literacy by Engaging Students at Minority Serving Institutions in STEM

    Science.gov (United States)

    Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.

    2017-12-01

    NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report

  16. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1982 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    In this research on a hydrogen energy total system, studies are conducted on the plan of a hydrogen energy proving pilot base and on hydrogen as fuel for automobiles. It is estimated that the construction of a hydrogen energy proving pilot base will cost 7.125-billion yen in total. The sum includes 6.410-billion yen for the construction of a system on an island named Island A, 500-million yen for structures on an island named Island B, and 215-million yen for the construction of a marine transportation system between the two islands. Large shares will go to a hydroelectric power plant and a hydrogen liquefaction system, the two occupying approximately half of the total sum. In the study of hydrogen as fuel for automobiles, it is concluded that hydrogen is advantageously employed as fuel for automobiles. When comparison is made in terms of heat value, it is found that even a hydrogen engine which is a mere modification of a currently used engine is comparable to the currently used engine in terms of performance. As for abnormal combustion, a hydrogen/air 2-system injection method is contrived, and this solves the problem almost completely. Cryogenic hydrogen is advantageous in both NOx emission and heat efficiency though within certain limitations. From the viewpoint of safety, the recommended automobile fuel structural formula is GH{sub 2}(MH). (NEDO)

  17. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  18. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  19. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  20. Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses

  1. Research and development program 1985

    International Nuclear Information System (INIS)

    1984-01-01

    In this report the research and development program of the GSI Darmstadt is described. It concerns heavy ion reactions, nuclear structure studies, exotic nuclei, nuclear theory, atomic collisions with heavy ions, atomic spectroscopy, the interaction of heavy ions with matter, atomic theory, biological studies with heavy ions, nuclear track techniques, UNILAC developments, acquisition of experimental data, and the development of new accelerators, ion sources, targets, and detectors. (HSI) [de

  2. DOE-EERC jointly sponsored research program

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  3. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  4. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  5. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  6. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  7. 2016 Research Outreach Program report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kim, Yangkyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.

  8. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  9. Update on DOE's Nuclear Energy University Program

    International Nuclear Information System (INIS)

    Lambregts, Marsha J.

    2009-01-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  10. Energy research information system projects report, volume 5, number 1

    Science.gov (United States)

    Johnson, J.; Schillinger, L.

    1980-07-01

    The system (ERIS) provides an inventory of the energy related programs and research activities from 1974 to the present in the states of Montana, Nebraska, North Dakota, South Dakota and Wyoming. Areas of research covered include coal, reclamation, water resources, environmental impacts, socioeconomic impacts, energy conversion, mining methodology, petroleum, natural gas, oilshale, renewable energy resources, nuclear energy, energy conservation and land use. Each project description lists title, investigator(s), research institution, sponsor, funding, time frame, location, a descriptive abstract of the research and title reports and/or publications generated by the research. All projects are indexed by location, personal names, organizations and subject keywords.

  11. Fission energy program of the U. S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs.

  12. Multitechnology and supporting research programs

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This section includes research efforts that provide information applicable to several presently operating technologies as well as those being investigated for the future. In these technologies the nature of the environmental problem is equally applicable to any one technology; e.g., thermal and chemical pollution of water due to operation of steam electric plants, whether nuclear, fossil fuel, or gas fired; or, the statistical design needed for differentiating a general background of industrial pollution from the contributions, if any, arising from operation of an energy facility. The two main groups of projects reported include biomathematical methods for the analysis of natural systems and the quantitative ecology of impact evaluation; and aquatic ecological studies including the effects of water quality alterations on fish behavior; the ecological effects of combined aquatic stressors; the effects of energy systems effluents on coastal ecosystems; the bioavailability of energy effluent materials in coastal ecosystems; the marine chemistry of energy-generated pollutants; and methods for in situ measurement of pollutants

  13. Research Toward Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hammon

    2010-12-31

    This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

  14. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  15. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  16. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  17. Strategies and directions of Malaysian energy research

    International Nuclear Information System (INIS)

