WorldWideScience

Sample records for program emap laboratory

  1. Environmental Monitoring and Assessment Program (EMAP) National Coastal Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Environmental Monitoring and Assessment Program (EMAP) National Coastal Database contains estuarine and coastal data that EMAP and Regional-EMAP have collected...

  2. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP): WESTERN STREAMS AND RIVERS STATISTICAL SUMMARY

    Science.gov (United States)

    This statistical summary reports data from the Environmental Monitoring and Assessment Program (EMAP) Western Pilot (EMAP-W). EMAP-W was a sample survey (or probability survey, often simply called 'random') of streams and rivers in 12 states of the western U.S. (Arizona, Californ...

  3. EMAP Users Manual.

    Science.gov (United States)

    Kotz, Arnold; Redondo, Rory

    Presented is the user's manual for the Educational Manpower Information Sources Project (EMAP), an information file containing approximately 325 document abstracts related to the field of educational planning. (The EMAP file is described in document SP 006 747.) (JB)

  4. eMAPS

    CERN Document Server

    Human Resources Department

    2005-01-01

    Starting with the 2005 performance appraisal and advancement exercise (MAPS), the paper version of the annual appraisal report has been replaced by an electronic EDH version - eMAPS (see Weekly Bulletin 48/2004). As announced in Weekly Bulletin 2/2005, information sessions to explain the features of eMAPS using EDH have been arranged as follows: 18 January 2005: Main Auditorium (500-1-001) from 14:00 to 15:30. 20 January 2005: AB Auditorium II (864-1-D02) from 14:00 to 15:30. 24 January 2005: AT Auditorium (30-7-018) from 10:00 to 11:30. The changeover to an electronic appraisal report is designed to reduce the administrative workload involving, e.g. photocopying, tracing and filing paper copies, while allowing staff members and their hierarchy access to the report form at the appropriate times. There is no change in the procedure for the annual interview and the advancement exercise, though Administrative Circular No 26 (Rev. 5) has been updated to take account of the introduction of eMAPS. The content...

  5. Town of Canmore Energy Management Action Plan (EMAP)

    International Nuclear Information System (INIS)

    2005-03-01

    In 1999, the Town of Canmore, Alberta joined the Federation of Canadian Municipalities' Partners for Climate Protection (PCP) Program and committed to reducing greenhouse gas (GHG) emissions from municipal operations by 20 per cent and community-wide emissions by 6 per cent of 2000 levels by 2012. To date, the City has completed a baseline analysis for municipal operations and the community. It has also initiated an Energy Management Action Plan (EMAP) to identify opportunities in sustainable development through energy, GHG and air quality management. The broad community objectives include housing and transportation management, job creation and local economic development. The city has adopted The Natural Step (TNS) framework which defines sustainability and the guiding principles for decision-making. The objectives of EMAP are to define and evaluate options for a practical strategy and action plan to meet the city's GHG reduction targets; raise local awareness of the issues and opportunities of energy planning and GHG reductions and develop a local action plan outlining action items to reduce energy use and GHG emissions from municipal operations throughout the community. This report explained the methodology and framework for EMAP management and presented a community profile for the Town of Canmore. It also included an energy and emissions inventory and forecast with reference to corporate energy and emissions baseline; community energy and emissions baseline; corporate energy and emissions forecast; community energy and emissions forecast and corporate and community GHG targets. refs., tabs., figs

  6. Expression of EMAP-II in the rat dental follicle and its potential role in tooth eruption

    Science.gov (United States)

    Liu, Dawen; Wise, Gary E.

    2008-01-01

    Endothelial monocyte-activating polypeptide II (EMAP-II) is an inflammatory cytokine with chemotactic activity. Because the dental follicle (DF) recruits mononuclear cells (osteoclast precursors) to promote the osteoclastogenesis needed for tooth eruption, it was the aim of this study to determine if EMAP-II may contribute to this recruitment. Using a DNA microarray, EMAP-II was found to be highly expressed in vivo in the DFs of day 1 to day 11 postnatal rats, with its expression elevated at days 1 and 3. Using a siRNA to knock down EMAP-II expression also resulted in a reduction in expression of CSF-1 and MCP-1 in the DF cells. Addition of EMAP-II protein to the DF cells partially restored the expression of CSF-1 and MCP-1. In chemotaxis assays using either conditioned medium of the DF cells with anti-EMAP-II antibody added or conditioned medium of DF cells with EMAP-II knocked down by siRNA, migration indexes of bone marrow mononuclear cells were significantly reduced. These results suggest that EMAP-II is another chemotactic molecule in the dental follicle involved in recruitment of mononuclear cells, and that EMAP-II may exert its chemotactic function directly by recruiting mononuclear cells and indirectly by enhancing the expression of other chemotactic molecules (CSF-1 and MCP-1). PMID:18705801

  7. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR) IN MONTANA AND NORTH AND SOUTH DAKOTA

    Science.gov (United States)

    In summer 2000, the EPA Office of Research Development's Mid-Continent Ecology Division, in cooperation with EPA Region 8 and States, will begin an EMAP effort on the aquatic resources of the UMR including the river, floodplain and mainstem reservoirs. The objective of this proj...

  8. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  9. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A. [Trinum Research, Inc., San Diego, CA (United States)

    2016-08-08

    , mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas. HYPERS simulations are compared with data from the MSX experiment (LANL) that focuses on the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirrors and flux-conserving boundaries. 3. Exploding magnetoplasmas Results from hybrid simulations of two experiments at the LAPD and Nevada Terawatt Facility are discussed where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of a carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation a polyethylene target is ablated into a mixture of protons and carbon ions. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow. The results are compared to experimental data and single-fluid MHD simulations. The EMAPS framework has the potential for wide application in many other engineering and scientific fields, such as climate models, biological systems, electronic devices, seismic events, oil reservation simulators that all involve advancing solutions of partial differential equations in time where the rate of activity can be adapted widely over the spatial domain depending on locally space/time phenomena (“events”).

  10. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  11. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  12. CRCPD`S laboratory accrediation program

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, P.M. [South Carolina Department of Health and Environmental Control, Columbia, SC (United States)

    1993-12-31

    The Conference of Radiation Control Program Directors, or CRCPD, first became involved in a calibration laboratory accreditation program about 17 years ago. Since that time, the CRCPD has formed a Committee on Ionizing Measurements which writes criteria for the accreditation of laboratories, and performs the accreditation review process. To become accredited, a laboratory must agree to an administrative review, and an onsite review, and participate in measurement quality assurance (MQA) testing with the National Institute of Standards and Technology (NIST). The CRCPD currently has four accredited laboratories. All the laboratories are working with the Conference in promoting the improvement of MQA in radiation control programs.

  13. Laboratory Cooperative Program: an assessment

    International Nuclear Information System (INIS)

    1979-11-01

    The Laboratory Cooperative Program (Lab Coop Program) was initiated by the US AEC over 20 years ago to promote the transfer of technical information from the national laboratories to the academic community utilizing the facilities and staff capabilities of the labs. Under the AEC, ERDA and DOE, the goals of the program have broadened gradually. Therefore, the program was examined to determine the extent to which it contributes to the current objectives of the DOE and to develop recommendations for any program changes. The assessment of the Lab Coop Program was based on a combination of review of program activity data and publications, review of general information regarding laboratory operations, and extensive interviews. The major findings of this evaluation were that: the program lacks a clear statement of purpose; program plans, priorities, and procedures are not explicit and operations tend to follow historical patterns; and the program is generally accepted as beneficial, but its benefits are difficult to quantify. It is recommended that the focus of the Lab Coop Program be limited and clearly defined, that performance plans be developed and measured against accomplishments, and that a national informational effort be initiated

  14. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  15. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  16. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  17. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  18. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  19. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  20. Sandia National Laboratories: Careers: Special Programs

    Science.gov (United States)

    Program Master's Fellowship Program Wounded Warrior Career Development Program Careers Special Programs Special career opportunities for select individuals Join Sandia's workforce while receiving support and Laboratories' Affirmative Action Plan. Learn more about MFP. Wounded Warrior Career Development Program U.S

  1. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  2. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  3. Laboratory automation in a functional programming language.

    Science.gov (United States)

    Runciman, Colin; Clare, Amanda; Harkness, Rob

    2014-12-01

    After some years of use in academic and research settings, functional languages are starting to enter the mainstream as an alternative to more conventional programming languages. This article explores one way to use Haskell, a functional programming language, in the development of control programs for laboratory automation systems. We give code for an example system, discuss some programming concepts that we need for this example, and demonstrate how the use of functional programming allows us to express and verify properties of the resulting code. © 2014 Society for Laboratory Automation and Screening.

  4. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  5. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  6. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  7. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  8. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  9. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  10. The DOE Laboratory Accreditation Program 8 years later

    International Nuclear Information System (INIS)

    Cummings, R.; Kershisnik, R.; Taylor, T.; Grothaus, G.; Loesch, R.M.

    1994-01-01

    The DOE Laboratory Accreditation Program was implemented in 1986. Currently, the program is conducting its seventeenth performance testing session for whole body personnel dosimeters. All but two DOE laboratories have gained accreditation for their whole body personnel dosimetry systems. Several test situations which were anticipated in the early stages of DOELAP have not materialized. In addition, the testing standard for whole body personnel dosimetry systems is under review and revision. In the near future, the accreditation programs for extremity dosimetry and bioassay will be implemented. This presentation summarizes the status and anticipated direction of the DOE whole body and extremity dosimetry and bioassay laboratory accreditation program

  11. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  12. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  13. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  14. Laboratory services series: a lubrication program

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling.

  15. Laboratory services series: a lubrication program

    International Nuclear Information System (INIS)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling

  16. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  17. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  18. The Rwanda Field Epidemiology and Laboratory Training Program ...

    African Journals Online (AJOL)

    The Rwanda Field Epidemiology and Laboratory Training Program (RFELTP) is a 2-year public health leadership development training program that provides applied epidemiology and public health laboratory training while the trainees provide public health service to the Ministry of Health. RFELTP is hosted at the National ...

  19. UTILITY OF SPLENIC MACROPHAGE AGGREGATES AS AN INDICATOR OF FISH EXPOSURE TO DEGRADED ENVIRONMENTS

    Science.gov (United States)

    The utility of splenic macrophage aggregates (MAs) as an indicator of fish exposure to degraded environments was evaluated in several species of estuarine fishes as part of the Environmental Protection Agency's Environmental Monitoring and Assessment Program - Estuaries (EMAP-E)...

  20. Review of laboratory programs for women Points-of-Contact Committee

    Energy Technology Data Exchange (ETDEWEB)

    Duke, D.; Magrini, K. [comps.] [National Renewable Energy Lab., Golden, CO (United States); McLane, V. [comp.] [Brookhaven National Lab., Upton, NY (United States); Wieda, K. [comp.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    The mission of the DOE Review of Laboratory Programs for Women is to: provide DOE and its Laboratories with effective strategies, targeting women, for establishing aggressive outreach programs which improve the access of women to careers in science, engineering, and mathematics. Ensure that the Department and its Laboratories are exemplary places of employment by providing programs which enhance opportunity, remove barriers, and assist women in achieving full professional development. A survey of the DOE facilities was undertaken by the Points-of-Contact for the DOE Review of Laboratory Programs for Women in order to gather data to be used as a baseline against which to measure future progress. We plan to look at current programs already in place and evaluate them with a view to deciding which programs are most effective, and selecting model programs suitable for implementation at other facilities. The survey focused on four areas: statistical data, laboratory policy, formal and informal programs which affect the quality of life in the work environment, and career development and advancement, and educational programs. Although this report focuses on women, the problems discussed affect all DOE facility employees.

  1. Strategy for future laboratory rock mechanics programs

    International Nuclear Information System (INIS)

    Butcher, B.M.; Jones, A.K.

    1985-01-01

    A strategy for future experimental rock mechanics laboratory programs at Sandia National Laboratories is described. This strategy is motivated by the need for long range planning of rock mechanics programs addressing the stability of complex underground structures, changes in in situ stress states during resource recovery and underground explosion technology. It is based on: (1) recent advances in underground structure stability analysis which make three-dimensional calculations feasible, and (2) new developments in load path control of laboratory stress-strain tests which permit duplication of stress and strain histories in critical parts of a structure, as determined by numerical analysis. The major constraint in the strategy is the assumption that there are no in situ joint features or sample size effects which might prevent simulation of in situ response in the laboratory. 3 refs., 5 figs

  2. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  3. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  4. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  5. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  8. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  9. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  10. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  11. FTIR Laboratory in Support of the PV Program

    International Nuclear Information System (INIS)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report

  12. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  13. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  14. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  16. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  17. Evaluation of the Virtual Physiology of Exercise Laboratory Program

    Science.gov (United States)

    Dobson, John L.

    2009-01-01

    The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…

  18. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  19. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  20. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  1. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  2. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  3. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  4. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  5. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  6. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  7. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  8. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  9. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  10. Applying the National Industrial Security Program (NISP) in the laboratory environment

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1995-01-01

    With continuing changes in the world safeguards and security environment the effectiveness of many laboratory operations depends on correctly assessing the risk to its programs and developing protection technologies, research and concepts of operations being employed by the scientific community. This paper explores the opportunities afforded by the National Industrial Security Program (NISP) to uniformly and simply protect Laboratory security assets, sensitive and classified information and matter, during all aspects of a laboratory program. The developments in information systems, program security, physical security and access controls suggest an industrial security approach. This paper's overall objective is to indicate that the Laboratory environment is particularly well suited to take advantage being pursued by NISP and the performance objectives of the new DOE orders

  11. IPEP: Laboratory performance evaluation reports for management of DOE EM programs

    International Nuclear Information System (INIS)

    Hensley, J.E.; Lindahl, P.C.; Streets, W.E.

    1995-01-01

    Environmental restoration program/project managers at DOE's Office of Environmental Management (EM) are making important decisions based on analytical data generated by contracted laboratories. The Analytical Services Division, EM-263, is developing the Integrated Performance Evaluation Program (IPEP) to assess the performance of those laboratories, based on results from Performance Evaluation (PE) programs. The IPEP reports will be used by the laboratories to foster self-assessment and improvement. In addition, IPEP will produce PE reports for three levels of EM management (Operations/Project Offices, Area Program Offices, and Deputy Assistant Secretary Office). These reports will be used to assess whether contracted analytical laboratories have the capability to produce environmental data of the quality necessary for making environmental restoration and waste management decisions

  12. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  13. Establishing a national biological laboratory safety and security monitoring program.

    Science.gov (United States)

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  14. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  15. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  16. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  17. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  18. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  20. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  1. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  2. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  3. National emergency medical assistance program for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Berger, M.E.

    1987-01-01

    Radiation Management Consultant's Emergency Medical Assistance Program (EMAP) for nuclear facilities provides a twenty-four hour emergency medical and health physics response capability, training of site and off-site personnel, and three levels of care for radiation accident victims: first air and rescue at an accident site, hospital emergency assessment and treatment, and definitive evaluation and treatment at a specialized medical center. These aspects of emergency preparedness and fifteen years of experience in dealing with medical personnel and patients with real or suspected radiation injury will be reviewed

  4. Rockwell International's Critical Mass Laboratory Program at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    McCarthy, J.D.

    1984-01-01

    The primary mission of the laboratory is to provide data in support of plant operations. To fulfill this task, the facility has unique capabilities for perfoming general purpose critical mass experiment. The critical mass laboratory performed over 1000 critical measurements, primarily with plutonium metal and uranium metal, oxide and solution; it worked also on the NRC program (high-enriched uranium measurements). Presently the laboratory staff prepares for a series of critical measurements on a poisoned tube tank; the laboratory intends to continue to pursue basic plant support programs in the future

  5. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  6. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  7. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  8. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  9. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  10. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  11. The role of the EPA radiation quality assurance program in the measurement quality assurance accreditation program for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Grady, T.M. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    As the nature and extent of radiological contamination becomes better documented and more public, radioanalytical laboratories are faced with a constantly expanding variety of new and difficult analytical requirements. Concurrent with those requirements is the responsibility to provide customers, regulatory officials, or the public with defensible data produced in an environment of verifiable, controlled quality. To meet that need, a quality assurance accreditation program for radioassay laboratories has been proposed by the American National Standards Institute (ANSI). The standard will provide the organizational framework and functional requirements needed to assure the quality of laboratory outputs. Under the proposed program, the U.S. Environmental Protection Agency`s (EPA`s) Laboratory Intercomparison Program plays a key role as a reference laboratory. The current and proposed roles of the EPA Intercomparison Program are discussed, as are the functional relationships between EPA, the accreditating organization, and the service and monitoring laboratories.

  12. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  13. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  15. [Standardization in laboratory hematology by participating in external quality assurance programs].

    Science.gov (United States)

    Nazor, Aida; Siftar, Zoran; Flegar-Mestrić, Zlata

    2011-09-01

    Since 1985, Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, has been participating in the International External Quality Assessment Scheme for Hematology (IEQAS-H) organized by the World Health Organization (WHO). Owing to very good results, in 1987 the Department received a certificate of participation in this control scheme. Department has been cooperating in the external quality assessment program in laboratory hematology which has been continuously performed in Croatia since 1986 by the Committee for External Quality Assessment Schemes under the auspices of the Croatian Society of Medical Biochemists and School of Pharmacy and Biochemistry, University of Zagreb. Nowadays, 186 medical biochemical laboratories are included in the National External Quality Assessment program, which is performed three times per year. Our Department has participated in the international projects of the European Committee for External Quality Assurance Programs in Laboratory Medicine (EQALM).

