WorldWideScience

Sample records for program energy management

  1. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  2. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  3. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  4. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  5. 2008 Federal Energy Management Program (FEMP) Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  6. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  7. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  8. Buildings energy management program workshop design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    This document describes activities undertaken by Honeywell's Energy Resources Center for design and development of the format, content, and materials that were used in conducting 129 one-day energy management workshops for specific commercial business audiences. The Building Energy Management Workshop Program was part of a National Workshop Program that was intended to increase awareness of energy-related issues and to encourage energy-conservation actions on the part of commercial and industrial sectors. The total effort included executive conferences for chief executive officers and other senior management personnel; industrial energy-conservation workshops directed at plant management and engineering personnel; vanpooling workshops designed to inform and encourage business in implementing a vanpooling program for employees; and the building energy-management workshops specifically developed for managers, owners, and operators of office and retail facilities, restaurants, and supermarkets. The total program spanned nearly two years and reached approximately 2,500 participants from all parts of the U.S. A detailed followup evaluation is still being conducted to determine the impact of this program in terms of conservation action undertaken by workshop participants.

  9. Super Energy Savings Performance Contracts: Federal Energy Management Program (FEMP) Program Overview (revision)

    International Nuclear Information System (INIS)

    Pitchford, P.

    2001-01-01

    This four-page publication describes the U.S. Department of Energy's (DOE's) streamlined energy savings performance contracting, or ''Super ESPC,'' process, which is managed by DOE's Federal Energy Management Program (FEMP). Under a Super ESPC, a qualifying energy service company (ESCO) from the private sector pays for energy efficiency improvements or advanced renewable energy technologies (e.g., photovoltaic systems, wind turbines, or geothermal heat pumps, among others) for a facility of a government agency. The ESCO is then repaid over time from the agency's resulting energy cost savings. Delivery orders under these contracts specify the level of performance (energy savings) and the repayment schedule; the contract term can be up to 25 years, although many Super ESPCs are for about 10 years or less

  10. Waste management program at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  11. Waste management program at Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K.

    2011-01-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  12. Energy management for the future. A sourcebook of ideas and activities for energy conservation learning programs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This book serves as a teaching aid for Canadian school programs in energy conservation and energy management. Suitable curriculum areas and objectives are outlined, and suggestions are presented for organizing thematic study units. References are made throughout to appropriate use of additional media such as filmstrips. Five study units, each with its own classroom activities, are detailed: energy resources, energy and the home, energy and food, energy and leisure, and energy in transportation. Suggestions are given for ongoing energy management educational programs to be tried out once the study units have been completed. 23 figs.

  13. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  14. Office of Nuclear Energy Knowledge Management Program Situational Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-12-01

    Knowledge management (KM) has been a high priority for the Department of Energy (DOE) Office of Nuclear Energy (NE) for the past several years. NE Programs are moving toward well-established knowledge management practices and a formal knowledge management program has been established. Knowledge management is being practiced to some level within each of the NE programs. Although it continues to evolve as NE programs evolve, a formal strategic plan that guides the implementation of KM has been developed. Despite the acceptance of KM within DOE NE, more work is necessary before the NE KM program can be considered fully successful. Per Dr. David J. Skyrme[1], an organization typically moves through the following evolutionary phases: (1) Ad-hoc - KM is being practiced to some level in some parts of the organization; (2) Formal - KM is established as a formal project or program; (3) Expanding - the use of KM as a discipline grows in practice across different parts of the organization; (4) Cohesive - there is a degree of coordination of KM; (5) Integrated - there are formal standards and approaches that give every individual access to most organizational knowledge through common interfaces; and (6) Embedded - KM is part-and-parcel of everyday tasks; it blends seamlessly into the background. According to the evolutionary phases, the NE KM program is operating at the two lower levels, Ad-hoc and Formal. Although KM is being practiced to some level, it is not being practiced in a consistent manner across the NE programs. To be fully successful, more emphasis must be placed on establishing KM standards and processes for collecting, organizing, sharing and accessing NE knowledge. Existing knowledge needs to be prioritized and gathered on a routine basis, its existence formally recorded in a knowledge inventory. Governance to ensure the quality of the knowledge being used must also be considered. For easy retrieval, knowledge must be organized according to a taxonomy that

  15. Urban energy management: a course on the administration of public energy programs. An instructor's guide

    Energy Technology Data Exchange (ETDEWEB)

    Mandelbaum, Dr., Len; Olsen, Dr., Marvin; Hyman, Dr., Barry; Sheridan, Mimi; Dahlberg, Judy; O' Brien, Jeremy

    1980-12-01

    The course provides local government administrators, staff, and students with the background knowledge to deal with a broad range of energy management concerns and is not to train technical energy conservation specialists. Section II contains the Instructor's Guide and Section III provides the Student Outlines and Handouts on the following subjects: The Energy Problem; National Energy Politics and Programs; State and Local Energy Programs; Techniques of Energy Planning; Techniques of Energy Conservation; Techniques of Renewable Energy Production; Strategies for Voluntary Energy Management; Strategies for Finan. Energy Management; and Strategies for Mandatory Energy Management. (MCW)

  16. Semi-definite Programming: methods and algorithms for energy management

    International Nuclear Information System (INIS)

    Gorge, Agnes

    2013-01-01

    The present thesis aims at exploring the potentialities of a powerful optimization technique, namely Semi-definite Programming, for addressing some difficult problems of energy management. We pursue two main objectives. The first one consists of using SDP to provide tight relaxations of combinatorial and quadratic problems. A first relaxation, called 'standard' can be derived in a generic way but it is generally desirable to reinforce them, by means of tailor-made tools or in a systematic fashion. These two approaches are implemented on different models of the Nuclear Outages Scheduling Problem, a famous combinatorial problem. We conclude this topic by experimenting the Lasserre's hierarchy on this problem, leading to a sequence of semi-definite relaxations whose optimal values tends to the optimal value of the initial problem. The second objective deals with the use of SDP for the treatment of uncertainty. We investigate an original approach called 'distributionally robust optimization', that can be seen as a compromise between stochastic and robust optimization and admits approximations under the form of a SDP. We compare the benefits of this method w.r.t classical approaches on a demand/supply equilibrium problem. Finally, we propose a scheme for deriving SDP relaxations of MISOCP and we report promising computational results indicating that the semi-definite relaxation improves significantly the continuous relaxation, while requiring a reasonable computational effort. SDP therefore proves to be a promising optimization method that offers great opportunities for innovation in energy management. (author)

  17. 76 FR 23583 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Science.gov (United States)

    2011-04-27

    ... Management Program Power Marketing Initiative to the Boulder Canyon Project AGENCY: Western Area Power... Area Power Administration (Western), a Federal power marketing agency of the Department of Energy (DOE), will apply the Energy Planning and Management Program (Program) Power Marketing Initiative (PMI), as...

  18. Energy management: a program of energy conservation for the community college facility. [Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Various Authors

    1978-01-01

    This handbook developes helps for assessing and improving the energy efficiency of the community-college facility. The TEEM approach (Total Educational Energy Management) is a labor-intensive approach which requires the commitment and participation of all segments of the college community. The TEEM program presented here defines a series of tasks selected, ordered, and implemented in such a way as to achieve two basic objectives: (1) reducing campus energy requirements, and (2) meeting those reduced energy requirements more efficiently without adversely affecting the quality of educational programs. This guide to large-scale energy conservation on college campuses includes step-by-step procedures for establishing a program task force, defining specific tasks, and assigning responsibilities. Action plans are developed, energy consumption monitored, goals set, and conservation measures implemented. A series of appendices provides more detailed information, charts, and worksheets related to all aspects of energy use. The TEEM program provides the basic structure for achieving a significant reduction in campus energy costs.

  19. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  20. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  1. U.S. Department of Energy defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Jordan, E.A.

    1988-01-01

    The Program Implementation Plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  2. Community energy auditing: experience with the comprehensive community energy management program

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.L.; Berger, D.A.; Rubin, C.B.; Hutchinson, P.A. Sr.; Griggs, H.M.

    1980-09-01

    The report provides local officials and staff with information on lessons from the audit, projection, and general planning experiences of the Comprehensive Community Energy Management Program (CCEMP) communities and provides ANL and US DOE with information useful to the further development of local energy management planning methods. In keeping with the objectives, the report is organized into the following sections: Section II presents the evaluation issues and key findings based on the communities' experiences from Spring of 1979 to approximately March of 1980; Section III gives an organized review of experience of communities in applying the detailed audit methodology for estimating current community energy consumption and projecting future consumption and supply; Section IV provides a preliminary assessment of how audit information is being used in other CCEMP tasks; Section V presents an organized review of preliminary lessons from development of the community planning processes; and Section VI provides preliminary conclusions on the audit and planning methodology. (MCW)

  3. 76 FR 30147 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Science.gov (United States)

    2011-05-24

    ... Management Program Power Marketing Initiative to the Boulder Canyon Project AGENCY: Western Area Power.... SUMMARY: The Western Area Power Administration (Western), a Federal power marketing agency of the..., the Energy Management and Planning Program (Program), and the Conformed General Consolidated Power...

  4. 76 FR 81487 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Science.gov (United States)

    2011-12-28

    ... Management Program Power Marketing Initiative to the Boulder Canyon Project Post-2017 Remarketing AGENCY... . Information regarding Western's BCP Post-2017 marketing efforts, the Energy Management and Planning Program... Proposals. SUMMARY: The Western Area Power Administration (Western), a Federal power marketing agency of the...

  5. 75 FR 27182 - Energy Conservation Program: Web-Based Compliance and Certification Management System

    Science.gov (United States)

    2010-05-14

    ... Conservation Program: Web-Based Compliance and Certification Management System AGENCY: Office of Energy... following means: 1. Compliance and Certification Management System (CCMS)--via the Web portal: http... certification reports to the Department of Energy (DOE) through an electronic Web-based tool, the Compliance and...

  6. Implementation Plan for the Office of Nuclear Energy Knowledge Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-12-01

    The primary purpose of the Department of Energy (DOE), Office of Nuclear Energy (NE) Knowledge Management (KM) Program is to capture, share, disseminate, and ensure the ability to apply the knowledge created by the major nuclear energy Research and Development (R&D) programs. In support of the KM program, the Implementation Plan for the Office of NE KM Program outlines the knowledge management and distributed data environment that is required for its success. In addition to enumerating some strategic goals and objectives, this document characterizes the initial program and identifies computer-based areas of investment required for increased knowledge sharing and collaboration. It identifies and addresses investments already in existence and describes how these investments can be further enhanced and implemented to support a distributed KM program. The Idaho National Laboratory (INL) is leading the effort to identify and address these investments through the implementation of a distributed KM program that includes participants from ten of the major DOE national laboratories.

  7. U.S. Department of Energy, defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Chee, T.

    1988-01-01

    This paper reports that the program implementation plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  8. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  9. NEPA implementation: The Department of Energy's program to manage spent nuclear fuel

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1994-05-01

    The Department of Energy (DOE) is implementing the National Environmental Protection Act (NEPA) in its management of spent nuclear fuel. The DOE strategy is to address the short-term safety concerns about existing spent nuclear fuel, to study alternatives for interim storage, and to develop a long-range program to manage spent nuclear fuel. This paper discusses the NEPA process, the environmental impact statements for specific sites as well as the overall program, the inventory of DOE spent nuclear fuel, the alternatives for managing the fuel, and the schedule for implementing the program

  10. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program`s management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention.

  11. An energy management for series hybrid electric vehicle using improved dynamic programming

    Science.gov (United States)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  12. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program's management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention

  13. Prioritization of proposed waste management construction projects for the Waste Management program within the Department of Energy

    International Nuclear Information System (INIS)

    Johnson, J.V.

    1995-01-01

    A prioritization process is used to evaluate and rank proposed construction projects within the Department of Energy's Waste Management program. The process is used to determine which projects should proceed with conceptual design activities. The proposed construction projects are evaluated against a set of criteria which reflect Waste Management priorities. A management review team ranks and scores the projects thereby generating a prioritized list of projects. Despite decreasing budgets and changing political climates, the process has been a successful decision-aiding tool for selecting construction projects to carry out the Waste Management mission within the Department of Energy

  14. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.

  15. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Science.gov (United States)

    2010-01-01

    ... Resource Planning, allows customers of the Western Area Power Administration (Western) to meet the objectives of section 114 of EPAct through integrated resource planning or by other means, such as attaining... purposes of the Energy Planning and Management Program (EPAMP) are to meet the objectives of Section 114 of...

  16. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  17. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  18. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  19. Development of educational programs for environmental restoration/waste management at two Department of Energy sites

    International Nuclear Information System (INIS)

    Harrison, R.J.; Toth, W.J.; Smith, T.H.

    1991-01-01

    Availability of appropriately educated personnel is perhaps the greatest obstacle faced by the nation in addressing its waste management and environmental restoration activities. The US Department of Energy (DOE) Idaho National Engineering Laboratory (INEL) and the DOE Grand Junction, Colorado, Projects Office (GJPO) have developed two educational degree programs that respond to the human resource needs of the environmental restoration/waste management effort in ways that reflect the programmatic and cultural diversity at the two sites. The INEL has worked with the University of Idaho and Idaho States University to develop a set of master's degree programs focusing on waste management and environmental restoration. GJPO has developed an associate degree program and is developing a baccalaureate program in environmental restoration with Mesa State College. The development of these two programs was coordinated through the INEL University Relations Committee. They were conceived as parts of an overall effort to provide the human resources for environmental restoration and waste management. The background, need, and development of these two programs are presented, as well as information on associated industry parternships, employee scholarship programs, and plans for integration and articulation of curricula. 3 refs

  20. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  1. Effect of Cracow program elimination of low emission sources upon the energy management system in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, J. [Deputy Mayor of Cracow (Poland); Goerlich, K. [Deputy Mayor of Cracow (Poland); Glowacki, K. [Office of the City of Cracow (Poland)

    1995-12-31

    At the end of the 1980s, the energy management at the local level-like the whole set of such utility services-was based upon respective enterprises subject to a certain supervision of the establishing body and to a control of the District Inspectorate of Energy Management. Those enterprises that deal with generation and supply of heat energy to the local market, with distribution of heat, natural gas and electricity, operated as state companies; the last two branches made a part of either regional or national companies. Irrespective of the aforesaid, the co-generation power plants existed usually outside the heat generation and supply system. The business economics of these enterprises was not subject to any market rules whatsoever, the prices were controlled and the customers had no right of choice of the energy supplier. From the very beginning the low emission elimination program assumed to have commercial rules introduced in the energy management. Thus, it turned out necessary to prepare the market - to draw up inventory of the conditions and needs related with heat supply and to take up market solutions as well. The management system, and in particular the items specified below, is discussed. The co-operation of energy distribution enterprises has been based upon a voluntary agreement (The Team for Energy Suppliers) so as to agree upon the basic actions of the respective partners; joint actions have been taken up more and more willingly.

  2. 75 FR 19966 - Boulder Canyon Project-Post-2017 Application of the Energy Planning and Management Program Power...

    Science.gov (United States)

    2010-04-16

    ... Application of the Energy Planning and Management Program Power Marketing Initiative AGENCY: Western Area... and Management Program (Program) Power Marketing Initiative (PMI) (10 CFR part 905) to the Boulder... Power Administration (Western), Desert Southwest Region, a Federal power marketing agency of the...

  3. Quality assurance programs developed and implemented by the US Department of Energy`s Analytical Services Program for environmental restoration and waste management activities

    Energy Technology Data Exchange (ETDEWEB)

    Lillian, D.; Bottrell, D. [Dept. of Energy, Germntown, MD (United States)

    1993-12-31

    The U.S. Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) has been tasked with addressing environmental contamination and waste problems facing the Department. A key element of any environmental restoration or waste management program is environmental data. An effective and efficient sampling and analysis program is required to generate credible environmental data. The bases for DOE`s EM Analytical Services Program (ASP) are contained in the charter and commitments in Secretary of Energy Notice SEN-13-89, EM program policies and requirements, and commitments to Congress and the Office of Inspector General (IG). The Congressional commitment by DOE to develop and implement an ASP was in response to concerns raised by the Chairman of the Congressional Environment, Energy, and Natural Resources Subcommittee, and the Chairman of the Congressional Oversight and Investigations Subcommittee of the Committee on Energy and Commerce, regarding the production of analytical data. The development and implementation of an ASP also satisfies the IG`s audit report recommendations on environmental analytical support, including development and implementation of a national strategy for acquisition of quality sampling and analytical services. These recommendations were endorsed in Departmental positions, which further emphasize the importance of the ASP to EM`s programs. In September 1990, EM formed the Laboratory Management Division (LMD) in the Office of Technology Development to provide the programmatic direction needed to establish and operate an EM-wide ASP program. In January 1992, LMD issued the {open_quotes}Analytical Services Program Five-Year Plan.{close_quotes} This document described LMD`s strategy to ensure the production of timely, cost-effective, and credible environmental data. This presentation describes the overall LMD Analytical Services Program and, specifically, the various QA programs.

  4. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Runci, Paul; Meier, Alan

    2008-08-01

    This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

  5. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Science.gov (United States)

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-01

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced. PMID:29315250

  6. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids.

    Science.gov (United States)

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-09

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  7. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Directory of Open Access Journals (Sweden)

    Claudia Pop

    2018-01-01

    Full Text Available In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.. In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  8. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  9. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Christa; Malone, Elizabeth L.

    2014-05-20

    This report assesses the use of institutional change principles and the institutional impact of award-winning projects through interviews with 22 Department of Energy Federal Energy Management Program (DOE FEMP) award winners. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. We found that award winners do use strategies based on eight principles of institutional change, most frequently in terms of making changes to infrastructure, engaging leadership, and capitalizing on multiple motivations for making an energy efficiency improvement. The principles drawn on the least often were commitment and social empowerment. Award winners also faced five major types of obstacles that were institutional in nature: lack of resources, constraints of rules, psychological barriers, lack of information, and communication problems. We also used the seven categories of Energy Management Excellence (EME) as a lens to interpret the interview data and assess whether these categories relate to established institutional change principles. We found that the eight principles reflect strategies that have been found to be useful in improving energy efficiency in organizations, whereas the EME categories capture more of a blend of social contextual factors and strategies. The EME categories fill in some of the social context gaps that facilitate institutional change and energy management excellence, for example, personal persistence, a culture that supports creativity and innovation, regular engagement with tenants, contractors, and staff at all levels. Taking together the use of principles, EME criteria, and obstacles faced by interviewees, we make recommendations for how FEMP can better foster institutional change in federal agencies.

  10. US Department of Energy, Richland Operations Office Integrated Safety Management System Program Description

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    2000-01-01

    The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight

  11. U.S. Department of Energy, Office of Legacy Management Program Update, April-June 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-04-01

    Welcome to the April-June 2009 issue of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Program Update. This publication is designed to provide a status of activities within LM. The Legacy Management goals are: (1) Protect human health and the environment through effective and efficient long-term surveillance and maintenance - This goal highlights DOE's responsibility to ensure long-term protection of people, the environment, and the integrity of engineered remedies and monitoring systems. (2) Preserve, protect, and make accessible legacy records and information - This goal recognizes LM's commitment to successfully manage records, information, and archives of legacy sites under its authority. (3) Support an effective and efficient work force structured to accomplish Departmental missions and assure continuity of contractor worker pension and medical benefits - This goal recognizes DOE's commitment to its contracted work force and the consistent management of pension and health benefits. As sites continue to close, DOE faces the challenges of managing pension plan and health benefits liability. (4) Manage legacy land and assets, emphasizing protective real and personal property reuse and disposition - This goal recognizes a DOE need for local collaborative management of legacy assets, including coordinating land use planning, personal property disposition to community reuse organizations, and protecting heritage resources (natural, cultural, and historical). (5) Improve program effectiveness through sound management - This goal recognizes that LM's goals cannot be attained efficiently unless the federal and contractor work force is motivated to meet requirements and work toward continuous performance improvement.

  12. Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihe Xi

    2017-11-01

    Full Text Available The extended range electric vehicle (EREV can store much clean energy from the electric grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline during the trip is a common goal for most energy management controllers. To achieve these objectives, an intelligent energy management controller for EREV based on dynamic programming and neural networks (IEMC_NN is proposed. The power demand split ratio between the extender and battery are optimized by DP, and the control objectives are presented as a cost function. The online controller is trained by neural networks. Three trained controllers, constructing the controller library in IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine an appropriate NN controller for different driving distance purposes, the selection module in IEMC_NN is developed based on the remaining battery energy and the driving distance to the charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN. They are target driving distance information, known and unknown, changing the destination during the trip. Simulation results using these simulation conditions show that the IEMC_NN had better fuel economy than the charging deplete/charging sustain (CD/CS algorithm. More significantly, with known driving distance information, the battery SOC controlled by IEMC_NN can just reach the lower bound as the EREV arrives at the charging station, which was also feasible when the driver changed the destination during the trip.

  13. Communicating risks from the environmental management program of the United States Department of Energy

    International Nuclear Information System (INIS)

    Bollinger, M.E.; Stenner, R.; Picel, K.; McGinn, W.