    Baharudin Yatim

    1995-01-01

    Research on energy efficiency could reconcile environmental issues associated with economic development. It could enhance energy supplies, improve the environment and develop alternative energy sources. Author reviews some of Malaysia's best energy R and D programmes

  18. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  19. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  20. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  1. Resolution on the program energy-climate

    International Nuclear Information System (INIS)

    2008-01-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  2. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  3. Forschungszentrum Karlsruhe Technik und Umwelt. Research and development program 2002

    International Nuclear Information System (INIS)

    2001-01-01

    The five main fields of research and the activities under the R and D program 2002 are explained in great detail in five chapters with the following captions: 1. ENVIRONMENT. Programs: - Sustainable development, energy and environmental engineering (UMWELT). - Earth atmosphere and climate research (ATMO). 2. PUBLIC HEALTH. Programs: - Biomedical research (BIOMED). - Medical engineering (MEDTECH). 3. ENERGY. Programs: - Thermonuclear fusion (FUSION). - Nuclear safety (NUKLEAR). 4. KEY TECHNOLOGIES. Programs: - Microsystems engineering (MIKRO). - Nanotechnology (NANO). - Materials science (MATERIAL). - Chemical process engineering (CHEMIE). - Superconductivity (SUPRA). 5. MATTER and STRUCTURE. Program: The structure of matter (STRUKTUR). The sixth chapter presents cross-cutting activities under the program: Technology transfer and marketing (TTM). The concluding chapter lists and briefly presents the activities of the scientific and technical institutes of the Karlsruhe Research Center. (CB) [de

  4. History of the Energy Research and Development Administration

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1982-03-01

    Congress created the Energy Research and Development Administration on October 11, 1974 in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focus point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial demonstration of new technologies would hopefully be the fruit of the Government's first significant effort to amalgamate energy resource development programs. This history briefly summarizes the accomplishments of the agency.

  5. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  6. High Energy Physics: Report of research accomplishments and future goals, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1983-12-31

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC, FERMILAB, and DESY.

  7. High Energy Physics: Report of research accomplishments and furture goals, FY1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1981-05-08

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC and FERMILAB.

  8. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  9. High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3)

  10. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  11. Mission and status of the US Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  12. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  13. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  14. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    research , including a Business Cell; 87 Research Development, 88 Research Oversight, 89 and Research Compliance offices;90 and the Center...needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221

  15. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  16. The Department of Energy`s Solar Industrial Program: 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  17. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  18. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  19. Achievement report for fiscal 1983 on Sunshine Program-entrusted survey and research. Cooperative project between Japan and Australia, etc., on solar energy technology (Cooperation between Japan and France on solar energy technology); 1983 nendo Nichigonado taiyo energy gijutsu kyoryoku jigyo seika hokokusho. Nichifutsu taiyo energy gijutsu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This paper reports a survey on solar heat utilization technologies conducted in fiscal 1983 in accordance with a scientific cooperation agreement signed by the Japanese Government and the French Government. The survey was carried out by two employees with the solar technology development office of the New Energy and Industrial Technology Development Organization who were dispatched to France on a tour in the period March 13-24. Concerning the 'French Photovoltaic Program 1982-1986,' knowledge on the goal of the program, long-term research and development, and budgetary matters were obtained at the AFME (French Energy Management Agency) head office and its branches. Relations of AFME with EC (European Community) projects were clarified. The photovoltaic power system (50kW) of Nice Airport is one of the EC projects, and was built thanks to financial aids by EC and AFME. The power system is now in service as a power source for electronic equipment in the airport management building and for taxi lights installed on the ground. The CGE (Compagnie General d'Electricite) central laboratory and the Rhone Poulenc Specialites Chimique were visited, when information on the research and development of a ribbon crystal pulling process and solar-grade silicon was acquired. (NEDO)