  16. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    Science.gov (United States)

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  17. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  18. Health Physics Society program for accreditation of calibration laboratories

    International Nuclear Information System (INIS)

    West, L.; Masse, F.X.; Swinth, K.L.

    1988-01-01

    The Health Physics Society has instituted a new program for accreditation of organizations that calibrate radiation survey instruments. The purpose of the program is to provide radiation protection professionals with an expanded means of direct and indirect access to national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. Secondary accredited laboratories are expected to provide a regional support basis. Tertiary accredited laboratories are expected to operate on a more local basis and provide readily available expertise to end users. The accreditation process is an effort to provide better measurement assurance for surveys of radiation fields. The status of the accreditation program, general criteria, gamma-ray calibration criteria, and x-ray calibration criteria are reviewed

  19. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  20. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.C.

    1997-01-01

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  1. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  2. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  3. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  4. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  5. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  6. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  7. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  8. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  9. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.

    1997-08-01

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  10. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  11. SSCL magnet systems quality program implementation for laboratory and industry

    International Nuclear Information System (INIS)

    Warner, D.G.; Bever, D.L.

    1992-01-01

    The development and delivery of reliable and producible magnets for the Superconducting Super Collider Laboratory (SSCL) require the teamwork of a large and diverse workforce composed of personnel with backgrounds in laboratory research, defense, and energy. The SSCL Magnet Quality Program is being implemented with focus on three definitive objectives: (1) communication of requirements, (2) teamwork, and (3) verification. Examination of the SSCL Magnet Systems Division's (MSD) current and planned approach to implementation of the SSCL Magnet Quality Program utilizing these objectives is discussed

  12. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  13. A prequalifying program for evaluating the analytical performance of commercial laboratories

    International Nuclear Information System (INIS)

    Reith, C.C.; Bishop, C.T.

    1987-01-01

    Soil and water samples were spiked with known activities of radionuclides and sent to seven commercial laboratories that had expressed an interest in analyzing environmental samples for the Waste Isolation Pilot Plant (WIPP). This Prequalifying Program was part of the selection process for an analytical subcontractor for a three-year program of baseline radiological surveillance around the WIPP site. Both media were spiked at three different activity levels with several transuranic radionuclides, as well as tritium, fission products, and activation products. Laboratory performance was evaluated by calculating relative error for each radionuclide in each sample, assigning grade values, and compiling grades into report cards for each candidate. Results for the five laboratories completing the Prequalifying Program were pooled to reveal differing degrees of difficulty among the treatments and radionuclides. Interlaboratory comparisons revealed systematic errors in the performance of one candidate. The final report cards contained clear differences among overall grades for the five laboratories, enabling analytical performance to be used as a quantitative criterion in the selection of an analytical subcontractor. (author)

  14. Combining program visualization with programming workspace to assist students for completing programming laboratory task

    Directory of Open Access Journals (Sweden)

    Elvina Elvina

    2018-06-01

    Full Text Available Numerous Program Visualization tools (PVs have been developed for assisting novice students to understand their source code further. However, none of them are practical to be used in the context of completing programming laboratory task; students are required to keep switching between PV and programming workspace when they need to know how their code works. This paper combines PV with programming workspace to handle such issue. Resulted tool (which is named PITON has 13 features extracted from PythonTutor, PyCharm, and student’s feedbacks about PythonTutor. According to think-aloud and user study, PITON is more practical to be used than a combination of PythonTutor and PyCharm. Further, its features are considerably helpful; students rated these features as useful and frequently used.

  15. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    Science.gov (United States)

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  16. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  17. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  18. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  19. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  20. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  1. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  2. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  3. Laboratory services series: a master-slave manipulator maintenance program

    International Nuclear Information System (INIS)

    Jenness, R.G.; Hicks, R.E.; Wicker, C.D.

    1976-12-01

    The volume of master slave manipulator maintenance at Oak Ridge National Laboratory has necessitated the establishment of a repair facility and organization of a specially trained group of craftsmen. Emphasis on cell containment requires the use of manipulator boots and development of precise procedures for accomplishing the maintenance of 287 installed units. A very satisfactory computer programmed maintenance system has been established at the Laboratory to provide an economical approach to preventive maintenance

  4. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  5. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  6. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  7. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  8. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  9. Waste certification program plan for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kornegay, F.C.

    1996-09-01

    This document defines the waste certification program being developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in U.S. Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  10. Fermi National Acceleator Laboratory Annual Program Review 1992

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen [Fermilab

    1992-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for March 31 - April 2, 1992. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  11. Fermi National Accelerator Laboratory Annual Program Review 1991

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A. [Fermilab; Jovanovic, Drasko [Fermilab; Pordes, Stephen [Fermilab

    1991-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for April 10-12, 1991. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  14. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  15. CDC’s Newborn Screening Program - Role of Laboratories

    Centers for Disease Control (CDC) Podcasts

    When newborn screening started in the U.S. 50 years ago, many questioned whether it was even possible to test every baby born in every state. Today, all states screen babies for at least 29 disorders that can be detected through laboratory testing. In this podcast, Dr. Carla Cuthbert talks about CDC’s Newborn Screening Quality Assurance Program and the role laboratories play in keeping babies healthy.

  16. Web Environment for Programming and Control of a Mobile Robot in a Remote Laboratory

    Science.gov (United States)

    dos Santos Lopes, Maísa Soares; Gomes, Iago Pacheco; Trindade, Roque M. P.; da Silva, Alzira F.; de C. Lima, Antonio C.

    2017-01-01

    Remote robotics laboratories have been successfully used for engineering education. However, few of them use mobile robots to to teach computer science. This article describes a mobile robot Control and Programming Environment (CPE) and its pedagogical applications. The system comprises a remote laboratory for robotics, an online programming tool,…

  17. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    Science.gov (United States)

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  18. Comprehensive resurvey program to prevent radiological incidents at a national laboratory

    International Nuclear Information System (INIS)

    Lipton, W.V.; Hunckler, C.A.

    1978-01-01

    A comprehensive resurvey program in a general purpose research building at Argonne National Laboratory is being implemented. The program was designed to prevent radiological incidents by increasing the awareness of Health Physics personnel of radiological hazards, initiating corrective actions, and providing information for improving routine survey schedules, and for establishing manpower requirements. The following aspects of the program are described: scheduling, surveys, records, follow-up, and statistics

  19. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  20. Fermi National Accelerator Laboratory Annual Program Review 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This book is submitted as a written adjunct to the 1993 Annual DOE High Energy Physics Program Review of Fermilab, scheduled for March 31-April 3. In it are described the functions and activities of the various Laboratory Divisions and Sections plus statements of plans and goals for the coming year. The Review Committee, as this goes to press, consists of·

  1. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1978-01-01

    This detailed report on Lawrence Livermore Laboratory's control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is funcioning effectively

  2. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93

  3. A national clinical quality program for Veterans Affairs catheterization laboratories (from the Veterans Affairs clinical assessment, reporting, and tracking program).

    Science.gov (United States)

    Maddox, Thomas M; Plomondon, Mary E; Petrich, Megan; Tsai, Thomas T; Gethoffer, Hans; Noonan, Gregory; Gillespie, Brian; Box, Tamara; Fihn, Stephen D; Jesse, Robert L; Rumsfeld, John S

    2014-12-01

    A "learning health care system", as outlined in a recent Institute of Medicine report, harnesses real-time clinical data to continuously measure and improve clinical care. However, most current efforts to understand and improve the quality of care rely on retrospective chart abstractions complied long after the provision of clinical care. To align more closely with the goals of a learning health care system, we present the novel design and initial results of the Veterans Affairs (VA) Clinical Assessment, Reporting, and Tracking (CART) program-a national clinical quality program for VA cardiac catheterization laboratories that harnesses real-time clinical data to support clinical care and quality-monitoring efforts. Integrated within the VA electronic health record, the CART program uses a specialized software platform to collect real-time patient and procedural data for all VA patients undergoing coronary procedures in VA catheterization laboratories. The program began in 2005 and currently contains data on 434,967 catheterization laboratory procedures, including 272,097 coronary angiograms and 86,481 percutaneous coronary interventions, performed by 801 clinicians on 246,967 patients. We present the initial data from the CART program and describe 3 quality-monitoring programs that use its unique characteristics-procedural and complications feedback to individual labs, coronary device surveillance, and major adverse event peer review. The VA CART program is a novel approach to electronic health record design that supports clinical care, quality, and safety in VA catheterization laboratories. Its approach holds promise in achieving the goals of a learning health care system. Published by Elsevier Inc.

  4. Evaluating the effectiveness of an online medical laboratory technician program.

    Science.gov (United States)

    Hansen-Suchy, Kara

    2011-01-01

    The purpose of this study was to analyze the effectiveness of an online medical laboratory technician program in the academic preparation and development of laboratory professionals. A semi-quantitative comparative research design was used. Several factors were considered in this evaluation. Academic outcomes between online and campus medical laboratory technician (MLT) students was determined by comparing overall and categorical scores on certification exams as well as first time pass rate. Certification exam scores and first time pass rates were also compared to national norms when possible to do so. Demographic data, including age and experience were compared. Additionally, learning styles were assessed to determine if there was a correlation to overall GPA and MLT GPA and if learning styles could be used to predict successful completion of an online Associates of Applied Science. The research was conducted at an academic university located in the mountain west United States. Participants consisted of online and campus students enrolled in a Medical Laboratory Technician program that graduated with their Associate of Applied Science degree between the years 2007-2009. Results of these years were also compared to graduates from 2004-2006 in the same program. Certification performance and first time pass rates were the major outcomes measured. Age and experience were correlated. Online learning styles and GPA were also compared to successful degree completion. The researcher found no significant difference in certification performance with regard to total and categorical scores, and first time pass rates between campus and online MLT students. Online students were slightly older and had more experience working in a laboratory in some capacity. Correlation studies showed significant positive correlation between learning styles, GPA, and successful completion of an Associate of Applied Science degree. When registry scores were compared to the prior cohort of online

  5. USAF Summer Research Program - 1995 High School Apprenticeship Program Final Reports, Volume 14, Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1995-01-01

    The United States Air Force High School Apprenticeship Program's (USAF HSAP) purpose is to place outstanding high school students whose interests are in the areas of mathematics, engineering, and science to work in a laboratory environment...

  6. U.S./Russian Laboratory-to-Laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC ampersand A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  7. U.S./Russian laboratory-to-laboratory MPC and A program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1996-01-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the US/Russian Laboratory-to-Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will be augmented with Russian and US technologies. The integrated MPC and A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  8. Onsite assessments for the Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1992-01-01

    For Department of Energy (DOE) facilities, compliance with DOE Order 5480.11 became a requirement in January 1989. One of the requirements of this Order is that personal external dosimetry programs be accredited under the Department of Energy's Laboratory Accreditation Program (DOELAP) in Personnel Dosimetry. The accreditation process, from the facility's perspective, is two-fold: dosimeters must meet performance criteria in radiation categories appropriate for each facility, and personnel administering and carrying out the program must demonstrate good operating practices. The DOELAP onsite assessment is designed to provide an independent evaluation of the latter

  9. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  10. Comparability between NQA-1 and the QA programs for analytical laboratories within the nuclear industry and EPA hazardous waste laboratories

    International Nuclear Information System (INIS)

    English, S.L.; Dahl, D.R.

    1989-01-01

    There is increasing cooperation between the Department of Energy (DOE), Department of Defense (DOD), and the Environmental Protection Agency (EPA) in the activities associated with monitoring and clean-up of hazardous wastes. Pacific Northwest Laboratory (PNL) examined the quality assurance/quality control programs that the EPA requires of the private sector when performing routine analyses of hazardous wastes to confirm how or if the requirements correspond with PNL's QA program based upon NQA-1. This paper presents the similarities and differences between NQA-1 and the QA program identified in ASTM-C1009-83, Establishing a QA Program for Analytical Chemistry Laboratories within the Nuclear Industry; EPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, which is referenced in Statements of Work for CERCLA analytical activities; and Chapter 1 of SW-846, which is used in analyses of RCRA samples. The EPA QA programs for hazardous waste analyses are easily encompassed within an already established NQA-1 QA program. A few new terms are introduced and there is an increased emphasis upon the QC/verification, but there are many of the same basic concepts in all the programs

  11. Proceedings of the 5. DOE review of laboratory programs for women

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Fifth DOE Review of Laboratory Programs for Women was held at Brookhaven National Laboratory, May 6--8, 1996, and was co-sponsored by Princeton Plasma Physics Laboratory. The 1996 Review was organized as a Professional Workshop, that is, there were Invited Talks, plus Oral and Poster Presentations from the participants. These sessions were organized around the Focus Topics selected for the Review. The Focus Topics were: school-lab programs, college programs, positive image of women, cultural audits, employee development, employee mentoring, networking, dependent care, and alternate work schedules. On Monday evening, Toni Joseph gave an informal talk to the participants. She stressed the importance of submitting the Action Items for the respective facilities, and assured them that they would be looked at by the Office of Energy Research. On Tuesday morning, the DOE Points-of-Contact (POC) presented an overview of the past Reviews to give some background on the present DOE Review, and discussed plans for the future. The Review concluded with Focus Sessions, one for each Focus Topic. Each of these sessions was charged with producing a report on the session topic. The Focus Group Reports are included in the Proceedings, along with abstracts to the invited talks, oral presentations and poster presentations.

  12. Semiconductor laser joint study program with Rome Laboratory

    Science.gov (United States)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  13. US Environmental Protection Agency National Coastal Assessment for American Samoa 2004: water quality, sediment grain, and chemistry data (NODC Accession 0000455)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2004, the Environmental Protection Agency (EPA) Environmental Monitoring and Assessment Program (EMAP) National Coastal Assessment (NCA), coordinated through the...

  14. US Environmental Protection Agency National Coastal Assessment for Hawaii 2002: Water Quality, Fish Taxon, Sediment Chemistry Data (NODC Accession 0061250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2002, the Environmental Protection Agency (EPA) Environmental Monitoring and Assessment Program (EMAP) National Coastal Assessment (NCA), in conjunction with...

  15. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  16. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  17. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    International Nuclear Information System (INIS)

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous ncluding polychlorinated biphenyls (PCB) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  18. The value of assessments in Lawrence Livermore National Laboratory's Waste Certification Programs

    International Nuclear Information System (INIS)

    Ryan, E.M.

    1995-05-01

    This paper will discuss the value of assessments in Lawrence Livermore National Laboratory's Waste Certification Programs by: introducing the organization and purpose of the LLNL Waste Certification Programs for transuranic, low-level, and hazardous waste; examining the differences in internal assessment/audit requirements for these programs; discussing the values and costs of assessments in a waste certification program; presenting practical recommendations to maximize the value of your assessment programs; and presenting improvements in LLNL's waste certification processes that resulted from assessments

  19. US/Russian laboratory-to-laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    International Nuclear Information System (INIS)

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-01-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC ampersand A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF

  20. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  1. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  2. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  3. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  4. CDC’s Newborn Screening Program - Role of Laboratories

    Centers for Disease Control (CDC) Podcasts

    2013-09-03

    When newborn screening started in the U.S. 50 years ago, many questioned whether it was even possible to test every baby born in every state. Today, all states screen babies for at least 29 disorders that can be detected through laboratory testing. In this podcast, Dr. Carla Cuthbert talks about CDC’s Newborn Screening Quality Assurance Program and the role laboratories play in keeping babies healthy.  Created: 9/3/2013 by National Center for Environmental Health (NCEH).   Date Released: 9/3/2013.

  5. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  6. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  7. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  8. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  9. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  10. Electronic laboratory quality assurance program: A method of enhancing the prosthodontic curriculum and addressing accreditation standards.

    Science.gov (United States)

    Moghadam, Marjan; Jahangiri, Leila

    2015-08-01

    An electronic quality assurance (eQA) program was developed to replace a paper-based system and to address standards introduced by the Commission on Dental Accreditation (CODA) and to improve educational outcomes. This eQA program provides feedback to predoctoral dental students on prosthodontic laboratory steps at New York University College of Dentistry. The purpose of this study was to compare the eQA program of performing laboratory quality assurance with the former paper-based format. Fourth-year predoctoral dental students (n=334) who experienced both the paper-based and the electronic version of the quality assurance program were surveyed about their experiences. Additionally, data extracted from the eQA program were analyzed to identify areas of weakness in the curriculum. The study findings revealed that 73.8% of the students preferred the eQA program to the paper-based version. The average number of treatments that did not pass quality assurance standards was 119.5 per month. This indicated a 6.34% laboratory failure rate. Further analysis of these data revealed that 62.1% of the errors were related to fixed prosthodontic treatment, 27.9% to partial removable dental prostheses, and 10% to complete removable dental prostheses in the first 18 months of program implementation. The eQA program was favored by dental students who have experienced both electronic and paper-based versions of the system. Error type analysis can yield the ability to create customized faculty standardization sessions and refine the didactic and clinical teaching of the predoctoral students. This program was also able to link patient care activity with the student's laboratory activities, thus addressing the latest requirements of the CODA regarding the competence of graduates in evaluating laboratory work related to their patient care. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Oak Ridge National Laboratory Transuranic Waste Certification Program

    International Nuclear Information System (INIS)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs

  12. PIGMI program at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stovall, J.E.

    1980-09-01

    The PIGMI Program has completed 3-1/2 yr of a project to develop the technology for the optimal pion generator for medical irradiations (PIGMI). The major accomplishments under the program include completion of the injector beam measurements; completion of the 440-MHz radio-frequency (rf) power source; assembly and test of the alternating phase focusing accelerator section; development of the rf-quadrupole (RFQ) beam-dynamics program, PARMTEQ; design, fabrication, assembly, and test of the RFQ accelerator; final decision on low-energy configuration for PIGMI; assembly of the drift-tube linac section of the PIGMI Prototype; completion of sample set of permanent magnet quadrupoles; optimization of the disk-and-washer (DAW) cavity geometry; fabrication of model cavities of the DAW; final decision on DAW support geometry; acquisition of additional laboratory space for the DAW power test; partial assembly of the 1320-MHz rf power source for the DAW test; and pion channel design studies

  13. Fermi National Accelerator Laboratory Annual Program Review 2000

    Energy Technology Data Exchange (ETDEWEB)

    2000-03-01

    This book is submitted as one written part of the 2000 Annual DOE High Energy Physics Program Review of Fermilab, scheduled March 22-24, 2000. In it are Director's Overview, some experimental highlights, discussions of several projects, and descriptions of the functions and activities of the four laboratory divisions. This book should be read in conjunction with the 2000 Fermilab Workbook and the review presentations (both in formal sessions and at the poster session).

  14. Oak Ridge National Laboratory Radiation Control Program - Partners in Site Restoration

    International Nuclear Information System (INIS)

    Jones, S. L.; Stafford, M. W.

    2002-01-01

    In 1998, the U.S. Department of Energy (DOE) awarded the Management and Integration (M and I) contract for all five of the Oak Ridge Operations (ORO) facilities to Bechtel Jacobs Company LLC (BJC). At Oak Ridge National Laboratory (ORNL), a world renowned national laboratory and research and development facility, the BJC mission involves executing the DOE Environmental Management (EM) program. In addition to BJC's M and I contract, UT-Battelle, LLC, a not-for-profit company, is the Management and Operating (M and O) contractor for DOE on the ORNL site. As part of ORNL's EM program, legacy inactive facilities (i.e., reactors, nuclear material research facilities, burial grounds, and underground storage tanks) are transferred to BJC and are designated as remediation, decontamination and decommissioning (D and D), or long-term surveillance and maintenance (S and M) facilities. Facilities operated by both UT-Battelle and BJC are interspersed throughout the site and are usually in close proximity. Both UT-Battelle and BJC have DOE-approved Radiation Protection Programs established in accordance with 10 CFR 835. The BJC Radiological Control (RADCON) Program adapts to the M and I framework and is comprised of a combination of subcontracted program responsibilities with BJC oversight. This paper focuses on the successes and challenges of executing the BJC RADCON Program for BJC's ORNL Project through a joint M and I contractor relationship, while maintaining a positive working relationship and partnership with UT-Battelle's Radiation Protection organization

  15. Variability of ethics education in laboratory medicine training programs: results of an international survey.

    Science.gov (United States)

    Bruns, David E; Burtis, Carl A; Gronowski, Ann M; McQueen, Matthew J; Newman, Anthony; Jonsson, Jon J

    2015-03-10

    Ethical considerations are increasingly important in medicine. We aimed to determine the mode and extent of teaching of ethics in training programs in clinical chemistry and laboratory medicine. We developed an on-line survey of teaching in areas of ethics relevant to laboratory medicine. Reponses were invited from directors of training programs who were recruited via email to leaders of national organizations. The survey was completed by 80 directors from 24 countries who directed 113 programs. The largest numbers of respondents directed postdoctoral training of scientists (42%) or physicians (33%), post-masters degree programs (33%), and PhD programs (29%). Most programs (82%) were 2years or longer in duration. Formal training was offered in research ethics by 39%, medical ethics by 31%, professional ethics by 24% and business ethics by 9%. The number of reported hours of formal training varied widely, e.g., from 0 to >15h/year for research ethics and from 0 to >15h for medical ethics. Ethics training was required and/or tested in 75% of programs that offered training. A majority (54%) of respondents reported plans to add or enhance training in ethics; many indicated a desire for online resources related to ethics, especially resources with self-assessment tools. Formal teaching of ethics is absent from many training programs in clinical chemistry and laboratory medicine, with heterogeneity in the extent and methods of ethics training among the programs that provide the training. A perceived need exists for online training tools, especially tools with self-assessment components. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    International Nuclear Information System (INIS)

    Schwarz, Margaret A.; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-01-01

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function

  17. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    International Nuclear Information System (INIS)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  18. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  19. Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1985-03-01

    The information presented in this report is a summary of the status of the Inertial Confinement Fusion (ICF) program at the Los Alamos National Laboratory as of February 1985. This report contains material on the existing high-power CO 2 laser driver (Antares), the program to determine the potential of KrF as an ICF driver, heavy-ion accelerators as drivers for ICF, target fabrication for ICF, and a summary of our understanding of laser-plasma interactions. A classified companion report contains material on our current understanding of capsule physics and lists the contributions to the Laboratory's weapons programs made by the ICF program. The information collected in these two volumes is meant to serve as a report on the status of some of the technological components of the Los Alamos ICF program rather than a detailed review of specific technical issues

  20. Quality assurance program in the External dosimetry laboratory of the CPHR

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J.

    2006-01-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  1. Third annual US Department of Energy review of laboratory programs for women

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.; Engle, J.; Hassil, C. [eds.] [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-12-31

    The Third Annual DOE Review of Laboratory Programs for Women was held May 11-13, 1993 at the Oak Ridge Institute for Science and Education (ORISE). The participants and organizers are men and women dedicted to highlighting programs that encourage women at all academic levels to consider career options in science, mathematics, and engineering. Cohosted by ORISE and the Oak Ridge National Laboratory (ORNL), the review was organized by an Oversight Committee whose goal was to develop an agenda and bring together concerned, skilled, and committed parties to discuss issues, make recommendations, and set objectives for the entire DOE community. Reports from each of six working groups are presented, including recommendations, objectives, descriptions, participants, and references.

  2. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  3. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  4. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mason, Peter, E-mail: peter.mason@ch.doe.gov [New Brunswick Laboratory (DOE/NBL), Argonne, IL (United States)

    2013-07-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards

  5. Response Matrix Method Development Program at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Sicilian, J.M.

    1976-01-01

    The Response Matrix Method Development Program at Savannah River Laboratory (SRL) has concentrated on the development of an effective system of computer codes for the analysis of Savannah River Plant (SRP) reactors. The most significant contribution of this program to date has been the verification of the accuracy of diffusion theory codes as used for routine analysis of SRP reactor operation. This paper documents the two steps carried out in achieving this verification: confirmation of the accuracy of the response matrix technique through comparison with experiment and Monte Carlo calculations; and establishment of agreement between diffusion theory and response matrix codes in situations which realistically approximate actual operating conditions

  6. Laboratory services series: a safety program for service groups in a national research and development laboratory (1965--1974)

    International Nuclear Information System (INIS)

    Winget, R.H.

    1975-11-01

    The experiences of a ten-year period of developing a safety program for craft and labor groups supporting a major laboratory are summarized with tabulations of types of injuries or accidents, improvements noted over the decade, and educational and safety recognition efforts

  7. The New Brunswick Laboratory Safeguards Measurement Evaluation Program

    International Nuclear Information System (INIS)

    Cacic, C.G.; Trahey, N.M.; Zook, A.C.

    1987-01-01

    The New Brunswick Laboratory (NBL) has been tasked by the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) to assess and evaluate the adequacy of measurement technology as applied to materials accounting in DOE nuclear facilities. The Safeguards Measurement Evaluation (SME) Program was developed as a means to monitor and evaluate the quality and effectiveness of accounting measurements by site, material balance area (MBA), or unit process. Phase I of the SME Program, initiated during 1985, involved evaluation of the primary accountability measurement methods at six DOE Defense Programs facilities: Savannah River Plant, Portsmouth Gaseous Diffusion Plant, Y-12 Plant, Rocky Flats Plant, Rockwell Hanford Operations, and NBL. Samples of uranyl nitrate solution, dried plutonium nitrates, and plutonium oxides were shipped to the participants for assay and isotopic abundance measurements. Resulting data are presented and evaluated as indicators of current state-of-the-practice accountability measurement methodology, deficiencies in materials accounting practices, and areas for possible assistance in upgrading measurement capabilities. Continuing expansion of the SME Program to include materials which are representative of specific accountability measurement points within the DOE complex is discussed

  8. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  9. Quality assurance program plan for low-level waste at the WSCF Laboratory

    International Nuclear Information System (INIS)

    Morrison, J.A.

    1994-01-01

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME)

  10. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  11. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    Science.gov (United States)

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  12. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  13. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  14. Productivity of Veterans Health Administration laboratories: a College of American Pathologists Laboratory Management Index Program (LMIP) study.

    Science.gov (United States)

    Valenstein, Paul N; Wang, Edward; O'Donohue, Tom

    2003-12-01

    The Veterans Health Administration (VA) operates the largest integrated laboratory network in the United States. To assess whether the unique characteristics of VA laboratories impact efficiency of operations, we compared the productivity of VA and non-VA facilities. Financial and activity data were prospectively collected from 124 VA and 131 non-VA laboratories enrolled in the College of American Pathologists Laboratory Management Index Program (LMIP) during 2002. In addition, secular trends in 5 productivity ratios were calculated for VA and non-VA laboratories enrolled in LMIP from 1997 through 2002. Veterans Health Administration and non-VA facilities did not differ significantly in size. Inpatients accounted for a lower percentage of testing at VA facilities than non-VA facilities (21.7% vs 37.3%; P benefits; P depreciation, and maintenance than their non-VA counterparts (all P <.001), resulting in lower overall cost per on-site test result (2.64 dollars vs 3.40 dollars; P <.001). Cost per referred (sent-out) test did not differ significantly between the 2 groups. Analysis of 6-year trends showed significant increases in both VA (P <.001) and non-VA (P =.02) labor productivity (on-site tests/total FTE). Expenses at VA laboratories for labor per test, consumables per test, overall expense per test, and overall laboratory expense per discharge decreased significantly during the 6-year period (P <.001), while in non-VA facilities the corresponding ratios showed no significant change. Overall productivity of VA laboratories is superior to that of non-VA facilities enrolled in LMIP. The principal advantages enjoyed by the VA are higher-than-average labor productivity (tests/FTE) and lower-than-average consumable expenses.

  15. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael W.; Ezrailson, Cathy M.; Pearce, David A.; Elliott, Amy J.

    2015-01-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  16. Formerly utilized MED/AEC sites Remedial Action Program. Report of the decontamination of Jones Chemical Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wynuveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-08-01

    The US Department of Energy (DOE) has implemented a program to decontaminate radioactively contaminated sites that were formerly utilized by the Manhattan Engineer District (MED) and/or the Atomic Energy Commission (AEC) for activities that included handling of radioactive material. This program is referred to as the ''Formerly Utilized Sites Remedial Action Program'' (FUSRAP). Among these sites are Jones Chemical Laboratory, Ryerson Physical Laboratory, Kent Chemical Laboratory, and Eckhart Hall of The University of Chicago, Chicago, Illinois. Since 1977, the University of Chicago decontaminated Kent Chemical Laboratory as part of a facilities renovation program. All areas of Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory that had been identified as contaminated in excess of current guidelines in the 1976-1977 surveys were decontaminated to levels where no contamination could be detected relative to natural backgrounds. All areas that required defacing to achieve this goal were restored to their original condition. The radiological evaluation of the sewer system, based primarily on the radiochemical analyses of sludge and water samples, indicated that the entire sewer system is potentially contaminated. While this evaluation was defined as part of this project, the decontamination of the sewer system was not included in the purview of this effort. The documentation included in this report substantiates the judgment that all contaminated areas identified in the earlier reports in the three structures included in the decontamination effort (Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory) were cleaned to levels commensurate with release for unrestricted use.

  17. Formerly utilized MED/AEC sites Remedial Action Program. Report of the decontamination of Jones Chemical Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    International Nuclear Information System (INIS)

    Wynuveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-08-01

    The US Department of Energy (DOE) has implemented a program to decontaminate radioactively contaminated sites that were formerly utilized by the Manhattan Engineer District (MED) and/or the Atomic Energy Commission (AEC) for activities that included handling of radioactive material. This program is referred to as the ''Formerly Utilized Sites Remedial Action Program'' (FUSRAP). Among these sites are Jones Chemical Laboratory, Ryerson Physical Laboratory, Kent Chemical Laboratory, and Eckhart Hall of The University of Chicago, Chicago, Illinois. Since 1977, the University of Chicago decontaminated Kent Chemical Laboratory as part of a facilities renovation program. All areas of Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory that had been identified as contaminated in excess of current guidelines in the 1976-1977 surveys were decontaminated to levels where no contamination could be detected relative to natural backgrounds. All areas that required defacing to achieve this goal were restored to their original condition. The radiological evaluation of the sewer system, based primarily on the radiochemical analyses of sludge and water samples, indicated that the entire sewer system is potentially contaminated. While this evaluation was defined as part of this project, the decontamination of the sewer system was not included in the purview of this effort. The documentation included in this report substantiates the judgment that all contaminated areas identified in the earlier reports in the three structures included in the decontamination effort (Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory) were cleaned to levels commensurate with release for unrestricted use

  18. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  19. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF

    International Nuclear Information System (INIS)

    INSTRUMENTATION DIVISION STAFF

    1999-01-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations

  20. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    Energy Technology Data Exchange (ETDEWEB)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  1. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis

  2. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  3. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  4. Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.

    Energy Technology Data Exchange (ETDEWEB)

    Wrons, Ralph Jordan; Vetter, Douglas Walter

    2007-07-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

  5. Central African Field Epidemiology and Laboratory Training Program: building and strengthening regional workforce capacity in public health.

    Science.gov (United States)

    Andze, Gervais Ondobo; Namsenmo, Abel; Illunga, Benoit Kebella; Kazambu, Ditu; Delissaint, Dieula; Kuaban, Christopher; Mbopi-Kéou, Francois-Xavier; Gabsa, Wilfred; Mulumba, Leopold; Bangamingo, Jean Pierre; Ngulefac, John; Dahlke, Melissa; Mukanga, David; Nsubuga, Peter

    2011-01-01

    The Central African Field Epidemiology and Laboratory Training Program (CAFELTP) is a 2-year public health leadership capacity building training program. It was established in October 2010 to enhance capacity for applied epidemiology and public health laboratory services in three countries: Cameroon, Central African Republic, and the Democratic Republic of Congo. The aim of the program is to develop a trained public health workforce to assure that acute public health events are detected, investigated, and responded to quickly and effectively. The program consists of 25% didactic and 75% practical training (field based activities). Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities and differences in the region leading to new and innovative approaches in public health. The program provides opportunities for regional and international networking in field epidemiology and laboratory activities, and is particularly beneficial for countries that may not have the immediate resources to host an individual country program. Several of the trainees from the first cohort already hold leadership positions within the ministries of health and national laboratories, and will return to their assignments better equipped to face the public health challenges in the region. They bring with them knowledge, practical training, and experiences gained through the program to shape the future of the public health landscape in their countries.

  6. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  7. Los Alamos National Laboratory Yucca Mountain Site Characterization Project: 1991 quality program status report

    International Nuclear Information System (INIS)

    1992-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project's (YMP) quality assurance program for calendar year 1991. The report is divided into three Sections: Program Activities, Verification Activities, and Trend Analysis

  8. Report of the Intercomparison program by thermoluminescent dosimetry for Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    Papadopulos, Susana

    2000-01-01

    In this report the results of an intercomparison program within a research coordinated program are presented. This is a third phase of the study that consisted in to evaluate the implementation of the new ICRU quantities for individual monitoring by the SSDLs, their capabilities to perform irradiations in different angles and the interpretation of the standard ISO 4370-3. This phase as well the first one was coordinated by Argentina through the Autoridad Regulatoria Nuclear that verified the performance of the participant laboratories. The SSDL of Argentina calibrated the dosimetric system to be used, and sent a set of tld dosimeters for irradiation at the SSDL or dosimetry laboratories of nine countries of latin america

  9. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    Heckman, R.A.; Tang, W.R.

    1989-01-01

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs

  10. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  11. Compliance program for 40 CFR 61, Subpart H at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    McNamara, E.A.

    1997-01-01

    Effective on March 15, 1990, the Environmental Protection Agency established regulations controlling the emission of radionuclides to the air from Department of Energy facilities to limit the dose to the public to 10 mrem/yr. These regulations are detailed in 40 CFR 61, Subpart H, open-quotes National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilitiesclose quotes. Part of these regulations require the operation of sampling systems on stacks meeting certain requirements. Although Los Alamos National Laboratory has a long history of stack sampling, the systems in place at the time the regulation became effective did not meet the specific design requirements of the new regulation. In addition, certain specific program elements did not exist or were not adequately documented. The Los Alamos National Laboratory has undertaken a major effort to upgrade its compliance program to meet the requirements of USEPA. This effort involved: developing new and technically superior sampling methods and obtaining approval from the Environmental Protection Agency for their use; negotiating specific methodologies with the Environmental Protection Agency to implement certain requirements of the regulation: implementing a complete, quality assured, compliance program; and upgrading sampling systems. After several years of effort, Los Alamos National Laboratory now meets all requirements of the USEPA

  12. 78 FR 7460 - Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program

    Science.gov (United States)

    2013-02-01

    ...] Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meeting. SUMMARY: OSHA invites interested parties to attend an informal stakeholder meeting concerning Nationally Recognized Testing...

  13. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery - PRK

    Science.gov (United States)

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecol...

  14. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  15. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    Science.gov (United States)

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. Copyright © 2015 The American Physiological Society.

  16. Multiyear Program Plan for the High Temperature Materials Laboratory; FINAL

    International Nuclear Information System (INIS)

    Arvid E. Pasto

    2000-01-01

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO(sub x) and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required

  17. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  18. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  19. Legal aspects associated with dismissal from clinical laboratory education programs.

    Science.gov (United States)

    Legrys, V A; Beck, S J; Laudicina, R J

    1995-01-01

    To review academic dismissals, students' rights in dismissal cases, and several key cases involving academic and disciplinary dismissals. Recent academic literature and legal precedents. Not applicable. Not applicable. Students involved in dismissals are protected under the principles of constitutional law and/or contract law, depending on whether the institution is public or private. The basis for dismissal from educational programs is either academic or disciplinary in nature. In academic dismissals, a student has failed to meet either the cognitive or the noncognitive academic standards of the program. In disciplinary dismissals, a student has violated the institutional rules governing conduct. Policies that affect progress in the program and the dismissal process should be published and distributed to students, as well as reviewed for consistency with institutional policies. The amount of documentation needed in the defense of a dismissal decision has not been specified, but, in general, more is better. Procedures are suggested as a guide to dismissals in clinical laboratory programs.

  20. Fish tissue contamination in the mid-continental great rivers of the United States

    Science.gov (United States)

    The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...

  1. Evaluating the Impact of the "Teaching as a Chemistry Laboratory Graduate Teaching Assistant" Program on Cognitive and Psychomotor Verbal Interactions in the Laboratory

    Science.gov (United States)

    Flaherty, A.; O'Dwyer, A.; Mannix-McNamara, P.; Leahy, J. J.

    2017-01-01

    Designing and evaluating teacher development programs for graduate teaching assistants (GTAs) who teach in the laboratory is a prominent feature of chemistry education research. However, few studies have investigated the impact of a GTA teacher development program on the verbal interactions between participating GTAs and students in the…

  2. Summary of the Mol electrolysis cell test program in the CRL tritium laboratory

    International Nuclear Information System (INIS)

    Miller, J.M.; Keyes, R.J.

    1996-01-01

    The development of electrolysis technology for highly tritiated water at the Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucleaire (SCK/CEN), Mol, Belgium, focused on A Low Inventory Capillary Electrolyser (ALICE). The key characteristic of ALICE is its low liquid inventory, a key feature for the radio-toxicity of tritiated water. A program to test this electrolytic cell design with highly tritiated water in the Chalk River Tritium Laboratory was initiated in 1988 and extended through to early 1995. The activities conducted at CRL and associated with the experimental program-design, installation, licensing and commissioning activities- are described in this report along with the results of the test program conducted on the experimental system with non-tritiated heavy water. The installation in the CRL Tritium Laboratory consisted of three main sections: the electrolysis section, the tritium storage and supply section, and the recombination section. 16 figs., 2 tabs., 10 refs

  3. Department of Energy Review of Laboratory Programs for Women Points-of-Contact Committee: Comparative Report, June 1995

    Energy Technology Data Exchange (ETDEWEB)

    McLane, V.; Layne, A.

    1995-06-01

    A survey of the DOE facilities was undertaken by the Points-of-Contact for the DOE Review of Laboratory Programs for Women in order to gather data to be used as a baseline against which to measure future progress. We plan to look at current programs already in place and evaluate them with a view to deciding which programs are most effective, and selecting model programs suitable for implementation at other facilities. The survey focused on four areas: 1) statistical data, 2) laboratory policy, 3) formal and informal programs which affect the quality of life in the work environment, and career development and advancement, and 4) educational programs. Although this report focuses on women, the problems discussed affect all DOE facility employees.

  4. Liquid Effluent Monitoring Program at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Ballinger, M.Y.

    1995-05-01

    Pacific Northwest Laboratory (PNL) is conducting a program to monitor the waste water from PNL-operated research and development facilities on the Hanford Site. The purpose of the program is to collect data to assess administrative controls and to determine whether discharges to the process sewer meet sewer criteria. Samples have been collected on a regular basis from the major PNL facilities on the Hanford Site since March 1994. A broad range of analyses has been performed to determine the primary constituents in the liquid effluent. The sampling program is briefly summarized in the paper. Continuous monitoring of pH, conductivity, and flow also provides data on the liquid effluent streams. In addition to sampling and monitoring, the program is evaluating the dynamics of the waste stream with dye studies and is evaluating the use of newer technologies for potential deployment in future sampling/monitoring efforts. Information collected to date has been valuable in determining sources of constituents that may be higher than the Waste Acceptance Criteria (WAC) for the Treated Effluent Disposal Facility (TEDF). This facility treats the waste streams before discharge to the Columbia River

  5. Research programs in adsorption carried out in the low temperature laboratory of UFRJ (Brazil)

    International Nuclear Information System (INIS)

    Rapp, R.E.

    1981-01-01

    Research programs of gas adsorption in thin films carried out by the low temperature laboratory of UFRJ (Brazil) are reported. These programs were divided in two parts: 1) experiments of adsorption isotherm measurements by the volumetric method and 2) specific heat measurements of adsorbed gases. (L.C.) [pt

  6. Computerization aspects of the Health Physics' Radiation Control Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Dolecek, Elwyn H.

    1978-01-01

    Greater public awareness of the potential hazards of ionizing radiation and the more stringent governmental compliance programs have made accountability of radioactive materials an item of increasingly major concern for all radionuclide users. For low-volume (radioisotopically) organizations, manual record keeping techniques may suffice without requiring significant work-hour allocations. When considering high-volume users, the workload contingent with manual inventory is usually excessive from an employee time-allocation standpoint. Therefore, various automation systems are employed, usually with the aid of an in-house or time-purchase computer system. The computer programs developed for these systems often do not allow for future modification without major rewriting. Therefore, to facilitate in program concept, modification, and implementation the Health Physics Section at Argonne National Laboratory chose to design and code its computer program(s) and has instituted a Radiation Administrative Program (RAP) as a major component of the Section's laboratory-wide radiation control program. Coded in ANSI PL/I, RAP provides both flexibility in present concept and allowance for future growth. It requires less than 300K words of computer memory and can be easily incorporated at other organizations with minimal modifications. The modular design provides run cost benefits and versatility of report generation and modification. Through the use of this type of information processing and retrieval system, one can manipulate large amounts of radionuclide data, providing control and identification, while still maintaining commitment of computer costs and employee time at a reasonable level. (author)

  7. Synthesis, characterisation, stereochemistry and antimicrobial ...

    Indian Academy of Sciences (India)

    Benzodiazepines are bicyclic heterocyclic compounds having benzene .... ods using the program SHELXS-9712b,c with E's ≥ 1.2. An E-map ..... were inverted and incubated for 24-48 h at 37◦C. After ... sured its diameter using microscope.

  8. Controlling mercury spills in laboratories with a thermometer exchange program

    Energy Technology Data Exchange (ETDEWEB)

    McLouth, Lawrence D.

    2002-03-25

    This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

  9. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  10. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  11. Data of evolutionary structure change: 1BANC-3DA7A [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BANC-3DA7A 1BAN 3DA7 C A ---------------------------------------...bID> C 1BANC VINTF-DGVAD e-map> ASP ALA VAL GLY ASP PHE T...e> ASP CA e-map> VAL CA 244 ILE CA 298 ASN CA 3...P A 58 3.752 -15.094 16.737 1.00 35.20 C e-map

  12. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1980-01-01

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  13. Peer Mentor Program for the General Chemistry Laboratory Designed to Improve Undergraduate STEM Retention

    Science.gov (United States)

    Damkaci, Fehmi; Braun, Timothy F.; Gublo, Kristin

    2017-01-01

    We describe the design and implementation of an undergraduate peer mentor program that can overlay an existing general chemistry laboratory and is designed to improve STEM student retention. For the first four freshman cohorts going through the program, year-to-year retention improved by a four-year average of 20% for students in peer-mentored…

  14. Changes in latitude, changes in attitude - emerging biogeographic patterns of invasion in the Northeast Pacific

    Science.gov (United States)

    Biogeographic patterns of invasion of near-coastal and estuarine species in the Northeastern Pacific (NEP) are beginning to emerge based on surveys by U.S. EPA’s Environmental Monitoring and Assessment Program (EMAP) and the EPA/USGS synthesis of native and nonindigenous species ...

  15. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1990-05-01

    A comprehensive Waste Characterization Program (WCP) is in place at Chalk River Laboratories to support disposal projects. The WCP is responsible for: 1) specifying the manifests for waste shipments; 2) developing and maintaining central databases for waste inventories and analytical data; and 3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management Quality Assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems, and for maintaining a QA program for disposal operations

  16. Earthquake safety program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Freeland, G.E.

    1985-01-01

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  17. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  18. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program

  19. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  20. Data of evolutionary structure change: 1BYUA-3RANC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BYUA-3RANC 1BYU 3RAN A C --EPQVQFKLVLVGDGGTGKTTFVKRHLTGEFEKKYVPT...142 CA TYR A 147 10.374 24.725 19.466 1.00 14.34 C e-map> TYR TYR ...in> 3RAN C 3RANC e-map> TYR TYR GLN LEU ASN LYS LYS ARG... GLN CA 6.93 3.86 TYR CA 3.88 TYR CA e-map> S

  1. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  2. Achievements and experience in Laboratory for Low Level Measurements, Rudjer Boskovic Institute, Croatia, during the IAEA QA/QC program

    International Nuclear Information System (INIS)

    Obelic, B.; Horvatincic, N.; Krajcar Bronic, I.

    2002-01-01

    In this summary we explain our motivation for joining the IAEA Program on Quality Assurance and Quality Control in Nuclear Analytical Techniques, the situation in the Laboratory before joining the program, and achievements during this 2-year program. We also describe our experience and difficulties with implementation of the quality system in the Laboratory, as well as with the quality system at the Rudjer Boskovic Institute. Finally, we present our plans for the future

  3. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory's fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993

  4. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  5. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  6. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums

  7. Changes in latitude, changes in attitude - biogeographic patterns of nonindigenous estuarine and near-coastal species in the Northeast Pacific

    Science.gov (United States)

    Biogeographic patterns of estuarine and near-coastal invaders in the Northeast Pacific (NEP) are beginning to emerge based on regional surveys by U.S. EPA’s Environmental Monitoring and Assessment Program (EMAP) and the EPA/USGS synthesis of native and nonindigenous species in th...

  8. Summaries of the Idaho National Engineering Laboratory Radioecology and Ecology Program research projects

    International Nuclear Information System (INIS)

    Markham, O.D.

    1987-06-01

    This report provides summaries of individual research projects conducted by the Idaho National Engineering Laboratory Radioecology and Ecology Program. Summaries include projects in various stages, from those that are just beginning, to projects that are in the final publication stage

  9. Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs

    International Nuclear Information System (INIS)

    Morris, S.C.; Meinhold, A.F.

    1995-05-01

    This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts

  10. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  11. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  12. Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory

    International Nuclear Information System (INIS)

    Seidel, C.M.

    1998-01-01

    The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory

  13. Strategic plan and strategy of the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-06-01

    This report provides information about the use of an integrated strategic plan, strategy, and life-cycle baseline in the long range planning and risk process employed by the environmental restoration program at the Oak Ridge National Laboratory (ORNL). Long-range planning is essential because the ER Program encompasses hundreds of sites; will last several decades; and requires complex technology, management, and policy. Long-range planning allows a focused, cost-effective approach to identify and meet Program objectives. This is accomplished through a strategic plan, a strategy, and a life-cycle baseline. This long-range methodology is illustrated below

  14. Chemical Exposure Assessment Program at Los Alamos National Laboratory: A risk based approach

    International Nuclear Information System (INIS)

    Stephenson, D.J.

    1996-01-01

    The University of California Contract And DOE Order 5480.10 require that Los Alamos National Laboratory (LANL) perform health hazard assessments/inventories of all employee workplaces. In response to this LANL has developed the Chemical Exposure Assessment Program. This program provides a systematic risk-based approach to anticipation, recognition, evaluation and control of chemical workplace exposures. Program implementation focuses resources on exposures with the highest risks for causing adverse health effects. Implementation guidance includes procedures for basic characterization, qualitative risk assessment, quantitative validation, and recommendations and reevaluation. Each component of the program is described. It is shown how a systematic method of assessment improves documentation, retrieval, and use of generated exposure information

  15. ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program

    Science.gov (United States)

    Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk

    2004-05-01

    Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.

  16. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  17. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students†

    OpenAIRE

    Beach, Dale L.; Alvarez, Consuelo J.

    2015-01-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniq...

  18. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  19. Note on some quasielastic neutron scattering analysis programs on the Rutherford Laboratory IBM 360/195

    International Nuclear Information System (INIS)

    Richardson, R.M.

    1979-12-01

    A suite of programs for analysing neutron scattering data from time-of-flight spectrometers has been implemented on the Rutherford Laboratory IBM 360/195 computer system. The programs are intended for near inelastic and quasielastic data and operate by convoluting the measured instrumental resolution function with a model scattering function before fitting to the measured sample scattering law. (author)

  20. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  1. Quality assurance in the measurement of internal radioactive contamination and dose assessment and the United States Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Bhatt, Anita

    2016-01-01

    The Quality Assurance for analytical measurement of internal radioactive contamination and dose assessment in the United States (US) is achieved through the US Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) for both Dosimetry and Radio bioassay laboratories for approximately 150,000 radiation workers. This presentation will explain the link between Quality Assurance and the DOELAP Accreditation process. DOELAP is a DOE complex-wide safety program that ensures the quality of worker radiation protection programs. DOELAP tests the ability of laboratories to accurately measure and quantify radiation dose to workers and assures the laboratories quality systems are capable of defending and sustaining their measurement results. The United States Law in Title 10 of the Code of Federal Regulations 835 requires that personnel Dosimetry and Radio bioassay programs be tested and accredited

  2. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  3. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  4. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Getsi, J.A.

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  5. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  6. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  7. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  8. Overview of the joint US/Russia surety program in the Sandia National Laboratories Cooperative Measures Program

    International Nuclear Information System (INIS)

    Smith, R.E.; Vorontsova, O.S.; Blinov, I.M.

    1998-02-01

    Sandia National Laboratories has initiated many joint research and development projects with the two premier Russian nuclear laboratories, VNIIEF and VNIITF, (historically known as Arzamas-16 and Chelyabinsk-70) in a wide spectrum of areas. One of the areas in which critical dialogue and technical exchange is continuing to take place is in the realm of system surety. Activities primarily include either safety or security methodology development, processes, accident environment analyses and testing, accident data-bases, assessments, and product design. Furthermore, a continuing dialog has been established between the organizations with regard to developing a better understanding of how risk is perceived and analyzed in Russia versus that in the US. The result of such efforts could reduce the risk of systems to incur accidents or incidents resulting in high consequences to the public. The purpose of this paper is to provide a current overview of the Sandia surety program and its various initiatives with the Russian institutes, with an emphasis on the program scope and rationale. The historical scope of projects will be indicated. A few specific projects will be discussed, along with results to date. The extension of the joint surety initiatives to other government and industry organizations will be described. This will include the current status of a joint Sandia/VNIIEF initiative to establish an International Surety Center for Energy Intensive and High Consequence Systems and Infrastructures

  9. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report

  10. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  11. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and

  12. Participation of the Laboratorio de Radiotoxicologia of IPEN, SP, Brazil, in laboratory inter-comparison programs

    International Nuclear Information System (INIS)

    Mesquita, Sueli Alexandra de; Carneiro, Janete Cristina G.

    2005-01-01

    The Radiotoxicology Laboratory (LRT) of IPEN/CNEN-SP has as mission to assess internal internal contamination from individuals through qualitative and quantitative analysis of radionuclides present in biological samples. The LRT is able to meet the demand for in vitro monitoring and radiological and nuclear emergencies, both in the case of occupational exposures, as individuals. With the purpose of increasing the reliability of the test results, and keeping it up to date on new analytical techniques, the LRT participates annually in two laboratory inter-comparison programs: a national, the PNI (Programa Nacional de Intercomparacao), promoted by IRD/CNEN and an international from PROCORAD (Association for the Promotion of Quality Controls in Radiotoxicological Bioassay). The present work shows the performance of the LRT by means of the results obtained in the exercises for the quantification of natural uranium and uranium isotopes, promoted by both the inter-comparison programs in the year of 2004. The analysis of the obtained results demonstrates the good performance achieved by LRT, and confirms the sustainability of its quality system, required in calibration and testing laboratories

  13. Safety program of the Oak Ridge National Laboratory: a different approach

    International Nuclear Information System (INIS)

    Burger, G.H.

    1981-01-01

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed

  14. Quality assurance on the Idaho National Engineering Laboratory Buried Waste Program

    International Nuclear Information System (INIS)

    Rasmussen, T.L.

    1989-01-01

    This paper discusses the clean-up of an Idaho National Engineering Laboratory (INEL) site utilized for disposal of transuranic contaminated waste from 1954 until 1970. The author presents requirements of the environmental protection statutes that have generated quality assurance requirements in addition to those historically implemented as a part of facility design, construction and operation. A hierarchy of program guidance quality documentation and procedures is discussed. Data qualification and computer database management are identified as requirements

  15. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    Science.gov (United States)

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  16. 75 FR 30041 - Medicare Program; Public Meeting in Calendar Year 2010 for New Clinical Laboratory Tests Payment...

    Science.gov (United States)

    2010-05-28

    ... specified list of new Clinical Procedural Terminology (CPT) codes for clinical laboratory tests in calendar... are codified at 42 CFR part 414, subpart G. A newly created Current Procedural Terminology (CPT) code..., Medicare--Hospital Insurance; and Program No. 93.774, Medicare-- Supplementary Medical Insurance Program...

  17. US/Russian laboratory-to-laboratory program in materials protection, control and accounting at the RRC Kurchatov Institute

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.; Roumiansev, A.; Shmelev, V.

    1996-01-01

    Six US DOE Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute (RRC KI) to improve the capabilities and facilities in nuclear material protection, control, and accounting (MPC ampersand A). In 1995, the primary emphasis of this program was the implementation of improved physical protection at a demonstration building at RRC KI, and the upgrading of the computerized MC ampersand A system, diagnostic instrumentation, and physical inventory procedures at a critical assembly within this building. Work continues in 1996 at the demonstration building but now also has begun at the two Kurchatov buildings which constitute the Central Storage Facility (CSF). At this facility, there will be upgrades in the physical inventory taking procedures, a test and evaluation of gamma-ray isotopic measurements, evaluations of nuclear material portal monitors and neutron-based measurement equipment as well as development of an improved computerized materials accounting system, implementation of bar code printing and reading equipment, development of tamper indicating device program, and substantial improvements in physical protection. Also, vulnerability assessments begun in 1995 are being extended to additional high priority facilities at Kurchatov

  18. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  19. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  20. Status of the isotope enrichment program at Oak Ridge National Laboratory

    Science.gov (United States)

    Tracy, J. G.

    1991-05-01

    The objectives of the isotope enrichment program at the Oak Ridge National Laboratory are to prepare and distribute electromagnetically separated stable isotopes to the research, medical and industrial communities on a worldwide basis. Topics discussed in this presentation include (1) a review of facility modifications, (2) current facility capabilities, (3) enrichment processes, and (4) final product distribution. An update on alternative separations methods to augment the electromagnetic separations process is covered, as well as special services that are available for providing custom materials to meet special applications. Recent changes in U.S. Department of Energy policy that impact the nation's isotope and isotope-related programs are summarized, with special emphasis on the effects on isotope enrichment, radioisotope production, target fabrication, pricing, and marketing and distribution of stable isotopes.

  1. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  2. Mobile Energy Laboratory energy-efficiency testing programs. Semiannual report, April 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.; Currie, J. W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  3. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B. (comps.)

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  4. Hazardous materials management and control program at Oak Ridge National Laboratory - environmental protection

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.

    1982-01-01

    In the Federal Register of May 19, 1980, the US Environmental Protection Agency promulgated final hazardous waste regulations according to the Resource Conservation and Recovery Act (RCRA) of 1976. The major substantive portions of these regulations went into effect on November 19, 1980, and established a federal program to provide comprehensive regulation of hazardous waste from its generation to its disposal. In an effort to comply with these regulations, a Hazardous Materials Management and Control Program was established at Oak Ridge National Laboratory. The program is administered by two Hazardous Materials Coordinators, who together with various support groups, ensure that all hazardous materials and wastes are handled in such a manner that all personnel, the general public, and the environment are adequately protected

  5. Department of Energy Multiprogram Laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    Volume III includes the following appendices: laboratory goals and missions statements; laboratory program mix; class waiver of government rights in inventions arising from the use of DOE facilities by or for third party sponsors; DOE 4300.2: research and development work performed for others; procedure for new work assignments at R and D laboratories; and DOE 5800.1: research and development laboratory technology transfer program

  6. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  7. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  8. A survey of the high energy physics program at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Rau, R.R.; Wanderer, P.

    1977-01-01

    About fifteen years ago the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory began operating for high energy particle physics experiments. A wealth of important results has been published, capped by four discoveries which have changed the field dramatically. These discoveries are: the muon neutrino, γsub(μ); the strangeness minus three Ω - baryon; CP violation in K 0 decay; and recently the totally unpredicted J/psi particle. The experimental program has broadened, matured and increased in scope following a large improvement program at the AGS. Major developments included: replacement of the original 50 MeV linear accelerator injector by a modern 200 MeV linac; construction of two new experimental areas, one for neutrino experiments and the other for counter-spark chamber electronics experiments, with the philosophy that nearly all circulating protons would be extracted from the machine and directed onto targets external to the machine; raising the circulating proton intensity to a maximum of 10 13 protons, and installation of a new magnet supply allowing a cycle of 2.4 seconds with a 1 second flat-top, or a 40% duty cycle. The paper also describes a crucial function of any particle physics laboratory, the plans and research directed toward new facilities to make available new regions for particle physics research. (Auth.)

  9. Dose calculation algorithm for the Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Moscovitch, M.; Tawil, R.A.; Thompson, D.; Rhea, T.A.

    1991-01-01

    The dose calculation algorithm for a symmetric four-element LiF:Mg,Ti based thermoluminescent dosimeter is presented. The algorithm is based on the parameterization of the response of the dosimeter when exposed to both pure and mixed fields of various types and compositions. The experimental results were then used to develop the algorithm as a series of empirical response functions. Experiments to determine the response of the dosimeter and to test the dose calculation algorithm were performed according to the standard established by the Department of Energy Laboratory Accreditation Program (DOELAP). The test radiation fields include: 137 Cs gamma rays, 90 Sr/ 90 Y and 204 Tl beta particles, low energy photons of 20-120 keV and moderated 252 Cf neutron fields. The accuracy of the system has been demonstrated in an official DOELAP blind test conducted at Sandia National Laboratory. The test results were well within DOELAP tolerance limits. The results of this test are presented and discussed

  10. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  11. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  12. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  13. Photovoltaic module certification/laboratory accreditation criteria development

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  14. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

  15. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends

  16. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  17. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  18. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    International Nuclear Information System (INIS)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail

  19. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program`s management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention.

  20. 78 FR 63999 - Notice of Vitamin D Standardization Program (VDSP) Symposium: Tools To Improve Laboratory...

    Science.gov (United States)

    2013-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Notice of Vitamin D... Vitamin D Standardization Program (VDSP) to those with an interest in the effort to standardize vitamin D... laboratory personnel; vitamin D researchers; and members of professional societies with clinical and public...

  1. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  2. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  3. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, Arvid [ORNL

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  4. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    Science.gov (United States)

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P Kruskal-Wallis P < 0.001).

  5. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  6. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2000

    International Nuclear Information System (INIS)

    Bivins, Steven R; Stoetzel, Gregory A

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2000 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program

  7. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  8. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  9. Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-07-01

    This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program's management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention

  10. Idaho National Engineering Laboratory decontamination and decommissioning robotics development program

    International Nuclear Information System (INIS)

    McKay, M.D.

    1993-04-01

    As part of the Idaho National Engineering Laboratory (INEL) Robotics Technology Development Program (RTDP) Decontamination ampersand Decommissioning (D ampersand D) robotics program, a task was designed to integrate the plasma arc cutting technology being developed under the Waste Facility Operations (WFO) robotics program into D ampersand D cutting applications. The plasma arc cutting technology is based upon the use of a high energy plasma torch to cut metallic objects. Traditionally, D ampersand D workers removing equipment and processes from a facility have used plasma arc cutting to accomplish this task. The worker is required to don a protective suit to shield from the high electromagnetic energy released from the cutting operation. Additionally, the worker is required to don protective clothing to shield against the radioactive materials and contamination. This protective clothing can become restrictive and cumbersome to work in. Because some of the work areas contain high levels of radiation, the worker is not allowed to dwell in the environment for sustained periods of time. To help alleviate some of the burdens required to accomplish this task, reduce or eliminate the safety hazardous to the worker, and reduce the overall cost of remediation, a program was established though the Office of Technology Development (OTD) to design and develop a robotic system capable of performing cutting operations using a plasma arc torch. Several D ampersand D tasks were identified having potential for use of the plasma arc cutting technology. The tasks listed below were chosen to represent common D ampersand D type activities where the plasma arc cutting technology can be applied

  11. Survey of 2014 behavioral management programs for laboratory primates in the United States.

    Science.gov (United States)

    Baker, Kate C

    2016-07-01

    The behavioral management of laboratory nonhuman primates in the United States has not been thoroughly characterized since 2003. This article presents the results of a survey behavioral management programs at 27 facilities and covering a total of 59,636 primates, 27,916 housed in indoor cages and 31,720 in group enclosures. The survey included questions regarding program structure, implementation, and methodology associated with social housing, positive reinforcement training, positive human interaction, exercise enclosures, and several categories of inanimate enrichment. The vast majority of laboratory primates are housed socially (83%). Since 2003, the proportion of indoor-housed primates reported to be housed singly has fallen considerably, from 59% to 35% in the facilities surveyed. The use of social housing remains significantly constrained by: 1) research protocol requirements, highlighting the value of closely involved IACUCs for harmonizing research and behavioral management; and 2) the unavailability of compatible social partners, underscoring the necessity of objective analysis of the methods used to foster and maintain compatibility. Positive reinforcement training appears to have expanded and is now used at all facilities responding to the survey. The use of enrichment devices has also increased in the participating facilities. For most behavioral management techniques, concerns over the possibility of negative consequences to animals are expressed most frequently for social housing and destructible enrichment, while skepticism regarding efficacy is limited almost exclusively to sensory enrichment. Behavioral management program staffing has expanded over time in the facilities surveyed, due not only to increased numbers of dedicated behavioral management technicians but also to greater involvement of animal care technicians, suggesting an increase in the integration of behavioral care into animal husbandry. Broad awareness of common practice may assist

  12. 1983 Environmental monitoring program report for Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Dickson, R.L.

    1984-05-01

    The results of the various monitoring programs for 1983 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. 11 figures, 14 tables

  13. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    International Nuclear Information System (INIS)

    Boliver, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP

  14. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP.

  15. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  16. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  17. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  18. Mozambique field epidemiology and laboratory training program: a pathway for strengthening human resources in applied epidemiology.

    Science.gov (United States)

    Baltazar, Cynthia Semá; Taibo, Cátia; Sacarlal, Jahit; Gujral, Lorna; Salomão, Cristolde; Doyle, Timothy

    2017-01-01

    In the last decades, Mozambique has been undergoing demographic, epidemiological, economic and social transitions, which have all had a notable impact on the National Health System. New challenges have emerged, causing a need to expand the preparation and response to emerging disease threats and public health emergencies. We describe the structure and function of the Mozambique Field Epidemiology Training Program (MZ-FELTP) and the main outputs achieved during the first 6 years of program implementation (consisting of 3 cohorts). We also outline the contribution of the program to the National Health System and assess the retention of the graduates. The MZ-FELTP is a post-graduate in-service training program, based on the acquisition of skills, within two tracks: applied epidemiology and laboratory management. The program was established in 2010, with the objective of strengthening capacity in applied epidemiology and laboratory management, so that events of public health importance can be detected and investigated in a timely and effective manner. The program is in its seventh year, having successfully trained 36 health professionals in the advanced course. During the first six years of the program, more than 40 outbreaks were investigated, 37 surveillance system evaluations were conducted and 39 descriptive data analyses were performed. Surveillance activities were implemented for mass events and emergency situations. In addition, more than 100 oral and poster presentations were given by trainees at national and international conferences. The MZ-FELTP has helped provide the Ministry of Health with the human and technical resources and operational capacity, to rapidly and effectively respond to major public health challenges in the country. The continuous involvement of key stakeholders is necessary for the continuation, expansion and ongoing sustainability of the program.

  19. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  20. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    1999-09-01

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  1. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  2. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  3. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  4. Applicability of a generic monitoring program for radioactive waste burial grounds at Oak Ridge National Laboratory and Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1978-07-01

    Six burial grounds were evaluated at Oak Ridge to determine which would be most suitable for testing the generic monitoring approach, and two were selected. Burial Ground 4 was chosen because it is known to be leaking radioactivity and a monitoring program is desirable to determine the source, pattern and extent of the leakage. Burial Ground 6 was chosen because the most complete radiologic and geologic data is available and modern burial practices have been utilized at this site. At the Idaho National Engineering Laboratory (INEL) only one burial ground exists, the Radioactive Waste Management Complex (RWMC). The data available on the burial grounds are insufficient for an adequate understanding of radionuclide migration patterns and accordingly, inadequate for the design of reliable monitoring programs. It was decided, therefore, that preliminary monitoring programs should be designed in order to obtain additional data for a later implementation of reliable monitoring programs. The monitoring programs designed for ORNL consist primarily of the installation of surface water monitoring stations, the surveillance of trench sump wells, a test boring program to study subsurface geologic conditions, a ground water sampling program and the installation of instrumentation, specifically infiltrometers and evaporation pans, to develop data on site water balances. The program designed for the INEL burial ground includes installation of trench sumps, a ground water monitoring program, test borings to further define subsurface geohydrologic conditions and the installation of instrumentation to develop data on the site water balance. The estimated costs of implementing the recommended programs are about $420,820 for monitoring Burial Grounds 4 and 6 at Oak Ridge and $382,060 for monitoring the RWMC at INEL. 12 figures

  5. San Juan District Laboratory (SJN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesSJN-DO Pharmaceutical Laboratory is an A2LA/ISO/IEC 17025 accredited National Servicing Laboratory specialized in Drug Analysis, is a member of...

  6. The Virtual Robotics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1999-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  7. Decommissioning program and future plan for research hot laboratory (2)

    International Nuclear Information System (INIS)

    Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

    2010-01-01

    The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells, which had been contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL have been started on April 2003. The decommissioning work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The 18 lead cells (including semi-hot cell and junior-cell) had been dismantled. Removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste have been finished as the preparing work for dismantling of the remained 20 lead cells. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure. (author)

  8. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    International Nuclear Information System (INIS)

    1987-02-01

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  9. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  10. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  11. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    Science.gov (United States)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  12. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  13. Graphical programming at Sandia National Laboratories

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.; Desjarlais, L.

    1993-09-01

    Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control

  14. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  15. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  16. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  17. Measurement quality assurance for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, D.E. [Yankee Atomic Environmental Laboratory, Boston, MA (United States)

    1993-12-31

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, {open_quotes}Measurement Quality Assurance For Radioassay Laboratories.{open_quotes} The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory`s specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations.

  18. Philadelphia District Laboratory (PHI)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesPHI-DO Pharmaceutical Laboratory specializes in the analyses of all forms and types of drug products.Its work involves nearly all phases of drug...

  19. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  20. Waste Certification Program Plan for UT-Battelle, LLC at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Beierschmitt, K.J.; Downer, K.M.; Hoke, P.B.

    2000-01-01

    This document defines the waste certification program (WCP) developed and implemented by UT-Battelle, LLC (UT-Battelle) at Oak Ridge National Laboratory (ORNL). The WCP applies to all UT-Battelle personnel, it's subcontractors, guests, and visitors that do work at ORNL. This program does not include wastes generated by other U.S. Department of Energy (DOE) prime contractors, their employees, or their subcontractors working on this site except by special arrangement. The document describes the program structure, logic, and methodology for certification of UT-Battelle wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized, that adequate information is provided to enable correct U.S. Department of Transportation (DOT) classification, and that the programmatic certification requirements and the Waste Acceptance Criteria (WAC) for receiving organizations/facilities are met. The program meets the waste certification requirements outlined in DO E Order 435.1, ''Radioactive Waste Management,'' in the DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste (DOE, February 1995), and ensures that 40 Code of Federal Regulations (CFR) documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls (PCBs)) waste. Program activities are conducted according to ORNL directives and guidance.

  1. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  2. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  3. Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program

    Energy Technology Data Exchange (ETDEWEB)

    Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01

    The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

  4. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    Science.gov (United States)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    In order to confront the abstractness of the freshman chemistry syllabus and the consequent failure of students to relate what they learn to their everyday lives, we have designed a new freshman laboratory program. It is intended as an interface between the substances that surround the students in their ordinary lives and the abstract principles presented in chemistry classrooms (1). A laboratory should provide the organized experiences and observations that underlie the intellectual constructs of chemistry, and tying these experiences and observations to the real world can help to provide motivation for study of the principles. The freshman laboratory program constitutes the foundation for subsequent laboratory courses. However, the good habits we strive to develop there (careful observation, thorough record keeping, proper use of equipment, objective data analysis) are essential to all scientific work, and are intended to provide lasting educational value for all students, especially those who do not take later laboratory work. What We Do A list of the laboratory exercises carried out during 1994-1995 is presented in Table 1. The course incorporates the following features. 1. The exercises deal with recognizable, everyday substances, not just with "chemicals". That "baking soda" and "sodium bicarbonate" are the same is a chemical truism of which the students may be aware, but the visible presence of the Arm and Hammer box nevertheless helps them to make connections to the world outside the laboratory. Perceiving the connections, students may be inspired by curiosity to understand chemical phenomena better, not just to tolerate what they are being taught, as an irrelevant hurdle in the pursuit of a career. 2. Since many significant substances around students in the everyday world are organic, we work in the lab with organic as well as the usual inorganic materials. These include analgesics, vitamins, antifreeze, foodstuffs, dyestuffs, plastics, and fibers. In

  5. United States Department of Energy commercial reactor spent fuel programs being conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Rasmussen, T.L.; Uhl, D.L.

    1987-01-01

    The Idaho National Engineering Laboratory participation in OCRWM programs includes the Spent Fuel Storage Cask Testing Program, Dry Rod Consolidation Technology Program, Prototypical Consolidation Demonstration Program, the Nuclear Fuel Services Project, and the Cask Systems Acquisition Program. The DOE has entered into a cooperative agreement with Virginia Power and the Electric Power Research Institute to demonstrate storage of commercial spent fuel in steel storage casks. The Program conducted heat transfer and shielding tests with three storage casks with intact spent fuel assemblies and two casks with consolidated spent fuel rods, one of which was previously tested with intact fuel, and provides test information in support of Virginia Power's at-reactor dry storage licensing effort. 3 figs., 1 tab

  6. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    Science.gov (United States)

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-12-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.

  7. Development and integration of modern laboratories in aerospace education

    Science.gov (United States)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  8. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  9. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1988-01-01

    In the last five years, Chalk River Nuclear Laboratories (CRNL) placed 17,000 m 3 of wastes into storage (excluding contaminated soil and fill). Almost half of the waste was generated off-site. CRNL is now developing IRUS, an Intrusion Resistant Underground Structure, and the IST, an Improved Sand Trench, to replace storage with safe, permanent disposal. IRUS will be used to dispose of wastes with radiologically hazardous lifetimes between 150 and 500 years duration and the IST will be used for wastes with radiologically hazardous lifetimes of less than 150 years. A comprehensive Waste Characterization Program (WCP) is in place to support disposal projects. The WCP is responsible for (1) specifying the manifests for waste shipments; (2) developing and maintaining central databases for waste inventories and analytical data; and (3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management quality assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems and for maintaining a QA program for disposal operations

  10. Laboratory quality improvement in Thailand's northernmost provinces.

    Science.gov (United States)

    Kanitvittaya, S; Suksai, U; Suksripanich, O; Pobkeeree, V

    2010-01-01

    In Thailand nearly 1000 public health laboratories serve 65 million people. A qualified indicator of a good quality laboratory is Thailand Medical Technology Council certification. Consequently, Chiang Rai Regional Medical Sciences Center established a development program for laboratory certification for 29 laboratories in the province. This paper seeks to examine this issue. The goal was to improve laboratory service quality by voluntary participation, peer review, training and compliance with standards. The program consisted of specific activities. Training and workshops to update laboratory staffs' quality management knowledge were organized. Staff in each laboratory performed a self-assessment using a standard check-list to evaluate ten laboratory management areas. Chiang Rai Regional Medical Sciences Center staff supported the distribution of quality materials and documents. They provided calibration services for laboratory equipment. Peer groups performed an internal audit and successful laboratories received Thailand Medical Technology Council certification. By December 2007, eight of the 29 laboratories had improved quality sufficiently to be certified. Factors that influenced laboratories' readiness for quality improvement included the number of staff, their knowledge, budget and staff commitment to the process. Moreover, the support of each hospital's laboratory working group or network was essential for success. There was no clear policy for supporting the program. Laboratories voluntarily conducted quality management using existing resources. A bottom-up approach to this kind of project can be difficult to accomplish. Laboratory professionals can work together to illustrate and highlight outcomes for top-level health officials. A top-down, practical approach would be much less difficult to implement. Quality certification is a critical step for laboratory staff, which also encourages them to aspire to international quality standards like ISO. The

  11. Environmental and emergency response capabilities of Los Alamos Scientific Laboratory's radiological air sampling program

    International Nuclear Information System (INIS)

    Gunderson, T.C.

    1980-05-01

    Environmental and emergency response radiological air sampling capabilities of the Environmental Surveillance Group at Los Alamos Scientific Laboratory are described. The air sampling program provides a supplementary check on the adequacy of containment and effluent controls, determines compliance with applicable protection guides and standards, and assesses potential environmental impacts on site environs. It also allows evaluation of potential individual and total population doses from airborne radionuclides that may be inhaled or serve as a source of external radiation. The environmental program is sufficient in scope to detect fluctuations and long-term trends in atmospheric levels of radioactivity originating onsite. The emergency response capabilities are designed to respond to both onsite unplanned releases and atmospheric nuclear tests

  12. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  13. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  14. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  15. cp-R, an interface the R programming language for clinical laboratory method comparisons.

    Science.gov (United States)

    Holmes, Daniel T

    2015-02-01

    Clinical scientists frequently need to compare two different bioanalytical methods as part of assay validation/monitoring. As a matter necessity, regression methods for quantitative comparison in clinical chemistry, hematology and other clinical laboratory disciplines must allow for error in both the x and y variables. Traditionally the methods popularized by 1) Deming and 2) Passing and Bablok have been recommended. While commercial tools exist, no simple open source tool is available. The purpose of this work was to develop and entirely open-source GUI-driven program for bioanalytical method comparisons capable of performing these regression methods and able to produce highly customized graphical output. The GUI is written in python and PyQt4 with R scripts performing regression and graphical functions. The program can be run from source code or as a pre-compiled binary executable. The software performs three forms of regression and offers weighting where applicable. Confidence bands of the regression are calculated using bootstrapping for Deming and Passing Bablok methods. Users can customize regression plots according to the tools available in R and can produced output in any of: jpg, png, tiff, bmp at any desired resolution or ps and pdf vector formats. Bland Altman plots and some regression diagnostic plots are also generated. Correctness of regression parameter estimates was confirmed against existing R packages. The program allows for rapid and highly customizable graphical output capable of conforming to the publication requirements of any clinical chemistry journal. Quick method comparisons can also be performed and cut and paste into spreadsheet or word processing applications. We present a simple and intuitive open source tool for quantitative method comparison in a clinical laboratory environment. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  17. 1985 Environmental Monitoring Program report for the Idaho National Engineering Laboratory site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1986-05-01

    The results of the various monitoring programs for 1985 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. It compares and evaluates the sample results, discussing implications, if any. Included for the first time this year are data from air and water samples routinely collected from onsite locations. The report also summarizes significant environmental activities at the INEL Site during 1985, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) groundwater monitoring program

  18. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  19. Measurement quality assurance for radioassay laboratories

    International Nuclear Information System (INIS)

    McCurdy, D.E.

    1993-01-01

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, open-quotes Measurement Quality Assurance For Radioassay Laboratories.open-quotes The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory's specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations

  20. Inertial fusion research at Lawrence Livermore National Laboratory: program status and future applications

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1986-01-01

    The objectives of the Lawrence Livermore National Laboratory (LLNL) Laser Fusion Program are to understand and develop the science and technology required to utilize inertial confinement fusion (ICF) for both military and commercial applications. The results of recent experiments are described. We point out the progress in our laser studies, where we continue to develop and test the concepts, components, and materials for present and future laser systems. While there are many potential commercial applications of ICF, we limit our discussions to electric power production

  1. Integrated Support Environment (ISE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...

  2. ABACC laboratories quality assurance through Secondary Standards Exchange Program

    International Nuclear Information System (INIS)

    Guidicini, Olga Mafra; Thompson, Jay; Soriano, Michael

    2003-01-01

    In September 1999, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the New Brunswick Laboratory (NBL) of the U.S. Department of Energy, started a new cooperative activity with, among other objectives, the production and characterization of a traceable uranium secondary standard and the performance of the Third Round Robin for ABACC's laboratory network. Brazil and Argentina have fabricated UO 2 pellets for use as a secondary standard. Samples from the two batches were sent to NBL for the determination of the reference values for both uranium concentration (%U) and isotopic composition for each batch. ABACC and NBL then organized the Third ABACC Round Robin for Brazilian and Argentine laboratories that are part of the ABACC network. The laboratories comprising the network can be used to analyze real samples collected during the ABACC inspections. The Brazilian and Argentine pellets were distributed to all the laboratories together with the protocol to be followed for the uranium concentration analysis, the forms for reporting the measurement results, and natural UO 2 pellets (CETAMA OU1) to be used as reference material. For the laboratories with capability of measuring isotopics, NBL reference material CRM 125-A was provided. Several laboratories from each country provided results. As soon as the measurement results were sent to the organizers, they were statistically evaluated by NBL. During a meeting held at ABACC headquarters with the participation of NBL representatives, the ABACC technical support officer, and representatives of all the participant laboratories, the results were discussed and compared with the reference values. All the laboratories had the occasion, in an open discussion, to explain and show the difficulties and problems they faced during the exercise. ABACC had the opportunity not only to judge the quality of the measurements these laboratories performed, but also to determine

  3. Data base management for the Remedial Action Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Cushman, R.M.; Faulkner, M.A.; Horwedel, B.M.

    1986-08-01

    The Oak Ridge National Laboratory's (ORNL's) Remedial Action Program was established to provide appropriate corrective measures at over 140 sites that were contaminated with radioactive and/or hazardous chemical wastes. To achieve this goal, numerous and varied studies are being conducted which will result in the collection of an unprecedented amount of data for the ORNL site. To manage such data effectively and efficiently, a computerized data base is being developed. The data base provides a unified repository for all data generated within the Remedial Action Program, to allow for necessary storage, manipulation, analyses, assessment, display, and report generation. Data base management for the Remedial Action Program is documented in this report by: (1) defining the organization of the data management staff and the services provided; (2) describing the design of the data base, including its management system, organization, and applications; (3) providing examples of the current and anticipated tasks; and (4) discussing quality assurance measures implemented to control the accuracy of the data entries and the security of the data

  4. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  5. The direction of the laboratories

    International Nuclear Information System (INIS)

    Blanquet, S.

    1988-01-01

    In the scope of the presentation of the 1988 Polytechnic School (France) research programs, the activities concerning each laboratory, are summarized. Several aspects of the programs are considered: the main projects, the results, the planned researches and the technical means. The personnel of the laboratory, their number in the different categories, the published papers, the patents and the thesis are included [fr

  6. Participation of the IPEN/CNEN/SP Environmental Diagnostic Division on programs of laboratory intercomparisons in environmental samples

    International Nuclear Information System (INIS)

    Cotrim, Marycel Barboza; Sato, Ivone Mulako; Salvador, Vera Lucia R.; Dantas, Elizabeth Sonoda Keiko; Cantagallo, Maria Ines; Lemes, Marcos Jose L.; Scapin, Marcos Antonio; Sisti, Cristina; Silveira, Elias Santana; Furusawa, Helio Akira; Pires, Maria Aparecida Faustino

    2003-01-01

    The present work presents the participation of the Environmental Diagnostic Division Laboratories (MQA) at the intercomparison national and international laboratories, (PI/SABESP - Interlaboratory Sao Paulo, Brazil, Program; Program for Interlaboratorial Analytic Quality Control of Metals in Water (CBM/COMETRO); Programa para La Calidad de las Mediciones Quimicas (PCQM/INTI) - Argentine, and the Commission d'Etablissement des Methodes d'Analyse, France (CETAMA/CEA). Those essay providers have using statistical tests such as the t-Student, Zscore and Cochran and Grubbs for the data evaluations. The obtained results are presented involving the analytical such as atomic absorption spectrometry: flame, graphite oven and hydride generation (AAS), emission spectrometry with induced plasma (ICP-OES), X-ray fluorescence WD-XRFS), ion chromatography and voltametry (VRA). The elements such as B, Al, K, Mg, Ca, Cr, Fe, Co, Cu, Zn and Pb, and the anions such as Cl-, NO 3 - , SO 4 2- and F - , were determined at trace level (mgL -1 ), and the elements such as Cr, As, Cd, Pb e Hg, at the trace level (μgL -1 ) in water matrices. The evaluation of analytical results, in the period 1997 to 2002, demonstrate a continuous improvement evidencing the importance of Laboratories participation at those type of exercises

  7. San Francisco District Laboratory (SAN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesFood Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  8. Electro-Optics/Low Observables Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optics/Low Observables Laboratory supports graduate instruction for students enrolled in the Low Observables program. Its purpose is to introduce these...

  9. Work plan for the Oak Ridge Reservation ecological monitoring and assessment program

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Sample, B.E.; Suter, G.W. II; Turner, M.G.; Loar, J.M.; Barnthouse, L.W.

    1994-08-01

    This plan describes an approach for developing an ecological monitoring and assessment program (EMAP) for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR). Such a program is required to assess existing ecological risks, to predict changes in those ecological risks from proposed remedial actions, and to monitor the effectiveness of remedial actions in reducing ecological risks. Ecological risk assessments must be based on Reservation-level data for those widespread or wide-ranging plant and animal species that occupy the entire ORR. In recognition of this need, Region 4 of the US Environmental Protection Agency has specifically requested that DOE develop a Reservation-wide monitoring and assessment program. The current strategy distinguishes four types of potentially contaminated areas: (1) source operable units (OUs), which may contain waste disposal areas, (2) groundwater aquifers that are potentially contaminated by source OUs, (3) aquatic integrator OUs which are streams and associated floodplains that drain source OUs, and (4) the terrestrial integrator, which encompasses the Reservation. Source OUs may contain sources of contamination that potentially impact local plant and animal population and communities that are restricted to the areal extent of the OU. Such local impacts must be assessed for each OU. However, these source OUs also contribute to risks within the aquatic OUs and within the Reservation-wide terrestrial ecosystem. Therefore, remedial investigations at source OUs must provide data necessary to support ecological risk assessments at the larger scales

  10. Quality assurance programs at the PNL calibrations laboratory

    International Nuclear Information System (INIS)

    Piper, R.K.; McDonald, J.C.; Fox, R.A.; Eichner, F.N.

    1993-03-01

    The calibrations laboratory at Pacific Northwest Laboratory (PNL) serves as a radiological standardization facility for personnel and environmental dosimetry and radiological survey instruments. As part of this function, the calibrations laboratory must maintain radiological reference fields with calibrations traceable to the National Institute of Standards and Technology (NIST). This task is accomplished by a combination of (1) sources or reference instruments calibrated at or by NIST, (2) measurement quality assurance (MQA) interactions with NIST, and (3) rigorous internal annual and quarterly calibration verifications. This paper describes a representative sample of the facilities, sources, and actions used to maintain accurate and traceable fields

  11. Oral Anatomy Laboratory Examinations in a Physical Therapy Program

    Science.gov (United States)

    Fabrizio, Philip A.

    2013-01-01

    The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight-hour days.…

  12. Improved functional overview of protein complexes using inferred epistatic relationships

    LENUS (Irish Health Repository)

    Ryan, Colm

    2011-05-23

    Abstract Background Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. Results We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. Conclusion Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.

  13. Radiation and Health Technology Laboratory Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  14. 7 CFR 996.21 - USDA laboratory.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing Service, USDA, which chemically analyze peanuts for aflatoxin content. ...

  15. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  16. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    Science.gov (United States)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  17. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  18. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  19. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  20. Status report on US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control and accounting

    International Nuclear Information System (INIS)

    Mullen, M.

    1996-01-01

    In April 1994, a new program of cooperation on nuclear materials protection, control, and accounting (MPC and A) was initiated between (1) the US Department of Energy and its laboratories and (2) nuclear institutes and enterprises of the Russian Federation. The program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting Program (Lab-to-Lab MPC and A Program); it is one of several, complementary US-Russian MPC and A programs. The purpose of the Lab-to-Lab MPC and A Program is to accelerate progress toward a goal that is vital to the national security interests of both countries: reducing the risk of nuclear weapons proliferation by strengthening MPC and A systems. In its first two years, the program has made significant progress and has expanded to include many additional Russian participants. It has also fostered a spirit of mutual understanding, partnership, and respect between US and Russian nuclear specialists, which has paved the way for advances in other MPC and A and nuclear security cooperative efforts. This paper reviews the current status of the program. In addition to summarizing the background and objectives of the program, the paper describes highlights of recent work and outlines future directions for Lab-to-Lab MPC and A cooperation

  1. Emotional intelligence in medical laboratory science

    Science.gov (United States)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  2. Data of evolutionary structure change: 1ANCA-2HNTE [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ANCA-2HNTE 1ANC 2HNT A E IVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAA...> 0 1ANC A 1ANC...1 1.00 16.75 C e-map> ILE ASP ASN ASN LEU THR LYS ARG ASP PHE ASN CA 5.65 3.82 ASP CA 3.82 ILE CA ...21.33 C e-map> ILE ASP ARG ASP LEU ASN

  3. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    International Nuclear Information System (INIS)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table

  4. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table.

  5. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  6. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  7. In situ vitrification program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Loehr, C.A.; Merrill, S.K.

    1991-01-01

    A program to demonstrate the viability of in situ vitrification (ISV) technology in remediating a buried mixed transuranic (TRU) waste site is under way at the Idaho National Engineering Laboratory (INEL). The application of the technology to buried waste is being evaluated as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) feasibility study. The ISV thermal treatment process converts contaminated soil into a chemically inert and stable glass and crystalline product. The process uses joule heating, accomplished by applying electric potential to electrodes that are placed in the soil to initiate and maintain soil melting. Organic contaminants in the soil are destroyed or removed while inorganic contaminants, including radionuclides, are incorporated into the stable, glass-like product or volatilized. Off-gases are collected in a confinement hood over the melt area and processed through an off-gas treatment system. The paper illustrates and describes the ISV process

  8. Director, Laboratory Animal Care and Use Section

    Data.gov (United States)

    Federal Laboratory Consortium — The NIAMS Laboratory Animal Care and Use Section (LACU) provides support to all NIAMS Intramural Research Program (IRP) Branches and Laboratories using animals. The...

  9. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  10. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  11. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  12. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  13. Georgia Public Health Laboratory, Decatur, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This case study was prepared as one in a series for the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new and retrofit laboratory buildings in both the public and the private sectors. The energy-efficient elements of the laboratory featured in this case study-the Georgia Public Health Laboratory, Decatur, Georgia-include sustainable design features, light-filled interior spaces for daylighting, closely grouped loads (such as freezers), the use of recirculated air in administrative areas, direct digital controls for heating and cooling equipment, sunscreens, and low-emissivity window glazing. These elements, combined with an attractive design and well-lighted work spaces, add up to a building that ranks high in comfort and low in energy use.

  14. Waste reduction program at Oak Ridge National Laboratory during CY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.

    1990-05-01

    Hazardous, radioactive, and mixed wastes are generated at Oak Ridge National Laboratory (ORNL). The State of Tennessee has requested that ORNL organize the waste streams into approximately 30 generic categories for the CY 1989 report so the information is more manageable. The wide diversity of waste complicates both management and compliance with reporting requirements that are designed to apply to production facilities. In recent years, increased effort has been devoted to the minimization of hazardous and radioactive wastes at ORNL. Policy statements supporting such efforts have been issued by both Martin Marietta Energy Systems, Inc., and ORNL management. Motivation is found in federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, and limited disposal options and facility capacities. ORNL's waste minimization efforts have achieved some success. However, because of the diversity and predominantly nonroutine nature of ORNL's containerized wastes, goals for their reduction are difficult to establish. Efforts continue to establish goals that account separately for wastes generated from laboratory cleanouts, to avoid a waste minimization penalty'' for this good housekeeping practice. Generator evaluations to prioritize hazardous waste streams for waste minimization opportunities are planned for FY 1990. These are important first steps to enable the waste reduction program to assign realistic goals. 22 refs., 13 figs., 10 tabs.

  15. Waste reduction program at Oak Ridge National Laboratory during CY 1989

    International Nuclear Information System (INIS)

    Schultz, R.M.

    1990-05-01

    Hazardous, radioactive, and mixed wastes are generated at Oak Ridge National Laboratory (ORNL). The State of Tennessee has requested that ORNL organize the waste streams into approximately 30 generic categories for the CY 1989 report so the information is more manageable. The wide diversity of waste complicates both management and compliance with reporting requirements that are designed to apply to production facilities. In recent years, increased effort has been devoted to the minimization of hazardous and radioactive wastes at ORNL. Policy statements supporting such efforts have been issued by both Martin Marietta Energy Systems, Inc., and ORNL management. Motivation is found in federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, and limited disposal options and facility capacities. ORNL's waste minimization efforts have achieved some success. However, because of the diversity and predominantly nonroutine nature of ORNL's containerized wastes, goals for their reduction are difficult to establish. Efforts continue to establish goals that account separately for wastes generated from laboratory cleanouts, to avoid a waste minimization ''penalty'' for this good housekeeping practice. Generator evaluations to prioritize hazardous waste streams for waste minimization opportunities are planned for FY 1990. These are important first steps to enable the waste reduction program to assign realistic goals. 22 refs., 13 figs., 10 tabs

  16. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues and tank shell. This strategy is discussed in detail in this report

  17. Data Processing and Programming Applied to an Environmental Radioactivity Laboratory

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gasco, C.; Palacios, M. A.

    2009-01-01

    This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)

  18. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    International Nuclear Information System (INIS)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory

  19. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  20. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  1. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Directory of Open Access Journals (Sweden)

    Chan Chris CS

    2010-01-01

    Full Text Available Abstract Background A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses. Results Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses. Conclusions These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

  2. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  3. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  5. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  6. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation

    Science.gov (United States)

    Tai, Robert H.; Kong, Xiaoqing; Mitchell, Claire E.; Dabney, Katherine P.; Read, Daniel M.; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative…

  7. Module Architecture for in Situ Space Laboratories

    Science.gov (United States)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  8. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  9. Algunos aspectos sicolinguisticos de la Instruccion Programada en el laboratorio de idiomas (Some Psycholinguistic Aspects of Programed Instruction in the Language Laboratory).

    Science.gov (United States)

    Monteverde G., Luisa

    1971-01-01

    This paper presents ideas on using programed instruction in the language laboratory for second language learning. Linear programing is more suited to language instruction than is branching, because the former more easily allows comparison between the students' and teachers' solutions and is technically less complicated and less expensive to…

  10. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1997

    International Nuclear Information System (INIS)

    Bivins, S.R.; Stoetzel, G.A.

    1998-07-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the US Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)--(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years (CY) 1993--1996 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 93 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during CY 1997. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusions that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  11. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1998

    International Nuclear Information System (INIS)

    GA Stoetzel; SR Bivins

    1999-01-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1997 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 97 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1998. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  12. 10 CFR 26.155 - Laboratory personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Laboratory personnel. 26.155 Section 26.155 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories Certified by the Department of Health and Human... ensure the continued competency of laboratory personnel by documenting their in-service training...

  13. Laboratory performance evaluation reports for management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Hensley, J.E.; Bass, D.A.; Johnson, P.L.; Marr, J.J.; Streets, W.E.; Warren, S.W.; Newberry, R.W.

    1995-01-01

    In support of the US DOE's environmental restoration efforts, the Integrated Performance Evaluation Program (IPEP) was developed to produce laboratory performance evaluation reports for management. These reports will provide information necessary to allow DOE headquarters and field offices to determine whether or not contracted analytical laboratories have the capability to produce environmental data of the quality necessary for the remediation program. This document describes the management report

  14. Photovoltaic module certification/laboratory accreditation criteria development: Implementation handbook

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C.R. [National Renewable Energy Laboratory, Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International, Inc., Tempe, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

    1996-08-01

    This document covers the second phase of a two-part program. Phase I provided an overview of the structure and function of typical product certification/laboratory accreditation programs. This report (Phase H) provides most of the draft documents that will be necessary for the implementation of a photovoltaic (PV) module certification/laboratory accreditation program. These include organizational documents such as articles of incorporation, bylaws, and rules of procedure, as well as marketing and educational program documents. In Phase I, a 30-member criteria development committee was established to guide, review and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories. A similar committee was established for Phase II; the criteria implementation committee consisted of 29 members. Twenty-one of the Phase I committee members also served on the Phase II committee, which helped to provide program continuity during Phase II.

  15. Relay testing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1989-01-01

    Brookhaven National Laboratory (BNL) is conducting a seismic test program on relays. The purpose of the test program is to investigate the influence of various designs, electrical and vibration parameters on the seismic capacity levels. The first series of testing has been completed and performed at Wyle Laboratories. The major part of the test program consisted of single axis, single frequency sine dwell tests. Random multiaxis, multifrequency tests were also performed. Highlights of the test results as well as a description of the testing methods are presented in this paper. 10 figs

  16. Laboratory of Brain and Cognition (LBC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Brain and Cognition (LBC) is a branch of the Division of Intramural Research Programs ( DIRP) at the National Institute of Mental Health ( NIMH)....

  17. The SRS analytical laboratories strategic plan

    International Nuclear Information System (INIS)

    Hiland, D.E.

    1993-01-01

    There is an acute shortage of Savannah River Site (SRS) analytical laboratory capacity to support key Department of Energy (DOE) environmental restoration and waste management (EM) programs while making the transition from traditional defense program (DP) missions as a result of the cessation of the Cold War. This motivated Westinghouse Savannah River Company (WSRC) to develop an open-quotes Analytical Laboratories Strategic Planclose quotes (ALSP) in order to provide appropriate input to SRS operating plans and justification for proposed analytical laboratory projects. The methodology used to develop this plan is applicable to all types of strategic planning

  18. Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clark, C. Jr.

    1993-07-01

    A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D ampersand D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities

  19. A summary of the environmental restoration program retrieval demonstration project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-02-01

    This report provides a summary of the Environmental Restoration Program's Retrieval Demonstration Project at the Idaho National Engineering Laboratory. This project developed concepts for demonstrating facilities and equipment for the retrieval of buried transuranic mixed waste at the INEL. Included is a brief assessment of the viability, cost effectiveness, and safety of retrieval based on the developed concept. Changes made in Revision 1 reflect editorial changes only. 31 refs., 1 fig

  20. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: wbdamatto@ipen.br, E-mail: mppotiens@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  1. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2013-01-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  2. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  3. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  4. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  5. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  6. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  7. Updating the immunology curriculum in clinical laboratory science.

    Science.gov (United States)

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.

  8. Regulation of SFRP-1 expression in the rat dental follicle.

    Science.gov (United States)

    Liu, Dawen; Yao, Shaomian; Wise, Gary E

    2012-01-01

    Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.

  9. Program plan for the development of Solid Waste Storage Area 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Gonzales, S.; Byerly, D.W.

    1984-02-01

    The need for additional waste-burial facilities for low-level radwastes generated at Oak Ridge National Laboratory mandates development of a program to identify and evaluate an acceptable new Solid Waste Storage Area (SWSA 7). Provisions of this program include plans for identifying and evaluating SWSA 7 as well as plans for the necessary technical efforts for designing and monitoring a waste-burial facility. The development of the program plan is in accordance with general procedures issued by ORNL, and if adhered to, should meet proposed criteria and guidelines issued by such organizations as the Nuclear Regulatory Commission, the Environmental Protection Agency, the Department of Energy, and the Tennessee Department of Health. The major parts of the program include plans for (1) the acquisition of data necessary for geotechnical evaluation of a site, (2) the engineering design and construction of a facility which would be compatible with the geology and the classification and particular character of the wastes to be disposed, and (3) a monitoring system for achieving health and safety standards and environmental protection. The objective of the program, to develop SWSA 7, can only be achieved through sound management. Plans provided in this program which will ensure successful management include quality assurance, corrective measures, safety analysis, environmental impact statements, and schedule and budget

  10. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  11. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  12. Laboratory microfusion capability study

    International Nuclear Information System (INIS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report

  13. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M Analisa [Los Alamos National Laboratory; Uribe, Eva C [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Stevens, Rebecca S [Los Alamos National Laboratory

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

  14. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  15. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  16. THE LANGUAGE LABORATORY--WORK SHEET.

    Science.gov (United States)

    CROSBIE, KEITH

    DESIGNED FOR TEACHERS AND ADMINISTRATORS, THIS WORK SHEET PROVIDES GENERAL AND SPECIFIC INFORMATION ABOUT THE PHILOSOPHY, TYPES, AND USES OF LANGUAGE LABORATORIES IN SECONDARY SCHOOL LANGUAGE PROGRAMS. THE FIRST SECTION DISCUSSES THE ADVANTAGES OF USING THE LABORATORY EFFECTIVELY TO REINFORCE AND CONSOLIDATE CLASSROOM LEARNING, AND MENTIONS SOME…

  17. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  18. Hanford Laboratories Operation monthly activities report, September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-15

    This is the monthly report for the Hanford Laboratories Operation, September, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, 4000 program research and development, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  19. Current status of the waste identification program at AECL's Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Edwards, N.W.; TerHuurne, M.A.

    1998-01-01

    The management of routine operating waste by Waste Management and Decommissioning (WM and D) at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) is supported by the Waste Identification (WI) Program. The principal purpose of the WI Program is to minimize the cost and the effort associated with waste characterization and waste tracking, which are needed to optimize waste handling, storage and disposal. The major steps in the WI Program are: (1) identify and characterize the processes that generate the routine radioactive wastes accepted by WM and D - radioisotope production, radioisotope use, reactor operation, fuel fabrication, et cetera (2) identify and characterize the routine blocks of waste generated by each process or activity - the initial characterization is based on inference (process knowledge) (3) prepare customized, template data sheets for each routine waste block - templates contain information such as package type, waste material, waste type, solidifying agent, the average non-radiological contaminant inventory, the average radiological contaminant inventory, and the waste class (4) ensure generators 'use the right piece of paper with the right waste' when they transfer waste to WM and D - that is they use the correct template data sheets to transfer routine wastes, by: identifying and marking waste collection points in the generator's facility; ensuring that generators implement effective waste collection/segregation procedures; implementing standard procedures to transfer waste to WM and D; and, auditing waste collection and segregation within a generator's facility (5) determine any additional waste block characterization requirements (is anything needed beyond the original characterization by process knowledge?) This paper describes the WI Program, it provides an example of its implementation, and it summarizes the current status of its implementation for both CRL and non-CRL waste generators. (author)

  20. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  1. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  2. Energy management action plan: Developing a strategy for overcoming institutional barriers to municipal energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Energy offices working to improve efficiency of local government facilities face not only technical tasks, but institutional barriers, such as budget structures that do not reward efficiency, a low awareness of energy issues, and purchasing procedures based only on minimizing initial cost. The bureau, in working to remove such barriers in San Francisco, has identified 37 institutional barriers in areas such as operations & maintenance, purchasing, and facility design; these barriers were then reorganized into three groupings-- policy & attitudes, budget & incentives, and awareness & information-- and mapped. This map shows that the barriers mutually reinforce each other, and that a holistic approach is required for permanent change. The city`s recreation & parks department was used as a model department, and information about facility energy use was compiled into a departmental energy review. Staff interviews showed how barriers affect conservation. The bureau then generated ideas for projects to remove specific barriers and rated them according to potential impact and the resources required to implement them. Four of the six projects selected focused on maintenance staff: a cost- sharing lighting retrofit program, a boiler efficiency program, a departmental energy tracking system, and a budgetary incentive program for conservation. The other two projects are city-wide: promotion of a new term contract supplying energy-efficient light materials, and publication/distribution of ENERGY NEWS newsletter. A general methodology, the EMAP Strategy Guide, has been created to assist other energy offices in developing EMAPs.

  3. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  4. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  5. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. These tanks are defined as Category D tanks because they are existing tank systems without secondary containment that are removed from service. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues (i.e., contents after tank has been emptied) and tank shell. This strategy is discussed in detail in this report

  6. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  7. MIPS to the "4", Mathematics Improves Promotes Students. A Program of Mathematics for the Elementary Math Laboratory. Limited Edition.

    Science.gov (United States)

    Wichita Unified School District 259, KS.

    This book is a guide for the reinforcement of the elementary mathematics laboratory program. It uses a hands-on and activity approach with maximum involvement of the students. Reinforcement strategies for the first three phases (concrete, semiconcrete, and semiabstract) of each mathematics concept are suggested. Also included are specific job…

  8. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  9. Missing value imputation for epistatic MAPs

    LENUS (Irish Health Repository)

    Ryan, Colm

    2010-04-20

    Abstract Background Epistatic miniarray profiling (E-MAPs) is a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. An effective method for imputing interactions would therefore increase the types of possible analysis, as well as increase the potential to identify novel functional interactions between gene pairs. Several methods have been developed to handle missing values in microarray data, but it is unclear how applicable these methods are to E-MAP data because of their pairwise nature and the significantly larger number of missing values. Here we evaluate four alternative imputation strategies, three local (Nearest neighbor-based) and one global (PCA-based), that have been modified to work with symmetric pairwise data. Results We identify different categories for the missing data based on their underlying cause, and show that values from the largest category can be imputed effectively. We compare local and global imputation approaches across a variety of distinct E-MAP datasets, showing that both are competitive and preferable to filling in with zeros. In addition we show that these methods are effective in an E-MAP from a different species, suggesting that pairwise imputation techniques will be increasingly useful as analogous epistasis mapping techniques are developed in different species. We show that strongly alleviating interactions are significantly more difficult to predict than strongly aggravating interactions. Finally we show that imputed interactions, generated using nearest neighbor methods, are enriched for annotations in the same manner as measured interactions. Therefore our method potentially

  10. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  11. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  12. Quality assurance program on the individual monitory service of the Protection Radiology Laboratory of the Universidade Federal de Pernambuco, Recife, PE (Brazil): preliminary results

    International Nuclear Information System (INIS)

    Antonino, Paulo H.D.; Filho, Joao A.; Silveira, Sueldo V.

    1996-01-01

    The current stage of the quality assurance program on the individual monitoring service of the Protection Radiology Laboratory of the Universidade Federal de Pernambuco, Recife, PE (Brazil) is presented. The program emphasizes the personnel training and its development is focused to meet national and international standards requirements

  13. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  14. The French underground research laboratory program, contribution to the feasibility and safety studies of geological disposal

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Niezborala, J.M.; Ben Slimane, K.

    2001-01-01

    The paper presents the content of the research program to be performed during the construction and the operation of the National Agency for Radioactive Waste Management's (ANDRA) underground laboratory, located in the east of France. The general architecture of the program is presented. Emphasis is put on an iterative process, the purpose of which is mainly to: Prepare site behavior models before starting each phase of the field work (bore hole drilling, shaft sinking, construction of underground galleries, specific experiments); Test and check each model through actual observations and measurements; Adjust the models to take into account the results of the former phase and predict the results expected during the following one. All these models, after validation, will be exploited during the assessment of the safety related performance of the components of the potential repository as well as the whole facility; Obtain necessary data related to the feasibility study of the disposal facility (mechanical design, thermal design, etc.,) and its safety assessment. The relationship between the experimental program, the conceptual design program and the safety evaluation program is explained in order to reach the project objectives which is the final document set to be provided to French authorities in 2006 according to the French law of December 1991. (author)

  15. Deployment of Remotely-Accessible Robotics Laboratory

    Directory of Open Access Journals (Sweden)

    Richard Balogh

    2012-03-01

    Full Text Available Robotnacka is an autonomous drawing mobile robot, designed for eaching beginners in the Logo programming language. It can also be used as an experimental platform, in our case in a remotely accessible robotic laboratory with the possibility to control the robots via the Internet. In addition to a basic version of the robot a version equipped with a gripper is available too, one with a wireless camera, and one with additional ultrasonic distance sensors. The laboratory is available on-line permanently and provides a simple way to incorporate robotics in teaching mathematics, programming and other subjects. The laboratory has been in use several years. We provide description of its functionality and summarize our experience.

  16. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow

  17. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  18. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  19. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  20. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  1. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  2. The Laboratory Diagnosis of HIV Infections

    Directory of Open Access Journals (Sweden)

    Margaret Fearon

    2005-01-01

    Full Text Available HIV diagnostic testing has come a long way since its inception in the early 1980s. Current enzyme immunoassays are sensitive enough to detect antibody as early as one to two weeks after infection. A variety of other assays are essential to confirm positive antibody screens (Western blot, polymerase chain reaction [PCR], provide an adjunct to antibody testing (p24 antigen, PCR, or provide additional information for the clinician treating HIV-positive patients (qualitative and quantitative PCR, and genotyping. Most diagnostic laboratories have complex testing algorithms to ensure accuracy of results and optimal use of laboratory resources. The choice of assays is guided by the initial screening results and the clinical information provided by the physician; both are integral to the laboratory's ability to provide an accurate laboratory diagnosis. Laboratories should also provide specific information on specimen collection, storage and transport so that specimen integrity is not compromised, thereby preserving the accuracy of laboratory results. Point of Care tests have become increasingly popular in the United States and some places in Canada over the past several years. These tests provide rapid, on-site HIV results in a format that is relatively easy for clinic staff to perform. However, the performance of these tests requires adherence to good laboratory quality control practices, as well as the backup of a licensed diagnostic laboratory to provide confirmation and resolution of positive or indeterminate results. Laboratory quality assurance programs and the participation in HIV proficiency testing programs are essential to ensure that diagnostic laboratories provide accurate, timely and clinically relevant laboratory results.

  3. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Pond, D.J.; Waters, R.M.

    1991-01-01

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  4. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  5. Department of Energy multiprogram laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel recommends the following major roles and missions for the laboratories: perform the Department's national trust fundamental research missions in the physical sciences, including high energy and nuclear physics, and the radiobiological sciences including nuclear medicine; sustain scientific staff core capabilities and specialized research facilities for laboratory research purposes and for use by other Federal agencies and the private sector; perform independent scientific and technical assessment or verification studies required by the Department; and perform generic research and development where it is judged to be in the public interest or where for economic or technical reasons industry does not choose to support it. Organizational efficiencies if implemented by the Department could contribute toward optimal performance of the laboratories. The Panel recommends that a high level official, such as a Deputy Under Secretary, be appointed to serve as Chief Laboratory Executive with authority to help determine and defend the research and development budget, to allocate resources, to decide where work is to be done, and to assess periodically laboratory performance. Laboratory directors should be given substantially more flexibility to deploy resources and to initiate or adapt programs within broad guidelines provided by the Department. The panel recommends the following actions to increase the usefulness of the laboratories and to promote technology transfer to the private sector: establish user groups for all major mission programs and facilities to ensure greater relevance for Department and laboratory efforts; allow the laboratories to do more reimbursable work for others (other Federal agencies, state and local governments, and industry) by relaxing constraints on such work; implement vigorously the recently liberalized patent policy; permit and encourage joint ventures with industry

  6. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  7. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Tour of the Standards and Calibrations Laboratory

    International Nuclear Information System (INIS)

    Elliott, J.H.

    1978-01-01

    This tour of Lawrence Livermore Laboratory's Standards and Calibrations Laboratory is intended as a guide to the capabilities of and services offered by this unique laboratory. Described are the Laboratory's ability to provide radiation fields and measurements for dosimeters, survey instruments, spectrometers, and sources and its available equipment and facilities. The tour also includes a survey of some Health Physics and interdepartmental programs supported by the Standards and Calibrations Laboratory and a listing of applicable publications

  9. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs

  10. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM. ANNUAL REPORT TO THE DEPARTMENT OF ENERGY, DECEMBER 1998.

    Energy Technology Data Exchange (ETDEWEB)

    OGEKA,G.J.

    1998-12-31

    In FY 1998, the BNL LDBD Program funded 20 projects, 4 of which were new starts, at a total cost of $2,563,681. The small number of new starts was a consequence of severe financial problems that developed between FY 1997 and 1998. Emphasis was given to complete funding for approved multi-year proposals. Following is a table which lists all of the FY 1998 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which follow. A total of 17 informal publications (abstracts, presentations, BNL reports and workshop papers) were reported and an additional 13 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for a patent. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. In conclusion, a significant measure of success is already attributable to the FY 1998 LDBD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  12. Status of the U.S. Department of Energy/National Renewable Energy Laboratory Avian Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K. C.

    1999-06-21

    As wind energy development expands, concern over possible negative impacts of wind farms on birds remains an issue to be addressed. The concerns are twofold: (1) possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act and/or the Endangered Species Act, and (2) the effect of avian mortality on bird populations. To properly address these concerns, the National Renewable Energy Laboratory (NREL), working collaboratively with stakeholders including utilities, environmental groups, consumer advocates, regulators, government officials, and the wind industry, supports an avian-wind interaction research program. The objectives of the program are to conduct and sponsor scientifically based research that will ultimately lead to the reduction of avian fatality due to wind energy development throughout the United States. The approach for this program involves cooperating with the various stakeholders to study the impacts of current wind plants on avian populations, developing approaches to siting wind plants that avoid avian problems in the future, and investigating methods for reducing or eliminating impacts on birds due to the development of wind energy. This paper summarizes the research projects currently supported by NREL.

  13. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  14. Performance of the participant laboratories in the National Intercomparison Program (PNI) in the period from 1991 to 2013

    International Nuclear Information System (INIS)

    Tauhata, Luiz; Vianna, Maria Elizabeth Couto Machado; Oliveira, Antonio Eduardo de; Braganca, Maura Julia Camara da Silva; Ferreira, Ana Cristina de Melo

    2015-01-01

    The statistical evaluation of the data of 23 years of the Brazilian Intercomparison Program shows the performance of the 24 Participant Laboratories of the country in the determination of 29 radionuclides in 10600 spiked samples of low level activity values. The results were shown a good performance and an evolution of the quality control for analyses of this kind of samples in this time period. (author)

  15. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program.

    Science.gov (United States)

    Fischer, Andrew H; Schwartz, Mary R; Moriarty, Ann T; Wilbur, David C; Souers, Rhona; Fatheree, Lisa; Booth, Christine N; Clayton, Amy C; Kurtyz, Daniel F I; Padmanabhan, Vijayalakshmi; Crothers, Barbara A

    2014-09-01

    Immunohistochemistry (IHC) is important for cytology but poses special challenges because preanalytic conditions may differ from the conditions of IHC-positive controls. To broadly survey cytology laboratories to quantify preanalytic platforms for cytology IHC and identify problems with particular platforms or antigens. To discover how validation guidelines for HER2 testing have affected cytology. A voluntary survey of cytology IHC practices was sent to 1899 cytology laboratories participating in the College of American Pathologists Nongynecologic Cytopathology Education Program in the fall of 2009. A total of 818 laboratories (43%) responded to the survey by April 2010. Three hundred fourty-five of 791 respondents (44%) performed IHC on cytology specimens. Seventeen different fixation and processing platforms prior to antibody reaction were reported. A total of 59.2% of laboratories reported differences between the platforms for cytology specimens and positive controls, but most (155 of 184; 84%) did not alter antibody dilutions or antigen retrieval for cytology IHC. When asked to name 2 antibodies for which staining conditions differed between cytology and surgical samples, there were 18 responses listing 14 antibodies. A total of 30.6% of laboratories performing IHC offered HER2 testing before publication of the 2007 College of American Pathologists/American Society of Clinical Oncologists guidelines, compared with 33.6% afterward, with increased performance of testing by reference laboratories. Three laboratories validated a nonformalin HER2 platform. The platforms for cytology IHC and positive controls differ for most laboratories, yet conditions are uncommonly adjusted for cytology specimens. Except for the unsuitability of air-dried smears for HER2 testing, the survey did not reveal evidence of systematic problems with any antibody or platform.

  16. Supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    This document reports on the status of supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory. Included is information on hydrology studies in wells open through large intervals, unsaturated zone contamination and transport processes, surface water-groundwater interactions, regional groundwater flow, and independent testing of air quality data

  17. A focused ethnographic study of Alberta cattle veterinarians' decision making about diagnostic laboratory submissions and perceptions of surveillance programs.

    Directory of Open Access Journals (Sweden)

    Kate Sawford

    Full Text Available The animal and public health communities need to address the challenge posed by zoonotic emerging infectious diseases. To minimize the impacts of future events, animal disease surveillance will need to enable prompt event detection and response. Diagnostic laboratory-based surveillance systems targeting domestic animals depend in large part on private veterinarians to submit samples from cases to a laboratory. In contexts where pre-diagnostic laboratory surveillance systems have been implemented, this group of veterinarians is often asked to input data. This scenario holds true in Alberta where private cattle veterinarians have been asked to participate in the Alberta Veterinary Surveillance Network-Veterinary Practice Surveillance, a platform to which pre-diagnostic disease and non-disease case data are submitted. Consequently, understanding the factors that influence these veterinarians to submit cases to a laboratory and the complex of factors that affect their participation in surveillance programs is foundational to interpreting disease patterns reported by laboratories and engaging veterinarians in surveillance. A focused ethnographic study was conducted with ten cattle veterinarians in Alberta. Individual in-depth interviews with participants were recorded and transcribed to enable thematic analysis. Laboratory submissions were biased toward outbreaks of unknown cause, cases with unusual mortality rates, and issues with potential herd-level implications. Decreasing cattle value and government support for laboratory testing have contributed to fewer submissions over time. Participants were willing participants in surveillance, though government support and collaboration were necessary. Changes in the beef industry and veterinary profession, as well as cattle producers themselves, present both challenges and opportunities in surveillance.

  18. An innovative educational approach to professional development of medical laboratory scientists in Botswana

    Directory of Open Access Journals (Sweden)

    Magowe MK

    2014-04-01

    Full Text Available Mabel KM Magowe,1 Jenny H Ledikwe,2,3 Ishmael Kasvosve,1 Robert Martin,2 Kabo Thankane,3 Bazghina-werq Semo2,31Faculty of Health Sciences, University of Botswana, Gaborone, Botswana; 2Department of Global Health, University of Washington, Seattle, Washington, USA; 3Botswana International Training and Education Center for Health, Gaborone, BotswanaPurpose: To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor’s degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs.Methods: This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc Medical Laboratory Sciences (MLS bridging program, along with the graduates’ current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates’ confidence, in terms of key laboratory competencies.Results: The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05. Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for

  19. Laboratory development and testing of spacecraft diagnostics

    Science.gov (United States)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  20. Annual summary report on the surveillance and maintenance activities for the Oak Rige National Laboratory Environmental Restoration Program for fiscal year 1995

    International Nuclear Information System (INIS)

    1995-11-01

    This Annual Summary Report on the Surveillance and Maintenance Activities for the Oak Ridge National Laboratory Environmental Restoration Program for Fiscal Year 1995 was prepared to communicate the accomplishments of the Program during fiscal year 1995. This work was performed under work breakdown structure element 1.4.12.6.1.14.20 (activity data sheet 3314, ''Remedial Action Surveillance and Maintenance''). Publication of this document meets the Life Cycle Baseline milestone date of November 30, 1995. This document provides the accomplishments for both the Remedial Action and Decontamination and Decommissioning Surveillance and Maintenance programs

  1. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  2. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  3. Feasibility and Benefit of Incorporating a Multimedia Cadaver Laboratory Training Program into a Didactics Curriculum for Junior and Senior Surgical Residents.

    Science.gov (United States)

    Simmerman, Erika; Simmerman, Andrew; Lassiter, Randi; King, Ray; Ham, Ben; Adam, Bao-Ling; Ferdinand, Colville; Holsten, Steven

    2018-04-17

    As operative experience in general surgery decreases and work hour limitations increase there is less exposure of surgical residents to advanced vascular and trauma exposures. Many institutions have demonstrated benefits of cadaver laboratory courses. We have incorporated a multimedia cadaver laboratory course into our general surgery residency didactics curriculum with the objective to demonstrate a benefit of the program as well as the feasibility of incorporation. This is a prospective study at a tertiary care institution including general surgery residents within our residency program. A curriculum was designed, requiring residents to complete multimedia learning modules before both a trauma cadaver laboratory and vascular exposure cadaver laboratory. Outcome measures included self-efficacy/confidence (precourse and postcourse 5-point Likert surveys), knowledge (net performance on precourse and postcourse multiple choice examinations), and resident perception of the curriculum (postcourse 5-point Likert survey). Data were analyzed using ANOVA paired t-tests. For the vascular cadaver laboratory, resident knowledge improved overall from an average of 41.2% to 50.0% of questions correct (p = 0.032) and self-efficacy/confidence improved by 0.59 from 1.52 to 2.11 out of 5 (p = 0.009). Median confidence is 1.37 out of 5 and 2.32 out of 5, before and after course, respectively. Wilcoxon nonparametric test reveals a p = 0.011. Resident's perception of the usefulness of the laboratory evaluation was 3.85 out 5. There were 85.71% agreed that the laboratory is useful and 14.29% were disagree. The Z-score is -0.1579 (means 0.1579 standard deviations a score of 3.85 below the benchmark). The percentile rank is 56.27%. The coefficient of variation is 24.68%. For the trauma cadaver laboratory, resident knowledge improved overall from an average of 55.89% to 66.17% of questions correct (p = 0.001) and self-efficacy/confidence improved by 0.75 from 1.68 out of 5 to 2.43 out of

  4. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  5. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  6. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  7. Liquid waste management systems improvement programs at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Emelity, L.A.; Stanley, P.M.; Buchholz, J.R.

    1980-01-01

    Programs at the Los Alamos Scientific Laboratory (LASL) are approximately 50% nuclear weapons related and 50% general energy research and development. Since its beginning in the 1940's liquid industrial wastes have been contaminated with isotopes of plutonium, americium, uranium and various beta-gamma emitters, but management and treatment efforts were, due to the proportions of the various isotopes, directed primarily at the alpha emitters. The evolution in management methods at LASL since the 40's has been reported in previous papers. This treatise discusses the most recent three-phase effort to modernize the systems to the probable standards of the next twenty years. The first phase, provision of double-encased, continuously monitored sewer system will soon be under construction. The second phase, modernization of the treatment facilities, has been funded and is in the final design stage. The third phase, not funded as of this date, will provide lined, monitored solar evaporation ponds for total management of the treated industrial wastes with no release of any liquid to the environment

  8. [Evaluation of clinical laboratories--assurance of their quality and competence].

    Science.gov (United States)

    Kawai, Tadashi

    2007-01-01

    Since ISO 15189:2003 was published, the accreditation program of clinical laboratories based on ISO 15189 has been introduced in many countries, except for those in USA where all clinical laboratories must be required to follow the federal law, CLIA'88. It will certainly help the accredited clinical laboratories improve their quality and competence. In relation to the activity of JCTLM, reference measurement laboratories will be accredited, based on ISO 15195 which is now under its review and amendment by ISO/TC212/WG2. In Japan, JCCLS (Japanese Committee for Clinical Laboratory Standards) and JAB (Japan Accreditation Board for Conformity Assessment) cojointly started the accreditation program for clinical laboratories, based on ISO 15189:2003, and a total of 15 laboratories including university hospitals, community hospitals and independent clinical laboratories have been accredited up until the end of 2006.

  9. Safety in laboratories: Indian scenario.

    Science.gov (United States)

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  10. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  11. Maintenance Implementation Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Stark, T.E.

    1992-10-01

    This Maintenance Implementation Plan (MIP) has been developed for the 222-S Laboratory at Hanford. It is based on assessments of the existing maintenance program to the requirements specified by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program (DOE 1990), Chapter II, Change 3. The results of these assessments were evaluated to determine corrective actions required. The 222-S Laboratory is currently supporting the waste management, chemical processing, and environmental monitoring programs presently under Westinghouse Hanford Company (Westinghouse Hanford) responsibility. This is done through quality analytical and process chemistry services

  12. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies

  13. Superconductor development program at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1978-01-01

    Winding of a Nb--Ti test coil at the Lawrence Livermore Laboratory is nearly complete. The conductor in this coil operates in a maximum field of 7.5 T and provides the 2-T field required by the Mirror Fusion Test Facility. Nb 3 Sn multifilamentary conductors, made using the ''bronze'' technique, appear capable of providing the higher fields needed by commercial reactors

  14. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  15. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  16. The State Public Health Laboratory System.

    Science.gov (United States)

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  17. Internal quality control indicators of cervical cytopathology exams performed in laboratories monitored by the External Quality Control Laboratory.

    Science.gov (United States)

    Ázara, Cinara Zago Silveira; Manrique, Edna Joana Cláudio; Tavares, Suelene Brito do Nascimento; de Souza, Nadja Lindany Alves; Amaral, Rita Goreti

    2014-09-01

    To evaluate the impact of continued education provided by an external quality control laboratory on the indicators of internal quality control of cytopathology exams. The internal quality assurance indicators for cytopathology exams from 12 laboratories monitored by the External Quality Control Laboratory were evaluated. Overall, 185,194 exams were included, 98,133 of which referred to the period preceding implementation of a continued education program, while 87,061 referred to the period following this intervention. Data were obtained from the Cervical Cancer Database of the Brazilian National Health Service. Following implementation of the continued education program, the positivity index (PI) remained within recommended limits in four laboratories. In another four laboratories, the PI progressed from below the limits to within the recommended standards. In one laboratory, the PI remained low, in two laboratories, it remained very low, and in one, it increased from very low to low. The percentage of exams compatible with a high-grade squamous intraepithelial lesion (HSIL) remained within the recommended limits in five laboratories, while in three laboratories it progressed from below the recommended levels to >0.4% of the total number of satisfactory exams, and in four laboratories it remained below the standard limit. Both the percentage of atypical squamous cells of undetermined significance (ASC-US) in relation to abnormal exams, and the ratio between ASC-US and intraepithelial lesions remained within recommended levels in all the laboratories investigated. An improvement was found in the indicators represented by the positivity index and the percentage of exams compatible with a high-grade squamous intraepithelial lesion, showing that the role played by the external quality control laboratory in providing continued education contributed towards improving laboratory staff skills in detecting cervical cancer precursor lesions.

  18. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  19. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    Science.gov (United States)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of

  20. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…