    2000-01-01

    With the inception of the Department of Energy (DOE) Environmental Management (EM) program, the need for better communication of the Department's environmental risks was highlighted. A number of database systems were used to describe the EM program's risk with limited success. Then in December 1997, the Assistant Secretary for Environmental Management charged the DOE operations and field offices and the Center for Risk Excellence (CRE) to work together to create 'Risk Profiles' or 'Risk Stories.' The purpose of the Profiles is to increase effective communication of risks at a national level for DOE sites by creating a common sense approach to describing risks. This paper describes the progress to date and looks at the plans for future activities. Abbreviations. BGRR: Brookhaven Graphite Research Reactor; CERCLA: Comprehensive Response, Compensation and Liability Act; CRE: Center for Risk Excellence; DOE: U.S. Department of Energy; EM: environmental management; ORNL: Oak Ridge National Laboratory; PBSs: Project Baseline Summaries; PtC: Paths to Closure; RDSs: Risk Data Sheets; RH: relative hazard; SRS CAB: Savannah River Site Citizens Advisory Board; VOCs: volatile organic compounds

  14. A programmatic response to the Secretary of Energy's review of the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Benson, A.B.

    1994-01-01

    On January 19, 1993, in response to a question during her confirmation hearing, Secretary of Energy Hazel R. O'Leary stated that she believed that a comprehensive review of nuclear waste disposal programs and policies was needed. Her preferred approach to such a review would be to engage in a consensus-seeking effort in which all involved parties would be brought to the table to deal with contentious issues. This paper describes both the process and the separate elements of the review of the civilian radioactive waste management program conducted in 1993 and 1994 by Secretary O'Leary. The paper will trace the review beginning with the Secretary's statement at her confirmation hearing, through her interim guidance redirecting certain aspects of the program. It describes some initiatives and changes that are already underway as a result of this review. Throughout the year, stakeholders expressed their concerns, opinions, and recommendations regarding the program. These communications reflected the diversity of perspective that has become a hallmark of the radioactive waste program

  15. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  16. Applied Energy Program

    Science.gov (United States)

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research » Applied Energy Program Applied Energy Program Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact

  17. An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2018-03-01

    Full Text Available Hybrid electric vehicles are a compromise between traditional vehicles and pure electric vehicles and can be part of the solution to the energy shortage problem. Energy management strategies (EMSs are highly related to energy utilization in HEVs’ fuel economy. In this research, we have employed a neuro-dynamic programming (NDP method to simultaneously optimize fuel economy and battery state of charge (SOC. In this NDP method, the critic network is a multi-resolution wavelet neural network based on the Meyer wavelet function, and the action network is a conventional wavelet neural network based on the Morlet function. The weights and parameters of both networks are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic programing-based method. Simulation results under ADVISOR2002 have shown that the proposed NDP approach achieves better performance than both the methods. These indicate that the proposed NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.

  18. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  19. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  20. Program definition and assessment overview. [for thermal energy storage project management

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  1. Interagency Review of the Department of Energy Environmental Restoration and Waste Management Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents the findings of the Interagency Requirements Review of the Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) Program. The review was requested by Admiral Watkins to help determine the FY 1993 funding levels necessary to meet all legal requirements. The review was undertaken by analysts from the Office of Management and Budget (OMB) and Army Corps of Engineers, reporting to an Interagency Group (IAG) of senior Administration officials concerned with environmental cleanup issues. The purpose of the study was to determine the level of finding needed in FY 1993 for each ERWM Field Office to comply with all Federal, State, and local government legal requirements; all DOE Orders that establish standards for environment, safety and health (ES and H) management; and for prudent investments in other discretionary and management activities such as upgrading administrative buildings, information systems, etc. The study also reviewed the cost estimates supporting the ERWM proposed budget, including direct costs (labor, equipment) and indirect costs (administrative, landlord services, contractor overhead). The study did not analyze whether the Federal/State legal requirements and DOE Orders were necessary or whether the proposed clean-up remedies represent the most cost effective alternatives available

  2. National Energy Board Emergency Management Program : annex to Natural Resources Canada Civil Emergency Plan no. 004

    International Nuclear Information System (INIS)

    Lever, G.; LeMay, R.

    2006-01-01

    As a matter of primary public interest, safety is included in the National Energy Board's (NEB) mandate. The Board is responsible for ensuring companies involved with energy development and pipelines comply with regulations concerning the safety of employees, the public, and the environment. The purpose of the NEB's Emergency Management Program is to establish a prompt and coordinated response to an emergency which occurs at any facility or operation regulated by the NEB; promote safety and security and assure compliance with regulatory requirements in order to protect the public, workers, property and the environment during the life cycle of facilities and operations; and, have a documented set of procedures that accomplish these objectives. The Board ensures that companies identify and manage the potential hazards associated with their facilities; conduct a risk analysis of those hazards; and, manage the risks in order to protect the public and personnel, the security of the facilities and the environment. All companies under the Board's jurisdiction are responsible for developing and maintaining an Emergency Response and Preparedness Program for all aspects of their operations. In the event an emergency occurs, the regulated company is responsible for responding to the emergency and coordinating emergency response activities. Typically, the NEB responds on site to incidents that result in death or serious injury; involve a significant release of hydrocarbons; could result in potential or real impact due to loss of service; pose imminent threats identified by Public Safety and Emergency Preparedness Canada or other agencies; attract significant media attention, or on the advice of Natural Resources Canada or other federal Agencies. The first part of this document described the initial response check list while the second part outlined the Emergency response framework. 2 tabs., 3 figs., 15 appendices

  3. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    Science.gov (United States)

    Gosman, Nathaniel

    For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity

  4. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Jacarilla reservation lies on the San Juan Basin in New Mexico, with vast oil and gas deposits, actively developed since the late 1950s. Constraints on Tribal regulation of energy development are discussed in Section I. Section II describes the relationship between Federal agencies and the Tribe; identifies energy management problems; recommends management activities to address the problems; and points out skill requirements. The Tribe has now adopted a formal statement of goals and objectives for its minerals management program and details of the program are described in Section III. Information on the legal analysis of oil and gas development on the land of the Tribe is given in the appendix. (MCW)

  5. Energy manager's handbook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, G A

    1977-01-01

    The handbook provides sufficient guidance on the principles involved for readers to tailor a program to meet their own requirement. The following chapters are included: Energy Conservation; Management of Energy; Delivery, Storage, and Handling of Fuels; Boilers; Furnaces; Heat Distribution and Utilization; Industrial Space Heating; Electricity; Services; and Road Transport. (MCW)

  6. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  7. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  8. Annual report to Congress on Federal Government Energy Management and Conservation Programs

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report on Federal Energy Management for Fiscal year (FY) 1992 provides information on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet the statutory requirements of Title V, Part 3, of the National Energy Conservation Policy Act (NECPA), as amended, 42 U.S.C. 8251-8261, and Title VIII of NECPA, 42 U.S.C. 8287-8287b. This report also describes the energy conservation and management activities of the Federal Government under the authorization of section 381 of the Energy Policy and Conservation Act (EPCA), as amended, 42 U.S.C. 6361. Implementation activities undertaken during FY 1992 by the Federal agencies under Executive Order 12759 on Federal Energy Management are also described in this report.

  9. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  10. FAA Energy Order 1053.1A - Energy and Water Management Program For FAA Buildings and Facilities

    Science.gov (United States)

    1996-12-27

    This order provides Federal Aviation Administration (FAA) policies, procedures, and organizational responsibilities, in a focused and expanded agency energy and water planning and conservation program, for complying with the national mandates for the...

  11. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Pueblo of Laguna lies in the Grants Uranium Belt. The Grants belt is the source of more than half of all uranium produced in the US. Currently the Pueblo has development agreements with Conoco and Anaconda. Only the Anaconda leasehold has been developed - an open pit mine and 2 underground mines. The Pueblo has several areas of concern in managing mineral development. These include monitoring and enforcing performance standards, and taxing severance of uranium from the land. Constraints on tribal regulation of energy development are discussed in Chapter 1. Energy management program needs of the Pueblo of Laguna are discussed in Chapter 2. Chapter three contains the energy management plan to be used by the Pueblo as it formulates and implements an energy development and management strategy. (DMC)

  12. Annual report to Congress on Federal Government energy management and conservation programs, Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-06

    This report provides sinformation on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet statutory requirements of the National Energy Conservation Policy Act. It also describes energy conservation and management activities of the Federal Government under section 381 of the Energy Policy and Conservation Act. Implementation activities undertaken during FY94 by the Federal agencies under the Energy Policy Act of 1992 and Executive Orders 12759 and 12902 are also described. During FY94, total (gross) energy consumption of the US Government, including energy consued to produce, process, and transport energy, was 1.72 quadrillion Btu. This represents {similar_to}2.0% of the total 85.34 quads used in US.

  13. IPEP: The integrated performance evaluation program for the Department of Energy's Office of Environmental Management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Streets, W.E.; Bass, D.A.

    1995-01-01

    The quality of the analytical data being provided to DOE's Office of Environmental Management (EM) for environmental restoration activities and the extent to which these data meet the data quality objectives are critical in the decision-making process. One of several quality metrics that can be used in evaluating a laboratory is its performance in performance evaluation (PE) programs. In support of DOE's environmental restoration and waste management efforts, EM has been charged with developing and implementing a program to assess the performance of participating laboratories. Argonne National Laboratory (ANL) and DOE's Environmental Measurements Laboratory (EML) and Radiological and Environmental Sciences Laboratory (RESL) have been collaborating on the development and implementation of a comprehensive Integrated Performance Evaluation Program (IPEP) for DOE-wide implementation. The IPEP will use results from existing inorganic, organic, and radiological PE programs when these are available and appropriate for the analytes and matrices being determined for DOE's EM activities. Existing programs include the U.S. Environmental Protection Agency's (EPA's) Contract Laboratory Program (CLP), the Water Supply (WS) and Water Pollution (WP) PE studies for inorganic and organic analytes, and DOE's Quality Assessment Program (QAP) for radiological analytes. In addition, DOE has begun the development of the Mixed Analyte Performance Evaluation Program (MAPEP) to address the needs of the DOE Complex. These PE programs provide a spectrum of matrices and analytes covering the various inorganic, organic, and low-level radiologic categories found in routine environmental and waste samples. These PE programs already provide some assessment of laboratory performance; IPEP will expand these assessments by evaluating historical performance, as well as results from multiple PE programs, thereby providing an enhanced usage of the PE program information

  14. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    Energy Technology Data Exchange (ETDEWEB)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  15. Role of performance measures in reengineering U.S. Department of Energy's management of environmental management programs

    International Nuclear Information System (INIS)

    Murthy, K.S.; Harroun, W.P.

    1996-01-01

    The Rocky Flats Environmental Technology Site (Rocky Flats) contributed to America's defense up to the end of the Cold War. It is one of several large US Department of Energy (DOE) nuclear industrial facilities, currently undergoing cleanup and closure. The Site was constructed in a sparsely populated area along the Rocky Mountain Foothills, near Denver, in 1952. In the 45 years since, Denver has grown to a major metropolitan area. Over 2 million people live within the Site's 50-mile radius. The Site is directly upstream of water supplies that serve over 300,000 people. As a result, accelerated cleanup, consolidation, reuse, and closure of the Site are the current essentials. The Site has had three management and operating (M and O) contractors since inception. In keeping with the shift in the Site's paradigm from one of weapon-parts production program to cleanup and closure project, DOE changed its contracting philosophy for the Site from the M and O type of contract to a Performance-based Incentive Fee Integrating Management contract (PBIF IMC). Doe selected the Site's fourth contractor as an IMC contractor in July 1995. Kaiser-Hill Company L.L.C. was awarded the contract and assumed IMC responsibility for the Site on July 1, 1995. Integral to this contract is the establishment and implementation of a performance measures system. Performance measures are the bases for incentives that motivate the IMC and the subcontractors working at Rocky Flats. This paper provides an overview of Performance Measures system practiced at Rocky Flats from July 1995 to December 1995. Also described are the developments in reengineering during the July 1995--March 1996 interval

  16. Development of an Integrated Performance Evaluation Program (IPEP) for the Department of Energy's Office of Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Streets, W.E.; Ka; Lindahl, P.C.; Bottrell, D.; Newberry, R.; Morton, S.; Karp, K.

    1993-01-01

    Argonne National Laboratory (ANL), in collaboration with DOE's Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project Office (GJPO), is working with the Department of Energy (DOE) Headquarters and the US Environmental Protection Agency (EPA) to develop the Integrated Performance Evaluation Program (IPEP). The purpose of IPEP is to integrate performance evaluation (PE) information from existing PE programs with expanded quality assurance (QA) activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting DOE Environmental Restoration and Waste Management (EM) programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE-EM; new PE programs will be developed only when no existing program meets DOE's needs

  17. Guide to energy management

    International Nuclear Information System (INIS)

    2006-03-01

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  18. A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program

    International Nuclear Information System (INIS)

    Safamehr, Hossein; Rahimi-Kian, Ashkan

    2015-01-01

    Providing a cost-efficient and reliable energy is one of the main issues in human societies of the 21st century. In response to this demand, new features of micro grid technology have provided huge potentials, specifically by the capability of having an interactive coordination between energy suppliers and consumers. Accordingly, this paper offers an improved model for achieving an optimal Demand Response programing. To solve the proposed multi-objective optimization problem, Artificial Bee Colony algorithm and quasi-static technique are utilized. The considered objectives in this paper are minimizing the overall cost of energy consumption and also improving the technical parameters of micro grid over a time horizon. This optimization is subject to several constraints such as satisfying the energy balance and the operating constraints of each energy supply sources. Manageable load or load as source is another enabling feature existing in smart energy networks, which is considered in this paper and its effect on cost reduction and reliability improvement is studied. Trying to examine the performance of the proposed Demand Response Programing in real conditions, the uncertainties are also analyzed by stochastic methods. The results show significant improvements which are obtained by applying just intelligent programming and management. - Highlights: • This paper presents a cost-efficient and reliable energy management of a micro-grid. • New models of battery and manageable loads are formulated. • Artificial Bee Colony algorithm is used to solve the optimization problem. • Quasi-static technique is used to simplify the solving procedure. • The uncertainties are also analyzed by stochastic methods.

  19. Stochastic programming and market equilibrium analysis of microgrids energy management systems

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw

    2016-01-01

    Microgrids facilitate optimum utilization of distributed renewable energy, provides better local energy supply, and reduces transmission loss and greenhouse gas emission. Because the uncertainty in energy demand affects the energy demand and supply system, the aim of this research is to develop a stochastic optimization and its market equilibrium for microgrids in the electricity market. Therefore, a two-stage stochastic programming model for microgrids and the market competition model are derived in this paper. In the stochastic model, energy demand and supply uncertainties are considered. Furthermore, a case study of the stochastic model is conducted to simulate the uncertainties on the INER microgrids in Taiwanese market. The optimal investment of the generators and batteries installation and operating strategies are determined under energy demand and supply uncertainties for the INER microgrids. The results show optimal investment and operating strategies for the current INER microgrids are also determined by the proposed two-stage stochastic model in the market. In addition, trade-off between the battery capacity and microgrids performance is investigated. Battery usage and power trading between the microgrids and main grid systems are the functions of battery capacity. - Highlights: • A two-stage stochastic programming model is developed for microgrids. • Market equilibrium analysis of microgrids is conducted. • A case study of the stochastic model is conducted for INER microgrids.

  20. Quality assurance programs developed and implemented by the US Department of Energy's Analytical Services Program for environmental restoration and waste management activities

    International Nuclear Information System (INIS)

    Lillian, D.; Bottrell, D.

    1993-01-01

    The U.S. Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM) has been tasked with addressing environmental contamination and waste problems facing the Department. A key element of any environmental restoration or waste management program is environmental data. An effective and efficient sampling and analysis program is required to generate credible environmental data. The bases for DOE's EM Analytical Services Program (ASP) are contained in the charter and commitments in Secretary of Energy Notice SEN-13-89, EM program policies and requirements, and commitments to Congress and the Office of Inspector General (IG). The Congressional commitment by DOE to develop and implement an ASP was in response to concerns raised by the Chairman of the Congressional Environment, Energy, and Natural Resources Subcommittee, and the Chairman of the Congressional Oversight and Investigations Subcommittee of the Committee on Energy and Commerce, regarding the production of analytical data. The development and implementation of an ASP also satisfies the IG's audit report recommendations on environmental analytical support, including development and implementation of a national strategy for acquisition of quality sampling and analytical services. These recommendations were endorsed in Departmental positions, which further emphasize the importance of the ASP to EM's programs. In September 1990, EM formed the Laboratory Management Division (LMD) in the Office of Technology Development to provide the programmatic direction needed to establish and operate an EM-wide ASP program. In January 1992, LMD issued the open-quotes Analytical Services Program Five-Year Plan.close quotes This document described LMD's strategy to ensure the production of timely, cost-effective, and credible environmental data. This presentation describes the overall LMD Analytical Services Program and, specifically, the various QA programs

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  2. Electric utility load management: rational use of energy program pilot study

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    In recognition of the role that load management can play in ensuring that the growing demand for electricity is met in a cost- and energy-efficient manner, in mid-1974, the NATO Committee on the Challenges of Modern Society sponsored all three meetings to provide a forum for representatives of U.S. and European utilities to exchange views and experiences on the various aspects of load management. It was the consensus of representatives at the meetings that three overall approaches offer significant opportunities for achieving improved load management: development of marginal-cost rate structures; power pooling and energy storage by utilities; and efforts by consumers. Industrial consumers can assist electric utilities in their efforts to level system loads through three important methods: interruptible power and deferred load control; peak self-generation; and shifts in operating schedules. Residential/commercial consumers also have an important role to play by managing both their electric heating load (through the interruption of direct-resistance heating and the storage of heat) and their air conditioning load. In response to the interest expressed by the participants in the CCMS conferences, the U.S. and several European governments, national electric utility industry organizations, state public utility commissions, and many individual utilities have undertaken R and D projects to investigate and test various aspects of these three approaches to load management. This report describes the projects that were presented by the utility representatives.

  3. Evaluation of programme for energy management in buildings; Evaluering av program for energiledelse i bygg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Enova SF needed to evaluate the programmes for energy management for greater and smaller building owners. The question was: What has been the impact of the Buildings Network and the energy management programmes for greater and smaller building owners on energy conservation and economic life , and are the programmes operated efficiently? The buildings which participated in the Buildings Network in 1996 - 2002 had an average reduction of the energy consumption of about 7 per cent, which is somewhat less than the supposed potential of 10 per cent. There is some uncertainty in this calculation and the true figure is probably 1 or 2 per cent higher. Whether this energy conservation tendency has continued after Enova took over the responsibility for the programme in 2002 is too early to measure. It is very probable that the public support to the projects has triggered off the saving, that is, there has been few free riders. After 2002, Enova has made the programme more efficient and the cost per building has been halved in the period 2001 - 2003. But some of the original infrastructure of the programme has been discontinued.

  4. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  5. 10 CFR 800.002 - Program management.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Program management. 800.002 Section 800.002 Energy DEPARTMENT OF ENERGY LOANS FOR BID OR PROPOSAL PREPARATION BY MINORITY BUSINESS ENTERPRISES SEEKING DOE CONTRACTS AND ASSISTANCE General § 800.002 Program management. Program management responsibility for...

  6. Radiological accidents potentially important to human health risk in the U.S. Department of Energy waste management program

    International Nuclear Information System (INIS)

    Mueller, C.; Roglans-Ribas, J.; Folga, S.; Nabelssi, B.; Jackson, R.

    1995-01-01

    Human health risks as a consequence of potential radiological releases resulting from plausible accident scenarios constitute an important consideration in the US Department of Energy (DOE) national program to manage the treatment, storage, and disposal of wastes. As part of this program, the Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks that could result from managing five different waste types. This paper (1) briefly reviews the overall approach used to assess process and facility accidents for the EM PEIS; (2) summarizes the key inventory, storage, and treatment characteristics of the various DOE waste types important to the selection of accidents; (3) discusses in detail the key assumptions in modeling risk-dominant accidents; and (4) relates comparative source term results and sensitivities

  7. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  8. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  9. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  10. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  11. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  13. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-01-01

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management

  14. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  15. Methodology to develop a training program as a tool for energy management

    Directory of Open Access Journals (Sweden)

    Mónica Rosario Berenguer-Ungaro

    2017-12-01

    Full Text Available The paperaims to present the methodology to develop a training program improve labor skills that enhance the efficient use of energy resources, which aims to make training a timely and meet the training needs as they arise and that the protagonist of it is he who receives training. It is based on the training-action and action research method and model for evaluating training Krikpatrick, it evaluates four levels, reaction, learning, behavior and results. The methodology is structured in three stages: 1 diagnosis of knowledge, 2 intervention based on the results and 3 evaluation and feedback for continuous improvement. Each stage has identified the objectives and implementation tools. Evaluation is transverse to the entire program and it is through it that decisions for feedback loops are taken.

  16. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    International Nuclear Information System (INIS)

    Custer, W.R. Jr.; Messick, C.D.

    1996-01-01

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies

  17. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  18. Energy planning and management plan

    International Nuclear Information System (INIS)

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration's final draft and environmental impact statement, and Energy Planning and Management Program

  19. Status and Challenges of Managing Risks in the U.S. Department of Energy Environmental Management Program

    International Nuclear Information System (INIS)

    Aaberg, Rosanne L.; Andrews, William B.; Bollinger, Mark E.; McGinn, Wilson; Picel, Kurt; Stenner, Robert D.; White, Michael K.; Young, Alvin L.