  20. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  1. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  2. Fiscal 1999 report on basic research for promotion of joint implementation programs. Basic research on energy status of Anshan Iron and Steel Group Complex; 1999 nendo Anshan koretsu (shudan) koji energy kihon chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The above-named group of manufacturers underwent a survey for its energy status, pursuant to the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. The manufacturing facilities are smaller than those of Japanese manufacturers and are obsolete in this group of manufacturers which is the second largest iron and steel manufacturing group in China. Although some of the manufacturers operate sintering exhaust heat recovery facilities at their own expenses, the level of heat recovery is far lower than that in Japan. In a feasibility study which was based on data acquired at the site, studies were conducted about ignition burner facility modification and exhaust heat recovery in the sintering process and about top pressure equalizing gas recovery and top pressure recovery turbine power generation in the blast furnace process. Among them, sintering ignition burner modification is high in investment efficiency. As for sintering exhaust heat recovery and top pressure equalizing gas recovery, they are low in investment efficiency and are difficult to hold in the present China where coal exists aplenty and the energy unit is low in price. Since China knows no sudden rise in energy price as Japan did during the oil crises, no enthusiasm is seen in investment in energy saving efforts. Investment for energy saving in production process modification as represented by continuous casting facilities is being made, however, because such has its own various merits which this survey does not deal with. (NEDO)

  3. Fiscal 1999 research report. Basic research for promotion of joint implementation programs (Energy efficiency survey at Noboil Refinery of Ufa City); 1999 nendo Ufa shi Noboil seiyusho ni kansuru sho energy chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The aim is to explore projects that will lead to joint implementations for greenhouse gas emission reduction, and a survey was conducted at the Bashneftechim Refineries, Ufa City, Bashkir Republic, Russian Federation. A feasibility study was carried out involving energy efficiency improvement for oil refining related units such as atmospheric and vacuum distillators. In the energy efficiency survey, studies covered energy efficiency improvement in the existing equipment through the modification of the normal and vacuum distillators, visbreaker, vacuum desulfurizer for light oil, and the process heating furnace of the catalytic cracking equipment, for a reduction in fuel consumption by realizing combustion excess air ratio control; the installation of an air preheater or a waste heater boiler for the collection of heat from combustion exhaust gas; the addition of heat exchangers and the optimization of their arrangement for an increase in the amount of heat recoverable from hot oil; the replacement of obsolete instruments and controllers with state-of-the-art types for higher energy efficiency in the control of distillation tower operation, etc. It is desired that this energy saving project will be embodied for a reduction in CO2 emissions. (NEDO)

  4. Department of Energy programs and objectives: energy conservation in agricultural production

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This document describes the current Department of Energy agriculture research program as it relates to the research recommendations submitted by a 1976 workshop on energy conservation in agricultural production. In-depth discussions on fertilizers, irrigation, crop drying, fuel substitution, crop and animal production systems, greenhouses, materials handling, and transport systems are included. (MCW)

  5. Special issue about the ENERGIE interdisciplinary program of the CNRS

    International Nuclear Information System (INIS)

    Lallemand, M.; Stitou, D.; Lallemand, A.; Destruel, P.; Seguy, I.; Bock, H.; Nierengarten, J.F.; Alonso, C.; Estibals, B.; Menanteau, Ph.; David, S.; Clement, A.H.

    2006-01-01

    The French national center of scientific research (CNRS) has started in 2001 a huge interdisciplinary program about the development of new energy sources (solar, biomass, wind energy, geothermal energy, future nuclear systems), the mastery of energy vectors (electricity, heat, hydrogen), and the development of clean and ecological processes (combustion, fuel cells, dwellings, industrial processes etc..). The program has involved about a thousand of researchers and has led to the realization of 65 projects. This newsletter presents the results of a selection of these integrated research projects: development of thermochemical processes for solar cooling and refrigeration, two-phase refrigerants for a lower environmental impact, organic semiconductors for photovoltaic conversion, TECHPOL - an observatory for new energy technologies, scenarios for future nuclear reactors (enriched uranium cycle, regeneration, uranium cycle, thorium cycle), waves energy conversion systems. (J.S.)

  6. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  7. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  8. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  9. Research report of fiscal 1997. Research on the projects on Activities Implemented Jointly Japan Program (feasibility research on energy saving by improving heat management for hot blast stoves and heating furnaces); 1997 nendo chosa hokokusho. `Kyodo jisshi katsudo Japan Program` ni kakawaru project chosa (neppuro, kanetsuro no netsukanri kaizen ni yoru sho energy kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research was made on joint implementation (JI) for preventing global climate changes in China. Since such the stove and furnace consume a large amount of energy, their improvement and energy saving are important for integrated iron plants. Maanshan iron plant was selected for the research. All the furnaces were manually operated without combustion control systems, and oxygen meters for exhaust gas frequently troubled. As measures for the stoves, operation at a proper air fuel ratio, improvement of over heat storage combustion, and dust cleaning for waste heat recovery gas heaters were proposed. For the furnaces, a proper oxygen content at the end of furnaces (reduction of invasion air) was proposed to improve exhaust gas loss up to that in Japan. For this target, reinforced instrument management and standardized combustion control are essential. JI of software improvement for operation and management can reduce annual greenhouse effect gas emission to 45,900t and 6,300t in carbon equivalent for the stove and furnace, respectively. CO2 reduction is also estimated to be 1,173,000t and 205,000t in China of 107,570,000t in raw steel production, respectively. 28 figs., 32 tabs.

  10. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  11. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  12. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  13. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  14. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  15. Conference on energy research at historically black universities

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A conference was convened to present and discuss significant research and development in Historically Black Institutions (current and past); areas that show potential for inter-institutional collaboration and the sharing of facilities; existing capabilities to sustain funded research activities and future potential for expansion and enhancement; and appropriate arrangements for maximum interaction with industry and government agencies. Papers were presented at small group meetings in various energy research areas, and abstracts of the projects or programs are presented. The Solar Energy small group provided contributions in the areas of photovoltaics, biomass, solar thermal, and wind. Research reported on by the Fossil Fuel small group comprises efforts in the areas of fluidized bed combustion of coal, coal liquefaction, and oil shale pyrolysis. Five research programs reported on by the Conservation Research small group involve a summer workshop for high school students on energy conservation; use of industrial waste heat for a greenhouse; solar energy and energy conservation research and demonstration; energy efficiency and management; and a conservation program targeted at developing a model for educating low income families. The Environment Impact groups (2) presented contributions on physical and chemical impacts and biological monitors and impacts. The Policy Research group presented four papers on a careful analysis of the Equity issues; one on a model for examining the economic issue in looking at the interaction between energy technology and the state of the economy; and a second paper examined the institutional constraints on environmental oriented energy policy. Six additional abstracts by invited participants are presented. (MCW)

  16. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Survey and research on patent and information (Survey of new energy technology development information - Hydrogen and other energies); 1981nendo shin energy gijutsu kaihatsu joho chosa seika hokokusho. Suiso sonotano energy hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Surveys are conducted and the results are reported on the development of technologies in the U.S., Canada, Britain, West Germany, and France, for hydrogen energy, and for wind power, biomass power, marine power, wave power, etc. In the U.S., development funds are being introduced by the Government into wind power systems since 1975, and part of the power is utilized in the fields of agriculture and power supply business. The task is now being transferred from the Government to private sector businesses. Probabilities are that hydrogen will not be an important source of energy in the U.S. In the Province of Ontario, Canada, where there is surplus electricity, people have a great interest in the development of hydrogen energy, and there is a task force to discuss hydrogen energy. As for wind power, it is already in the realm of practical application. In Britain, wind power is expected to come into practical use very early, and the first practical plant will begin its service operation by 1984. As for the study of tidal power, however, it is narrowed down to a project at the mouth of the Severn river. As for hydrogen energy, the research remains at the basic stage, and the energy enjoys but a low precedence. (NEDO)

  17. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  18. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  19. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  20. GSI research and development program 1989

    International Nuclear Information System (INIS)

    1989-01-01

    In the year 1989 the SIS will come into operation and the erection of the ESR will be finished. The construction of a new uranium injector for an independent low-energy program at UNILAC has begun. Furthermore the UNILAC is available for the SIS injection and an experimental low-energy program confined by this. (orig./HSI) [de

  1. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    Science.gov (United States)