    2003-01-01

    Even in the United States, where various methods of risk assessment, risk management, and risk communication have been attempted over the years, these disciplines continue to evolve to meet the needs of decision makers faced with legacy wastes. This chapter provides an overview of the Cold War legacy challenges as currently understood by the U.S. Department of Energy (DOE), as well as the risk-based methodologies currently being applied to assist the DOE in managing those challenges. In the past decade (1990s), the DOE created a single organization within their waste management structure to coordinate their risk activities: the Office of Environmental Management's Center for Risk Excellence. The chapter describes the formation, operation, and contributions of that organization, which was created to encourage the use of risk-based approaches to DOE site management and to provide consistency in the use of such approaches across the DOE complex. Of particular interest are the effective communication concepts developed by this organization for summarizing site risk and risk-related information as risk profiles

  20. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  1. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  2. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  3. An Evaluation of the Federal Energy Management Program Technical Assistance Workshops: Results of a 1998 Customer Survey

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Gordon; N. Hall

    1999-04-01

    This report presents the results of a customer telephone survey of the participants of six workshops provided by the U. S. Department of Energy Federal Energy Management Program (FEMP) during calendar years 1995 and 1996. The primary purpose for the survey was to provide the Team Leader for FEMP Technical Assistance and members of the team with detailed customer feedback pertaining to how well selected FEMP workshops are doing and to identify areas for improvement. The information presented enables managers to see both the strengths of their workshops, as well as workshop components that can be improved. In addition, the report identifies the questions included in the survey that were the most productive for obtaining customers experiences, opinions and recommendations. The experiences gained during this survey provide a platform from which to launch an annual FEMP customer survey.

  4. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  5. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    Science.gov (United States)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  6. Accident analysis for transuranic waste management alternatives in the U.S. Department of Energy waste management program

    International Nuclear Information System (INIS)

    Nabelssi, B.; Mueller, C.; Roglans-Ribas, J.; Folga, S.; Tompkins, M.; Jackson, R.

    1995-01-01

    Preliminary accident analyses and radiological source term evaluations have been conducted for transuranic waste (TRUW) as part of the US Department of Energy (DOE) effort to manage storage, treatment, and disposal of radioactive wastes at its various sites. The approach to assessing radiological releases from facility accidents was developed in support of the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The methodology developed in this work is in accordance with the latest DOE guidelines, which consider the spectrum of possible accident scenarios in the implementation of various actions evaluated in an EIS. The radiological releases from potential risk-dominant accidents in storage and treatment facilities considered in the EM PEIS TRUW alternatives are described in this paper. The results show that significant releases can be predicted for only the most severe and extremely improbable accidents sequences

  7. Automation through the PIP [Program Implementation Plan] concurrence system improves information sharing among DOE [Dept. of Energy] managers

    International Nuclear Information System (INIS)

    Imholz, R.M.; Berube, D.S.; Peterson, J.L.

    1990-01-01

    The Program Implementation Plan (PIP) Concurrence System is designed to improve information sharing within the U.S. Department of Energy (DOE) and between DOE and the Field. Effectively sharing information enables DOE managers to make more informed, effective decisions. The PIP Concurrence System improved information sharing among DOE managers by defining the automated process for concurring on a DOE document, thus reducing the time required to concur on the document by 75%. The first step in defining an automated process is to structure the process for concurring on a document. Only those DOE managers with approved access could review certain parts of a document on a concurrence system. Remember that the concurrence process is a sign off procedure unlike a commentary process in which comments may not be restricted to certain people. The commentary process is the beginning of the concurrence process. The commentary process builds a document; the concurrence process approves it. 6 refs., 7 figs

  8. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  9. Semi-annual report of the Department of Energy, Office of Environmental Management, Quality Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenlaw, P.D.; Minick, S.K.

    1998-07-01

    This Quality Assessment Program (QAP) is designed to test the quality of the environmental measurements being reported to the Department of Energy by its contractors. Since 1976, real or synthetic environmental samples that have been prepared and thoroughly analyzed at the Environmental Measurements Laboratory (EML) have been distributed at first quarterly and then semi-annually to these contractors. Their results, which are returned to EML within 90 days, are compiled with EML`s results and are reported back to the participating contractors 30 days later. This report presents the results from the analysis of the 48th set of environmental quality assessment samples (QAP XLVIII) that were received on or before June 1, 1998.

  10. Semi-annual report of the Department of Energy, Office of Environmental Management, Quality Assessment Program

    International Nuclear Information System (INIS)

    Greenlaw, P.D.

    1998-01-01

    This Quality Assessment Program (QAP) is designed to test the quality of the environmental measurements being reported to the Department of Energy by its contractors. Since 1976, real or synthetic environmental samples that have been prepared and thoroughly analyzed at the Environmental Measurements Laboratory (EML) have been distributed at first quarterly and then semi-annually to these contractors. Their results, which are returned to EML within 90 days, are compiled with EML's results and are reported back to the participating contractors 30 days later. A summary of the reported results is available to the participants 4 days after the reporting deadline via the Internet at www.eml.doe.gov. This report presents the results from the analysis of the 47th set of environmental quality assessment samples (QAP XLVII) that were received on or before December 1, 1997

  11. Semi-annual report of the Department of Energy, Office of Environmental Management, Quality Assessment Program

    International Nuclear Information System (INIS)

    Greenlaw, P.D.; Minick, S.K.

    1998-01-01

    This Quality Assessment Program (QAP) is designed to test the quality of the environmental measurements being reported to the Department of Energy by its contractors. Since 1976, real or synthetic environmental samples that have been prepared and thoroughly analyzed at the Environmental Measurements Laboratory (EML) have been distributed at first quarterly and then semi-annually to these contractors. Their results, which are returned to EML within 90 days, are compiled with EML's results and are reported back to the participating contractors 30 days later. This report presents the results from the analysis of the 48th set of environmental quality assessment samples (QAP XLVIII) that were received on or before June 1, 1998

  12. Report of the Department of Energy, Office of Environmental Management, Gamma Spectrometry Data Validation Program

    International Nuclear Information System (INIS)

    Decker, K.; Sanderson, C.G.; Greenlaw, P.

    1996-11-01

    This report represents the results of analyses received on or before August 15, 1996 for the first annual Gamma Spectrometry Data Validation Program (May 1996) designed to assess the capability of DOE laboratories and DOE contractors in performing routine gamma spectra analyses. Data reduction of gamma spectra are normally performed with computer codes supplied by commercial manufacturers or are developed in house. Earlier evaluations of commercial codes gave spurious results for complex spectrum. A calibration spectrum, a background spectrum and three sample spectra of increasing complexity were included for each format. The calibration spectrum contained nuclides covering the energy range from 59.5 keV to 1836 keV. The first two samples contained fallout nuclides with halflives of over 30 days. Naturally occurring nuclides were also present. The third sample contained both short and long lived fission product nuclides. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Sixteen software packages were evaluated. In general, the results do not appear to be dependent on the software used. Based on the control limits established for the Program for the three sample spectra, 62%, 63% and 53%, respectively, of the reported results were evaluated as acceptable

  13. Current Program for the management of U.S. Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    Harms, T.

    1994-01-01

    The existing inventory of TRU waste can be divided into tow distinct components: (1) retrievably stored TRU waste and (2) buried TRU waste. The distinction between open-quotes storedclose quotes and open-quotes buriedclose quotes TRU waste was established in 1970 when the Atomic Energy Commission (AEC) determined that TRU-contaminated waste, when disposed, should have more effective isolation from the environment than the confinement provided by burial in pits and trenches covered with soil. Buried TRU (and contaminated soils surrounding buried TRU) are the results of disposal operations carried out at DOE sites prior to the 1970 decision. The inventory of buried TRU is 190,600 m 3 . This waste is the responsibility of the Office of Environmental Restoration (EM-40). All TRU waste generated since 1970 has been placed in storage at six DOE sites. This storage was designed with a lifetime expected to be 20 years. The waste is stored in retrievable form for eventual shipment and disposal at a geologic repository. Currently, TRU waste is contained in a variety of packaging, including metal drums and wooden and metal boxes, and stored in earth-mounded berms, concrete culverts, or other facilities. At the end of 1991, there were approximately 64,000 m 3 of retrievably stored TRU waste. With the WIPP facility not becoming operational until the year 2000 or later, the DOE must effectively manage this waste in other manners. The issues regarding the management of TRU wastes is described

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  15. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    1981-01-01

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  16. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  17. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  18. Construction program management

    CERN Document Server

    Delaney, Joseph

    2013-01-01

    Although construction is one of the largest industries in the United States, it lags behind other industries in its implementation of modern management techniques such as those contained in the Standard for Program Management (the Standard) by the Project Management Institute (PMI(R)). Construction Program Management details the successful use of the PMI(R) approach for the construction of capital programs. It demonstrates, through case studies, how implementation of PMI's set of tools and techniques can improve the chances of program success. Exploring tactical and strategic management method

  19. Environmental Restoration Program Management Control Plan

    International Nuclear Information System (INIS)

    1991-09-01

    This Management Control Plan has been prepared to define the Energy Systems approach to managing its participation in the US DOE's Environmental Restoration (ER) Program in a manner consistent with DOE/ORO 931: Management Plan for the DOE Field Office, Oak Ridge, Decontamination and Decommissioning Program; and the Energy Systems Environmental Restoration Contract Management Plan (CMP). This plan discusses the systems, procedures, methodology, and controls to be used by the program management team to attain these objectives

  20. Comment response document for the Secretary of Energy's ''Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program''

    International Nuclear Information System (INIS)

    1990-11-01

    On November 29, 1989, the Secretary of Energy published his ''Report to Congress on the Reassessment of the Civilian Radioactive Waste Management Program'' (Report), and sent copies to numerous interested parties for their review and comment. This document summarizes comments received on the Report and presents the DOE's current responses to those comments as a basis for further discussions. Included as appendixes are a list of commenters, a crosswalk showing where each comment is addressed, the comment letters themselves with specific comments delineated, and the DOE's response to those letters. Twenty-five individuals or organizations submitted comments on the Report. The DOE identified 130 individual comments and classified them into the following seven categories: Management, Institutional, Regulatory, Transportation, Monitored Retrievable Storage, Scheduling, and Yucca Mountain. For the responses, comments were than grouped into more specific topics under each of the major headings. The DOE attempted to respond to all comments

  1. French plutonium management program

    International Nuclear Information System (INIS)

    Greneche, D.

    2002-01-01

    The French plutonium management program is summarized in this paper. The program considers nuclear generation as a major component of national electric power supply and includes the reprocessing of the spent fuel. (author)

  2. Unstable slope management program.

    Science.gov (United States)

    2009-08-01

    This Rapid Response Project gathered information on existing unstable slope management programs, with a : focus on asset management practices in the United States and overseas. On the basis of this study, the research : team summarized and recommende...

  3. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  4. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Zhongwen Li

    2016-06-01

    Full Text Available Microgrids (MGs are presented as a cornerstone of smart grids. With the potential to integrate intermittent renewable energy sources (RES in a flexible and environmental way, the MG concept has gained even more attention. Due to the randomness of RES, load, and electricity price in MG, the forecast errors of MGs will affect the performance of the power scheduling and the operating cost of an MG. In this paper, a combined stochastic programming and receding horizon control (SPRHC strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP and receding horizon control (RHC strategy. With an SP strategy, a scheduling plan can be derived that minimizes the risk of uncertainty by involving the uncertainty of MG in the optimization model. With an RHC strategy, the uncertainty within the MG can be further compensated through a feedback mechanism with the lately updated forecast information. In our approach, a proper strategy is also proposed to maintain the SP model as a mixed integer linear constrained quadratic programming (MILCQP problem, which is solvable without resorting to any heuristics algorithms. The results of numerical experiments explicitly demonstrate the superiority of the proposed strategy for both island and grid-connected operating modes of an MG.

  5. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Monthly Report - November 2013

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-17

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge

  6. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  7. Annual report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  8. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-11-26

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  9. Federal Energy Management Program FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    With more than 350,000 buildings and 600,000 vehicles, the federal government is America’s largest single energy consumer. There is a tremendous opportunity and responsibility to lead by example in cutting energy waste and advancing America’s clean energy future. The progress the federal government has made to date, through public-private partnerships and successful approaches, should be leveraged to show leadership to the nation and continue to make significant contributions to our national energy and environmental goals.

  10. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-26

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  11. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-27

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  12. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-29

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  13. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-13

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  14. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-02-04

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  15. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  16. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    International Nuclear Information System (INIS)

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  17. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  19. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  20. Annual report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-20

    In fulfillment of statutory requirements, this report provides information on energy consumption in Federal buildings and operations and also documents activities conducted by Federal agencies in fulfilling those requirements during Fiscal Year 1998.

  1. Annual report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-08-13

    In fulfillment of statutory requirements, this report provides information on energy consumption in Federal buildings and operations and also documents activities conducted by Federal agencies in fulfilling those requirements during Fiscal Year 1997.

  2. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  3. Management of transuranium-contaminated solid wastes from the Department of Energy nuclear materials production and R and D programs

    International Nuclear Information System (INIS)

    Perge, A.F.; Trice, V.G. Jr.

    1978-01-01

    This plan has been extracted from a master plan that covers management of all types of wastes for which the Department of Energy (DOE) has responsibility. The overall plan has not received approval as policy for the new DOE which came into being in October 1977. Thus, we have to label it as a draft plan, even though our programs, as operating today, are being carried forward in conformance with most of it. Several of our assumptions are controversial and may be modified before the plan is approved. The points we will cover are: A. Goals, B. Scope, C. Assumptions, D. Strategy, E. Specific Objectives, F. Current Activities, and G. Milestones and Schedule. The last point, Milestones and Schedule, was not covered at the meeting. However, it is included here in the proceedings

  4. Energy Management. Special. Magazine for energy supply and energy management

    International Nuclear Information System (INIS)

    Van Mil, R.

    2000-05-01

    The special Energy Management was issued in cooperation with many participating businesses in the Netherlands which provided articles on recent developments and new services and products with respect to the liberalized energy market in the Netherlands and Europe

  5. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  6. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    International Nuclear Information System (INIS)

    None

    1997-01-01

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories

  7. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  9. Energy management in a commercial organization

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, C. W.

    1979-07-01

    Implementation of energy management programs by the Debenhams Group, operators of a chain of department stores in England, Scotland, and Wales, is discussed. How the systems relate to building operations is considered in the following subjects: group activities and energy costs; energy management; information base; standards action; lighting and energy; new store design; development (control of services). (MCW)

  10. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  11. Knowledge management program

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, T. [CANDU Owners' Group, Toronto, Ontario (Canada)

    2013-07-01

    To capture and retain the CANDU experience from a wider CANDU base and transfer knowledge and experience to our members, supplier participants and universities in a cost effective manner. Major focus area of the program is knowledge management joint projects, generic training delivery, inter-utilities mentoring and technical support, public education programs. The path forward is execution of transition of OPG NPDS Program as an ongoing program in COG with member funding, pursue opportunities to provide member utilities with additional leadership and train-the-trainer training and grow the knowledge management activities by 20% per year based on 2013/2014 results.

  12. Knowledge management program

    International Nuclear Information System (INIS)

    Henderson, T.

    2013-01-01

    To capture and retain the CANDU experience from a wider CANDU base and transfer knowledge and experience to our members, supplier participants and universities in a cost effective manner. Major focus area of the program is knowledge management joint projects, generic training delivery, inter-utilities mentoring and technical support, public education programs. The path forward is execution of transition of OPG NPDS Program as an ongoing program in COG with member funding, pursue opportunities to provide member utilities with additional leadership and train-the-trainer training and grow the knowledge management activities by 20% per year based on 2013/2014 results.

  13. Department of Energy mission plan for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Shaw, G.H.

    1988-01-01

    Volume I is the Mission Plan itself, Volume II is a 700+-page collection of public comments on the Draft Mission Plan, and Volume III contains DOE responses to the public comments. Taken as a whole, the document illustrates the development of an agency approach to solving a problem, and the extent to which public input may or may not influence that approach. The Mission Plan itself is DOE's clear statement of how it proposes to go about selecting a permanent site for the disposal of high-level nuclear waste: spent fuel from civilian nuclear power plants and high-level waste produced in reprocessing both civilian and military nuclear materials. Since this program is focused upon site selection based to a large extent upon geologic factors important in inhibiting the release of radionuclides for a long interval of time, it is of considerable interest to see how DOE has organized the necessary geologic investigations, and to what extent it proposes to concentrate on the geologic aspects. A key element in the high-level waste disposal program is public confidence in the process. If the public perceives that DOE is continuing investigations at one or more sites when substantial evidence shows that the site(s) are not geologically favorable, then public confidence in the program will disappear. It remains to be seen whether this Mission Plan will be considered the planning document for a successful, carefully organized program of geological input to public policy or merely an element in a record of bureaucratic failure

  14. Establishment of review groups on US Department of Energy Environmental Restoration and Waste Management Program

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1992-12-01

    A primary purpose of this grant was the establishment of expert research review groups to help facilitate expanded and improved communications and information among states, public, federal agencies, contractors, and DOE, relative to national environmental and waste management issues/problems. The general objectives of this grant were: Research on the further participation avenues of industry and academia and provide appropriate research documentation concerning the implementation of multi-party agreements; Analysis of the impediments that delay the accomplishment of agreements between states and the federal government for environmental compliance, as well as an assessment of the public need for research because of the above agreements; Analysis of the impact of environmental actions on states, industry, academia, public and other federal agencies; Provide research to help facilitate an interactive system that provides the various involved parties the capability and capacity to strengthen their commitment to national environmental and waste management goals and objectives; and Furthering research of public education in the environmental arena and research of needed national education resources in scientific and technical areas related to environmental restoration and waste management

  15. Geothermal energy and the law. I. The Federal Lands Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.D.; McNamara, J.

    1975-09-30

    A broad range of problems in the legal and institutional environment which hampers the development of the geothermal industry is discussed. The topics include: the development of geothermal energy; pre-leasing procedures--public vs. private assessment; exploratory permits and related strategies; the rate of geothermal leasing-past and future; compensation strategies; lessee qualifications; lands available for leasing; noncompensatory lease terms; ongoing leasehold and production requirements; problems of ''secondary'' geothermal uses; and water law conflicts. (LBS)

  16. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  17. Managing a Behavioral Management Program

    DEFF Research Database (Denmark)

    Schapiro, Steve; Lambeth, Susan P.

    2017-01-01

    The behavioral management of captive nonhuman primates (NHPs) can be significantly enhanced through synergistic relationships with noninvasive research projects. Many behavioral and cognitive research procedures are challenging and enriching (physically, cognitively, and/or socially......) for the animals (Hopper et al. 2016; Hopkins and Latzman 2017) without involving any invasive (surgical, biopsy, etc.) procedures. Noninvasive behavioral research programs present the primates with opportunities to choose to voluntarily participate (or not), providing them with greater control over...

  18. A contractor report to the Department of Energy on environmental management baseline programs and integration opportunities (discussion draft)

    International Nuclear Information System (INIS)

    1997-05-01

    In July 1996, the US Department of Energy (DOE) Assistant Secretary for Environmental Management (EM) chartered a government contractor led effort to develop a suite of technically defensible, integrated alternatives which meet the EM mission. The contractor team was challenged to ''think outside-the-box'' for solutions that cross traditional site boundaries and enable the programs to get the job done at an earlier date and at a lower cost. This report documents baseline programs current plans for material disposition and presents the opportunities for additional acceleration of cleanup and cost savings. A graphical depiction of the disposition of EM-owned waste and material from current state to final disposition is shown as disposition maps in Attachments 1, 3, 5, 7, 9, and 11. These disposition maps detail the material disposition at eleven major DOE sites as planned in the current discussion draft plan, Accelerating Cleanup: Focus on 2006. Maps reflecting material disposition at additional sites will be added in the future. Opportunities to further accelerate the cleanup of DOE-EM sites and reduce the overall cost of cleanup are depicted in the alternative disposition maps shown in Attachments 2, 4, 6, 8, 10, and 12. These integration opportunities bring nation-wide resources to bear on common problems facing the DOE sites

  19. Program Management Tool

    Science.gov (United States)

    Gawadiak, Yuri; Wong, Alan; Maluf, David; Bell, David; Gurram, Mohana; Tran, Khai Peter; Hsu, Jennifer; Yagi, Kenji; Patel, Hemil

    2007-01-01

    The Program Management Tool (PMT) is a comprehensive, Web-enabled business intelligence software tool for assisting program and project managers within NASA enterprises in gathering, comprehending, and disseminating information on the progress of their programs and projects. The PMT provides planning and management support for implementing NASA programmatic and project management processes and requirements. It provides an online environment for program and line management to develop, communicate, and manage their programs, projects, and tasks in a comprehensive tool suite. The information managed by use of the PMT can include monthly reports as well as data on goals, deliverables, milestones, business processes, personnel, task plans, monthly reports, and budgetary allocations. The PMT provides an intuitive and enhanced Web interface to automate the tedious process of gathering and sharing monthly progress reports, task plans, financial data, and other information on project resources based on technical, schedule, budget, and management criteria and merits. The PMT is consistent with the latest Web standards and software practices, including the use of Extensible Markup Language (XML) for exchanging data and the WebDAV (Web Distributed Authoring and Versioning) protocol for collaborative management of documents. The PMT provides graphical displays of resource allocations in the form of bar and pie charts using Microsoft Excel Visual Basic for Application (VBA) libraries. The PMT has an extensible architecture that enables integration of PMT with other strategic-information software systems, including, for example, the Erasmus reporting system, now part of the NASA Integrated Enterprise Management Program (IEMP) tool suite, at NASA Marshall Space Flight Center (MSFC). The PMT data architecture provides automated and extensive software interfaces and reports to various strategic information systems to eliminate duplicative human entries and minimize data integrity

  20. Fission energy program of the U. S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs.

  1. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  2. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  3. Home audit program: management manual

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Many public power systems have initiated home energy audit programs in response to the requests of their consumers. The manual provides smaller public power systems with the information and specific skills needed to design and develop a program of residential energy audits. The program is based on the following precepts: locally owned public systems are the best, and in many cases the only agencies available to organize and coordinate energy conservation programs in many smaller communities; consumers' rights to energy conservation information and assistance should not hinge on the size of the utility that serves them; in the short run, public power systems of all sizes should offer residential energy conservation assistance to their consumers, because such assistance is desirable, necessary, and in the public interest; and in the long run, such programs will complement national energy goals and will produce economic benefits for both consumers and the public power system. A detailed description of home audit program planning, organization, and management are given. (MCW)

  4. Interpretation of Technology Diffusion Patterns for the U.S. Department of Energy's Environmental Management Program

    International Nuclear Information System (INIS)

    Cummings, M.A.