    2014-05-01

    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  2. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  3. Fiscal 1999 research report. Basic research for promotion of joint implementation programs (Basic energy efficiency survey at Russia's Severstal Steelworks); 1999 nendo Russia Severstal seitetsusho sho energy kihon chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In the Kyoto Protocol adopted at COP3 (The 3rd Conference of the Parties), a framework was created of international cooperative efforts for greenhouse gas reduction, such as joint implementation with advanced countries and clean development mechanism construction with developing countries. As part of the above-named NEDO-sponsored project, a survey is conducted at the Severstal Steelworks in the effort to explore projects that will lead to joint implementation. It is then found, concerning the feasibility of introducing large waste heat recovery and energy-saving facilities into the steelworks, that there will be sufficient room if natural gas for the domestic power generators installed at two sites in the steelworks is reduced and that in the energy profile no problems are detected that will impede project implementation. Energy efficiency measure introduction feasibility is examined and the results are shown, which involve sintering furnace modification, sintering cooler waste heat recovery, converter exhaust gas recovery, and TRT (top-pressure recovery turbine) installation. In case all these measure are fully implemented, CO2 emissions will be reduced by 370,000 tons/year. (NEDO)

  4. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  5. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  6. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  7. A comparative study of European nuclear energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Presas i Puig, Albert [ed.

    2011-07-01

    The report includes the following contributions: Comparative study of European Nuclear Energy Programs. From international cooperation to the failure of a national program: the Austrian case. The ''go-and-stop'' of the Italian civil nuclear programs, among improvisations, ambitions and conspiracy. Nuclear energy in Spain - a research agenda for economic historians. The Portuguese nuclear program: a peripheral experience under dictatorship (1945-1973). The nuclear energy programs in Switzerland. The rise and decline of an independent nuclear power industry in Sweden, 1945-1970. The German fast breeder program, a historical review. Fast reactors as future visions - the case of Sweden. Transnational flows of nuclear knowledge between the U.S. and the U.K. and continental Europe in the 1950/60s. The Carter administration and its non-proliferation policies: the road to INFCE.

  8. Program Leader | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leads in the identification of the overall development research ... Ensures that a regional perspective is brought to bear on program planning at the PI and ... The incumbent is the manager of the Program Initiative program and team and as such: ... projects between Canadian and developing country researchers; and; When ...

  9. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  10. Energy Research and Development at Kuwait Institute for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    Debs, A. S.

    1980-07-01

    The Kuwait program encompasses five complimentary areas. These are: the energy data base and technology assessment program, the energy conservation program, the electric power program, the solar energy program, and the energy policy analysis program. The accomplishments up until 1980 of the energy activities at KISR include activities in the solar cooling area, solar electric power generation, solar water desalinatin, and in solar agriculture applications. Furthermore there were some activities in the energy conservation area with emphasis on the use of insulating materials and the thermal response of buildings for energy conservation in the building sector. At present major project activities concentrate on energy conservation with emphasis on the development of an energy building code for Kuwait and an experimental and theoretical evaluation of various energy conservation alternatives for Kuwaiti buildings. In the solar area the emphasis will continue to be in the solar cooling area with possible introduction of Rankine Cycle Cooling as a more viable alternative to absorption cooling than has been experienced so far.

  11. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on energy saving at Ilyich Iron and Steel Works, Mariupol City, the Ukraine; 1999 nendo Ukraine Mariupol shi Ilyich seitetsusho sho energy chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is to comply with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. For the recovery of exhaust heat from the air blast furnace air heater, combustion control will be improved and an exhaust heat recovery facility will be installed. For the recovery of converter-generated gas, the casting process in the open hearth will be changed to a continuous casting process in the converter, and a generated gas recovery facility will be installed. The power plant facilities will be improved. It is expected that these three jobs will reduce greenhouse gases at 178, 583, and 602-thousand tons/year in terms of CO2, respectively, and energy consumption at 826, 8954, and 8152 TJ/year (13% level reduction), respectively. Time periods required for the recovery of the investments will be 31.2, 8.7, and 7.2 years, respectively, and this means that the investments will not be so profitable. As for cost performance, however, they will save energy at 262, 208, and 420 GJ/year/million yen, respectively, and reduce greenhouse gases at 56.4, 13.5, and 31.0 tons/year/million yen in terms of CO2, respectively, and this means that the three jobs will achieve high cost performance. Some more jobs are found to probably contribute to energy efficiency enhancement and cost performance improvement, which include a top pressure recovery turbine, pulverized coal injection, continuous casting in the steelmaking process, improvement in the yield of slabs in the rolling process, and a hot charger. (NEDO)

  12. How effective is mandatory building energy disclosure program in Australia?

    Science.gov (United States)

    Kim, S.; Lim, B. T. H.

    2018-04-01

    Mandatory green building regulations are often considered as the most effective tool to promote better energy efficiency and environmental protection. Nevertheless, its effectiveness compared to the voluntary counterpart has not been fully explored yet. In addressing this gap, this study aims to examine the environmental performance of green building stocks affected by the Australian mandatory building energy disclosure program. To this, this study analysed energy savings and carbon reduction efficiencies using the normalisation approach. The result shows that mandatory energy disclosure program did contribute to the reduction in energy usage and carbon emissions from the affected building stocks. More specifically, affected green building stocks showed a good efficiency especially in carbon reductions. The research results inform policymakers the possible improvement required for the mandatory disclosure program to increase the effectiveness towards dealing with the contemporary environmental issues aroused from the building sector, especially in energy savings perspective.

  13. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  14. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on potential for higher energy efficiency through instrumentation, control, and energy saving equipment (Research report); 1999 nendo keisoku seigyo oyobi sho energy kiki ni yoru sho energy potential chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As part of the 'clean development mechanism (CDM)' activities to be conducted by advanced nations jointly with developing nations, a survey is conducted of potential for higher energy efficiency, the effect of greenhouse gas reduction, and the effect of related investments in Egypt's textile (dyeing) industry. As the result, it is found that the Egyptian textile (dyeing) industry is rich in potential for higher energy efficiency and that intensification of energy management with importance attached to instrumentation will be quite effective. Private plants, though small in scale, enjoy a high operating rate and are full of life. As for their energy management, however, though management oriented instrumentation is found to stay without being scattered or lost in case of newly introduced equipment, normal operation is impeded by damaged parts which are not duly repaired or replaced. As for state operated plants, they are large in scale and are provided with some leading-edge facilities. Many of them are obsolete, however, and a privatization plan is under consideration, these discouraging investors and reducing vitality. Operation control or quality control are not sufficiently practiced in the administration of plants, and they need improvement. (NEDO)

  15. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  16. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  17. LASL's FY 1978 supporting research program

    International Nuclear Information System (INIS)

    Hammel, E.F.; Merlan, S.J.; Freiwald, D.A.

    1978-09-01

    This report gives a brief overview of Los Alamos Scientific Laboratory's supporting research program, including philosophy, management and program analysis, funding, and a brief description of the kinds of work currently supported. 10 figures

  18. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    The research aims to acquire data necessary for designing an engine, which is fueled by hydrogen stored in metal hydrides, for an automobile power plant. It covers the characteristics of hydrogen and their theoretical examination, basic studies on the turbulent mixing and combustion of hydrogen, research using a single-cylinder engine, changes brought into engine performance upon addition of hydrogen, etc. When hydrogen is burned in a spark ignition engine, flashback to the induction system is prone to occur. But this is prevented by directly injecting nothing but hydrogen into the cylinder. In the case of hydrogen fuel, there is the problem of thermal NO generation. Since a hydrogen/air flame is higher in temperature than flames in the case of other fuels, it generates more NO. As techniques for lowering the flame temperature, there are lean fuel combustion, water vapor injection, delayed ignition timing, etc. For the improvement of power and performance, increasing the engine revolution and pressurizing the inlet air are the methods, but both have their own shortcomings. An engine equipped with a third valve is experimentally constructed in this research, which is theoretically free of flashback, suppresses a reduction in the inlet air volume, and necessitates no high-pressure injection system. (NEDO)

  19. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  20. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  1. Consumer energy management: policy implications of research. 2 Vols

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.H.G.; Ritchie, J.R.B.