    1999-01-01

    The purpose of this paper is to provide a response to the general question as to why there has been so little actual application of new environmental technologies to on-the-ground cleanup. There are two sides to the issue that may at first seem unrelated, but taken together provide both a tactical and theoretical response to the question. EM-50 has provided a tactical response to the challenge of showing that expenditures in technology development are justified by implementation of its ASTD program. ASTD provides a fiscal incentive for the major DOE facilities to effect remedial actions using new technologies. The purpose of the ASTD is to demonstrate to stakeholders, including US Congress and concerned citizens, that environmental costs can be reduced and site cleanup accelerated by substituting new technologies for established baseline methods. The theoretical side looks at how historically, the substitution of new technologies for old in any given industry follows well-documented principles of diffusion; therefore, the aggregate adoption of new environmental technologies is predictive. It is not within the scope of this paper to accurately quantify the equations that result in the mathematical description of the S-shaped diffusion curve, but the overall concept of the innovation-development process is an important clue in understanding why new EM-50 technologies are not already in more widespread use

  5. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  6. Municipal energy managers

    International Nuclear Information System (INIS)

    2004-01-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  7. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  8. The standard for program management

    CERN Document Server

    2017-01-01

    The Standard for Program Management – Fourth Edition differs from prior editions by focusing on the principles of good program management. Program activities have been realigned to program lifecycle phases rather than topics, and the first section was expanded to address the key roles of program manager, program sponsor and program management office. It has also been updated to better align with PMI’s Governance of Portfolios, Programs, and Projects: A Practice Guide.

  9. Renewable Energy Certificate Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwendolyn S. Andersen

    2012-07-17

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  10. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  11. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  12. Quality Management Program

    International Nuclear Information System (INIS)

    1991-10-01

    According to section 35.32, ''Quality Management Program,'' of 10 CFR Part 35, ''Medical Use of Byproduct Material,'' applicants or licensees, as applicable, are required to establish a quality management (QM) program. This regulatory guide provides guidance to licensees and applicants for developing policies and procedures for the QM program. This guide does not restrict or limit the licensee from using other guidance that may be equally useful in developing a QM program, e.g., information available from the Joint Commission on Accreditation of Healthcare Organizations or the American College of Radiology. Any information collection activities mentioned in this regulatory guide are contained as requirements in 10 CFR Part 35, which provides the regulatory basis for this guide. This information collection requirements in 10 CFR Part 35 have been cleared under OMB Clearance No. 3150-0010

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  14. NPS TINYSCOPE program management

    OpenAIRE

    Turner, Christopher Gordon.

    2010-01-01

    Approved for public release; distribution is unlimited This master's thesis introduces the program management and concept of operations of the TINYSCOPE Program. TINYSCOPE is a 6U CubeSat designed as a low-cost and easily replaceable imaging spacecraft that can produce tactically relevant imagery data. Tactical requirements in this context would emphasize "good enough" image resolution with a rapid-response tasking loop and high revisit rate. The TINYSCOPE project intends to demonstra...

  15. Development of the Integrated Performance Evaluation Program (IPEP) for the Department of Energy's Office of Environmental Management

    International Nuclear Information System (INIS)

    Lindahl, P.; Streets, E.; Bass, D.; Hensley, J.; Newberry, R.; Carter, M.

    1995-01-01

    Argonne National Laboratory (ANL) and DOE's Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project office (GJPO) are collaborating with DOE's Office of Environmental Management (EM), Analytical Services Division (ASD, EM-263) and the Environmental Protection Agency (EPA) to develop an Integrated Performance Evaluation Program (IPEP). The purpose of the IPEP is to integrate information from existing PE programs with expanded QA activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting EM programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE; new PE programs will be developed only when no existing program meets DOEs needs. Interagency Agreements have been developed between EPA and DOE to allow DOE to use major existing PE programs developed by EPA. In addition, the DOE radiological Quality Assessment Program (QAP) administered by EML is being expanded for use in EM work. RESL and GJPO are also developing the Mixed Waste Performance Evaluation Program (MAPEP) to provide radiological, inorganic, and organic analytes of interest to EM programs. The use of information from multiple PE programs will allow a more global assessment of an individual laboratory's performance, as well as providing a means of more fairly comparing laboratories' performances in a given analytical area. The EPEP will interact with other aspects of the ASD such as audit and methods development activities to provide an integrated system for assessment and improvement of data quality

  16. Energy Program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, I.Y. (ed.)

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  17. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department's environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department's environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C

  18. Configuration Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  19. Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs

    Directory of Open Access Journals (Sweden)

    Kyeon Hur

    2012-04-01

    Full Text Available This paper presents look-ahead energy management system for a grid-connected residential photovoltaic (PV system with battery under critical peak pricing for electricity, enabling effective and proactive participation of consumers in the Smart Grid’s demand response. In the proposed system, the PV is the primary energy source with the battery for storing (or retrieving excessive (or stored energy to pursue the lowest possible electricity bill but it is grid-tied to secure electric power delivery. Premise energy management scheme with an accurate yet practical load forecasting capability based on a Kalman filter is designed to increase the predictability in controlling the power flows among these power system components and the controllable electric appliances in the premise. The case studies with various operating scenarios demonstrate the validity of the proposed system and significant cost savings through operating the energy management scheme.

  20. Russia air management program

    Energy Technology Data Exchange (ETDEWEB)

    Pace, T.G. [U.S. Environmental Protection Agency, NC (United States); Markin, S. [Ministry of Environmental Protection and Natural Resources, Moscow (Sweden); Kosenkova, S.V. [Volgograd Environmental Services Administration, Volgograd (Russian Federation)

    1995-12-31

    The Russia Air Management Program is in the second year of a four-year cooperative program between the Russian Ministry of Environmental Protection and Natural Resources (MEPNR) and the U.S. Environmental Protection Agency (EPA) to improve national institutions, policies, and practices for air quality management in Russia. This program is part of the Environmental Policy and Technology project being conducted by the U.S. Agency for International Development. The Russia Air Management Program will pilot the application of potential air program improvements in the important industrial City of Volgograd which will enable the development, practical demonstration and evaluation of alternative approaches for improving AQM policies and practices in Russia. Volgograd has a progressive and environmentally enlightened local government, a diverse industrial base and a relatively healthy economy. It is located south of Moscow on the Volga River and was proposed by the Ministry of Environmental Protection and Natural Resources. It was selected after a site visit and a series of discussions with the Ministry, Volgograd officials, the World Bank and the EPA. Following the pilot, RAMP will work to facilitate implementation of selected parts of the pilot in other areas of Russia using training, technology transfer, and public awareness. (author)

  1. Russia air management program

    International Nuclear Information System (INIS)

    Pace, T.G.; Markin, S.; Kosenkova, S.V.

    1995-01-01

    The Russia Air Management Program is in the second year of a four-year cooperative program between the Russian Ministry of Environmental Protection and Natural Resources (MEPNR) and the U.S. Environmental Protection Agency (EPA) to improve national institutions, policies, and practices for air quality management in Russia. This program is part of the Environmental Policy and Technology project being conducted by the U.S. Agency for International Development. The Russia Air Management Program will pilot the application of potential air program improvements in the important industrial City of Volgograd which will enable the development, practical demonstration and evaluation of alternative approaches for improving AQM policies and practices in Russia. Volgograd has a progressive and environmentally enlightened local government, a diverse industrial base and a relatively healthy economy. It is located south of Moscow on the Volga River and was proposed by the Ministry of Environmental Protection and Natural Resources. It was selected after a site visit and a series of discussions with the Ministry, Volgograd officials, the World Bank and the EPA. Following the pilot, RAMP will work to facilitate implementation of selected parts of the pilot in other areas of Russia using training, technology transfer, and public awareness. (author)

  2. Russia air management program

    Energy Technology Data Exchange (ETDEWEB)

    Pace, T G [U.S. Environmental Protection Agency, NC (United States); Markin, S [Ministry of Environmental Protection and Natural Resources, Moscow (Sweden); Kosenkova, S V [Volgograd Environmental Services Administration, Volgograd (Russian Federation)

    1996-12-31

    The Russia Air Management Program is in the second year of a four-year cooperative program between the Russian Ministry of Environmental Protection and Natural Resources (MEPNR) and the U.S. Environmental Protection Agency (EPA) to improve national institutions, policies, and practices for air quality management in Russia. This program is part of the Environmental Policy and Technology project being conducted by the U.S. Agency for International Development. The Russia Air Management Program will pilot the application of potential air program improvements in the important industrial City of Volgograd which will enable the development, practical demonstration and evaluation of alternative approaches for improving AQM policies and practices in Russia. Volgograd has a progressive and environmentally enlightened local government, a diverse industrial base and a relatively healthy economy. It is located south of Moscow on the Volga River and was proposed by the Ministry of Environmental Protection and Natural Resources. It was selected after a site visit and a series of discussions with the Ministry, Volgograd officials, the World Bank and the EPA. Following the pilot, RAMP will work to facilitate implementation of selected parts of the pilot in other areas of Russia using training, technology transfer, and public awareness. (author)

  3. Stargate: Energy Management Techniques

    OpenAIRE

    Vijay Raghunathan; Mani Srivastava; Trevor Pering; Roy Want

    2004-01-01

    This poster presents techniques for energy efficient operation of the Stargate wireless platform. In addition to conventional power management techniques such as dynamic voltage and scaling and processor shutdown, the Stargate features several mechanisms for energy efficient operation of the communication subsystem, such as support for hierarchical radios, Bluetooth based remote wakeup, mote based wakeup, etc. Finally, design optimizations including the use of power gating, and provision for ...

  4. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  5. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  7. Energy Program annual report, 1988

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1989-07-01

    This report is a summary of work done during FY 1988 (October 1, 1987--September 30, 1988) by the Energy Program of the Lawrence Livermore National Laboratory (LLNL). The program addresses problems relating to supply and utilization of energy in the US. Traditionally the focus of activities has been on long-range technical challenges that are unlikely to be pursued by the private sector. Individual projects making up the Energy Program are divided into three sections in this review: Nuclear Energy, Fossil Energy, and Nonfossil Energy. (Nonfossil Energy research includes work on geothermal resources and combustion chemistry.)

  8. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Kekkonen, V; Koreneff, G [VTT Energy, Espoo (Finland); and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  9. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  10. Integrated Financial Management Program

    Science.gov (United States)

    Pho, Susan

    2004-01-01

    Having worked in the Employees and Commercial Payments Branch of the Financial Management Division for the past 3 summers, I have seen the many changes that have occurred within the NASA organization. As I return each summer, I find that new programs and systems have been adapted to better serve the needs of the Center and of the Agency. The NASA Agency has transformed itself the past couple years with the implementation of the Integrated Financial Management Program (IFMP). IFMP is designed to allow the Agency to improve its management of its Financial, Physical, and Human Resources through the use of multiple enterprise module applications. With my mentor, Joseph Kan, being the branch chief of the Employees and Commercial Payments Branch, I have been exposed to several modules, such as Travel Manager, WebTads, and Core Financial/SAP, which were implemented in the last couple of years under the IFMP. The implementation of these agency-wide systems has sometimes proven to be troublesome. Prior to IFMP, each NASA Center utilizes their own systems for Payroll, Travel, Accounts Payable, etc. But with the implementation of the Integrated Financial Management Program, all the "legacy" systems had to be eliminated. As a result, a great deal of enhancement and preparation work is necessary to ease the transformation from the old systems to the new. All this work occurs simultaneously; for example, e-Payroll will "go live" in several months, but a system like Travel Manager will need to have information upgraded within the system to meet the requirements set by Headquarters. My assignments this summer have given me the opportunity to become involved with such work. So far, I have been given the opportunity to participate in projects resulting from a congressional request, several bankcard reconciliations, updating routing lists for Travel Manager, updating the majordomo list for Travel Manager approvers and point of contacts, and a NASA Headquarters project involving

  11. Energy management in municipal heritage

    International Nuclear Information System (INIS)

    2004-01-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  12. Optimal energy management of the smart parking lot under demand response program in the presence of the electrolyser and fuel cell as hydrogen storage system

    International Nuclear Information System (INIS)

    Jannati, Jamil; Nazarpour, Daryoosh

    2017-01-01

    Highlights: • Energy management of IPL is considered in the presence of wind turbine and PV system. • The optimal charge and discharge powers of EVs, dispatch power of LDG are determined. • Charging/discharging decisions of electrolyser and fuel cell are determined. • Demand response program is used to manage the peak load to reduce the operation cost. • Global optimal is guaranteed in proposed model by mixed-integer linear programming. - Abstract: Nowadays, utilization of distributed generation sources and electric vehicles (EVs) are increased to reduce air pollution and greenhouse gas emissions. Also, intelligent parking lots (IPL) are increased in response to the increase in the number of EVs. Therefore, optimal operation of distributed generation sources and IPL in the power market without technical scheduling will follow some economic problems for the owner of IPL and some technical problems for the operator of distribution network. Therefore, in this paper, an optimal energy management has been proposed for an IPL which includes renewable energy sources (wind turbine and photovoltaic system) and local dispatchable generators (micro-turbines). Also, determination of optimal charge and discharge powers of hydrogen storage system (HSS) containing electrolyser, hydrogen storage tanks and fuel cell has been considered in the proposed model. Furthermore, the time-of-use rates of demand response program are proposed to flatten the load curve to reduce the operation cost of IPL. The objective function includes minimizing the operation costs of upstream grid and local dispatchable generators as well as charging and discharging cost of IPL subject to the technical and physical constraints under demand response program in the presence of HSS. The proposed model is formulated as a mixed-integer linear programming and solved using GAMS optimization software under CPLEX solver. Four case studies are investigated to validate the proposed model to show the positive

  13. The health physics programs in low-level radioactive waste management at the Institute of Nuclear Energy Research, Republic of China

    International Nuclear Information System (INIS)

    Chen, W-L.

    1986-01-01

    The primary mission of the health physics programs in low-level radioactive management is to ensure radiation safety for personnel and environment of the Institute of Nuclear Energy Research (INER), and also for the general public surrounding INER. In view of the above, the Health Physics programs in low-level radioactive waste management are divided into three sub-programs: the radiation control program, the environmental survey and bioassay program, and the radiation dosimetry supporting program. The general guidelines, responsibilities, and performance of these programs will be discussed in this paper in the following order. The responsibility of radiation control group is to conduct area monitoring and radiation surveillance for the radioactive waste treatment workers. It includes the control of radiation field level of the working area, servicing personnel dosimeters, instruction on radiation safety, and handling of radiation accidents. The responsibility of the environmental survey and bioassay group is to perform environmental surveys and bioassays. Environmental gamma monitoring stations were installed both on-site and off-site at INER. For bioassays, urine samples are taken from radioactive waste treatment workers, and for internal contamination checks of workers, total body counting systems are being used. The main responsibility of the radiation dosimetry group is to provide radiation dosimetrical support to the radiation control group and the environmental survey and bioassay group. Some typical work of the radiation dosimetry group is the qualitative assay and quantitative determination of radioactive samples, and calibration of dosimeters and survey meters

  14. State Energy Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s State Energy Program (SEP) provides funding and technical assistance to states, territories, and the District of Columbia to enhance energy security, advance state-led energy initiatives, and maximize the benefits of decreasing energy waste.

  15. Energy management in Lucknow city

    International Nuclear Information System (INIS)

    Zia, Hina; Devadas, V.

    2007-01-01

    In this paper, an attempt is made to prepare an energy management model for Lucknow city along with policy recommendations for optimal energy utilization and management. At the outset, the authors have reviewed the related literature on energy management in the urban system. The entire collected literature is divided into the following sections, such as, energy resource assessment, energy consumption, energy and economy, energy and environment, energy and transportation, forecasting the energy demand and supply, alternate energy sources and technologies, energy conservation and demand-side management and energy management measures in India, and are reviewed thoroughly and presented. Subsequently, an attempt is made to establish the importance of energy in urban development by using Systems concept. Lucknow city has been chosen for investigation in this study. A detailed methodology is developed for organizing the survey at the grassroots level to evolve feasible strategies for optimal energy management in the study area. An attempt is further made to assess the available energy resource in the city, and the energy consumption by source wise in the city and estimating the energy gap in the year 2011. The paper concludes with preparation of a detailed energy management model for Lucknow city to reduce the expected energy gap for the year 2011. The recommendations are made for supply augmentation, demand-side management and policy measures to be taken by the government authorities

  16. Savings impact of a corporate energy manager

    International Nuclear Information System (INIS)

    Sikorski, B.D.; O'Donnell, B.A.

    1999-01-01

    This paper discusses the cost savings impact of employing an energy manager with a 16,000-employee corporation. The corporation, Canada's second largest airline, is currently operating nearly 3,000,000 ft 2 of mixed-use facilities spread across the country, with an annual energy budget for ground facilities of over Cdn $4,000,000. This paper outlines the methodology used by the energy manager to deploy an energy management program over a two-year period between April 1995 and May 1997. The paper examines the successes and the lessons learned during the period and summarizes the costs and benefits of the program. The energy manager position was responsible for developing an energy history database with more than 100 active accounts and for monitoring and verifying energy savings. The energy manager implemented many relatively low-cost energy conservation measures, as well as some capital projects, during the first two years of the program. In total, these measures provided energy cost savings of $210,000 per year, or 5% of the total budget. In each case, technologies installed as part of the energy retrofit projects provided not only cost savings but also better control, reduced maintenance, and improved working conditions for employees

  17. Harmonics and energy management

    International Nuclear Information System (INIS)

    Andresen, M.

    1993-01-01

    To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs

  18. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  19. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  5. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  6. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  7. Fossil energy program. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  8. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  9. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  10. Multi-Site Project Management A Program for Reducing the Cost of Technology Deployment at Department of Energy Sites

    International Nuclear Information System (INIS)

    Davis, N.R.; Selden, E.R.; Little, D.B.; Coleman, M.C.; Bennett, J.T.

    2009-01-01

    Retrieval and processing of High Level Waste (HLW) stored in Department of Energy (DOE) waste tanks is performed to support closure of the tanks as required by site specific regulatory agreements. Currently, there are four sites in the DOE Complex that have HLW tanks and must process and disposition HLW. As such, there is an opportunity to achieve an economy of scale and reduce duplication of efforts. Two or more sites typically have similar technology development and deployment needs. Technology development is already executed at the national level. As the technology is matured, the next step is to commission a design/build project. Typically each site performs this separately due to differences in waste type, tank design, site specific considerations such as proximity to the water table or to the site boundary. The focus of the individual sites tends to be on the differences between sites versus on the similarities thus there is an opportunity to minimize the cost for similar deployments. A team of engineers and project management professionals from the Savannah River Site has evaluated technology needs at the four HLW sites and determined that there is an economy of scale that can be achieved by specific technology deployments in the area of waste retrieval, waste pretreatment and waste disposition. As an example, the Waste on Wheels tank retrieval system (presented in the 2006 Waste Management Symposium) was designed and fabricated in portable modules that could be installed in HLW tanks at Hanford, Savannah River or Idaho. This same concept could be used for modular in-tank cesium removal process and equipment, tank cleaning mechanical equipment, and chemical tank cleaning process and equipment. The purpose of this paper is to present a multi-site project management approach that will reduce deployment costs and be consistent with DOE Order 413.3 project management principles. The approach will describe how projects can be managed by a lead site with

  11. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  12. Industrial energy management; Betriebliches Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, D.

    2007-07-01

    Effective and successful energy and facility management uses a holistic view in which the life cycles of plants and buildings are considered, plus efficient controlling and reporting. The challenge is not in short-term cost reduction but in ensuring long-term effects. This requires management strategies which make use of synergy effects by means of interdisciplinary measures. Main topics: management of energy utilization, energy conversion and energy supply. (GL)

  13. Semi-annual report of the Department of Energy, Office of Environmental Restoration and Waste Management, Quality Assessment Program

    International Nuclear Information System (INIS)

    Sanderson, C.G.; Klusek, C.S.

    1993-01-01

    This Quality Assessment Program (QAP) is designed to test the quality of the environmental measurements being reported to the Department of Energy by its contractors. Since 1976, real or synthetic environmental samples that have been prepared and thoroughly analyzed at the Environmental Measurements Laboratory (EML) have been distributed at first quarterly and then semi-annually to these contractors. Their results, which are returned to EML within 90 days, are compiled with EML's results and are reported back to the participating contractors 30 days later. A summary of the reported results is available to the participants 3 days after the reporting deadline via a modem-telephone connection to the EML computer. This report presents the results from the analysis of the 38th set of environmental quality assessment samples (QAP XXXVIII) that were received on or before June 2, 1993

  14. Semi-annual report of the Department of Energy, Office of Environmental Restoration and Waste Management, Quality Assessment Program

    International Nuclear Information System (INIS)

    Sanderson, C.G.; Scarpitta, S.C.

    1992-01-01

    This report presents the results from the analysis of the 36th set of environmental quality assessment samples (QAP 36) that were received on or before January 2, 1992. This Quality Assessment Program (QAP) is designed to test the quality of the environmental measurements being reported to the Department of Energy by its contractors. Since 1976, real or synthetic environmental samples that have been prepared and thoroughly analyzed at the Environmental Measurements Laboratory (EML) have been distributed at first quarterly and then semi-annually to these contractors. Their results, which are returned to EML within 90 days, are complied with EML's results and are reported back to the participating contractors 30 days later. A summary of the reported results is available to the participants 3 days after the reporting deadline via a modem-telephone connection to the EML computer

  15. Box-triangular multiobjective linear programs for resource allocation with application to load management and energy market problems

    International Nuclear Information System (INIS)

    Ekel, P.Y.; Galperin, E.A.

    2003-01-01

    Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)

  16. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  17. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  18. DEFENSE PROGRAMS RISK MANAGEMENT FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Constantin PREDA

    2012-01-01

    Full Text Available For the past years defense programs have faced delays in delivering defense capabilities and budget overruns. Stakeholders are looking for ways to improve program management and the decision making process given the very fluid and uncertain economic and political environment. Consequently, they have increasingly resorted to risk management as the main management tool for achieving defense programs objectives and for delivering the defense capabilities strongly needed for the soldiers on the ground on time and within limited defense budgets. Following a risk management based decision-making approach the stakeholders are expected not only to protect program objectives against a wide range of risks but, at the same time, to take advantage of the opportunities to increase the likelihood of program success. The prerequisite for making risk management the main tool for achieving defense programs objectives is the design and implementation of a strong risk management framework as a foundation providing an efficient and effective application of the best risk management practices. The aim of this paper is to examine the risk management framework for defense programs based on the ISO 31000:2009 standard, best risk management practices and the defense programs’ needs and particularities. For the purposes of this article, the term of defense programs refers to joint defense programs.

  19. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  20. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  1. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    Science.gov (United States)

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  3. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  4. Energy Program annual report, 1991

    International Nuclear Information System (INIS)

    Pasternak, A.

    1992-08-01

    The Energy Program emphasizes applied R ampersand D for energy technologies that will be important to the US in the next fifty years and which may be important long after that. Historically, we have focused on coal gasification; the development of alternative liquid fuels from oil shale, coal, and natural gas; transportation uses of electric power from refuelable batteries; geothermal energy; and support of nuclear energy through the development of new technologies for the disposal of high-level nuclear waste. Our current program addresses three objectives of the National Energy Strategy: (1) To enhance energy security by ensuring stable costs, increasing energy supplies, and developing alternatives to Middle East oil. (2) To improve environmental quality by implementing energy technologies that effect better air and water quality, improve land use, and protect global environmental systems. (3) To encourage economic growth through technologies that reduce the costs of energy production, storage, transport, transmission, and distribution; promote efficiency by reducing costs and end-user services; and strengthen resiliency and flexibility of energy systems. We have just begun a major program to commercialize the technology to extract oil from the large US reserves (greater than 700 billion barrels) of oil shale. Perhaps the single greatest barrier to the public acceptance of nuclear power is the perceived lack of a technical solution to the permanent disposal of wastes. We have developed new concepts that are aimed at improving the likelihood of technical assurance of long-term containment

  5. Total quality management program planning

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  6. Municipal energy managers; Responsables energie municipaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  7. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  8. Energy Management Curriculum Starter Kit

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.

    1987-02-01

    The Energy Management Curriculum Starter Kit was designed to help engineering educators develop and teach energy management courses. Montana State University and Oklahoma State University courses are embodied in the model curriculum given. The curricula offered at many other universities throughout the United States are also presented. The kit was designed specifically to train engineering students to be good energy managers. Courses at both the undergraduate and postgraduate level are presented.

  9. 1994 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. This report contains the contributions from this forum.

  10. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  11. Low-level waste management program: technical program overview

    International Nuclear Information System (INIS)

    Lowrie, R.S.

    1981-01-01

    The mission of the technical program is to develop the technology component of the Department of Energy's Low-Level Waste Management Program and to manage research and development, demonstration, and documentation of the technical aspects of the program. Some of the major technology objectives are: develop and demonstrate techniques for waste generation reduction; develop and demonstrate waste treatment, handling and packaging techniques; develop and demonstrate the technology for greater confinement; and develop the technology for remedial action at existing sites. In addition there is the technology transfer objective which is to compile and issue a handbook documenting the technology for each of the above technology objectives

  12. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  15. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT Y-12), the Y-12 management and operations (M and O) subcontractor for DOE.

  16. Canadian wind energy program

    Energy Technology Data Exchange (ETDEWEB)

    Templin, R J; South, P

    1976-01-01

    Several aspects of recent work at the National Research Council of Canada on the development of vertical-axis turbines have been reviewed. Most of this work, during the past year or more, has been in support of the design of a 200 kW unit now being built for experimental operation on the Magdelen Islands in the Gulf of St. Lawrence. Results of small and large scale aeroelastic wind tunnel model experiments have confirmed that very large scale vertical-axis wind turbines are feasible, especially if designed for normal operation at constant rotational speed. A computer model of a simple mixed power system has indicated that substantial cost savings may be possible by using wind energy in Canadian east coast regions. 4 refs., 11 figs., 1 tab.

  17. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  18. Strategic management of population programs

    OpenAIRE

    Bernhart, Michael H.

    1992-01-01

    Formal strategic planning and management appear to contribute to organizational effectiveness. The author surveys the literature on strategic management in private/for-profit organizations and applies lessons from that literature to population programs. Few would argue that population programs would not benefit from strategic planning and management, but it would be inadvisable to initiate the process when the organization is faced with a short-term crisis; during or immediately before a chan...

  19. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  20. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  1. 14 CFR 91.1017 - Amending program manager's management specifications.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Amending program manager's management... Ownership Operations Program Management § 91.1017 Amending program manager's management specifications. (a... specifications; or (2) The program manager applies for the amendment of any management specifications, and the...

  2. Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beachley, N.H.; Frank, A.A.

    1976-07-01

    A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

  3. Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Stochastic energy management of retailer under smart grid environment is proposed. • Optimal selling price is determined in the smart grid environment. • Fixed, time-of-use and real-time pricing are determined for selling to customers. • Charge/discharge of ESS is determined to increase the expected profit of retailer. • Demand response program is proposed to increase the expected profit of retailer. - Abstract: In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.

  4. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  5. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  6. Encouraging energy efficiency: Policies and programs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Successfully overcoming the barriers to higher energy efficiency requires development of policies designed for specific users and locations. Reform of energy pricing, which entails removing subsidies and beginning internalization of externalities, is critical to give technology producers and users proper signals for investment and management decisions. But while a rise in energy prices increases the amount of energy-efficiency improvement that is cost-effective, it does not remove other barriers that deter investment. Minimum efficiency standards or agreements can raise the market floor, and are important because they affect the entire market in the near-term. But they may not raise the celining very much, and do little to push the efficiency frontier. To accomplish these goals, incentives and other market-development strategies are needed. Utility programs in particular can play a key role in pushing energy efficiency beyond the level where users are likely to invest on their own. Policies, programs, and pricing should complement one another. Pricing reform alone will not overcome the many entrenched barriers to higher energy efficiency, but trying to accelerate energy efficiency improvement without addressing energy pricing problems will lead to limited success. Whether tagerting new equipment or management of existing systems, policies must reflect a thorough understanding of the particular system and an awareness of the motivations of the actors. 25 refs

  7. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  8. Communicating Risk to Program Managers

    Science.gov (United States)

    Shivers, C. Herbert

    2005-01-01

    Program Managers (PM) can protect program resources and improve chances of success by anticipating, understanding and managing risks. Understanding the range of potential risks helps one to avoid or manage the risks. A PM must choose which risks to accept to reduce fire fighting, must meet the expectations of stakeholders consistently, and avoid falling into costly "black holes" that may open. A good risk management process provides the PM more confidence to seize opportunities save money, meet schedule, even improve relationships with people important to the program. Evidence of managing risk and sound internal controls can mean better support from superiors for the program by building a trust and reputation from being on top of issues. Risk managers have an obligation to provide the PM with the best information possible to allow the benefits to be realized (Small Business Consortium, 2004). The Institute for Chartered Accountants in England and Wales sees very important benefits for companies in providing better information about what they do to assess and manage key business risks. Such information will: a) provide practical forward-looking information; b) reduce the cost of capital; c) encourage better risk management; and d) improve accountability for stewardship, investor protection and the usefulness of financial reporting. We are particularly convinced that enhanced risk reporting will help listed companies obtain capital at the lowest possible cost (The Institute of Chartered Accountants in England &Wales, June 2002). Risk managers can take a significant role in quantifying the success of their department and communicating those figures to executive (program) management levels while pushing for a broader risk management role. Overall, risk managers must show that risk management work matters in the most crucial place-the bottom line- as they prove risk management can be a profit center (Sullivan, 2004).

  9. DOD low energy model installation program

    International Nuclear Information System (INIS)

    Fournier, D.F. Jr.

    1993-01-01

    The Model Low Energy Installation Program is a demonstration of an installation-wide, comprehensive energy conservation program that meets the Department of Defense (DoD) energy management goals of reducing energy usage and costs by at least 20%. It employs the required strategies for meeting these goals, quantifies the environmental compliance benefits resulting from energy conservation and serves as a prototype for DoD wide application. This project will develop both analysis tools and implementation procedures as well as demonstrate the effectiveness of a comprehensive, coordinated energy conservation program based on state-of-the-art technologies. A military installation is in reality a small to medium sized city. It generally has a complete utilities infrastructure including water supply and distribution, sewage collection and treatment, electrical supply and distribution, central heating and cooling plants with thermal distribution, and a natural gas distribution system. These utilities are quite extensive and actually consume about 10-15% of the energy on the facility not counting the energy going into the central plants

  10. Intelligent energy management; Intelligentes Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carsten [Siemens AG, Nuernberg (Germany). Bereich Sales and Marketing; Kunzmann, Geo [Siemens AG, Nuernberg (Germany). Bereich Business Development

    2010-03-15

    As energy is getting shorter and increasingly expensive while consumption is increasing and legal regulations are getting stricter, intelligent energy management is becoming more necessary than ever. The autors propose an integrated strategy of ''identification - evaluation - saving''. They present a scalable energy management software that works also with existing hardware and helps to develop even savings potentials that are not identifiable at first glance. (orig.)

  11. Energy management and cooperation in microgrids

    Science.gov (United States)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  13. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Fifth Quarterly Project Report - FY14 Q1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-13

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge

  14. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  15. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  16. Energy Analysis Program. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  17. Speed management program plan.

    Science.gov (United States)

    2014-05-01

    Changing public attitudes regarding speeding and speed management will require a comprehensive and concerted effort, involving a wide variety of strategies. This plan identifies six primary focus areas: : A. Data and Data-Driven Approaches, : B. Rese...

  18. Transit management certificate program.

    Science.gov (United States)

    2012-07-01

    TTI worked closely with the Landscape Architecture and Urban Planning Department : (LAUP) of Texas A&M University (TAMU) to develop a transit management certificate : focus for the current Graduate Certificate in Transportation Planning (CTP) housed ...

  19. Foreign energy conservation integrated programs

    International Nuclear Information System (INIS)

    Lisboa, Maria Luiza Viana; Bajay, Sergio Valdir

    1999-01-01

    The promotion of energy economy and efficiency is recognized as the single most cost-effective and least controversial component of any strategy of matching energy demand and supply with resource and environmental constraints. Historically such efficiency gains are not out of reach for the industrialized market economy countries, but are unlikely to be reached under present conditions by developing countries and economics in transition. The aim of the work was to analyze the main characteristics of United Kingdom, France, Japan, Canada, Australia and Denmark energy conservation integrated programs

  20. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  1. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  2. 1995 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. Issues addressed by the RMG may result in recommendations for DOE-wide initiatives. Proposed DOE-wide initiatives shall be, provided in writing by the RMG Steering Committee to the DOE Records Management Committee and to DOE`s Office of ERM Policy, Records, and Reports Management for appropriate action. The membership of the RMG is composed of personnel engaged in Records Management from DOE Headquarters, Field sites, contractors, and other organizations, as appropriate. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  4. Energy managers worldwide

    Energy Technology Data Exchange (ETDEWEB)

    King, P

    1979-12-01

    An association of individuals having skills in a range of disciplines and having recent experience in the energy field could form to develop a British energy conservation equipment packager that would take advantage of a wide-open international market. There is evidence of business opportunities to deal with both individuals and countries in the energy-saving field and, although critics claim that British industry is lagging behind its foreign counterparts, British expertise and a record of energy efficiency is evident. Opportunities for an energy equipment package are suggested in American and Japanese apartment house water and space heating, direct firing of process steam and hot water, and waste heat recovery. The package concept would bring together a fragmented industry of equipment manufacturers and consultants. (DCK)

  5. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  6. Conservation and Renewable Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1991-05-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1991. Information on documents published prior to 1986 can be obtained from ORNL. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  7. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of

  8. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  9. Asset management program

    International Nuclear Information System (INIS)

    Wison, P.; Newman, G.

    2013-01-01

    In order to understand our assets we have been assessing the condition of the units in our nuclear power plants developing asset life management options on a component by component basis. We have concluded that with the right work and planning we will be able to manage the units in a way that balances capacity requirements over the long term and at the same time manage the demand on critical resources. Major component replacement outages include Installing/removing bulkheads, pressure tube and calandria tube replacement, feeder replacement, steam generator replacement, supporting facilities and infrastructure, reactor inspections and maintenance including tooling enhancements, additional non reactor systems inspection & testing and continued research and analysis. These plans will have to take into account cost, resource and capacity requirements.

  10. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 279 IMCOM-Southeast Region: Redstone Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Hatley, Darrel D.; Goddard, James K.

    2010-09-30

    Report describing a building retuning workshop presented to staff at Redstone Arsenal. Document includes issues identified during building audits and recommendations for future activities to reduce energy use at the site.

  11. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid Electric Vehicle between the Convex Optimization and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-01-01

    Full Text Available This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid electric vehicle (PHEV. Based on detailed analysis of the vehicle driveline, quadratic convex functions are presented to describe the nonlinear relationship between engine fuel-rate and battery charging power at different vehicle speed and driveline power demand. The engine-on power threshold is estimated by the simulated annealing (SA algorithm, and the battery power command is achieved by convex optimization with target of improving fuel economy, compared with the dynamic programming (DP based method and the charging depleting–charging sustaining (CD/CS method. In addition, the proposed control methods are discussed at different initial battery state of charge (SOC values to extend the application. Simulation results validate that the proposed strategy based on convex optimization can save the fuel consumption and reduce the computation burden obviously.

  12. NPP Krsko Aging Management Program

    International Nuclear Information System (INIS)

    Glaser, B.; Spiler, J.

    2002-01-01

    As a part of Periodic Safety Review Program (PSR) NEK will review and perform some activities related to Equipment Qualification (EQ) and Aging Management Program (AMP). (EQ) and AMP are safety factors, which need to be assessed during PSR. The goal of PSR and AMP is to determine aging effects and give the conclusion whether the plant has been managed to control aging related degradations and that safety margins are maintained. The parallel goal is also to establish AMP for future plant operation and provide basis for possible Life Extension Program. NEK will develop NEK Aging and Life Cycle Management Program, similar by format and content to one determined by License Renewal program. The bases are in 10CFR54, and NEI 95-10 Industry Guidelines for 10 CFR 54 implementation. The process of establishment the AMP is to be done in two steps. The first step is dealing with SSC's (Systems Structures and Components) scoping and screening and identification of TLAA's (Time Limited Aging Analyses). That means, that a database of all SSC's and TLAA's will be created and then evaluated within AMP program. Based on the scope in first phase an evaluation will be performed in step two. NEK will maintain AMP program as a living program that may be also used for Life Extension and Life Cycle Management. This paper will present and describe AMP, scoping and screening process and the results achieved through the first phase of the project.(author)

  13. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  14. Richland Community College BioEnergy Program

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Douglas C. [Richland Community College, Decatur, IL (United States)

    2012-09-25

    The purpose of this project was to focus on education and community outreach. As such, it reflected anticipated growth in the renewable/alternative energy industry creating a vast need for trained industry professionals, engineers, operations managers, and technicians to operate state-of-the art production facilities. This project's scope leveraged Richland's initial entry in the renewable energy education, which included Associate of Applied Science degrees and certificates in biofuels and bioprocessing. This facilitated establishing a more comprehensive sustainability and renewable energy programs including experiential learning laboratory components needed to support new renewable energy education degree and certificate specialties, as well as community outreach. Renewable energy technologies addressed included: a) biodiesel, c) biomass, d) wind, e) geothermal, and f) solar. The objective is to provide increasingly innovative hands on experiential learning and knowledge transfer opportunities.

  15. Aircrew team management program

    Science.gov (United States)

    Margerison, Charles; Mccann, Dick; Davies, Rod

    1987-01-01

    The key features of the Aircrew Team Management Workshop which was designed for and in consultation with Trans Australia Airlines are outlined. Five major sections are presented dealing with: (1) A profile of the airline and the designers; (2) Aircrew consultation and involvement; (3) Educational design and development; (4) Implementation and instruction; and (5) Evaluation and assessment. These areas are detailed.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering

  17. Facilitating Sound, Cost-Effective Federal Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  18. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  19. A Program Management Framework for Facilities Managers

    Science.gov (United States)

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  20. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  1. Multidisciplinary pain management programs.

    OpenAIRE

    Kaiser, Ulrike; Arnold, Bernhard; Pfingsten, Michael; Nagel, Bernd; Lutz, Johannes; Sabatowski, Rainer

    2013-01-01

    Ulrike Kaiser,1 Bernhard Arnold,2 Michael Pfingsten,3 Bernd Nagel,4 Johannes Lutz,5 Rainer Sabatowski1,61Comprehensive Pain Center, University Hospital “Carl Gustav Carus”, Dresden, 2Department of Pain Management, Klinikum Dachau, Dachau, 3Pain Clinic, University Medicine, University of Göttingen, 4Day Care Unit, DRK Pain Center, Mainz, 5Interdisciplinary Pain Center, Zentralklinik Bad Berka, Bad Berka, 6Department of Anesthesiology and Intensive Care, University ...

  2. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel

  3. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  4. Energy managing of outsourcing principle

    International Nuclear Information System (INIS)

    Uran, Vedran

    2004-01-01

    Outsourcing means ownership or rent, management and user transmission of one type of operation of a certain company whose core-business is not that to another company bearing that business as the core one. That kind of operation and management relationship among certain activities in this work paper is described between companies of public, services and industrial sector and outsourcing company for energy supply. Benefits and barriers of outsourcing company for energy supply in Croatia are discussed. (Author)

  5. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  6. Implementing Energy-Efficient and Environment-Safe Programs in the Management of European University Campuses and Research Laboratories

    DEFF Research Database (Denmark)

    Faucher, P.; Almeida, A. de; Apostolidou, E.

    1998-01-01

    A network of universities in Europe has collected data on the energy use and other environmental impacts from the universities themselves. The idea is to increase the environmental awareness among the students as well as the staff, and hopefully lead to actions to reduce the impact. Campuses...

  7. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  8. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  9. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  10. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  11. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  12. Multidisciplinary pain management programs

    Directory of Open Access Journals (Sweden)

    Kaiser U

    2013-05-01

    Full Text Available Ulrike Kaiser,1 Bernhard Arnold,2 Michael Pfingsten,3 Bernd Nagel,4 Johannes Lutz,5 Rainer Sabatowski1,61Comprehensive Pain Center, University Hospital “Carl Gustav Carus”, Dresden, 2Department of Pain Management, Klinikum Dachau, Dachau, 3Pain Clinic, University Medicine, University of Göttingen, 4Day Care Unit, DRK Pain Center, Mainz, 5Interdisciplinary Pain Center, Zentralklinik Bad Berka, Bad Berka, 6Department of Anesthesiology and Intensive Care, University Hospital “Carl Gustav Carus”, Dresden, Germany

  13. Energy price risk management

    International Nuclear Information System (INIS)

    Evans, J.W.G.

    1998-01-01

    While long term, fixed price contracts for fuel procurement and export of excess power may lock in the economics of a CHP plant, these do not necessarily give the best pricing opportunities that may exist during the life of those contracts. A more prudent approach may be to vary the length of the contracts and markets are now developing in gas and electricity to assist in the management of such a portfolio. (Author)

  14. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  15. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  16. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  17. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  18. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex

    2004-03-31

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

  19. Groundwater Protection Program Management Plan For The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2009-09-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP

  20. Physics program at SPEAR energies

    International Nuclear Information System (INIS)

    Seiden, A.

    1982-01-01

    The author presents below a partial review of the physics program remaining to be completed over the SPEAR energy range along with examples of the running time needed for selected topics. The topics discussed are: meson spectroscopy from the psi; details of production and decay for the n/sub c/; charmed hadron spectroscopy; weak decays of D and F; and mechanism of e/sup +/e/sup -/ → qq-bar → Hadron States

  1. Energy management does save money

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, A

    1989-07-01

    A brief article reviews the importance of various types of control systems in conserving energy in industry. A wide range of examples is quoted including expert systems, oxygen trim systems and building energy management systems. The examples are chosen to span a wide range of industrial sectors with particular mention of the food and drink industry. The importance of energy efficiency in combatting the growing concern over environmental issues and the greenhouse effect is also stressed. (UK).

  2. Energy management: the big picture

    International Nuclear Information System (INIS)

    Vesma, Vilnis.

    1997-01-01

    Since the recent dramatic fall in energy prices may have come to an end, energy managers will have to turn to a range of non-price cost reduction techniques. A framework to aid this process is provided. It rests on ten categories of activity. These are: obtaining a refund; negotiating cheaper tariffs; modifying patterns of demand; inspection and maintenance; operating practices; training awareness and motivation; waste avoidance; retrofit technology; modifying plant and equipment; energy-efficient design. (UK)

  3. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  4. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  5. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  6. Ageing Management Program Database

    International Nuclear Information System (INIS)

    Basic, I.; Vrbanic, I.; Zabric, I.; Savli, S.

    2008-01-01

    The aspects of plant ageing management (AM) gained increasing attention over the last ten years. Numerous technical studies have been performed to study the impact of ageing mechanisms on the safe and reliable operation of nuclear power plants. National research activities have been initiated or are in progress to provide the technical basis for decision making processes. The long-term operation of nuclear power plants is influenced by economic considerations, the socio-economic environment including public acceptance, developments in research and the regulatory framework, the availability of technical infrastructure to maintain and service the systems, structures and components as well as qualified personnel. Besides national activities there are a number of international activities in particular under the umbrella of the IAEA, the OECD and the EU. The paper discusses the process, procedure and database developed for Slovenian Nuclear Safety Administration (SNSA) surveillance of ageing process of Nuclear power Plant Krsko.(author)

  7. Environmental issues and waste management in energy and minerals production

    International Nuclear Information System (INIS)

    Yegulalp, T.M.; Kim, K.

    1992-01-01

    This book includes the following topics: water management in the minerals industry; management of radioactive wastes in the energy industry; the US high-level radioactive waste program; acid mine drainage; health risks from uranium mill tailings; alternate energy sources, such as hydrogen; superconductive magnetic energy storage; nuclear waste

  8. Urban energy management today: Ten year compendium of UCETF programs. Products and expertise of the Urban Consortium Energy Task Force, 1979--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The reports listed in this Overview summarize projects conducted through the Urban Consortium Energy Task Force by local government staff who have defined and implemented many of the energy strategies described above. Reports from their projects illustrate effective approaches to plan and implement these strategies, as well as software tools, surveys, and technical instruments valuable to other local government officials conducting similar projects.

  9. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  10. Defense Contract Management Command Support to System Acquisition Program Managers

    National Research Council Canada - National Science Library

    1999-01-01

    .... This report discusses the planning of contract administration office support to system acquisition program managers through the program integration process and the customer support outreach program...

  11. Equipment Obsolescence Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  12. Energy efficiency programs in Brazil: formulation of public policy, planning and management; Programas de eficiencia energetica no Brasil: formulacao de politicas publicas, planejamento e gestao

    Energy Technology Data Exchange (ETDEWEB)

    Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico], email: bajay@fem.unicamp.br

    2010-07-01

    The Brazilian government never had a long-term policy for energy efficiency, with clearly defined energy conservation targets, implementation strategies, time schedules and responsibilities. The planning of energy efficiency programmes in the country is still in an early stage and the management of these programmes is far from satisfactory. A critical analysis of these three forms of federal government intervention in this area is carried out in this paper and several measures are proposed to the Ministry of Mines and Energy, some other ministries and to the Energy Research Company, which can increase substantially the adoption of new energy efficiency programmes in Brazil. (author)

  13. Guide to energy management; Veiledning for energiledelse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  14. Global Security Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bretzke, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-25

    The Global Security Directorate mission is to protect against proliferant and unconventional nuclear threats –regardless of origin - and emerging new threats. This mission is accomplished as the Los Alamos National Laboratory staff completes projects for our numerous sponsors. The purpose of this Program Management Plan is to establish and clearly describe the GS program management requirements including instructions that are essential for the successful management of projects in accordance with our sponsor requirements. The detailed information provided in this document applies to all LANL staff and their subcontractors that are performing GS portfolio work. GS management is committed to a culture that ensures effective planning, execution, and achievement of measurable results in accordance with the GS mission. Outcomes of such a culture result in better communication, delegated authority, accountability, and increased emphasis on safely and securely achieving GS objectives.

  15. The NASA risk management program

    International Nuclear Information System (INIS)

    Buchbinder, B.; Philipson, L.L.

    1989-01-01

    This paper reports that the NASA Risk Management Program has been established to ensure the appropriate application of risk-based procedures in support of the elimination, reduction, or acceptance of significant safety risks of concern in NASA. The term appropriate is emphasized, in that the particular procedures applied to each given risk are to reflect its character and prioritized importance, the technological and economic feasibility of its treatment. A number of key documents have been produced in support of this implementation. Databases, risk analysis tools, and risk communication procedures requisite to the execution of the risk management functions also are being developed or documented. Several risk management applications have been made and a comprehensive application to a major new NASA program is underway. This paper summarizes the development and current status of the NASA Risk Management Program. Some principal actions that have been carried out in NASA in consonance with the program are noted particularly, and views are presented on the program's likely future directions

  16. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  17. Residential dual energy programs: Tariffs and incentives

    International Nuclear Information System (INIS)

    Doucet, J.A.

    1992-01-01

    The problem of efficiently pricing electricity has been of concern to economists and policy makers for some time. A natural solution to variable demand is tariffs to smooth demand and reduce the need for excessive reserve margins. An alternative approach is dual energy programs whereby electric space heating systems are equipped with a secondary system (usually oil) which is used during periods of peak demand. Comments are presented on two previous papers (Bergeron and Bernard, 1991; Sollows et al., 1991) published in Energy Studies Review, applying them to Hydro Quebec tariff structure and dual energy programs. The role of tariffs in demand-side management needs to be considered more fully. Hydro-Quebec's bi-energy tariff structure could be modified by using positive incentives to make use of bi-energy attractive below -12 C to give the following benefits. The modified tariff would be easier for consumers to understand, corrects the misallocation problem due to differential pricing in the current tariff, transfers the risk related to price fluctuations of the alternative energy source from the consumer to the utility, and corrects the potential avoidance problem due to the negative incentive of the current tariff. 21 refs

  18. Space program management methods and tools

    CERN Document Server

    Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico

    2013-01-01

    Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.

  19. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  20. Indoor Air Quality Management Program.

    Science.gov (United States)

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  1. Sustainable development in Pemex: energy management

    International Nuclear Information System (INIS)

    Hernandez, C.E.R.

    2002-01-01

    In this paper, the author reviewed the energy management activities, over the last two years, of Petroleos Mexicanos, also known as Pemex. These activities generated substantial savings. A brief overview of Pemex was provided. The State Oil Company of Mexico, Pemex occupies the third rank of the world oil producers, and is in seventh place in terms of proven reserves. The gas production has earned the company the ninth spot, and it is in tenth place as far as its refining capacity is concerned. Pemex has annual revenues of 50, 000 million American dollars and operates in excess of 1,000 facilities. The energy management program implemented covered an experts network, training, campaigns, and information and monitoring system. Each of the components of the energy management system were reviewed. Linking each facility, the experts network was created to enhance the efficient use of energy. The Energy Saving and Environmental Protection campaign was held over the period 1999-2000 and involved the participation of 209 work sites. For its part, the Energy Efficient Use and Savings campaign took place in 2000-2001, involving 205 work sites. Both resulted in substantial savings. An internal carbon dioxide trading system was also implemented to improve air quality, and was designed to provide a cap and trade carbon dioxide emissions. The next phase involved the implementation of an information and monitoring system, which defined an Energy Consumption Index used in monthly reports. The next steps in the process were briefly outlined. 5 figs

  2. Fission energy program of the U.S. Department of Energy

    International Nuclear Information System (INIS)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs

  3. Hanford Site grundwater protection management program

    International Nuclear Information System (INIS)

    1989-10-01

    Groundwater protection has emerged over the past few years as a national priority that has been promulgated in a variety of environmental regulations at both the state and federal level. In order to effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy (DOE) requires all DOE facilities to prepare separate groundwater protection program descriptions and plans (groundwater activities were formerly included as a subpart of environmental protection programs). This document is for the Hanford Site located in the state of Washington. The DOE Order specifies that the groundwater protection management program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. 14 refs., 19 figs., 2 tabs

  4. Report from the Committee of Visitors on its Review of the Processes and Procedures used to Manage the Theory and Computations Program, Fusion Energy Sciences Advisory Committee

    International Nuclear Information System (INIS)

    2004-01-01

    A Committee of Visitors (COV) was formed to review the procedures used by the Office of Fusion Energy Sciences to manage its Theory and Computations program. The COV was pleased to conclude that the research portfolio supported by the OFES Theory and Computations Program was of very high quality. The Program supports research programs at universities, research industries, and national laboratories that are well regarded internationally and address questions of high relevance to the DOE. A major change in the management of the Theory and Computations program over the past few years has been the introduction of a system of comparative peer review to guide the OFES Theory Team in selecting proposals for funding. The COV was impressed with the success of OFES in its implementation of comparative peer review and with the quality of the reviewers chosen by the OFES Theory Team. The COV concluded that the competitive peer review process has improved steadily over the three years that it has been in effect and that it has improved both the fairness and accountability of the proposal review process. While the COV commends OFES in its implementation of comparative review, the COV offers the following recommendations in the hope that they will further improve the comparative peer review process: The OFES should improve the consistency of peer reviews. We recommend adoption of a results-oriented scoring system in their guidelines to referees (see Appendix II), a greater use of review panels, and a standard format for proposals; The OFES should further improve the procedures and documentation for proposal handling. We recommend that the folders documenting funding decisions contain all the input from all of the reviewers, that OFES document their rationale for funding decisions which are at variance with the recommendation of the peer reviewers, and that OFES provide a Summary Sheet within each folder; The OFES should better communicate the procedures used to determine funding

  5. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  6. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Science.gov (United States)

    2012-03-12

    ... DEPARTMENT OF ENERGY [Docket No. EESEP0216] State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and... (SEP) and Energy Efficiency and Conservation Block Grant (EECBG) program, in support of energy...

  7. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine Program. Part 2: Analysis of Results.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Ordonez, Felix Barajas; Paez, Diana; Pascual, Thomas

    2017-11-01

    The International Atomic Energy Agency has developed a program, named Quality Management Audits in Nuclear Medicine (QUANUM), to help its Member States to check the status of their nuclear medicine practices and their adherence to international reference standards, covering all aspects of nuclear medicine, including quality assurance/quality control of instrumentation, radiopharmacy (further subdivided into levels 1, 2, and 3, according to complexity of work), radiation safety, clinical applications, as well as managerial aspects. The QUANUM program is based on both internal and external audits and, with specifically developed Excel spreadsheets, it helps assess the level of conformance (LoC) to those previously defined quality standards. According to their level of implementation, the level of conformance to requested standards; 0 (absent) up to 4 (full conformance). Items scored 0, 1, and 2 are considered non-conformance; items scored 3 and 4 are considered conformance. To assess results of the audit missions performed worldwide over the last 8 years, a retrospective analysis has been run on reports from a total of 42 audit missions in 39 centers, three of which had been re-audited. The analysis of all audit reports has shown an overall LoC of 73.9 ± 8.3% (mean ± standard deviation), ranging between 56.6% and 87.9%. The highest LoC has been found in the area of clinical services (83.7% for imaging and 87.9% for therapy), whereas the lowest levels have been found for Radiopharmacy Level 2 (56.6%); Computer Systems and Data Handling (66.6%); and Evaluation of the Quality Management System (67.6%). Prioritization of non-conformances produced a total of 1687 recommendations in the final audit report. Depending on the impact on safety and daily clinical activities, they were further classified as critical (requiring immediate action; n = 276; 16% of the total); major (requiring action in relatively short time, typically from 3 to 6 months; n = 604

  8. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  9. Using management action plans to integrate program improvement efforts

    Energy Technology Data Exchange (ETDEWEB)

    Meador, S.W.; Kidwell, R.J.; Shangraw, W.R.; Cardamone, E.N. [Project Performance Corporation, Sterling, VA (United States)

    1994-12-31

    The Department of Energy`s (DOE`s) Environmental Management Program is the country`s largest and most sophisticated environmental program to date. The rapid expansion of the DOE`s environmental restoration efforts has led to increased scrutiny of its management processes and systems. As the program continues to grow and mature, maintaining adequate accountability for resources and clearly communicating progress will be essential to sustaining public confidence. The Office of Environmental Management must ensure that adequate processes and systems are in place at Headquarters, Operation Offices, and contractor organizations. These systems must provide the basis for sound management, cost control, and reporting. To meet this challenge, the Office of Environmental Restoration introduced the Management Action Plan process. This process was designed to serve three primary functions: (1) define the program`s management capabilities at Headquarters and Operations Offices; (2) describe how management initiatives address identified program deficiencies; and (3) identify any duplication of efforts or program deficiencies. The Environmental Restoration Management Action Plan is a tracking, reporting, and statusing tool, used primarily at the Headquarters level, for assessing performance in key areas of project management and control. BY DOE to communicate to oversight agencies and stakeholders a clearer picture of the current status of the environmental restoration project management system. This paper will discuss how Management Action Plans are used to provide a program-wide assessment of management capabilities.

  10. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

    2010-09-30

    This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

  11. Research waste management program - An action proposal

    International Nuclear Information System (INIS)

    Costa Ramos, A.; Esposito, I.

    1997-01-01

    The Brazilian Nuclear Energy Commission planned prepared and established a Research Waste Management Program, started in 1996, in order to map, to analyze and to solve the common problems in the research field. The specific study done included a large number of academic institutions. The procedures, results and operational methodology used by the Team linked to the Program, in one of the research institutions studied where corrective actions were implemented to avoid unnecessary dose to the public, will be discussed in this article. (author)

  12. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  13. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  14. Intelligent energy management control for independent microgrid

    Indian Academy of Sciences (India)

    Energy management control; multi-agent system; microgrid; energy forecast; hybrid power ... power to the local load most of the time in this energy management strategy. ... Electrical and Electronics Engineering Department, PSG College of ...

  15. Sport Management Graduate Programs: Characteristics of Effectiveness.

    Science.gov (United States)

    Li, Ming; And Others

    1994-01-01

    Reports a study that examined the characteristics that enable graduate sport management programs to achieve their objectives. Surveys of sport management educators found they agreed on 11 characteristics that indicated a sport management program's effectiveness. Respondents believed an effective program should produce sport managers, not…

  16. DOE [Department of Energy]-Nuclear Energy Standards Program annual assessment, FY 1990

    International Nuclear Information System (INIS)

    Williams, D.L. Jr.

    1990-11-01

    To meet the objectives of the programs funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a nuclear standards program and related activities and fosters the development and application of standards. This standards program is carried out in accordance with the principles in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980. The purposes of this effort, as set forth in three subtasks, are to (1) manage the NE Standards Program, (2) manage the development and maintenance of NE standards, and (3) operate an NE Standards Information Program. This report assesses the Performance Assurance Project Office (PAPO) activities in terms of the objectives of the Department of Energy-Nuclear Energy (DOE-NE) funded programs. To meet these objectives, PAPO administers a nuclear standards program and related activities and fosters the development and application of standards. This task is carried out in accordance with the principles set forth in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980, and DOE memorandum, Implementation of DOE Orders on Quality Assurance, Standards, and Unusual Occurrence Reporting for Nuclear Energy Programs, March 3, 1982, and with guidance from the DOE-NE Technology Support Programs. 1 tab. (JF)

  17. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  18. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  19. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  20. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  1. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program. Research funded and its linkages to environmental cleanup problems. High out-year cost environmental management project descriptions. Volume 3 of 3 - Appendix C

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix C provides details about each of the Department's 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research

  2. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  3. 76 FR 74842 - RTCA Program Management Committee

    Science.gov (United States)

    2011-12-01

    ... Minimum Aviation System Performance Standards (MASPS) for Advanced VHF Digital Data Communications... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration RTCA Program Management Committee... RTCA Program Management Committee meeting. SUMMARY: The FAA is issuing this notice to advise the public...

  4. Establishing a total information management program

    International Nuclear Information System (INIS)

    Hegstrom, K.L.; Fisher, J.

    1982-01-01

    A total information management program manages documents for easy access and identifies data elements commonly found in all documents. The program thus links disparate documents by identifying information they share in common

  5. Fission energy program of the U.S. Department of Energy. FY 1980

    International Nuclear Information System (INIS)

    1979-04-01

    This document presents the baseline implementation program plan as of January 1979 and is derived from the National Energy Plan and other major policy documents. The document discusses civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977 and the National Energy Act of 1978. It derives the fission energy policy and program objectives from the National Energy Plan and Act, describes the overall program strategy, and presents the overall budget. The approach used in managing the program, including the program structure and methods used for program control, is explained. The civilian fission power development implementation programs are described in detail. Other considerations affecting civilian nuclear power development are also discussed

  6. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  7. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    -funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

  8. Energy manager design for microgrids

    International Nuclear Information System (INIS)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency

  9. Basic Energy Conservation and Management--Part 2: HVAC

    Science.gov (United States)

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  10. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  11. New directions in federal energy management

    International Nuclear Information System (INIS)

    Ginsberg, M.

    1993-01-01

    The fuel embargo of 1973, followed by the oil disruption of 1979 heightened national security concerns over the availability and price of foreign oil to sustain all sectors of the U.S. economy. As a result of our growing dependence on foreign oil and diminishing resources at home, the Federal government has worked since 1974 to identify and implement a variety of measures to reduce energy consumption in Federal buildings and operations. Federal energy expenditures peaked at almost $14 billion in 1982 but has now been reduced to approximately $10 billion a year. However, much more needs to be done. Since the 1973 oil embargo, a series of legislative initiatives and Presidential authorities established the Federal Energy Management Program (FEMP) and then expanded it to address a broad range of energy-related issues affecting the Federal sector. Administered by the U.S. Department of Energy, FEMP coordinates the design and implementation of energy-saving programs for Federal buildings and operations. This includes working with other Federal agencies through interagency committees to interpret and implement Federal policy, to provide technical assistance to other Federal agencies, and to collect and report Federal energy consumption data to Congress. In addition, with the passage of the Clean Air Act Amendments of 1990, concerns over global climate change and a range of man-made and natural pollutants, environmental issues now play a critical role in our nation's energy policy. As a major consumer of energy, the Federal sector can serve as an important model for other sectors of the economy as a result of some of the innovative and cost-effective measures planned or currently underway. My talk today will focus on the Federal government's plans to ensure the energy efficient design and operation of Federal facilities, with an emphasis on life-cycle cost analyses

  12. Energy Analysis Program 1990 annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ''Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings

  13. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  14. Department of Energy remedial action program annual conference: Proceedings

    International Nuclear Information System (INIS)

    1990-01-01

    The Office of Environmental Restoration manages a number of programs whose purposes are to complete remedial action at Department of Energy (DOE) facilities and sites located throughout the United States. This volume contains 18 papers on the topics environmental restoration and hazardous/mixed waste characterization and remediation. Individual papers are indexed separately on the Energy Database

  15. 30 CFR 401.12 - Program management.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  16. 20 CFR 638.800 - Program management.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Program management. 638.800 Section 638.800... TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Administrative Provisions § 638.800 Program management. (a) The Job Corps Director shall establish and use internal program management procedures sufficient...

  17. 30 CFR 402.13 - Program management.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 402.13 Section 402.13... WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.13 Program management. (a) After the conclusion of negotiations, the USGS will transmit a grant or...

  18. 14 CFR 1214.1706 - Program management.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Program management. 1214.1706 Section 1214... Participants § 1214.1706 Program management. The Associate Administrator for Space Flight is responsible for program management under the direction of the Committee chairperson. ...

  19. Sustainability Management Program for Industries- A Case Study

    Directory of Open Access Journals (Sweden)

    Long Su Weng Alwin

    2017-01-01

    Full Text Available This research studied the effectiveness of Sustainability Management Program in improving production efficiency of the manufacturing site with verified result using the regression analysis. For this study, a dairy manufacturing industry located in Malaysia was selected and major energy consuming equipment in the industryplant were identified. Sustainability Management Program (SMP was carried out for three years and energy consumption and product has improved regression coefficients of 0.625 in 2013, 0.826 in 2014, and 0.878 in 2015 as the manufacturing site becomes more energy efficient. This suggests that the energy management should be carried out in a continuous manner with energy management team responsible for energy saving practices.

  20. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  1. Potential transportation demand management programs and measures

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T. [Victoria Transport Policy Institute, Victoria, BC (Canada)

    1997-02-07

    The advantages of transportation demand management (TDM) programs were discussed. TDM includes several policies, programs and measures designed to change travel patterns. TDM programs include commute trip reductions, pricing policies, land use management strategies, and programs to support alternative modes of transportation such as public transit, carpooling, bicycling, walking and telecommuting. TDM programs are designed to reduce traffic congestion and air pollution. Some other TDM programs and measures include: enabling programs, alternative mode encouragement, driving disincentives, parking programs, marginalizing user costs, reducing automobile ownership, and land use management.

  2. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  3. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  4. University Program Management Information System

    Science.gov (United States)

    Gans, Gary (Technical Monitor)

    2004-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  5. University Program Management Information System

    Science.gov (United States)

    2001-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA' objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  6. 40 CFR 130.11 - Program management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Program management. 130.11 Section 130... PLANNING AND MANAGEMENT § 130.11 Program management. (a) State agencies may apply for grants under sections 106, 205(j) and 205(g) to carry out water quality planning and management activities. Interstate...

  7. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  8. Using management action plans to integrate program improvement efforts

    International Nuclear Information System (INIS)

    Meador, S.W.; Kidwell, R.J.; Shangraw, W.R.; Cardamone, E.N.

    1994-01-01

    The Department of Energy's (DOE's) Environmental Management Program is the country's largest and most sophisticated environmental program to date. The rapid expansion of the DOE's environmental restoration efforts has led to increased scrutiny of its management processes and systems. As the program continues to grow and mature, maintaining adequate accountability for resources and clearly communicating progress will be essential to sustaining public confidence. The Office of Environmental Management must ensure that adequate processes and systems are in place at Headquarters, Operation Offices, and contractor organizations. These systems must provide the basis for sound management, cost control, and reporting. To meet this challenge, the Office of Environmental Restoration introduced the Management Action Plan process. This process was designed to serve three primary functions: (1) define the program's management capabilities at Headquarters and Operations Offices; (2) describe how management initiatives address identified program deficiencies; and (3) identify any duplication of efforts or program deficiencies. The Environmental Restoration Management Action Plan is a tracking, reporting, and statusing tool, used primarily at the Headquarters level, for assessing performance in key areas of project management and control. BY DOE to communicate to oversight agencies and stakeholders a clearer picture of the current status of the environmental restoration project management system. This paper will discuss how Management Action Plans are used to provide a program-wide assessment of management capabilities

  9. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  10. Study on Government Management Mechanism of Energy ...

    African Journals Online (AJOL)

    of energy conservation and emission reduction, and propose legal guarantees, management innovation, technology innovation, service system construction and upgrading of industrial structure are the critical factors to energy conservation and emission reduction management mechanism's performance. Then discuss the ...

  11. Design of energy management indicator.

    Directory of Open Access Journals (Sweden)

    Ernesto Tomás Dalmau García

    2010-10-01

    Full Text Available This work has as a main goal to demostrate the viability of the energy management indicator, that will be a part of the Balanced Scorecard in the organization and the own process of calculation allows to obtain a Balanced Scorecard of energy management. It describes the executive order of the actions that have to be done to reach to the mentioned indicator, based on the selection of the selected period of time; the types of power carriers, the weight of each carrier in the structure of the consumption and the activities where they are used. With these elements several tools are used to reach to the expected results, as the bar charts, comparative tables and indices of power intensity. The indices of energy intensity are recommended as comparative elements for the contribution to the operativity and information level, meaning that not always is necessary to tie them , if not, in some cases, may be other selected indicators that may result as qualitatives type, The Cuban enterprise system uses the model Control of Consumption and Catchment Demand of fuels and lubricants (CDA 002 of the Ministry of Economy and Planning (MEP that is used in the work and it is recommended for the organizations who apply it. The study and application of this method were made in the Company of Raw materials Recovery in an experimental form.

  12. Resolution on the program energy-climate

    International Nuclear Information System (INIS)

    2008-01-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  13. Necessity for training of experts on energy efficiency and energy management

    International Nuclear Information System (INIS)

    Gramatikov, Plamen

    2015-01-01

    The energy intensity of the Bulgarian GDP is the highest one in comparison with other EU countries. This fact leads to low competitiveness of Bulgarian goods at the international markets. The country lacks a sufficient number of well trained experts on energy efficiency and energy management which requires development of such educational programs in Bachelor and Master's curricula of the universities. The Master's program on Energy Management and Sustainable Energy Development developed in the Physics Department is shortly presented in this paper. This curriculum must be introduced in all technical areas of SWU if it likes to be adequate to current needs of the country and society.

  14. Smart Energy Management for Households

    Directory of Open Access Journals (Sweden)

    Sonja van Dam

    2013-06-01

    Full Text Available The aim of the research presented in this thesis was to infer design-related insights and guidelines to improve the use and effectiveness of home energy management systems (HEMS. This was done through an empirical evaluation of the longitudinal effectiveness of these devices and an exploration of factors that influence their use and effectiveness. Three case studies executed with three different HEMS in households, a life cycle assessment (LCA on those three HEMS, as well as a reflection on the challenges of both researching and implementing HEMS in existing housing gave a comprehensive picture of the opportunities and barriers for HEMS. The research revealed five typical use patterns that emerged amongst households. It also revealed average energy savings of 7.8%, which however decreased in the follow-up that was conducted, and factors that may influence the use and effectiveness of HEMS. Nonetheless, the LCA calculations divulged that the HEMS can achieve net energy savings when taking their embedded energy into account. Problem statement The goal of reducing the energy consumption of existing housing formed the basis for this research. There are many facets to this energy consumption, including the characteristics of the house, its appliances, and the behaviours of its inhabitants. Because of this complexity, addressing only one of these facets is not effective in substantially reducing the overall energy consumption of households. This called for an interdisciplinary approach, merging the domains of design for sustainability, sustainable housing transformation and environmental psychology. In this thesis, HEMS were chosen as the intervention to address the various elements that contribute to household energy consumption, thereby functioning as a pivot. By giving feedback and/or helping manage consumption they can assist households in changing their behaviour and help save energy. However, in analysing literature on HEMS, four critique points

  15. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  16. Systems approach in energy management

    International Nuclear Information System (INIS)

    Dutta-Choudhury, K.

    1993-01-01

    Several years ago when the author was working in the chemicals division of a paper company in Instrumentation and Controls, one experience had a lasting impact on his work approach which is systems approach. The maintenance manager told the author that a very important piece of boiler instrument of the power plant had broken down and delivery of the replacement needed to be expedited. The instrument was ordered over the phone in another city. The purchase order was personally delivered at the supplier's office and arrangements were made so the instrument was put on the next flight. A week later the maintenance manager indicated that the particular instrument still had not arrived in the plant and he could not run the power plant. Thus the company incurred substantial losses. Further inquiries showed that the instrument did indeed arrive at the plant stores on time. But, in the absence of any instructions thereon, the instrument was not delivered to the power plant. The sense of urgency was lost in the existing delivery process. In other words, the process or system failed. The whole process from requisitioning to delivery of ordered items was analyzed and corrective procedures were incorporated to prevent future repetitions. This brings up the subject of systems approach in engineering management in general and energy management in particular. This involves defining an objective and designing a system for an effective way of getting there

  17. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  18. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  19. Environmental Restoration Information Resource Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program`s essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan.

  20. Civilian radioactive waste management program plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  1. Repository-Based Software Engineering Program: Working Program Management Plan

    Science.gov (United States)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  2. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  3. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  4. Manage your energy, not your time.

    Science.gov (United States)

    Schwartz, Tony

    2007-10-01

    As the demands of the workplace keep rising, many people respond by putting in ever longer hours, which inevitably leads to burnout that costs both the organization and the employee. Meanwhile, people take for granted what fuels their capacity to work--their energy. Increasing that capacity is the best way to get more done faster and better. Time is a finite resource, but energy is different. It has four wellsprings--the body, emotions, mind, and spirit--and in each, it can be systematically expanded and renewed. In this article, Schwartz, founder of the Energy Project, describes how to establish rituals that will build energy in the four key dimensions. For instance, harnessing the body's ultradian rhythms by taking intermittent breaks restores physical energy. Rejecting the role of a victim and instead viewing events through three hopeful lenses defuses energy-draining negative emotions. Avoiding the constant distractions that technology has introduced increases mental energy. And participating in activities that give you a sense of meaning and purpose boosts the energy of the spirit. The new workday rituals succeed only if leaders support their adoption, but when that happens, the results can be powerful. A group of Wachovia Bank employees who went through an energy management program outperformed a control group on important financial metrics like loans generated, and they reported substantially improved customer relationships, productivity, and personal satisfaction. These findings corroborated anecdotal evidence gathered about the effectiveness of this approach at other companies, including Ernst & Young, Sony, and Deutsche Bank. When organizations invest in all dimensions of their employees' lives, individuals respond by bringing all their energy wholeheartedly to work -and both companies and their people grow in value.

  5. Building-owners energy-education program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The objectives of the program are to develop and test market a cogent education program aimed specifically at building owners to help them be more decisive and knowledgeable, and to motivate them to direct their managers and professionals to implement a rational plan for achieving energy conservation in their commercial office buildings and to establish a plan, sponsored by the Building Owners and Managers Association International (BOMA) to implement this educational program on a nation-wide basis. San Francisco, Chicago, and Atlanta were chosen for test marketing a model program. The procedure used in making the energy survey is described. Energy survey results of participating buildings in San Francisco, Chicago, and Atlanta are summarized. (MCW)

  6. Progress and problems in the Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Fiore, J.J.; Turi, G.P.

    1988-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to identify, evaluate, and as appropriate, conduct remedial actions at sites used in the early years of nuclear energy development by the Manhattan Engineer District and the Atomic Energy Commission (AEC). This program currently has 29 sites and is evaluating 350 other sites for possible inclusion in the program. Another remedial action program in the Department of Energy's (DOE) Division of Facility and Site Decommissioning Projects is the Surplus Facilities Management Program (SFMP). The SFMP involves the safe management, decontamination and disposal of surplus DOE contaminated facilities which were not related to defense activities. There are currently 33 projects at 15 different sites in the program. These two programs have made steady progress over the last 10 or so years in cleaning up sites so that they can be reused or released for unrestricted use. Work has been completed at 8 of the FUSRAP sites and three of the SFMP sites

  7. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  8. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  9. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  10. Disease management: findings from leading state programs.

    Science.gov (United States)

    Wheatley, Ben

    2002-12-01

    Disease management programs are designed to contain costs by improving health among the chronically ill. More than 20 states are now engaged in developing and implementing Medicaid disease management programs for their primary care case management and fee-for-service populations.

  11. Evaluating and Selecting Sport Management Undergraduate Programs.

    Science.gov (United States)

    Cuneen, Jacquelyn; Sidwell, M. Joy

    1998-01-01

    States that the accelerated growth of sport management undergraduate programs that began in the 1980s has continued into the current decade. There are currently 180 sport management major programs in American colleges and universities. Describes the sports management approval process and suggests useful strategies to evaluate sport management…

  12. NASA and the Federal Management Intern Program.

    Science.gov (United States)

    Pound, Jack K.; Slack, Vivian M.

    A review of NASA Federal Management Intern (MI) programs indicates potential for identification, attraction, and early development of successful administrative management employees, but suggests that successful development of managers is a function of the long-term care with which an agency pursues MI programs. A recent study of separations in…

  13. Environmental Restoration Information Resource Management Program Plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program's essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan

  14. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  15. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  16. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  17. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  18. Joint environmental assessment 1997--2001 of the California Department of Food and Agriculture Curly Top Virus Control Program for Bureau of Land Management and Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The DOE, Naval Petroleum reserves in California (NPRC), proposes to sign an Amendment to the Cooperative Agreement and Supplement with the California Department of Food and Agriculture (CDFA) to extend the term of the Curly Top Virus Control Program (CTVCP) in California. This program involves Malathion spraying on NPRC lands to control the beet leafhopper, over a five year period from 1997 through 2001. It is expected that approximately 330 acres on Naval Petroleum Reserve Number 1 (NPR-1) and approximately 9,603 acres on Naval Petroleum Reserve Number 2 (NPR-2) will be treated with Malathion annually by CDFA during the course of this program. The actual acreage subject to treatment can vary from year to year. Pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as amended, the potential impacts of the proposed action were analyzed in a Joint Environmental Assessment (DOE/EA-1011) with the US Department of Interior, Bureau of Land Management (BLM) acting as lead agency, in consultation with the CDFA, and the DOE acting as a cooperating agency. Based on the analysis in the EA, DOE has determined that the conduct of the Curly Top Virus Control Program in California is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not required and DOE is consequently issuing a FONSI.

  19. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  20. A Candidate Army Energy and Water Management Strategy

    National Research Council Canada - National Science Library

    Fournier, Donald F; Westervelt, Eileen T

    2004-01-01

    .... This work augments on-going energy and water management initiatives within the Army by developing a new candidate Army level strategy that responds to anticipated legislation; reflects current DOD and DA requirements, vision, and values in light of the current world situation; incorporates sound science and management principles; and organizes and focuses efforts into an integrated program.

  1. A generic hazardous waste management training program

    International Nuclear Information System (INIS)

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref

  2. Energy management and vehicle synthesis

    Science.gov (United States)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  3. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  4. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  5. Energy management in wooden industry; Gestao energetica em industrias madeireiras

    Energy Technology Data Exchange (ETDEWEB)

    Cagnon, Jose Angelo; Valarelli, Ivaldo de Domenico; Rodrigues, Ricardo Martini [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: jacagnon@feb.unesp.br, ivaldo@feb.unesp.br, martini@feb.unesp.br

    2006-07-01

    The objective of this work is the use of a methodology developed for the evaluation of the energy performance in wooden plants, aiming the application of a energy management program, for products and processes improvement, observing a reliable technical and economic implementation. (author)

  6. Energy in Ireland: context, management and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the framework of the climatic change and the fossil fuels shortage, the Ireland defined a new energy policy. The priority is the energy supply security and the research programs present a great interest in the ocean energies, which represent an important source in Ireland. The report presents the context, the irish energy policy, the research programs on energy and the different actors of the domain. (A.L.B.)

  7. National NIF Diagnostic Program Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    The National Ignition Facility (NIF) has the mission of supporting Stockpile Stewardship and Basic Science research in high-energy-density plasmas. To execute those missions, the facility must provide diagnostic instrumentation capable of observing and resolving in time events and radiation emissions characteristic of the plasmas of interest. The diagnostic instrumentation must conform to high standards of operability and reliability within the NIF environment. These exacting standards, together with the facility mission of supporting a diverse user base, has led to the need for a central organization charged with delivering diagnostic capability to the NIF. The National NIF Diagnostics Program (NNDP) has been set up under the aegis of the NIF Director to provide that organization authority and accountability to the wide user community for NIF. The funds necessary to perform the work of developing diagnostics for NIF will be allocated from the National NIF Diagnostics Program to the participating laboratories and organizations. The participating laboratories and organizations will design, build, and commission the diagnostics for NIF. Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize NIF Core Diagnostics Systems and Cryogenic Target Handing Systems, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NIF Core Diagnostics Systems. Preparation of a Program Execution Plan for NIF Core Diagnostics Systems has been initiated and a current draft is provided as Attachment 1 to this document. The National NIF Diagnostics Program Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope

  8. Five paradox on energy system management

    International Nuclear Information System (INIS)

    Frisch, J.R.

    1995-01-01

    Five paradox are detailed on energy management: internationalization of energy questions but always regional management is present, short term problems must be solved but without forgetting long term problems in environment, the third paradox is : we have time but we are in a hurry, we have reserves but ten, twenty or thirty years are necessary to adapt our energy system; the fourth paradox is : we cannot manage energy by managing only energy, for example : finances system development and environment importance. The last and fifth paradox is : the market, yes, but state too, as regulative force

  9. Intelligence Community Programs, Management, and Enduring Issues

    Science.gov (United States)

    2016-11-08

    books, journal papers, conference presentations, working papers, and other electronic and print publications. Intelligence Community Programs... Intelligence Community Programs, Management, and Enduring Issues Anne Daugherty Miles Analyst in Intelligence and National Security Policy...

  10. Global pest management program wins international award

    OpenAIRE

    Rich, Miriam Sommers

    2009-01-01

    An agricultural research program managed at Virginia Tech has won an international award for its work with pest-management practices that show economic benefits with minimal impact on health and the environment.

  11. Smart and usable home energy management systems

    NARCIS (Netherlands)

    Van Dam, S.S.

    2009-01-01

    This paper reviews research into Home Energy Management Systems (HEMS). These are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS have lately received increasing attention for their possible role in conserving energy within

  12. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  13. The Air Program Information Management System (APIMS)

    Science.gov (United States)

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  14. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total

  15. Stochastic energy balancing in substation energy management

    Directory of Open Access Journals (Sweden)

    Hassan Shirzeh

    2015-12-01

    Full Text Available In the current research, a smart grid is considered as a network of distributed interacting nodes represented by renewable energy sources, storage and loads. The source nodes become active or inactive in a stochastic manner due to the intermittent nature of natural resources such as wind and solar irradiance. Prediction and stochastic modelling of electrical energy flow is a critical task in such a network in order to achieve load levelling and/or peak shaving in order to minimise the fluctuation between off-peak and peak energy demand. An effective approach is proposed to model and administer the behaviour of source nodes in this grid through a scheduling strategy control algorithm using the historical data collected from the system. The stochastic model predicts future power consumption/injection to determine the power required for storage components. The stochastic models developed based on the Box-Jenkins method predict the most efficient state of the electrical energy flow between a distribution network and nodes and minimises the peak demand and off-peak consumption of acquiring electrical energy from the main grid. The performance of the models is validated against the autoregressive moving average (ARIMA and the Markov chain models used in previous work. The results demonstrate that the proposed method outperforms both the ARIMA and the Markov chain model in terms of forecast accuracy. Results are presented, the strengths and limitations of the approach are discussed, and possible future work is described.

  16. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  17. Optimal energy management strategy for self-reconfigurable batteries

    International Nuclear Information System (INIS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2017-01-01

    This paper proposes a novel energy management strategy for multi-cell high voltage batteries where the current through each cell can be controlled, called self-reconfigurable batteries. An optimized control strategy further enhances the energy efficiency gained by the hardware architecture of those batteries. Currently, achieving cell equalization by using the active balancing circuits is considered as the best way to optimize the energy efficiency of the battery pack. This study demonstrates that optimizing the energy efficiency of self-reconfigurable batteries is no more strongly correlated to the cell balancing. According to the features of this novel battery architecture, the energy management strategy is formulated as nonlinear dynamic optimization problem. To solve this optimal control, an optimization algorithm that generates the optimal discharge policy for a given driving cycle is developed based on dynamic programming and code vectorization. The simulation results show that the designed energy management strategy maximizes the system efficiency across the battery lifetime over conventional approaches. Furthermore, the present energy management strategy can be implemented online due to the reduced complexity of the optimization algorithm. - Highlights: • The energy efficiency of self-reconfigurable batteries is maximized. • The energy management strategy for the battery is formulated as optimal control problem. • Developing an optimization algorithm using dynamic programming techniques and code vectorization. • Simulation studies are conducted to validate the proposed optimal strategy.

  18. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  19. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  20. Comprehensive energy management eco routing & velocity profiles

    CERN Document Server

    Brandstätter, Bernhard

    2017-01-01

    The book discusses the emerging topic of comprehensive energy management in electric vehicles from the viewpoint of academia and from the industrial perspective. It provides a seamless coverage of all relevant systems and control algorithms for comprehensive energy management, their integration on a multi-core system and their reliability assurance (validation and test). Relevant European projects contributing to the evolvement of comprehensive energy management in fully electric vehicles are also included.

  1. 10 CFR 600.120 - Purpose of financial and program management.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Purpose of financial and program management. 600.120 Section 600.120 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... financial and program management. Sections 600.121 through 600.128 prescribe standards for financial...

  2. Configuration Management Program - a part of Integrated Management System

    International Nuclear Information System (INIS)

    Mancev, Bogomil; Yordanova, Vanja; Nenkova, Boyka

    2014-01-01

    The recently issued International Atomic Energy Agency (IAEA) publications (GS-R-3, GS-G-3.1 and GS-G-3.5) regarding Management Systems for Facilities and Activities define requirements for creation, introduction, evaluation and continuously improvement of the Management System, which unifies the safety, health, environment, security, quality and economic elements. According to GS-R-3 the Integrated Management System is based on defined processes identified in the enterprises: Managing, Basic and Supporting processes. At implementation of their activities, the organizations often apply other standards in their interrelations with suppliers and the parties concerned - ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007, regarding quality, environment and occupational health and safety management. The integration of the standards of both series ensure the observance of the common management principles that reflect the best practices of management as leadership, participation of the people, process approach, continuously improvement, systematical approach to the management and approach based on facts used at the making decisions. The main objective of the Integrated Management System introduction is to ensure safety considering the influence of all additional impacts taken together. The Integrated Management System is based on the process approach at implementation of the activities in nuclear power plant. The transition to the process oriented approach require long period of time, during which the distribution of the responsibilities is optimized up to the level that will satisfy the requirements, reach and maintain the stipulated objectives. The Configuration Management (CM) is an integrated management process by means of which conformity between design requirements, physical configuration and the plant documentation is ascertained and maintained during the entire life cycle of the facility. Processes within configuration management are not isolated, but are part of

  3. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  4. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  5. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  6. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  7. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  8. Energy conservation: its planning and management

    International Nuclear Information System (INIS)

    Nanda, K.S.; Patra, K.C.

    1995-01-01

    Energy conservation, its planning and management and the development of renewable energy systems of proven design are very worthy challenges for all. Energy education at various levels is most important particularly in the development of renewable energy technology. 2 refs., 3 tabs

  9. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  10. Tapping into the Forest Management Assistance Programs

    Science.gov (United States)

    John L. Greene; Terry K. Haines

    1998-01-01

    Use of federal and state forest management assistance programs can enable nonindustial private forest owners to reduce their management expenses and practice better stewardship. This paper summarizes six federal and twelve state assistance programs available to owners in the North Central states. It also describes how to calculate the amount of a government...

  11. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  12. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 -- Report and Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ``Background of the Program,`` provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ``Research Award Selection Process,`` provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ``Linkages to Environmental Cleanup Problems,`` provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ``Capitalizing on Science Investments,`` discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants.

  13. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  14. Developing Program Management Leadership for Acquisition Reform

    Science.gov (United States)

    2011-04-30

    mêçÅÉÉÇáåÖë= çÑ=íÜÉ= bfdeqe=^kkr^i=^`nrfpfqflk== obpb^o`e=pvjmlpfrj== qeropa^v=pbppflkp== slirjb ff Developing Program Management Leadership for...4. TITLE AND SUBTITLE Developing Program Management Leadership for Acquisition Reform 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Developing Program  Management   Leadership   for Acquisition Reform    The 8th Annual Acquisition Research Symposium Panel #20: Investing in People

  15. Principles of light energy management

    Science.gov (United States)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  16. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  17. DOE waste management program-current and future

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1993-01-01

    The back end of the nuclear fuel cycle, as well as many operations in the Department of Energy, involves management of radioactive and hazardous waste and spent nuclear fuel. Described herein is the current and anticipated Department's Waste Management Program and general information about the Program for managing and disposing of waste that will illustrate the importance of air cleaning and treatment in assuring protection of the public and our environment. The structure and responsibilities of the Office of Environmental Restoration and Waste Management (EM) are described. The categories of waste managed by the Office of Waste Management (OWM) are defined. The problems of waste management, waste minimization, and waste treatment, storage, and disposal are discussed. 4 figs

  18. SLC Energy Upgrade Program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators

  19. SLC energy upgrade program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-01-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators

  20. The SLC energy upgrade program at SLAC

    International Nuclear Information System (INIS)

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebaaqz, J.V.

    1985-01-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators

  1. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  2. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  3. Educational support programs: Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Williamson, R.C.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) currently sponsors two educationally related programs: the Radioactive Waste Management Fellowship Program and the Radioactive Waste Management Research Program for Historically Black Colleges and Universities (HBCU). The graduate fellowship program was implemented in 1985 to meet the US Department of Energy's (DOE's) expected manpower needs for trained scientists and engineers to assist in carrying out the activities of the Nuclear Waste Policy Act. It is recognized that a shortage of master's and doctoral level scientists and engineers in disciplines supportive of the nation's high-level radioactive waste management (RWM) program may impede the DOE's ability to properly carry out its mission under the act. The fellowship program encourages talented undergraduate students to enter graduate programs designed to educate and train them in fields directly related to RWM. The program supports graduate students in various disciplines, including nuclear science and engineering, health physics, and certain area of geology and chemical engineering. It also encourages universities to support and improve research activities and academic programs related to the management of spent nuclear fuel and high-level radioactive waste

  4. Recovery Act. Development of a Model Energy Conservation Training Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  5. Department of Energy: Nuclear S&T workforce development programs

    International Nuclear Information System (INIS)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly; Steele, Carolyn; Sattelberger, Alfred P.; Bruozas, Meridith A.

    2016-01-01

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) and the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.

  6. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.

    2005-07-13

    The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and

  7. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  8. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  9. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  10. Research challenges for energy data management (panel)

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Lehner, Wolfgang

    2013-01-01

    This panel paper aims at initiating discussion at the Second International Workshop on Energy Data Management (EnDM 2013) about the important research challenges within Energy Data Management. The authors are the panel organizers, extra panelists will be recruited before the workshop...

  11. Computerised energy audit: a tool for better management information system

    International Nuclear Information System (INIS)

    Sonavane, V.L.; Kulkarni, S.L.

    1995-01-01

    The demand for electricity is ever increasing. The cost of electrical generation is rising. The cost of new generating station is prohibitive to the electricity boards. Financial excellence is only possible by implementing energy audit. Because of energy audit programs the consumers' attitude is bound to change. The theft and pilferage will be detected and the quantum is bound to reduce. Financial energy management system (FEMS) will look into all operations with reference to the energy sell, energy input, finance, equipment failure, interruptions and also the individual performances of each engineer in charge of that area. 2 tabs

  12. Seven principle of highly effective Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.; Reed, Ph.D.

    2010-01-01

    This paper presents seven principles that demand consideration for any country using a nuclear power program or wanting to acquire such a program. These principles are assessing the overall energy system, determining effective use of financial resources for energy development, ensuring high safety standards, implementing best security practices, preventing the spread of nuclear weapons, managing radioactive waste in a safe and secure manner, and enacting a legal framework that encompasses the other principle areas. The paper applies management methods that underscore development of strong independent national capabilities integrated within an interdependent international system. The paper discusses the individual responsibilities of states in all seven principles and offers recommendations for how states can benefit from greater international cooperation in nuclear energy development

  13. Civilian radioactive waste management program plan. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy's site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program's ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program's mission and vision, and summarizes the Program's broad strategic objectives. Chapter 2 describes the Program's approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program's organization chart; the Commission's regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms

  14. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  15. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    Science.gov (United States)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  16. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and high out-year cost environmental management project descriptions. Volume 3 of 3 -- Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix C provides details about each of the Department`s 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research.

  17. Fossil Energy Materials Program conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. (comp.)

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  18. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  19. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  20. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  1. Comprehensive quality management program for radiation oncology

    International Nuclear Information System (INIS)

    Dawson, J.; Roy, T.; Abrath, F.; Wu, T.; Gu, J.; McDonald, R.; Kim, H.; Haenchen, M.

    1994-01-01

    A quality management program for both external beam irradiation (electron and photon modes) and brachytherapy (high dose rate (HDR) and low dose rate (LDR) has been developed. The program follows current USA federal regulations for therapeutic administration of by-product materials. After implementation of the program, 54 HDR patients, 36 LDR brachytherapy patients and 311 external beam patients (including 30 stereotactic radiosurgery cases) were treated. The results of this program are presented

  2. Action dependent heuristic dynamic programming based residential energy scheduling with home energy inter-exchange

    International Nuclear Information System (INIS)

    Xu, Yancai; Liu, Derong; Wei, Qinglai

    2015-01-01

    Highlights: • The algorithm is developed in the two-household energy management environment. • We develop the absent energy penalty cost for the first time. • The algorithm has ability to keep adapting in real-time operations. • Its application can lower total costs and achieve better load balancing. - Abstract: Residential energy scheduling is a hot topic nowadays in the background of energy saving and environmental protection worldwide. To achieve this objective, a new residential energy scheduling algorithm is developed for energy management, based on action dependent heuristic dynamic programming. The algorithm works under the circumstance of residential real-time pricing and two adjacent housing units with energy inter-exchange, which can reduce the overall cost and enhance renewable energy efficiency after long-term operation. It is designed to obtain the optimal control policy to manage the directions and amounts of electricity energy flux. The algorithm’s architecture is mainly constructed based on neural networks, denoting the learned characteristics in the linkage of layers. To get close to real situations, many constraints such as maximum charging/discharging power of batteries are taken into account. The absent energy penalty cost is developed for the first time as a part of the performance index function. When the environment changes, the residential energy scheduling algorithm gains new features and keeps adapting in real-time operations. Simulation results show that the developed algorithm is beneficial to energy conversation

  3. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  4. Compromise Programming in forest management

    Science.gov (United States)

    Boris A. Poff; Aregai Tecle; Daniel G. Neary; Brian Geils

    2010-01-01

    Multi-objective decision-making (MODM) is an appropriate approach for evaluating a forest management scenario involving multiple interests. Today's land managers must accommodate commercial as well as non-commercial objectives that may be expressed quantitatively and/or qualitatively, and respond to social, political, economic and cultural changes. The spatial and...

  5. Program Manager’s Handbook

    Science.gov (United States)

    1989-03-01

    risk as early as cess control and process management are prin- possible and before Milestone II. Risk management ciples of the Deming philosophy for...operational concept dXcumcr t and software technical art form. The software development pro- development specifications. 4.16a Figure 1. LIFE CICLE

  6. Optimal energy management in pulp and paper mills

    International Nuclear Information System (INIS)

    Sarimveis, H.K.; Angelou, A.S.; Retsina, T.R.; Rutherford, S.R.; Bafas, G.V.

    2003-01-01

    In this paper, we examine the utilization of mathematical programming tools for optimum energy management of the power plant in pulp and paper mills. The objective is the fulfillment of the total plant requirements in energy and steam with the minimum possible cost. The proposed methodology is based on the development of a detailed model of the power plant using mass and energy balances and a mathematical formulation of the electrical purchase contract, which can be translated into a rigorous mixed integer linear programming optimization problem. The results show that the method can be a very useful tool for the reduction of production cost due to minimization of the fuel and electricity costs

  7. Freescale Semiconductor Successfully Implements an Energy Management System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  8. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  9. The Westinghouse Waste Isolation Division Management and Supervisor Training Program

    International Nuclear Information System (INIS)

    Gilbreath, B.

    1992-01-01

    The Westinghouse Waste Isolation Division (WID) is the management and operating contractor (MOC) for the Department of Energy's (DOE's) Waste Isolation Plant (WIPP). Managers and supervisors at DOE facilities such as the WIPP are required to complete extensive training. To meet this requirement, WID created a self-paced, self-study program known as Management and Supervisor Training (MAST). All WID managers and supervisors are required to earn certification through the MAST program. Selected employees are permitted to participate in MAST with prior approval from their manager and the Human Resources Manager. Initial MAST certification requires the completion of 31 modules. MAST participants check out modules and read them when convenient. When they are prepared, participants take module examinations. To receive credit for a given module, participants must score at least 80 percent on the examination. Lessons learned from the development, implementation, and administration are presented in this paper

  10. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  11. Energy management of a large estate

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, R J

    1986-01-01

    The paper outlines energy management of the Property Services Agency (PSA) estate, which has been pursued since 1972. PSA's current expenditure on energy in buildings is Pound 235M per annum (1983-1984), and while energy management has been in operation the aggregate annual saving achieved across the civil and armed services estate is estimated at 33%. The development of energy management is described; the initial organisation concentrated on the existing estate. An Energy Database was generated for the whole of the civil estate and routine monitoring and targetting of consumption was instituted. Regional Energy Conservation Officers were appointed with responsibilities for energy management of defined areas of the estate and a headquarters group was set up to direct the campaign and determine policy. The funding of all energy efficiency applications depends on a favourable value analysis. The calculations used in establishing investment priorities were based on CIBSE (Chartered Institution of Building Services Engineers) methods. This was quickly followed by the introduction of design techniques to promote energy efficiency in new building work. The use of Design Energy Targets is a prominent feature. Over the period to date an in-house training programme in energy conservation has been established for technical staff involved in building design and operation and for general staff. An expanding range of in-house publications on energy efficiency is also available.

  12. SWEEP - Save Water & Energy Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  13. 77 FR 24734 - Outer Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology...

    Science.gov (United States)

    2012-04-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [Docket No. BOEM-2012-0011] Outer Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology Testing Offshore Florida AGENCY: Bureau of Ocean Energy Management, Interior. ACTION: Notice of the Availability of an...

  14. Management practices in substance abuse treatment programs.

    Science.gov (United States)

    McConnell, K John; Hoffman, Kim A; Quanbeck, Andrew; McCarty, Dennis

    2009-07-01

    Efforts to understand how to improve the delivery of substance abuse treatment have led to a recent call for studies on the "business of addiction treatment." This study adapts an innovative survey tool to collect baseline management practice data from 147 addiction treatment programs enrolled in the Network for the Improvement of Addiction Treatment 200 project. Measures of "good" management practice were strongly associated with days to treatment admission. Management practice scores were weakly associated with revenues per employee but were not correlated with operating margins. Better management practices were more prevalent among programs with a higher number of competitors in their catchment area.

  15. Energy metering, management and accounting; Comptage, gestion, et comptabilite de l`energie

    Energy Technology Data Exchange (ETDEWEB)

    Foucherand, P. [Agence de l`environnement et de la maitrise de l`energie, Rhone-Alpes (France)

    1996-12-31

    The activities of the French Energy Conservation Agency (ADEME) in the field of energy management and conservation through energy metering in industrial plants, and more especially in mechanical and metal industries, are presented. Audit and diagnostic procedures and information/awareness measures are presented and discussed with the example of a regional program, and two operations conducted in a mechanical industrial plant and a foundry where metering systems were installed

  16. Who should administer energy-efficiency programs?

    International Nuclear Information System (INIS)

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2005-01-01

    The restructuring of the US electricity industry created a crisis for utility operated energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities--utilities, state agencies, and non-profit corporations--that might be administrators. Four criteria are developed for choosing among program administration options: compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition

  17. Comparison of DOE and NIRMA approaches to configuration management programs

    International Nuclear Information System (INIS)

    Yang, E.Y.; Kulzick, K.C.

    1995-01-01

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility's design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configuration management program as outlined in the U.S. Department of Energy's (DOE's) DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Program,close quotes with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, open-quotes Position Paper on Configuration Managementclose quotes 2. PP03-1992, open-quotes Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facilityclose quotes 3. PP04-1994 open-quotes Position Paper for Configuration Management Information Systems.close quotes

  18. Annotated directory of energy conservation programs

    Energy Technology Data Exchange (ETDEWEB)

    Claxton, J.D.; McDougall, G.H.G.; Ritchie, J.R.B. (eds.)

    1980-01-01

    Summaries of 34 consumer energy conservation programs in Canada and the USA are listed. Areas of focus are: (1) home heating and cooling; (2) household appliances; (3) private transportation; and (4) community involvement. Each summary contains information on the program objectives, operating details, results to date, costs and benefits, and source of funding. The key contact person is identified and background literature references are given. ((MJJ)

  19. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  20. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  1. Department of Energy hazardous waste remedial actions program: Quality assurance program

    International Nuclear Information System (INIS)

    Horne, T.E.

    1988-01-01

    This paper describes the Quality Assurance Program developed for the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAP SCO). Key topics discussed include an overview of the HAZWRAP SCO mission and organization, the basic quality assurance program requirements and the requirements for the control of quality for the Department of Energy and Work for Others hazardous waste management programs, and the role of ensuring quality through the project team concept for the management of remedial response actions. The paper focuses on planning for quality assurance for this remedial waste management process from preliminary assessments of remedial sites to feasibility studies. Some observations concerning the control of quality during the implementation of remedial actions are presented. (2 refs.)

  2. Public participation in UMTRA Project Program Management

    International Nuclear Information System (INIS)

    Majors, M.J.; Ulland, L.M.

    1993-01-01

    The U.S. Department of Energy (DOE) is cleaning up radioactive soil and ore residue from 24 inactive uranium processing sites under the Uranium Mill Tailings Remedial Action (UMTRA) Project. In early 1993, the DOE adopted new guidelines strongly encouraging public participation. This guidance commits to providing the public with opportunities to participate in the decision-making process for program planning, design, and implementation. Rooted in the conviction that an effective public participation program will enable citizens to take part in policy decisions, the full adoption of the guidance by the UMTRA project can also help DOE make better decisions, provide a means to build consensus, and assist in building credibility. This transition to open communication parallels the climate of corporate America in which increases in productivity are often the result of workers and management teaming together to solve problems. While these guidelines have been embraced by public affairs staff from headquarters to the field offices, barriers still exist that inhibit substantive public involvement. The challenge for the UMTRA project is to overcome these barriers to ensure that public participation is an integral part of the way business is conducted. This paper discusses lessons learned by the UMTRA project in its efforts to address barriers to public participation and the project's plans for full compliance with the DOE guidelines

  3. A Review of Ocean Management and Integrated Resource Management Programs from Around the World

    OpenAIRE

    , Seaplan

    2018-01-01

    This draft report is one of several prepared under contract to the Massachusetts Ocean Partnership (MOP) to support the Massachusetts Executive Office of Energy and Environmental Affairs (EOEEA) in its development of the integrated coastal ocean management plan mandated by the Massachusetts Oceans Act of 2008. The purpose of this report was to inventory and review ocean management and integrated resource management programs from around the world, including the United States, Europe, Australia...

  4. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  5. Energy Programs at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.

    1999-05-11

    ;'a secure and reliable energy system that is environmentally and economically sustainable'' as the first component of its mission. The strategic goal established for energy resources, identified as one of DOE's four businesses, is for ''the Department of Energy and its partners [to] promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.'' DOE has also identified four strategic goals for its programs in energy resources: (1) strengthening the economy and raising living standards through improvements in the energy field; (2) protecting the environment by reducing the adverse environmental impacts associated with energy production, distribution, and use; (3) keeping America secure by reducing vulnerabilities to global energy market shocks; and (4) enhancing American competitiveness in a growing world energy market.

  6. Metra operations management development program : 2010 - 2015.

    Science.gov (United States)

    2016-11-04

    On behalf of the Urban Transportation Center, the University of Illinois (UIC) Great Cities Institute (GCI) provided curriculum development and training services to Metra for a workforce education program targeted to new and experienced managers. Met...

  7. Data warehousing in disease management programs.

    Science.gov (United States)

    Ramick, D C

    2001-01-01

    Disease management programs offer the benefits of lower disease occurrence, improved patient care, and lower healthcare costs. In such programs, the key mechanism used to identify individuals at risk for targeted diseases is the data warehouse. This article surveys recent warehousing techniques from HMOs to map out critical issues relating to the preparation, design, and implementation of a successful data warehouse. Discussions of scope, data cleansing, and storage management are included in depicting warehouse preparation and design; data implementation options are contrasted. Examples are provided of data warehouse execution in disease management programs that identify members with preexisting illnesses, as well as those exhibiting high-risk conditions. The proper deployment of successful data warehouses in disease management programs benefits both the organization and the member. Organizations benefit from decreased medical costs; members benefit through an improved quality of life through disease-specific care.

  8. Maintenance engineering of lifetime management programs

    International Nuclear Information System (INIS)

    Hervia Ruperez, F.

    1997-01-01

    The complexity of nuclear power plants obliges to stablish the adecuated management of its lifetime. This article describes the methodologies and the improvement the evaluation of lifetime programs and specially in Garona and Vandellos II Nuclear Power Plants. (Author)

  9. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  10. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  11. Economic value evaluation in disease management programs.

    Science.gov (United States)

    Magnezi, Racheli; Reicher, Sima; Shani, Mordechai

    2008-05-01

    Chronic disease management has been a rapidly growing entity in the 21st century as a strategy for managing chronic illnesses in large populations. However, experience has shown that disease management programs have not been able to demonstrate their financial value. The objectives of disease management programs are to create quality benchmarks, such as principles and guidelines, and to establish a uniform set of metrics and a standardized methodology for evaluating them. In order to illuminate the essence of disease management and its components, as well as the complexity and the problematic nature of performing economic calculations of their profitability and value, we collected data from several reports that dealt with the economic intervention of disease management programs. The disease management economic evaluation is composed of a series of steps, including the following major categories: data/information technology, information generation, assessment/recommendations, actionable customer plans, and program assessment/reassessment. We demonstrate the elements necessary for economic analysis. Disease management is one of the most innovative tools in the managed care environment and is still in the process of being defined. Therefore, objectives should include the creation of quality measures, such as principles and guidelines, and the establishment of a uniform set of metrics and a standardized methodology for evaluating them.

  12. One System for Blood Program Information Management

    Science.gov (United States)

    Gero, Michael G.; Klickstein, Judith S.; Hurst, Timm M.

    1980-01-01

    A system which integrates the diverse functions of a Blood Program within one structure is being assembled at the American National Red Cross Blood Services, Northeast Region. When finished, it will provide technical support for collection scheduling, donor recruitment, recordkeeping, laboratory processing, inventory management, HLA typing and matching, distribution, and administration within the Program. By linking these applications, a reporting structure useful to top management will be provided.

  13. Securing a Home Energy Managing Platform

    DEFF Research Database (Denmark)

    Mikkelsen, Søren Aagaard; Jacobsen, Rune Hylsberg

    2016-01-01

    Energy management in households gets increasingly more attention in the struggle to integrate more sustainable energy sources. Especially in the electrical system, smart grid towards a better utilisation of the energy production and distribution infrastructure. The Home Energy Management System...... (HEMS) is a critical infrastructure component in this endeavour. Its main goal is to enable energy services utilising smart devices in the households based on the interest of the residential consumers and external actors. With the role of being both an essential link in the communication infrastructure...... for balancing the electrical grid and a surveillance unit in private homes, security and privacy become essential to address. In this chapter, we identify and address potential threats Home Energy Management Platform (HEMP) developers should consider in the progress of designing architecture, selecting hardware...

  14. Guidelines for education in energy management

    Directory of Open Access Journals (Sweden)

    Morales, C. M.

    2014-01-01

    Full Text Available Although educating for energy management is nowadays recognized as an important topic, the process of training is far from the ideal. One of the main shortcomings identified in the research is related to procedures selection, aside from the consensus of academic authorities of its inter-disciplinary character. This article aims to highlight the guidelines for education in energy management, as well as to advance the workshops for its implementation. The results of the research are only a part of a Ph D studied completed by the writer. The effectiveness of the proposal was appraised experimentally and subjected to specialists’ valuation. Key words: education in energy management, guidelines, environmental education.

  15. The economics of energy market transformation programs

    International Nuclear Information System (INIS)

    Duke, R.; Kammen, D.M.

    1999-01-01

    This paper evaluates three energy-sector market transformation programs: the US Environmental Protection Agency's Green Lights program to promote on-grid efficient lighting; the World Bank Group's new Photovoltaic Market Transformation Initiative; and the federal grain ethanol subsidy. The authors develop a benefit-cost model that uses experience curves to estimate unit cost reductions as a function of cumulative production. Accounting for dynamic feedback between the demand response and price reductions from production experience raises the benefit-cost ratio (BCR) of the first two programs substantially. The BCR of the ethanol program, however, is approximately zero, illustrating a technology for which subsidization was not justified. Their results support a broader role for market transformation programs to commercialize new environmentally attractive technologies, but the ethanol experience suggests moderately funding a broad portfolio composed of technologies that meet strict selection criteria

  16. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  17. Risk management and energy systems

    International Nuclear Information System (INIS)

    Carlevaro, F.; Romerio, F.

    1992-01-01

    In five sessions the following topics were dealt with: risk problems, risk analysis and evaluation tools, risks in industrial societies, risks of energy production, technological risks, ethics and political-social consensus. figs., tabs., refs

  18. Principles of light energy management

    Energy Technology Data Exchange (ETDEWEB)

    Davis, N. [Growth Chambers, Chagrin Falls, OH (United States)

    1994-12-31

    A review is presented on methods to minimize the effects of excess energy associated with lighting systems for plant growth. Information on lamp efficiencies and methods for separating and collecting unwanted heat is included.

  19. Mobile Energy Laboratory energy-efficiency testing programs. Semiannual report, April 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.; Currie, J. W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  20. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.