    1982-12-01

    This report provides a framework for understanding the practical implications of consumer energy conservation research in Canada. A review of such research was undertaken to determine its implications for increasing the effectiveness of Canadian conservation policies and programs. The major conclusions and recommendations were as follows. Conservation has been acknowledged as the single most important element in solving Canada's petroleum shortfall in the 1980s. An analytic approach to the formulation of energy policies and the design of conservation programs will be essential if meaningful energy savings in the consumer sector are to be realized. Prior to designing any conservation program, it is essential that the components of consumer energy policy be understood. In order to assess the effectiveness of conservation efforts, it is necessary to assign relative priorities to the criteria of probable energy savings, cost effectiveness, impact by fuel type, impact on consumers, enforceability, and institutional considerations. Conservation efforts aimed at consumers must be based on understanding the basic processes which underlie how they perceive and respond to various types of conservation initiatives. This understanding is gained through consumer impact analysis and program research. The latter action attempts to analyze the effectiveness and acceptability of programs involving information, financial incentives, energy standards, and energy usage restrictions. Conservation programs must ensure that barriers to adoption, such as lack of time and knowledge, financial resources, and lifestyle impacts, will be minimized. 93 refs., 3 figs., 13 tabs.

  2. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  3. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  4. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  5. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  6. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  7. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  8. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  9. R and D programs of the International Energy Agency

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1989-01-01

    This paper provides a description of the collaborative research program of the International Energy Agency. Focusing on the organization of the program, rather than attempting to cover the technical content of the research, the discussion conveys how its operation is facilitated through a framework that takes account of the interests of participating governments as well as technical objectives. Some Canadian activities in the IEA program are briefly described as illustration and a list of current IEA Research Agreements and associated activities is presented in an Appendix

  10. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    In the coming years, Denmark and other countries worldwide are set to increase their focus on transforming their energy supplies towards more sustainablew technologies. As part of this process, they can make extensive use of the knowledge generated by the Technical University of Denmark (DTU...... technologies, energy systems and energy consumption in buildings, the transport sector and for lighting purposes. The university alsolooks at challenges, opportunities and limitations.This publication present a selection of the sustainable energy related activities at DTU, which all point towards future...

  11. ANSTO - Program of Research 1993-1994

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993-1994 Program of Research outlines ANSTO's scientific activities in four key research areas, Advanced Materials, Application of Nuclear Physics, Biomedicine and Health and Environmental Science. The effort has been channeled into applied research and development in partnership with industry and appropriate national and international institutions and into interdisciplinary strategic research projects to enhance the scientific base of the key research activities. A list of scientific publications originated from these program areas is also included. ills

  12. Intermediate Energy Nuclear Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, James, A.

    2012-06-22

    The originally proposed and funded research activities followed two major areas of study: semileptonic probes of the hadronic neutral current and charm production. The charm production work revolved around the Jefferson Lab experiment E03-008, 'Sub-threshold J/psi Photoprouction', which ran in late 2004. The PI was a co-spokesperson for the experiment. For the three year renewal proposal starting in 2007, the scope and size of the research project changed and increased. In addition to the parity violating studies, the PI had well defined lead roles in a series experiments nucleon spin-structure functions.

  13. Intermediate Energy Nuclear Physics Program

    International Nuclear Information System (INIS)

    Dunne, James A.

    2012-01-01

    The originally proposed and funded research activities followed two major areas of study: semileptonic probes of the hadronic neutral current and charm production. The charm production work revolved around the Jefferson Lab experiment E03-008, 'Sub-threshold J/psi Photoprouction', which ran in late 2004. The PI was a co-spokesperson for the experiment. For the three year renewal proposal starting in 2007, the scope and size of the research project changed and increased. In addition to the parity violating studies, the PI had well defined lead roles in a series experiments nucleon spin-structure functions.

  14. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  15. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1985-06-01

    This plan describes the safety issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research within the NRC and research sponsored by other government agencies, universities, industry groups, professional societies, and foreign sources

  16. Energy Technology Division research summary -- 1994

    International Nuclear Information System (INIS)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE's Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division's Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments

  17. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  18. SLC Energy Upgrade Program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators

  19. SLC energy upgrade program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-01-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators

  20. The SLC energy upgrade program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebaaqz, J.V.

    1985-01-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators