WorldWideScience

Sample records for program cool valley

  1. 1982 environmental-monitoring program report for the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    1983-05-01

    This report is prepared and submitted in accordance with the requirements of DOE Order 5484.1 and presents environmental monitoring program data collected at the West Valley Demonstration Project (WVDP) site from February 26, 1982, through December 31, 1982. The WVDP objective is to solidify approximately 600,000 gallons of high-level liquid radioactive waste stored at the former Nuclear Fuel Services reprocessing facility at West Valley, New York. Nuclear Fuel Services conducted an environmental monitoring program in accordance with Nuclear Regulatory Commission requirements which were appropriate for shutdown maintenance operations conducted at the site. That program was embraced by West Valley Nuclear Services Company (WVNS) at the time of transition (February 26, 1982) and will be modified to provide a comprehensive monitoring program in preparation for waste solidification operations scheduled for startup in June 1988. As such, the data presented in this report is considered preoperational in nature in accordance with DOE Order 5484.1, Chapter III, Paragraph 1. The environmental monitoring program planned for the operating phase of the project will be fully implemented by fiscal year 1985 and will provide at least two years of preoperational data prior to startup

  2. The MuCool Test Area and RF Program

    International Nuclear Information System (INIS)

    Torun, Y.; Huang, D.; Norem, J.; Palmer, Robert B.; Stratakis, Diktys; Bross, A.; Chung, M.; Jansson, A.; Moretti, A.; Yonehara, K.; Li, D.

    2010-01-01

    The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. Here we give an overview of the program, which includes a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field, which allows for a detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

  3. High ca-hardness treatment program of secondary cooling system in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. K.; Jeon, B. J.

    2002-01-01

    The secondary cooling water in HANARO had been treated with a low ca-hardness treatment program. The program has now been altered to a high ca-hardness treatment program to reduce the consumption of service water and the maintenance cost. After the alteration of the water treatment method, the water quality of the secondary cooling system is maintained below the limit of water quality control as same as before the alteration. This means indirectly that the secondary cooling system is not much affected by the water quality. To confirm this fact, it is necessary to analyze the effects of corrosion, scale, sludgy and slime that the water qualities are directly interfered with the secondary cooling system. We analyzed the deteriorating effects with a water monitoring equipment connected to the secondary cooling system to measure the monitoring parameters every 6 months. As a result, it is confirmed through this examination that the effects are maintained below the control limits and the high ca-hardness treatment program is applicable to treatment of the water quality of the secondary cooling system in HANARO

  4. Analysis of well ER-18-2 testing, Western Pahute Mesa - Oasis Valley FY 2000 testing program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-18-2 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-18-2 Data Report for Development and Hydraulic Testing.

  5. Analysis of Well ER-EC-7 Testing, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-7 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program was documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-7 Data Report for Development and Hydraulic Testing.

  6. Analysis of Well ER-EC-8 testing, Western Pahute Mesa-Oasis Valley FY 2000 testing program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-8 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa-Oasis Valley, Well ER-EC-8 Data Report for development and Hydraulic Testing.

  7. Analysis of Well ER-EC-4 Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-4 during the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-4 Data Report for Development and Hydraulic Testing.

  8. Analysis of Well ER-EC-5 Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-5 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-5 Data Report for Development and Hydraulic Testing.

  9. Analysis of Well ER-EC-6 Testing, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-6 during the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa-Oasis Valley, Well ER-EC-6 Data Report for Development and Hydraulic Testing.

  10. Analysis of Well ER-EC-1 Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-1 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-1 Data Report for Development and Hydraulic Testing.

  11. Analysis of Well ER-EC-2a Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-2a during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-2a Data Report for Development and Hydraulic Testing.

  12. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  13. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  14. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core..., entitled, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors,'' is...

  15. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  16. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  17. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  18. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  19. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  20. Cooling System: Automotive Mechanics Instructional Program. Block 6.

    Science.gov (United States)

    O'Brien, Ralph D.

    The last of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the automotive cooling system at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  1. KUEBEL. A Fortran program for computation of cooling-agent-distribution within reactor fuel-elements

    International Nuclear Information System (INIS)

    Inhoven, H.

    1984-12-01

    KUEBEL is a Fortran-program for computation of cooling-agent-distribution within reactor fuel-elements or -zones of theirs. They may be assembled of max. 40 cooling-channels with laminar up to turbulent type of flow (respecting Reynolds' coefficients up to 2.0E+06) at equal pressure loss. Flow-velocity, dynamic flow-, contraction- and friction-losses will be calculated for each channel and for the total zone. Other computations will present mean heat-up of cooling-agent, mean outlet-temperature of the core, boiling-temperature and absolute pressure at flow-outlet. All characteristic coolant-values, including the factor of safety for flow-instability of the most-loaded cooling gap are computed by 'KUEBEL' too. Absolute pressure at flow-outlet or is-factor may be defined as dependent or independent variables of the program alternatively. In latter case 3 variations of solution will be available: Adapted flow of cooling-agent, inlet-temperature of the core and thermal power. All calculations can be done alternatively with variation of parameters: flow of cooling-agent, inlet-temperature of the core and thermal power, which are managed by the program itself. 'KUEBEL' is able to distinguish light- and heavy-water coolant, flow-direction of coolant and fuel elements with parallel, rectangular, respectively concentric, cylindrical shape of their gaps. Required material specifics are generated by the program. Segments of fuel elements or constructively unconnected gaps can also be computed by means of interposition of S.C. 'phantom channels'. (orig.) [de

  2. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  3. Health physics educational program in the Tennessee Valley Authority

    International Nuclear Information System (INIS)

    Holley, Wesley L.

    1978-01-01

    In the spring of 1977, the Radiological Hygiene Branch of the Tennessee Valley Authority (TVA) instituted a training program for health physics technicians to ensure availability of qualified personnel for the agency, which is rapidly becoming the world's largest nuclear utility. From this, a health physics education program is developing to also include health physics orientation and retraining for unescorted entry into nuclear power plants, health physics training for employees at other (non-TVA) nuclear plants, specialized health physics training, and possibly theoretical health physics courses to qualify technician-level personnel for professional status. Videotaped presentations are being used extensively, with innovations such as giving examinations by videotape of real-life, in-plant experiences and acted out scenarios of health physics procedures; and teaching health physics personnel to observe, detect, and act on procedural, equipment, and personnel deficiencies promptly. Video-taped lectures are being used for review and to complement live lectures. Also, a 35-mm slide and videotape library is being developed on all aspects of the operational health physics program for nuclear plants using pressurized and boiling water reactors. (author)

  4. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    Science.gov (United States)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  5. Development of components for the gas-cooled fast breeder reactor program

    International Nuclear Information System (INIS)

    Dee, J.B.; Macken, T.

    1977-01-01

    The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core. The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. (Auth.)

  6. Summary of ORNL high-temperature gas-cooled reactor program

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) efforts on the High-Temperature Gas-Cooled Reactor (HTGR) Program have been on HTGR fuel development, fission product and coolant chemistry, prestressed concrete reactor vessel (PCRV) studies, materials studies, graphite development, reactor physics and shielding studies, application assessments and evaluations and selected component testing

  7. Environment, safety and health, management and organization compliance assessment, West Valley Demonstration Program, West Valley, New York

    International Nuclear Information System (INIS)

    1989-08-01

    An Environment, Safety and Health ''Tiger Team'' Assessment was conducted at the West Valley Demonstration Project. The Tiger Team was chartered to conduct an onsite, independent assessment of WVDP's environment, safety and health (ES ampersand H) programs to assure compliance with applicable Federal and State laws, regulations, and standards, and Department of Energy Orders. The objective is to provide to the Secretary of Energy the following information: current ES ampersand H compliance status of each facility; specific noncompliance items; ''root causes'' for noncompliance items; evaluation of the adequacy of ES ampersand H organization and resources (DOE and contractor) and needed modifications; and where warranted, recommendations for addressing identified problem areas

  8. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  9. Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers

    Directory of Open Access Journals (Sweden)

    Victor-Eduard Cenușă

    2017-08-01

    Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.

  10. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  11. The cryogenic cooling program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80 degrees. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 μrad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ''thin'' crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K

  12. Cooling with solar energy - Tests in practice passed

    International Nuclear Information System (INIS)

    Lainsecq de, M.

    2004-01-01

    This article discusses the use of solar energy to provide summer cooling. Starting with centuries-old methods of adiabatic cooling used in the southern valleys of the Grisons in Switzerland, various methods of using solar energy to generate cold are examined. The article mentions the increasing load being placed on electricity supplies by conventional cooling systems and describes two real-life installations that use solar energy to generate cold. The first installation described uses evacuated tube collectors to provide around 45,000 kilowatt-hours of energy for an office complex, of which one third is used in summer to generate cold. The second installation features flat-plate collectors and two absorption refrigeration machines. Financial and environmental balances are presented and discussed

  13. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [Department of ATF R& D, Nuclear Fuel Research and Development Center, China Nuclear Power Technology Research Institute Co., Ltd., China General Nuclear Power Corporation (CGN), Shenzhen, 518026 (China); Li, Rui, E-mail: li-rui@cgnpc.com.cn [Department of ATF R& D, Nuclear Fuel Research and Development Center, China Nuclear Power Technology Research Institute Co., Ltd., China General Nuclear Power Corporation (CGN), Shenzhen, 518026 (China); Sun, Maozhou; Ren, Qisen [Department of ATF R& D, Nuclear Fuel Research and Development Center, China Nuclear Power Technology Research Institute Co., Ltd., China General Nuclear Power Corporation (CGN), Shenzhen, 518026 (China); Liu, Tong, E-mail: liutong@cgnpc.com.cn [Department of ATF R& D, Nuclear Fuel Research and Development Center, China Nuclear Power Technology Research Institute Co., Ltd., China General Nuclear Power Corporation (CGN), Shenzhen, 518026 (China); Short, Michael P., E-mail: hereiam@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139 (United States)

    2016-12-15

    Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed. - Highlights: • ATF materials developed for LWRs could be candidate materials for the LBE-cooled ADS program. • Similar material design and protection philosophies are utilized in both programs. • Unique challenges of LBE-cooled ADS systems could possibly be addressed by LWR ATF materials. • More coordinated testing should be performed between the ATF and ADS programs.

  14. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  15. High-temperature gas-cooled reactor safety-reliability program plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The purpose of this document is to present a safety plan as part of an overall program plan for the design and development of the High Temperature Gas-Cooled Reactor (HTGR). This plan is intended to establish a logical framework for identifying the technology necessary to demonstrate that the requisite degree of public risk safety can be achieved economically. This plan provides a coherent system safety approach together with goals and success criterion as part of a unifying strategy for licensing a lead reactor plant in the near term. It is intended to provide guidance to program participants involved in producing a technology base for the HTGR that is fully responsive to safety consideration in the design, evaluation, licensing, public acceptance, and economic optimization of reactor systems.

  16. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S... Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the... power plants. ADDRESSES: Please refer to Docket ID NRC-2012-0293 about the availability of information...

  17. 76 FR 75830 - Proposed Establishment of the Inwood Valley Viticultural Area

    Science.gov (United States)

    2011-12-05

    ..., which are evidence of the 1864 plantings, are still found in one of the Inwood Valley vineyards. After a... sides. In addition, a reduction in solar radiation in the early and late months of the growing season... slopes on Bear Creek Ridge, which increase the amount of warming solar radiation and moderate the cooling...

  18. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    International Nuclear Information System (INIS)

    2005-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004

  1. Topographic evolution of Yosemite Valley from Low Temperature Thermochronology

    Science.gov (United States)

    Tripathy-Lang, A.; Shuster, D. L.; Cuffey, K. M.; Fox, M.

    2014-12-01

    In this contribution, we interrogate the timing of km-scale topography development in the region around Yosemite Valley, California. Our goal is to determine when this spectacular glacial valley was carved, and how this might help address controversy surrounding the topographic evolution of the Sierra Nevada. At the scale of the range, two rival hypotheses are each supported by different datasets. Low-temperature thermochronology supports the idea that the range has been high-standing since the Cretaceous, whereas geomorphic evidence suggests that much of the elevation of the Sierra Nevada was attained during the Pliocene. Recent work by McPhillips and Brandon (2012) suggests instead that both ideas are valid, with the range losing much elevation during the Cenozoic, but regaining it during Miocene surface uplift.At the local scale, the classic study of Matthes (1930) determined that most of Yosemite Valley was excavated by the Sherwin-age glaciation that ended ~1 Ma. The consensus view is in agreement, although some argue that nearby comparable valleys comparable were carved long ago (e.g., House et al., 1998). If the Quaternary and younger glaciations were responsible for the bulk of the valley's >1 km depth, we might expect apatite (U-Th)/He ages at the valley floor to be histories at these locations, these data constrain patterns of valley topography development through time. We also supplement these data with zircon 4He/3He thermochronometry, which is a newly developed method that provides information on continuous cooling paths through ~120-220 °C. We will present both the apatite and zircon 4He/3He data and, in conjunction with thermo-kinematic modeling, discuss the ability and limitations of these data to test models of Sierra Nevada topography development through time. Matthes (1930) USGS Professional Paper House et al. (1998) Nature McPhillips and Brandon (2012) American Journal of Science

  2. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  3. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies

  4. Advanced gas cooled nuclear reactor materials evaluation and development program

    International Nuclear Information System (INIS)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed

  5. Mishal: A Case Study of a Deradicalization and Emancipation Program in SWAT Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Zubair Azam

    2017-06-01

    Full Text Available Nestled in the SWAT valley lies Pakistan’s earliest known deradicalization initiative for former militants, the Mishal Deradicalization and Emancipation Program (DREP. The Deradicalization program was launched following a military operation in 2009 against the Pakistan wing of the Taliban, namely, the Tehrik-e-Taliban Pakistan (TTP. The program aimed to deradicalize and rehabilitate arrested militants, with what officials claim is a 99 percent success rate and with more than 2,500 former Taliban fighters now ‘reformed’. The program abides by a ‘no blood on hand’ policy, whereby it only takes in militants who have not caused any bodily harm to others. In this paper, we analyze the deradicalization program and highlight the limits and challenges it faces. The paper also highlights the common individual and environmental factors among the beneficiary population of the deradicalization program. This study finds that most participants of the program belonged to large or broken families with weak socio-economic profiles. Additionally, these individuals had very little technical knowledge of religion. This study also finds that the program is more oriented towards re-integration rather than deradicalization due to its policy of inducting only low and mid-level cadre militants. The program also has other severe limitations including lack of credible religious scholars, limited financial and human resources.

  6. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  7. Geothermal resource assessment of western San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.

    1983-01-01

    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  8. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  9. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  10. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Taie, K.R.

    1994-01-01

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP

  11. Predicting the valley physics of silicon quantum dots directly from a device layout

    Science.gov (United States)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  12. Increased body mass of ducks wintering in California's Central Valley

    Science.gov (United States)

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  13. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  14. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  15. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  16. Decontamination of Beaver Valley steam generators using the CAN-DEREM process

    International Nuclear Information System (INIS)

    Speranzini, R.A.; Helms, M.

    1991-08-01

    Three steam generator channelheads at the Beaver Valley Unit 1 Power Station were decontaminated in September and October of 1989 using the CAN-DEREM process. With system volumes of about 12 000 L for each steam generator, this was the first major application of the CAN-DEREM process, following closely after the successful 1989 April CAN-DEREM decontamination of a 1000 L Indian Point-2 recirculating heat exchanger. The Successful applications were the culmination of several years of laboratory study directed at assessing and subsequently altering the CAN-DECON formulation. The studies were initiated after the CAN-DECON process was implicated in causing intergranular attack in sensitized 304 stainless steel after the Peach Bottom-2 recirculating water cooling unit (RWCU) decontamination in early 1984. The degree of attack was similar to that observed on piping from several early Boiling Water Reactors, and this was the only instance of reactor artifacts revealing intergranular attack after a CAN-DECON decontamination. Nevertheless, utilities were reluctant to use CAN-DECON after the Peach Bottom-2 decontamination. In response the utility concerns, the CAN-DECON formulation was modified to produce the even-less-corrosive CAN-DEREM formulation. In this report, the results of the laboratory corrosion study are briefly summarized along with the results of pre-decontamination assessments using Beaver Valley specimens, and the results of the actual steam generator decontaminations. The results show quite clearly the decontamination effectiveness and the low corrosiveness of the CAN-DEREM process. As a result of the successful laboratory program and demonstrations, the CAN-DEREM process is currently being qualified for use in full heat transport systems of Pressurized Water Reactors in a major program being carried out by Westinghouse in the United States

  17. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  18. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    1980-01-01

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  19. The United States fluoride-salt-cooled high-temperature reactor program

    International Nuclear Information System (INIS)

    Holcomb, David E.

    2013-01-01

    The United States is pursuing the development of fluoride-salt-cooled high-temperature reactors (FHRs) through the Department of Energy's Office of Nuclear Energy (DOE-NE). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. FHRs, in principle, have the potential to economically generate large amounts of electricity while maintaining full passive safety. FHRs, however, remain a longer-term power production option. A principal development focus is, thus, on shortening, to the extent possible, the overall development time by focusing initial efforts on the longest lead-time issues. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid-metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High-temperature gas-cooled reactors provide experience with coated-particle fuel and graphite components. Light-water reactors show the potential of transparent, high-heat-capacity coolants with low chemical reactivity. The FHR development efforts include both reactor concept and technology developments and are being broadly pursued. Oak Ridge National Laboratory (ORNL) provides technical leadership to the effort and is performing concept development on both a large base-load-type FHR as well as a small modular reactor (SMR) in addition to performing a broad scope of technology developments. Idaho National Laboratory (INL) is providing coated-particle fuel irradiation testing as well as developing high-temperature steam generator technology. The Massachusetts Institute of Technology (MIT

  20. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  1. Reporting on nuclear power: the Tennessee Valley case

    International Nuclear Information System (INIS)

    Shapley, D.

    1977-01-01

    The Tennessee Valley Authority (TVA), by deciding to have 90 percent of its new generating capacity nuclear, has made the valley a testing ground for civilian nuclear power, but valley newspapers have not provided consumers with enough information on either the pros or cons. A 1975 Browns Ferry plant fire, the most serious in the history of the civilian nuclear industry, prompted some nuclear critics to question TVA's competence to plan and manage the program. Newspapers carried wire-service stories of the fire, while their editorials gave strong support to TVA and the effort to reopen the plant. Valley newspapers have traditionally favored TVA as a powerful economic and political force which has brought many benefits. Local pride in the Oak Ridge Laboratory and plant facilities and the Federal fast-breeder reactor project headquarters also enhanced the positive attitude of the press, which tended to report details but not question nuclear safety or TVA ability. Newspapers have also failed to question TVA's claims that rates will decline as nuclear plants begin operating. A review of relevant news stories during the 1975--1976 period addresses the press coverage and notes its failure to question whether power demands justify TVA's plant construction program. Knowledgeable consultants are available to provide information on the issues, while editors are advised to give comprehensive, critical coverage and avoid promotion

  2. Beaver Valley Power Station and Shippingport Atomic Power Station. 1984 Annual environmental report, radiological. Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the Radiological Environmental Monitoring Program conducted during 1984 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station. The Radiological Environmental Program consists of on-site sampling of water and gaseous effluents and off-site monitoring of water, air, river sediments, soils, food pathway samples, and radiation levels in the vicinity of the site. This report discusses the results of this monitoring during 1984. The environmental program outlined in the Beaver Valley Power Station Technical Specifications was followed throughout 1984. The results of this environmental monitoring program show that Shippingport Atomic Power Station and Beaver Valley Power Station operations have not adversely affected the surrounding environment. 23 figs., 18 tabs

  3. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  4. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    Science.gov (United States)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  5. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  6. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    International Nuclear Information System (INIS)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs

  7. Circulating and plateout activity program for gas-cooled reactors with arbitrary radioactive chains

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1978-03-01

    A time-dependent method for estimating the fuel body, circulating, plateout, and filter inventory of a high temperature gas-cooled reactor (HTGR) during normal operation is discussed. The primary coolant model accounts for the source, buildup, decay, and cleanup of isotopes that are gas borne inside the prestressed concrete reactor vessel (PCRV). This method has been implemented in the SUVIUS computer program that is described in detail

  8. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  9. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  10. Selection of a cryostabilized Nb3Sn conductor cooling system for the large coil program

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Murphy, J.H.; Jones, C.K.

    1977-01-01

    The Large Coil Project (LCP) is a program to design, fabricate and test relatively large superconducting toroidal field coils for tokamak fusion reactor applications. Some basic requirements that affect the conductor design are cryostabilization, 8 tesla peak magnetic field, and a specified maximum refrigeration load. The engineering considerations that led to the selection of a forced flow supercritical helium-cooled cable conductor are described. Comparisons of forced flow supercritical helium cooled cable conductors with pool boiling cooled monolithic conductors were made with regard to a number of factors such as the thermal capacity of the coolant, the thermal design margins, propensity for conductor normalization, predictability of the thermal-flow performance, controllability of the cooling conditions, etc. It was concluded that, although there exists a number of design uncertainties and engineering problems, forced flow supercritical helium cooled conductors can provide a far more reliable coil design than the pool boiling monolithic concept. The design of a cryostabilized Nb 3 Sn hollow cabled conductor involved detailed considerations of the need for fully transposed conductor strands, the nonuniform void and helium flow distributions, heat transfer from the twisted conductor strands, and helium flow rate and pump work requirements. The uncertainties in the design are discussed and the specifications of a reference Nb 3 Sn conductor concept that meets the design requirements and constraints are presented

  11. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  12. Cost-Benefit Analysis applied to the natural gas program for vehicles in the Metropolitan Area of the Aburra Valley

    International Nuclear Information System (INIS)

    Saldarriaga Isaza, Carlos Adrian; Vasquez Sanchez, Edison; Chavarria Munera, Sergio

    2011-01-01

    This article presents the evaluation of the natural gas program for vehicles applied in Metropolitan Area of the Aburra Valley. By using the Cost- Benefit Analysis method, four cost variables were identified: private, fiscal, gas tax, and conversion tax; and three types of benefits: private, fiscal and social. For the environmental social benefit estimation the benefit transfer technique was employed, carrying out meta-analysis function estimation. The cost-benefit net outcome is positive and favors the program application in the study site; in real terms the total profits are about COP$ 803265 million for the complete eight year period it took place (2001- 2008).

  13. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  14. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  15. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  16. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  17. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  18. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  19. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    International Nuclear Information System (INIS)

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-01-01

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements

  20. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    knickpoints) across most major tributaries south of the Rhone River. The timing of apparent uplift events correlates well with that of cool Marine Isotope Stages derived from global oxygen isotope data up to the beginning of MIS 12. A weak correlation up to the beginning of MIS 18 suggests initial glacial incision may have occurred some time during MIS 14 - 20, and valley development has since been driven by fluvial processes. Leith, K., J. R. Moore, F. Amann, and S. Loew (2013), Sub-glacial extensional fracture development and implications for Alpine valley evolution, J. Geophys. Res. Earth Surf., doi:10.1002/2012JF002691.

  1. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  2. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  3. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    groundwater samples collected in proximity to structures that transmit thermal fluids, suggesting the brine may be thermal in nature. On the western side of the valley at the Lake City mud volcano, the deep brine-meteoric water mixture subsequently boils in the shallow subsurface, precipitates calcite, and re-equilibrates at about 130 °C. On the eastern side of the valley, meteoric fluid mixes to a greater extent with the deep brine, cools conductively without boiling, and the composition is modified as dissolved elements are sequestered by secondary minerals that form along the cooling and outflow path at temperatures geothermal fluids at lower temperatures during outflow explains why subsurface temperature estimates based on classical geothermometry methods are highly variable, and fail to agree with temperature estimates based on dissolved sulfate-oxygen isotopes and results of classical and multicomponent geothermometry applied to reconstructed deep well fluids. The proposed model is compatible with the idea suggested by others that thermal fluids on the western and eastern side of the valley have a common source, and supports the hypothesis that low temperature re-equilibration during west to east flow is the major control on hot spring fluid compositions, rather than dilution, evaporation, or differences in rock type.

  4. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  5. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  6. Device-Level Models Using Multi-Valley Effective Mass

    Science.gov (United States)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  7. Improvement of coal focus and cooling towers of COFRENTES NPP

    International Nuclear Information System (INIS)

    Martinez, I.; Bogh, P.

    1998-01-01

    Cofrentes Nuclear Power Plant is performing a improving program of its cooling towers based on the filling revamping and cooling water circuit improvement. Furthermore, and as consequence of the acquired experience on cooling towers due to the mentioned program, Cofrentes NPP has decided to follow up with this project from a different point of view based on the thermal-hydraulic optimization of the cooling process inside the towers. This program, which is going to be carried out by Cofrentes NPP, Iberinco and Energy Planning and Power Generation (EPPG) provides an improvement on the thermal profile and of the draught inside the cooling towers by improving the water distribution in the towers active area. In order to perform such a program is needed to fulfill a test program to assure a guaranteed performance gain. In this way, Iberinco is developing a test procedure which improves the results which are obtained with the present standards used commonly by the industry. As a consequence of this program, Cofrentes is expecting to obtain a gain of 5 to 8 MWe with a revenue period of 4 to 5 months, results validated in another foreigner Plant which have developed a similar program. (Author)

  8. High-level waste characterization at West Valley: Progress report for the period 1982-1985

    International Nuclear Information System (INIS)

    Rykken, L.E.

    1986-01-01

    This is a report on the work that was carried out at West Valley under the Waste Characterization Program. This Program covered a number of tasks in support of the design of facilities for the pretreatment and final encapsulation of the high level waste stored at West Valley. In particular, necessary physical, chemical, and radiological characterization of high-level reprocessing waste stored in two vaulted underground tanks was carried out over the period 1982 to 1985. 21 refs., 77 figs., 28 tabs

  9. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  10. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    Science.gov (United States)

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  11. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    Science.gov (United States)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  12. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  13. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  14. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  15. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  16. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  17. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  18. Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD System for Mist-Cooling

    Directory of Open Access Journals (Sweden)

    Yiannis Ampatzidis

    2018-02-01

    Full Text Available California growers in the San Joaquin Valley believe that climate change will affect the pistachio yield dramatically. As the central valley fog disappears, insufficient dormant chill accumulation results in poor flowering synchrony, flower quality, and fruit set in this dioecious species. We have developed a novel, user-friendly, and low-cost Voice-Controlled Wireless Solid Set Canopy Delivery (VCW-SSCD system to increase bud chill accumulation with evaporative cooling on sunny (winter days. This system includes: (i an automated solid-state canopy delivery (SSCD system; (ii a wireless weather-, crop-related data acquisition system; (iii a Voice-Controlled (VC system using Amazon Alexa; (iv a mobile application to visualize the collected data and wirelessly control the SSCD system; and (v a smart control system. The proposed system was deployed and evaluated in a commercial pistachio orchard in Bakersfield, CA. The system worked well with no reported errors. Results demonstrated the system’s ability to cool bud temperatures in a low relative humidity climate. At an ambient temperature of 10–20 °C, bud temperatures were lowered 5–10 °C.

  19. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  20. Atmospheric dispersion experiments over complex terrain in a spanish valley site (Guardo-90)

    International Nuclear Information System (INIS)

    Ibarra, J.I.

    1991-01-01

    An intensive field experimental campaign was conducted in Spain to quantify atmospheric diffusion within a deep, steep-walled valley in rough, mountainous terrain. The program has been sponsored by the spanish companies of electricity and is intended to validate existing plume models and to provide the scientific basis for future model development. The atmospheric dispersion and transport processes in a 40x40 km domain were studied in order to evaluate SO 2 and SF 6 releases from an existing 185 m chimney and ground level sources in a complex terrain valley site. Emphasis was placed on the local mesoscale flows and light wind stable conditions. Although the measuring program was intensified during daytime for dual tracking of SO 2 /SF 6 from an elevated source, nighttime experiments were conducted for mountain-valley flows characterization. Two principle objectives were pursued: impaction of plumes upon elevated terrain, and diffusion of gases within the valley versus diffusion over flat, open terrain. Artificial smoke flows visualizations provided qualitative information: quantitative diffusion measurements were obtained using sulfur hexafluoride gas with analysis by highly sensitive electron capture gas chromatographs systems. Fourteen 2 hours gaseous tracer releases were conducted

  1. Gas-cooled fast reactor (GCFR) program review committee (PRC). Report No. 13 to members of Helium Breeder Associates (HBA), May 1979 -February 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The responsiveness of the GCFR program structure to changes in design, schedule, and safety issues caused by the decisions to adopt the three-loop over the two-loop primary cooling loop design, to use upflow cooling, and to enhance the natural convection cooling of the plant in a shutdown mode was excellent. The PRC now feels that the criteria for design of a demonstration plant will be manageable and safe. Because of effort to resolve past issues, the PRC has not requested a cost breakdown at this time. It is felt that the HBA effort is properly directed in lieu of the current political malaise regarding future energy supplies and the breeder program in particular. The GCFR is responsive to change and could provide a commercial GCFR before the year 2000

  2. Rock-fall Hazard In The Yosemite Valley, California

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent slope movements in Yosemite Na- tional Park, California. In historical time (1851-2001), more than 400 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the preliminary results of an attempt to assess rockfall hazard in the Yosemite Valley using STONE, a 3-dimensional rock-fall simulation computer program. The software computes 3-dimensional rock-fall trajectories starting from a digital terrain model (DTM), the location of rock-fall release points (source areas), and maps of the dynamic rolling coefficient and of the coefficients of normal and tan- gential energy restitution. For each DTM cell the software also calculates the number of rock falls passing through the cell, the maximum rock-fall velocity and the maxi- mum flying height. For the Yosemite Valley, a DTM with a ground resolution of 10 x 10 m was prepared using topographic contour lines from USGS 1:24,000-scale maps. Rock-fall release points were identified as DTM cells having a slope steeper than 60 degrees, an assumption based on the location of historical rock falls. Maps of the nor- mal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to cali- brate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of the model. The model results are also compared with a geomorphic assessment of rock-fall hazard based on potential energy referred to as a "shadow angle" approach, recently completed for the Yosemite Valley.

  3. Study on the seismic verification test program on the experimental multi-purpose high-temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Taketani, K.; Aochi, T.; Yasuno, T.; Ikushima, T.; Shiraki, K.; Honma, T.; Kawamura, N.

    1978-01-01

    The paper describes a program of experimental research necessary for qualitative and quantitative determination of vibration characteristics and aseismic safety on structure of reactor core in the multipurpose high temperature gas-cooled experimental reactor (VHTR Experimental Reactor) by the Japan Atomic Energy Research Institute

  4. Regional estimates of ecological services derived from U.S. Department of Agriculture conservation programs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom

    2010-01-01

    The Mississippi Alluvial Valley (MAV) is the Nation?s largest floodplain and this once predominantly forested ecosystem provided significant habitat for a diverse flora and fauna, sequestered carbon in trees and soil, and stored floodwater, sediments, and nutrients within the floodplain. This landscape has been substantially altered by the conversion of nearly 75% of the riparian forests, predominantly to agricultural cropland, with significant loss and degradation of important ecosystem services. Large-scale efforts have been employed to restore the forest and wetland resources and the U.S. Department of Agriculture (USDA) Wetlands Reserve Program (WRP) and Conservation Reserve Program (CRP) represent some of the most extensive restoration programs in the MAV. The objective of the WRP is to restore and protect the functions and values of wetlands in agricultural landscapes with an emphasis on habitat for migratory birds and wetland-dependent wildlife, protection and improvement of water quality, flood attenuation, ground water recharge, protection of native flora and fauna, and educational and scientific scholarship.

  5. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  6. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  7. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacremento Valley

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. A preliminary analysis of the HCMM imagery of the project area indicated that locally some differentiation of lithologic units within the Northern Coast Range may be possible. Of significance, however, was a thermally cool linear area that appeared on the 30 May 1978 Nite-IR. This linear feature seemed to coincide with the Bear Mt. Fault and with the axis of the Chico Monocline along the eastern margin of the Sacramento Valley.

  8. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  9. Muon-cooling research and development

    International Nuclear Information System (INIS)

    Kaplan, D.M.

    2004-01-01

    The MuCool R and D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the US and abroad. The intended schedule of work will lead to ionization cooling being established well enough that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation

  10. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  11. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    Science.gov (United States)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  12. West Valley Demonstration Project site environmental report calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  13. West Valley Demonstration Project site environmental report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  14. West Valley Demonstration Project site environmental report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  15. Opening remarks for the Fort Valley Centennial Celebration

    Science.gov (United States)

    G. Sam Foster

    2008-01-01

    The Rocky Mountain Research Station recognizes and values the contributions of our scientists and collaborators for their work over the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky Mountain Research Station is working to improve coordination across its research Program Areas and Experimental Forests and Ranges...

  16. Climate change and the Lower Fraser Valley. rev. ed.

    International Nuclear Information System (INIS)

    Taylor, E.; Langlois, D.

    2000-01-01

    The climatic changes that are expected to occur in British Columbia's Lower Fraser Valley over the next century were described in this report which included information about the science of climate change and the development of global climate models that provide estimates of global climate for the coming century. The confidence that scientists have in these models was reflected in the fact that most can simulate the important seasonal and geographical large scale features of the global climate, and that many of the large scale changes that are effected by greenhouse gas concentrations can be explained in terms of physical processes which operate around the world. The models also reproduce with reasonable accuracy the variations of climate such as the El Nino phenomena., the cooling due to the Mount Pinatubo eruption in 1991 and the global warming that occurred over the past 100 years. Three climate stations were analyzed in this study to assess the climate change of the Valley. Climatic change is influenced by increased concentrations of greenhouse gases in the atmosphere which in turn cause accelerated global warming. Scientists generally believe that the combustion of fossil fuels and other human activities are a major reason for the increased concentration of carbon dioxide. Plant respiration and the decomposition of organic matter releases 10 times more CO 2 than that released anthropogenically, but these releases are in balance with plant photosynthesis. The rate of warming in the Lower Fraser Valley is uncertain, but climate models suggest it could be about 3 to 4 degrees warming with wetter winters and drier summers by the end of the century. The Valley currently has mild temperatures and high precipitation because of its proximity to the Pacific Oceans and the surrounding mountains. Global warming can have an impact on sea levels along the coast, spring flooding, summer drought, coastal ecosystems, air quality, occurrences of forest fires, and recreation

  17. Study on in-service inspection and repair program and related plant design for Japan Sodium-Cooled Fast Reactor (JSFR)

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Suzuki, Shinichi; Kotake, Shoji; Nishiyama, Noboru; Uzawa, Masayuki

    2011-01-01

    Maintenance and repair program and conformity with them were investigated as a part of the conceptual design study of Japan Sodium-cooled Fast Reactor (JSFR). The maintenance program was set by taking the feature of sodium-cooled reactors and domestic practice of LWRs into account. Both of regulatory required inspection and voluntary inspection, which are conducted in the domestic LWRs, were counted. The regulatory required ISI program was based on that of the previous Japanese SFRs, LWRs (JSME S NA1) and liquid metal cooled reactors (ASME section XI division 3). Parts to be inspected, methods of inspection were identified for major structures and components. Concerning the repair program, we set three levels of repair requirements based on estimated frequency of defect and failure during the plant life time. For level 1, which might be occur several times during the plant life time, it is required to be easily repaired in a short period. Access routes and working space are considered in the component design and its arrangement. For level 2, which might be unlikely to occur during the plant life time, it is required to check that the repair work is feasible in a practical time range. For level 3, which frequency is negligible small, repair is not taken into account but the feasibility was investigated. The plant design shall be done so that all of above mentioned inspection and repair can be conducted. It is desired to ensure accessibility for all of the coolant and cover gas boundaries and the internal structures in order to cope with unforeseen troubles. Access routes for the reactor vessel and its internal structures, piping, pumps and intermediate heat exchangers and steam generators were investigated. As the results of that, possible ways for implementation of the maintenance and repair were identified. (author)

  18. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  19. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  20. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  1. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  2. Costs of implementing and maintaining comprehensive school health: the case of the Annapolis Valley Health Promoting Schools program.

    Science.gov (United States)

    Ohinmaa, Arto; Langille, Jessie-Lee; Jamieson, Stuart; Whitby, Caroline; Veugelers, Paul J

    2011-01-01

    Comprehensive school health (CSH) is increasingly receiving renewed interest as a strategy to improve health and learning. The present study estimates the costs associated with implementing and maintaining CSH. We reviewed the accounting information of all schools in the Annapolis Valley Health Promoting Schools (AVHPS) program in 2008/2009. We considered support for nutrition and physical activity programs by the public system, grants, donations, fundraising and volunteers. The annual public funding to AVHPS to implement and maintain CSH totaled $344,514, which translates, on average, to $7,830 per school and $22.67 per student. Of the public funding, $140,500 was for CSH, $86,250 for breakfast programs, $28,750 for school food policy programs, and the remainder for other subsidized programs. Grants, donations and fundraising were mostly locally acquired. They totaled $127,235, which translates, on average, to $2,892 per school or $8.37 per student. The value of volunteer support was estimated to be equivalent to the value of grants, donations and fundraising combined. Of all grants, donations, fundraising and volunteers, 20% was directed to physical activity programs and 80% to nutrition programs. The public costs to implement and maintain CSH are modest. They leveraged substantial local funding and in-kind contributions, underlining community support for healthy eating and active living. Where CSH is effective in preventing childhood overweight, it is most likely cost-effective too, as costs for future chronic diseases are mounting. CSH programs that are proven effective and cost-effective have enormous potential for broad implementation and for reducing the public health burden associated with obesity.

  3. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  4. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  5. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV)

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. Perkiomen Valley Peer Education Program.

    Science.gov (United States)

    Barber, Nicole; And Others

    Adolescence is a vulnerable period of life; teens are faced with challenging issues such as stress and suicide. Facilitating informed decision-making among adolescents requires educational programs that present information in compelling and credible ways. With this in mind, a peer education program was developed, using older students to teach…

  10. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  11. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  12. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  13. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  14. Demonstration of an efficient cooling approach for SBIRS-Low

    Science.gov (United States)

    Nieczkoski, S. J.; Myers, E. A.

    2002-05-01

    The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.

  15. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  17. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  19. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    Science.gov (United States)

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  20. An overview of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Hannum, W.H.; Boswell, M.B.; De Boer, T.K.; Duckworth, J.P.

    1984-01-01

    This session is titled ''DOE Special Waste Management Projects.'' West Valley and TMI are indeed special projects, in that they represent today's problems. They may well have been the two most visible symbols as to how nuclear wastes can poison the entire civilian nuclear power program. Each in its own way has been perceived as a major threat to the environment and to public health and safety; in both cases this threat has been perceived to be grossly more severe than it has been in fact. It is the Department of Energy' intent that both of these problems be made to disappear. This paper serves to introduce a series of paper describing the status of the West Valley Project. In the West Valley case substantial progress is being made and we believe we are well on the way toward transforming what has been a skeleton along the road to progress into positive and unmistakable evidence that high-level nuclear wastes such as those resulting from reprocessing can be managed, understood, and prepared for disposal by a straightforward adaptation and application of existing technologies. Further, we now have evidence that the costs of doing this are not exorbitant. Subsequent papers will describe waste characterization; the plans and designs for solidification; and the ancillary and supporting programs for handling effluents and wastes, for D and D to utilize existing facilities, and environmental support. In this paper we describe the history of this plant and the wastes being used in the demonstration; the legislation and intent of the Project; the accomplishments to date; and the projected schedule and costs

  1. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  2. Vertical transmission of Rift Valley Fever Virus without detectable maternal viremia

    NARCIS (Netherlands)

    Antonis, A.F.G.; Kortekaas, J.A.; Kant-Eenbergen, H.C.M.; Vloet, R.P.M.; Vogel-Brink, A.; Stockhofe, N.; Moormann, R.J.M.

    2013-01-01

    Rift Valley fever virus (RVFV) is a zoonotic bunyavirus that causes abortions in domesticated ruminants. Sheep breeds exotic to endemic areas are reportedly the most susceptible to RVFV infection. Within the scope of a risk assessment program of The Netherlands, we investigated the susceptibility of

  3. West Valley Demonstration Project Annual Site Environmental Report (ASER) Calendar Year (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Alison F. [CH2M Hill BWXT West Valley, LLC, NY (United States); Pendl, Michael P. [CH2M Hill BWXT West Valley, LLC, NY (United States); Steiner, II, Robert E. [CH2M Hill BWXT West Valley, LLC, NY (United States); Fox, James R. [CH2M Hill BWXT West Valley, LLC, NY (United States); Hoch, Jerald J. [CH2M Hill BWXT West Valley, LLC, NY (United States); Williams, Janice D. [CH2M Hill BWXT West Valley, LLC, NY (United States); Wrotniak, Chester M. [CH2M Hill BWXT West Valley, LLC, NY (United States); Werchowski, Rebecca L. [CH2M Hill BWXT West Valley, LLC, NY (United States)

    2017-09-12

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2016. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2016. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2016 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    International Nuclear Information System (INIS)

    Knebel, J.U.; Kuhn, D.; Mueller, U.

    1997-01-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs

  5. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  6. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  7. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  8. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  9. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  10. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  11. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  12. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  13. Fulfilling information needs of environmental groups: the current West Valley experience

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety

  14. Fulfilling information needs of environmental groups: the current West Valley experience

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, W.D.

    1986-07-15

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety.

  15. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    Science.gov (United States)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  16. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  17. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  18. Opening remarks for the Fort Valley Centennial Celebration (P-53)

    Science.gov (United States)

    G. Sam Foster

    2008-01-01

    The Rocky Mountain Research Station recognizes and values the contributions of our scientists and collaborators for their work over the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky Mountain Research Station is working to improve coordination across its research Program Areas and Experimental Forests and Ranges...

  19. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    Science.gov (United States)

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2005

    International Nuclear Information System (INIS)

    West Valley Nuclear Services Company WVNSCO and URS Group, Inc.

    2006-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs

  1. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  2. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  3. Photo-medical valley. 'Photo medical research center'

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Daido, Hiroyuki; Tajima, Toshiki

    2008-01-01

    To develop a much more compact cancer diagnosis and therapeutic instrument using high intensity laser technology, Japan Atomic Energy Agency (JAEA) has successfully proposed this novel effort to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program as the creation of a 'photo-medical industrial valley' base in 2007 fiscal year. In this report, a new laser techniques to drive controlled ion beams is described. It is very important approach to realize a laser-driven ion accelerator. (author)

  4. Structural design aspects of innovative designs under development in the current US Liquid Metal-Cooled Reactor program

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1986-01-01

    The US Liquid Metal-Cooled Reactor (LMR) program has been restructured and is now focussed on the development of innovative plant designs which emphasize shorter construction times, increased use of passive, inherently safe features, cost-competitiveness with LWR plants, and minimization of safety-related systems. These changes have a considerable effect on the structural design aspects of the LMR plant. These structural problems and their solutions now under study form the main focus of this paper. (orig.)

  5. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    International Nuclear Information System (INIS)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner II, Robert E.; Fox, James R.; Hoch, Jerald J.; Wrotniak, Chester M.; Werchowski, Rebecca L.

    2016-01-01

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Wrotniak, Chester M. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2016-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  9. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  10. Public Assistance Worksheets for Damage from 2010 Floods to the East Valley Water District

    Science.gov (United States)

    East Valley Water District (EVWD) in San Bernardino, California had significant damage due to flooding in December 2010. There was a presidentially-declared disaster. EVWD applied to FEMA under the Public Assistance Grant Program.

  11. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  12. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  13. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  14. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  16. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  17. Current LH{sub 2}-absorber R and D in MuCool

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, M A C [Northern Illinois University, DeKalb, IL 60115 (United States); Allspach, D [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bandura, L [Northern Illinois University, DeKalb, IL 60115 (United States); Black, E L [Illinois Institute of Technology, Chicago, IL 60616 (United States); Cassel, K W [Illinois Institute of Technology, Chicago, IL 60616 (United States); Dyshkant, A [Northern Illinois University, DeKalb, IL 60115 (United States); Errede, D [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Geer, S [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Greenwood, J [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Haney, M [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Hedin, D [Northern Illinois University, DeKalb, IL 60115 (United States); Ishimoto, S [KEK, Tsukuba 305 (Japan); Johnstone, C J [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kaplan, D M [Illinois Institute of Technology, Chicago, IL 60616 (United States); Kubik, D [Northern Illinois University, DeKalb, IL 60115 (United States); Kuno, Y [Osaka University, Osaka 567 (Japan); Lau, W [University of Oxford, Oxford OX1 3NP (United Kingdom); Majewski, S [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Norem, J [Argonne National Laboratory, Argonne, IL 60439 (United States); Norris, B [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Popovic, M [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Reep, M [University of Mississippi, University, MS 38677 (United States); Summers, D [KEK, Tsukuba 305 (Japan); Yoshimura, K [KEK, Tsukuba 305 (Japan)

    2003-08-01

    The MuCool hydrogen-absorber R and D program is summarized. Prototype absorbers featuring thin aluminum windows and 'flow-through' or 'convection' cooling are under development for eventual power-handling tests in a proton beam and a cooling demonstration in a muon beam. Testing these prototypes and their components involves application of novel techniques.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment

  20. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  1. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  2. Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization

    Science.gov (United States)

    Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin

    2018-05-01

    Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.

  3. Resource development and the Mackenzie Valley Resource Management Act

    International Nuclear Information System (INIS)

    Donihee, J.

    1999-01-01

    Changes to the resource management regime of the Northwest Territories based on land claim agreements with native peoples which result from the Mackenzie Valley Resource Management Act are the result of commitments made by Canada during the negotiation of these land claims. This statute effects important changes to the legislative framework for environmental impact assessment and land and water management. It also establishes land use planning processes for the Gwich'in and Sahtu settlement areas and will result in an environmental and cumulative effects monitoring program for the Mackenzie Valley. The Act also establishes new institutions of public government responsible for environmental impact assessment, land and water management, and land use planning. These boards will play an internal and continuing role in resource development and management in the Mackenzie Valley. A brief overview is included of some features of the new legislative scheme, specifically focussing on environmental impact assessment and water management. An understanding of the new regime will be important for oil and gas companies that are looking north with renewed interest as a result of improved oil and gas prices and also for mining companies given the continuing interest in diamond exploration and development in the Northwest Territories. 29 refs

  4. Testing a Mars science outpost in the Antarctic dry valleys

    Science.gov (United States)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  5. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  6. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  7. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  8. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  9. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. Beaver Valley Power Station and Shippingport Atomic Power Station. 1977 annual environmental report: radiological. Volume 2

    International Nuclear Information System (INIS)

    1978-01-01

    The environmental monitoring conducted during 1977 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station is described. The environmental monitoring program consists of onsite sampling of water, gaseous, and air effluents, as well as offsite monitoring of water, air, river sediments, and radiation levels in the vicinity of the site. The report discusses releases of small quantities of radioactivity to the Ohio River from the Beaver Valley Power Station and Shippingport Atomic Power Station during 1977

  12. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  13. EDF's ageing management program for cooling towers

    International Nuclear Information System (INIS)

    Roure, T.; Crolet, Y.

    2015-01-01

    EDF operates a large fleet of cooling towers for its thermal and nuclear plants. Proactive maintenance strategies require ranking the towers according to the risk of failure and the observed damage. The ranking includes monitoring data such as: foundation settlements, material properties, quantified crack patterns, shell deformation, meteorological data, and corrosion. The numerical tool suite includes a finite element analysis of each tower under thermal and mechanical loadings and a corrosion predicting tool, based on carbonation. The first module computes the behavior of cooling towers under five types of loading: soil differential settlement, self-weight, moisture transport, temperature and wind. By comparison with the ultimate resisting capacity of the reinforced concrete cross section, a risk index map is produced for each tower. This risk index is used to rank the cooling towers and then to identify which structures should be monitored more closely or reinforced - if needed - first in the case of an extended operating life. The second module aims to anticipate the corrosion depth of reinforcement steel of the towers in the future. Examination of the existing carbonation is currently done for each structure and evolution of the carbonation depth is computed so as to predict with reasonable assurance when carbonation reaches the rebars. A prediction of the eventual cross-section loss of rebars is then made for long term analysis (i.e. up to 60 years of operating life). When corrosion is predicted the first module takes into account this loss and computes the behavior of the predicted corrosion damaged structure under the same loadings. (authors)

  14. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  15. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of

  16. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    F. Guzzetti

    2003-01-01

    Full Text Available Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857–2002 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM, the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls

  17. Design and implementation of cooling system for beam pipe of BESIII

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Dong Sujun

    2008-01-01

    Cooling system for beam pipe is designed, based on the properties of structure, the surrounding and the required temperature of beam pipe in BESIII. The main devices are double for spare parts, and Siemens program logic control is used in the cooling system, which realize the reliability of the equipment and assure the system long time running. OPC is used to communicate between Upper computer and program logic control as the third-party communication protocol, which resolve the problem of communication for complex multi-station, the upper computer assist the program logic control to detect and control the equipment. The cooling system have reasonable structure, comprehensive function, good precision; it can take away the heat from inner wall of beam pipe in time, and control the temperature on inner wall and outer wall in the required range. (authors)

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  20. Operational cooling tower model (CTTOOL V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  1. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  2. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Cheap for Whom? Migration, Farm Labor, and Social Reproduction in the Imperial Valley-Mexicali Borderlands, 1942-1969

    OpenAIRE

    Mendez, Alina Ramirez

    2017-01-01

    This dissertation argues that the agriculture industry in California’s Imperial Valley has enjoyed ample access to cheap labor since the mid-twentieth century because Mexicali, Baja California Norte, its Mexican neighbor, has subsidized the reproduction of a transborder labor force employed in agriculture but otherwise denied social membership in the United States. This subsidy from Mexicali to the Imperial Valley began in 1942 with the start of the Bracero Program and continued well past the...

  4. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  5. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  6. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  7. Tenneessee Valley Authority office of nuclear power management development plan

    International Nuclear Information System (INIS)

    Clements, L.L.

    1985-01-01

    The Tennessee Valley Authority's Management Development Plan is discussed and consists of an analysis of each managerial position, an analysis of each individual manager's and potential manager's qualifications and training and a comparison of the two. From this comparison two products are derived: a management replacement plan and an individual development plan for each nuclear employee. The process of the program is described in detail

  8. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... comments were received. A companion guide, DG-1277, ``Initial Test Program of Emergency Core Cooling... NUCLEAR REGULATORY COMMISSION [NRC-2011-0129] Preoperational Testing of Emergency Core Cooling... (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors...

  9. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  10. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  11. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  12. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  13. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  14. "Fort Valley State University Cooperative Developmental Energy Program: Broadening the Participation of Underrepresented Minorities in the Geosciences"

    Science.gov (United States)

    Crumbly, I.; Hodges, J.; Kar, A.; Rashidi, L.

    2015-12-01

    According to the American Geological Institute's Status of Recent Geoscience Graduates, 2014, underrepresented minorities (URMs) make up only 7%, 5%, and 2% of graduates at the BS/BA, MA/MS, and Ph.D levels, respectively. Recruiting academically-talented URMs to major in the geosciences instead of majoring in other fields such as medicine, law, business, or engineering is a major undertaking. Numerous factors may contribute as to why few URMs choose geoscience careers. To address the underrepresentation of URMs in the geosciences 1992, the Cooperative Developmental Energy Program (CDEP) of Fort Valley State University (FVSU) and the College of Geosciences at the University of Oklahoma (OU) implemented a 3 + 2 dual degree program specifically in geology and geophysics. Since 1992, FVSU-CDEP has added the University of Texas at Austin (2004), Pennsylvania State University (2005), University of Arkansas (2010), and the University of Nevada at Las Vegas (2015) as partners to offer degrees in geology and geophysics. The dual degree programs consist of students majoring in chemistry or mathematics at FVSU for the first three years and transferring to one of the above partnering universities for years four and five to major in geology or geophysics. Upon completion of the program, students receive a BS degree in chemistry or mathematics from FVSU and a BS degree in geology or geophysics from a partnering university. CDEP has been responsible for recruiting 33 URMs who have earned BS degrees in geology or geophysics. Females constitute 50% of the graduates which is higher than the national average. Also, 56% of these graduates have earned the MS degree and 6% have earned the Ph.D. Currently, 60% of these graduates are employed with oil and gas companies; 20% work for academia; 12% work for governmental agencies; 6 % are professionals with environmental firms; and 2% of the graduate's employment is unknown.

  15. A valley-filtering switch based on strained graphene.

    Science.gov (United States)

    Zhai, Feng; Ma, Yanling; Zhang, Ying-Tao

    2011-09-28

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.

  16. A valley-filtering switch based on strained graphene

    International Nuclear Information System (INIS)

    Zhai Feng; Ma Yanling; Zhang Yingtao

    2011-01-01

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device. (paper)

  17. Electrical valley filtering in transition metal dichalcogenides

    Science.gov (United States)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  18. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  19. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    Science.gov (United States)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  20. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  1. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  2. NONMARKET VALUE OF WESTERN VALLEY RANCHLAND USING CONTINGENT VALUATION

    OpenAIRE

    Rosenberger, Randall S.; Walsh, Richard G.

    1997-01-01

    With the irreversible loss of agricultural land to develop uses in certain areas, there is increased concern that land be preserved for posterity'Â’s sake. We estimate the nonmarket value of a ranchland protection program in the Yampa River Valley in Routt County, Colorado, including the Steamboat Springs resort. The case study builds on previous land preservation studies by adding several preferences indicators. We find that local residentsÂ’' willingness to pay is substantial, but insuffici...

  3. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  4. Optically initialized robust valley-polarized holes in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2015-11-25

    A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (~10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

  5. Extensional Structures on the Po Valley Side of the Northern Apennines

    Science.gov (United States)

    Bettelli, G.; Vannucchi, P.; Capitani, M.

    2001-12-01

    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  6. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  7. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project

    International Nuclear Information System (INIS)

    Hyun Sun Park; Truc-Nam Dinh

    2006-04-01

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  8. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  9. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  10. Gas-Cooled Thermal Reactor Program. Annual technical progress report for the period ending September 30, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    This report provides descriptions and results of the technical effort during FY81 on the Gas-Cooled Thermal Reactor Program. The FY81 work was organized according to the Work Breakdown Structure (WBS) for the National HTGR Program, and fell within five of the WBS tasks. The work on Market Definition and Development (WBS 03) was associated with estimating product costs for HTGR systems and their alternatives, projecting markets and market penetrations for these systems, and providing costs and market input to application analyses and component design. The Plant Technology (WBS 13) effort was mainly in the development of the systems dynamic computer code, STAR, for the transient analysis of HTGR's in reformer applications. The analysis of pebble bed reactors (PBR) was performed under Technology Transfer (WBS 15). The effort on components and systems within the nuclear heat source for reforming plants was performed under High Temperature Nuclear Heat Source (WBS 42)

  11. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  12. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Guy; Pero, Vincent (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  13. Asbestos in cooling-tower waters. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1979-03-01

    Water discharges from cooling towers constructed with asbestos fill were found to contain chrysotile--asbestos fibers at concentrations as high as 10 8 fibers/liter. The major source of these fibers, appears to be the components of the towers rather than the air drawn through the towers or the makeup water taken into the towers. Suggested mechanisms for the release of chrysotile fibers from cooling-tower fill include freeze-thaw cycles and dissolution of the cement due to acidic components of the circulating water. Ash- or other material-settling ponds were found to reduce asbestos-fiber concentrations in cooling-tower effluent. The literature reviewed did not support the case for a causal relationship between adverse human health effects and drinking water containing on the order of 10 6 chrysotile--asbestos fibers/liter; for this and other reasons, it is not presently suggested that the use of asbestos fill be discontinued. However, caution and surveillance are dictated by the uncertainties in the epidemiological studies, the absence of evidence for a safe threshold concentration in water, and the conclusive evidence for adverse effects from occupational exposure. It is recommended that monitoring programs be carried out at sites where asbestos fill is used; data from such programs can be used to determine whether any mitigative measures should be taken. On the basis of estimates made in this study, monitoring for asbestos in drift from cooling towers does not appear to be warranted

  14. A study of the life expectancy of cooling towers

    International Nuclear Information System (INIS)

    Bolvin, M.; Chauvel, D.

    1993-01-01

    The paper describes the following different tasks of the study whose aim was to extend the life time of cooling towers for French Nuclear Power plants to 40 years. The aging factors specific to cooling towers were measured and analysed with regard to the external surface, the internal surface and inside the concrete. The safety coefficient for buckling was calculated and then the stress analysis of the materials (concrete and steel) was done. A special computer program written for cooling towers was used with a model including the soil stiffness and the supports of the tower. (author)

  15. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  16. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  17. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    Science.gov (United States)

    2010-04-01

    Location: Project Number: COC Number: --- --- --- --- CAMBELL RANCH Receive Date: Sampling Date: Sample Depth: Sample Matrix: --- 02/22/2007 11:10 02/02...Manager: Indian Wells Valley Water [none] Mike Stoner Reported: 03/27/2007 11:18 BCL Sample ID: 0702234-10 Client Sample Name: CAMBELL RANCH, 2/2/2007

  18. Valley and spin thermoelectric transport in ferromagnetic silicene junctions

    International Nuclear Information System (INIS)

    Ping Niu, Zhi; Dong, Shihao

    2014-01-01

    We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene

  19. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  20. UNDERSTANDING THE RELATIONSHIPS OF PROGRAM SATISFACTION, PROGRAM LOYALTY AND STORE LOYALTY AMONG CARDHOLDERS OF LOYALTY PROGRAMS

    OpenAIRE

    Nor Asiah Omar; Norzalita Abd. Aziz; Muhamad Azrin Nazri

    2011-01-01

    Loyalty programs have increasingly attracted interest in both academic marketing research and practice. One major factor that has been increasingly discussed is loyalty. In this study we examine the influence of cardholders' satisfaction on loyalty (program loyalty and store loyalty) in a retail context, namely, in department stores and superstores. Data were collected from 400 cardholders of a retail loyalty program in Klang Valley, Malaysia via the drop-off-and-collect technique. Structural...

  1. P-T-t-d History of the Lahul Valley, NW Indian Himalaya

    Science.gov (United States)

    Nieblas, A.; Leech, M. L.

    2015-12-01

    The Lahul Valley of NW India is located between the Zanskar Shear zone to the northwest and the Sangla detachment to the southeast. This region contains three east-trending, laterally-continuous tectonostratigraphic units separated by two major fault zones. To the south, low-grade metasediments of the Lesser Himalayan Sequence (LHS) are separated from high-grade crystalline rocks of the Greater Himalayan Sequence (GHS) by the north dipping Main Central Thrust (MCT). The northern extent of the GHS is separated from overlying low-grade sedimentary rocks of the Tethyan Himalayan Sequence (THS) along the north dipping South Tibetan Detachment System (STDS). There is controversy over the location and type of shear motion for the STDS in the ~50 km strip running through Lahul Valley where the STD is interpreted as a discrete fault, a dextral shear zone, and is unidentified in some areas along the trend of the STDS. This study focuses on understanding the pressure-temperature-time-deformation (P-T-t-d) evolution of THS and GHS rocks in Lahul Valley to better understand regional Cenozoic deformation and the location and role of the STDS in the extrusion of the GHS. Deformed granitics, migmatites, and leucogranites from the GHS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt ± Ky ± St. Schists and phyllites from the THS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt. Isochemical phase equilibria diagrams (pseudosections) are calculated in Perple_X using whole-rock chemistry data with solution models based on these mineral assemblages. Ti-in-quartz thermometry and the Fe-Mg exchange thermometry from garnet-biotite pairs used with mineral growth relationships constrain conditions during deformation and to establish P-T paths. U-Pb SHRIMP dating of zircon constrains peak metamorphic conditions and 40Ar/39Ar thermochronology of micas provide the cooling history along the valley and across the STDS. This multi-component approach to understand

  2. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available stream_source_info Gololo2_2010.pdf.txt stream_content_type text/plain stream_size 17891 Content-Encoding UTF-8 stream_name Gololo2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 The 13th Asia Pacific Confederation... results in a nonlinear program (NLP) formulation and the second case yields mixed integer nonlinear program (MINLP). In both cases the cooling towers operating capacity were debottlenecked without compromising the heat duties. The 13th Asia...

  3. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  4. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive

  5. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  6. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  7. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  8. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  9. A Dimensioning Methodology for a Natural Draft Wet Cooling Tower

    Directory of Open Access Journals (Sweden)

    Ioana Opriș

    2017-05-01

    Full Text Available The paper proposes a methodology for the dimensioning of a natural draft wet cooling tower. The main geometrical dimensions depend on the packing type, the cooling and the weather conditions. The study is based on splitting the tower in three main zones: the spray and packing zone, the rain zone and the natural draft zone. The methodology is developed on modular bases, by using block-modules both for the three main zones of the cooling tower and for the inlet/outlet air properties. It is useful in explaining to the students the complex physical phenomena within the cooling tower but also for the development of a computer program to be used in engineering, management and education.

  10. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  11. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  12. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  13. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  14. An example of Alaknanda valley, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    2014) have been best explained by the geometry .... flows through narrow valley confined by the steep valley slopes. ... valley (figure 3b) which opens up around Srina- ... Method. 4.1 Drainage basin and stream network. Digital Elevation Model (DEM) helps in extracting ... was processed to fill the pits or sinks, and to obtain.

  15. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  16. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  17. Boiling induced mixed convection in cooling loops

    International Nuclear Information System (INIS)

    Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.

    2000-01-01

    This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)

  18. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  19. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  20. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  1. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  2. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  3. Platelet-cooled plasma arc torch. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    In this 12-month program sponsored by the DOE Morgantown Energy Technology Center, Aerojet designed, fabricated, and tested six platelet cooled electrodes for a Retech 75T (90 MW) plasma arc torch capable of processing mixed radioactive waste. Two of the electrodes with gas injection through the electrode wall demonstrated between eight and forty times the life of conventional water cooled electrodes. If a similar life increase can be produced in a 1 Mw size electrode, then electrodes possessing thousands, rather than hundreds, of hours of life will be available to DOE for potential application to mixed radioactive waste processing

  4. HTGR [High Temperature Gas-Cooled Reactor] ingress analysis using MINET

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs

  5. Cooling systems of the resting area in free stall dairy barn

    Science.gov (United States)

    Calegari, F.; Calamari, L.; Frazzi, E.

    2016-04-01

    A study during the summer season evaluated the effect of different cooling systems on behavioral and productive responses of Italian Friesian dairy cows kept in an experimental-free stall barn located in the Po Valley in Italy. The study involved 30 lactating dairy cows subdivided into two groups kept in two pens with external hard court paddock in each free stall. The same cooling system was applied in the feeding area in both pens. A different cooling system in the resting area was applied to the two pens: in the pen SW, the resting area was equipped with fans and misters; in the other, there was simple ventilation (SV). Breathing rate, rectal temperature, milk yield, and milk characteristics (fat, protein, and somatic cell count) were measured. Behavioral activities (standing and lying cows in the different areas, as well as the animals in the feed bunk) were recorded. Mild to moderate heat waves during the trial were observed. On average, the breathing rate was numerically greater in SV compared with SW cows (60.2 and 55.8 breath/min, respectively), and mean rectal temperature remained below 39 °C in both groups during the trial (on average 38.7 and 38.8 °C in SV and SW, respectively. During the hotter periods of the trial, the time spent lying indoor in the free stall was greater in SW (11.8 h/day) than SV (10.7 h/day). Conversely, the time spent standing indoor without feeding was greater in SV (4.3 h/day) than SW (3.8 h/day). Milk yield was slightly better maintained during hotter period in SW compared with SV and somatic cell count was also slightly greater in the former. In conclusion, the adoption of the cooling system by means of evaporative cooling also in the resting area reduces the alteration of time budget caused by heat stress.

  6. Polycyclic aromatic hydrocarbons (PAHs in the atmospheres of two French alpine valleys: sources and temporal patterns

    Directory of Open Access Journals (Sweden)

    N. Marchand

    2004-01-01

    Full Text Available Alpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA, we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources, and aerosol characteristics, including its carbonaceous fraction (OC and EC. The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3 in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources

  7. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  8. Valley Hall effect and Nernst effect in strain engineered graphene

    Science.gov (United States)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  9. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    Science.gov (United States)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  10. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  11. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  12. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  13. A study of the external cooling capability for the prevention of reactor vessel failure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S H; Baek, W P; Moon, S K; Yang, S H; Kim, S H [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    This study (a 3-year program) aims to perform a comprehensive assessment of the feasibility of external vessel flooding with respect to advanced pressurized water reactor plants to be built in Korea. During the first year, review of the relevant phenomena and preliminary assessment of the concept have been performed. Also performed is a review of heat transfer correlations for the computer program that will be developed for assessment of the cooling capability of external vessel flooding. Important phenomena that determine the cooling capability of external vessel flooding are (a) the initial transient before formation of molten corium pool, (b) natural convection of in-vessel molten corium pool, (c) radiative heat exchange between the molten corium pool and the upper vessel structures, (d) thermal hydraulics outside the vessel, (e) structural integrity consideration, and (f) long-term phenomena. The adoption of the concept should be decided by considering several factors such as (a) vessel submergence procedure, (b) cooling requirements, (c) vessel design features, (d) steam production, (e) instrumentation needs, and (f) an overall accident management strategy. The external vessel cooling concept looks to be promising. However, further study is required for a reliable decision making. Several correlations are available for the prediction of cooling capability of the present concept. However, it is difficult to define a sufficiently reliable set of correlations; sensitivity studies would be required in assessing the cooling capability with the computer program.

  14. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    International Nuclear Information System (INIS)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant

  15. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  16. Antifan activism as a response to MTV's The Valleys

    Directory of Open Access Journals (Sweden)

    Bethan Jones

    2015-06-01

    Full Text Available MTV has launched several reality TV shows in the United Kingdom, but one, The Valleys (2012–14, about youth moving from the South Wales Valleys to Cardiff, has received much criticism. Grassroots criticism of the show arose, and a Valleys-centric campaign, The Valleys Are Here, took direct action. I adopt Jonathan Gray's definition of antifans to complicate ideas of fan activism. I utilize comments and posts made on the Valleys Are Here Twitter feed and Facebook account, as well as the organization's Web site, to examine the ways in which they encourage activism among antifans of the series. I pay particular attention to activist calls for MTV to be held accountable for its positioning of Wales and the Valleys, and to how it encourages participation among varied groups of people whose common denominator is their dislike of the series. Fan activism is not exclusive to people who consider themselves fans, and notions of fan activism can be complicated by drawing in antifans.

  17. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  18. Technology development for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Homan, F.J.; Turner, R.F.

    1989-01-01

    In the USA the Modular High-Temperature Gas-Cooled Reactor is in an advanced stage of design. The related HTGR program areas, the approaches to these programs along with sample results and a description of how these data are used are highlighted in the paper. (author). Figs and tabs

  19. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    Science.gov (United States)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered

  20. New approaches to dust mitigation in the Antelope Valley

    Energy Technology Data Exchange (ETDEWEB)

    Farber, R.J.; Kim, B.M.; Grantz, D.A.; Vaughn, D.L.; Zink, T.; Skadberg, K.; Cowherd, C.; Grelinger, M.A.; Campbell, R.; De Salvio, A.; VanCuren, T.; Bort, J.

    1999-07-01

    The arid deserts of the southwestern US experience a frequent dust problem which can lead to PM10 violations. Blowing dust is also one of the major air quality problems of the arid deserts. From 1992 through the present, a group of research scientists have been investigating new techniques for mitigating the windblown dust in the Mojave Desert and more specifically the Antelope Valley near Palmdale and Lancaster, CA. This paper summarizes the progress made toward dust suppression in the Antelope Valley during the initial research phase from 1992 through 1996. During this period, there were both successes and failures. Stabilizing disturbed desert lands in a water-starved environment is challenging. The initial attempts focused on revegetation of native plants by seedings. There were mixed results depending on both the magnitude and timing of the rainfall. Various types of windfences were also erected and their effectiveness was studied using BSNE's. In the present program, the objectives have been broadened to include mitigating dust from all types of disturbed lands, not only abandoned farmlands. Techniques include new approaches to revegetation using seedlings, varying water treatments and soil amendments. An array of chemical suppressants are also being evaluated for cost-effectiveness as a function of longevity. Various geometries of wind fences have also been erected in blow sand areas and are being evaluated for cost-effectiveness using an interesting evaluation scheme. This portion of the paper provides a progress report of these latest dust mitigation techniques. This current research program is due to conclude about 2002. The end product of this decade research program will be a cookbook of dust mitigation solutions for various users including regulatory agencies, the USDA NRCS, farmers and construction interests.

  1. Holistic Overview of the Contribution of Tectonic, Geomorphic, and Geologic Factors to the Seismic Hazard of the Kathmandu Valley, Nepal

    Science.gov (United States)

    Banda, S.; Chang, A.; Sanquini, A.; Hilley, G. E.

    2013-12-01

    currently seismically-locked area to the west of Kathmandu would produce MMI VIII intensity in Kathmandu Valley, and a M5.8 earthquake on an active fault in the valley itself would result in MMI IX intensity close to the fault, and MMI VII - VIII elsewhere in the valley. The government of Nepal initiated a seismic hazard analysis and scenario-based estimation of the impact of a major earthquake in Kathmandu Valley in support of the development of a National Building Code. Earthquake awareness, preparation and mitigation initiatives have been undertaken, including implementation of the School Earthquake Safety Program, a preparedness and risk mitigation program for raising awareness and strengthening vulnerable buildings. The effectiveness of this program has been well-demonstrated, and it is a candidate for acceleration of adoption.

  2. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  3. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  4. Photon wavelength dependent valley photocurrent in multilayer MoS2

    Science.gov (United States)

    Guan, Hongming; Tang, Ning; Xu, Xiaolong; Shang, LiangLiang; Huang, Wei; Fu, Lei; Fang, Xianfa; Yu, Jiachen; Zhang, Caifeng; Zhang, Xiaoyue; Dai, Lun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2017-12-01

    The degree of freedom (DOF) of the K (K') valley in transition-metal dichalcogenides, especially molybdenum disulfide (MoS2), offers an opportunity for next-generation valleytronics devices. In this work, the K (K') valley DOF of multilayer MoS2 is studied by means of the photon wavelength dependent circular photogalvanic effect (CPGE) at room temperature upon a strong external out-of-plane electric field induced by an ionic liquid (IL) gate, which breaks the spatial-inversion symmetry. It is demonstrated that only on resonant excitations in the K (K') valley can the valley-related CPGE signals in multilayer MoS2 with an IL gate be detected, indicating that the valley contrast is indeed regenerated between the K and K' valleys when the electric field is applied. As expected, it can also be seen that the K (K') valley DOF in multilayer MoS2 can be modulated by the external electric field. The observation of photon wavelength dependent valley photocurrent in multilayer MoS2, with the help of better Ohmic contacts, may pave a way for optoelectronic applications of valleytronics in the future.

  5. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  6. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  7. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christopher L. [Univ. of Oklahoma, Norman, OK (United States); Pavlish, John H. [Univ. of Oklahoma, Norman, OK (United States)

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  8. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  9. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  10. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  11. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  12. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  13. The Life and Times of Supervolcanoes: Inferences from Long Valley Caldera

    Science.gov (United States)

    Simon, Justin

    2014-01-01

    Cataclysmic eruptions of silicic magma from "supervolcanoes" are among the most awe-inspiring natural phenomena found in the geologic record, in terms of size, power, and potential hazard. Based on the repose intervals between eruptions of this magnitude, the magmas responsible for them could accumulate gradually in the shallow crust over time scales that may be in excess of a million years (Smith, 1979; Spera and Crisp, 1981; Shaw, 1985). Pre-eruption magma residence time scales can also be inferred from the age difference between eruption (i.e., using 40Ar/39Ar dating to determine the time when hot erupted material cools to below its Ar closure temperature, 200 to 600 degC) and early pre-eruption crystallization (i.e., zircon saturation temperatures; Reid et al., 1997). I will discuss observations from Long Valley a Quaternary volcanic center in California. Long Valley is a voluminous, dominantly silicic caldera system. Based on extensive dating of accessory minerals (e.g., U-Th-Pb dating of zircon and allanite) along with geochemical and isotopic data we find that silicic magmas begin to crystallize 10's to 100's of thousands of years prior to their eruption and that rhyolites record episodes of punctuated and independent evolution rather than the periodic tapping of a long-lived magma. The more punctuated versus more gradual magma accumulation rates required by the absolute and model ages, respectively, imply important differences in the mass and heat fluxes associated with the generation, differentiation, and storage of voluminous rhyolites and emphasize the need to reconcile the magmatic age differences.

  14. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  15. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  16. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  17. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  18. Heat characteristic analysis of a conduction cooling toroidal-type SMES magnet

    International Nuclear Information System (INIS)

    Kim, K.M.; Kim, A.R.; Kim, J.G.; Kim, D.W.; Park, M.; Yu, I.K.; Eom, B.Y.; Sim, K.; Kim, S.H.; Shon, M.H.; Kim, H.J.; Bae, H.J.; Seong, K.C.

    2010-01-01

    This paper analyzed the heat characteristics of a conduction cooling toroidal-type SMES magnet. The authors designed and manufactured a conduction cooling toroidal-type SMES magnet which consists of 30 double pancake coils. One (a single pancake coil) of a double pancake coil is arranged at an angle of 6 o from each other. The shape of the toroidal-type SMES magnet was designed by a 3D CAD program. The heat invasion was investigated under no-load condition and the thermal characteristic of the toroidal-type SMES magnet was analyzed using the Finite Elements Method program. Both the analyzed and the experiment results are compared and discussed in detail.

  19. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  20. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  1. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  2. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  3. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  4. Conference report: 1st Medicon Valley Inhalation Symposium.

    Science.gov (United States)

    Lastow, Orest

    2013-02-01

    The 1st Medicon Valley Inhalation Symposium was arranged by the Medicon Valley Inhalation Consortium. It was held at the Medicon Village site, which is the former AstraZeneca site in Lund, Sweden. It was a 1-day symposium focused on inhaled drug delivery and inhalation product development. A total of 90 delegates listened to 15 speakers. The program was organized to follow the value chain of an inhalation product development. The benefits and future opportunities of inhaled drug delivery were discussed together with some new disease areas that can be targeted with inhalation. The pros and cons of the two main formulation types; dry powder and liquid formulations, were discussed by a panel. The different requirements of the drug molecules from a pharmacology, chemical and physical perspective were explained. The modeling of the physics inside an inhaler was demonstrated and the potential strategic benefits of device design were highlighted together with the many challenges of formulation manufacturing. Lung deposition mechanisms and the difficulties of the generic bioequivalence concept were discussed. Using an anatomically correct impactor inlet is a valuable tool in lung deposition predictions and the planning of clinical trials. The management of the biological material generated in clinical studies is key to successful studies.

  5. Torrential floods: A potential hazard at the Aburra valley

    International Nuclear Information System (INIS)

    Caballero Acosta, Jose Humberto

    2011-01-01

    Torrential foods are a type of mass movement generally moving through the channels of the creeks, leading to transport large volumes of sediment and debris, unsafe speeds for the people and infrastructure located in areas of accumulation of mountain watersheds susceptible to this phenomenon. Although there is no adequate historical record of such events to the valley of Aburra, if there are some experiences that validate the growing concern about this threat in the region. The geomorphologic and climatic conditions in the valley allow us to call attention to this problem, especially when we consider that the basins have been practically occupied in low or accumulation areas are being subjected to strong constructive pressure, without concern in the negative impact that the inappropriate intervention, can have in the lowlands. It requires interdisciplinary research programs of these phenomena in order to have the scientific information needed to advance threat assessments appropriated to our conditions. It is also important that the authorities and people understand that, in part, the protection of the settlements of the lowland areas of accumulation, depending on management given to the upper reaches of the escarpment and transportation areas.

  6. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  7. The Continuing Search for Variability Among Cool White Dwarfs

    Science.gov (United States)

    Schaefer, J. J.; Oswalt, T. D.; Johnston, K. B.; Rudkin, M.; Heinz, T.

    2002-12-01

    The Continuing Search for Variability Among Cool White Dwarfs Justin J. Schaefer University of Wyoming Department of Physics and Astronomy P.O. Box 3905 Laramie, Wyoming 82071 USA (schaefju@uwyo.edu) Terry D. Oswalt, Kyle Johnston, Merissa Rudkin, Tamalyn Heinz Florida Institute of Technology and the SARA Observatory Department of Physics & Space Sciences 150 West University Boulevard Melbourne, Florida 32901 USA (oswalt@luyten.astro.fit.edu, kyjohnst@fit.edu, mrudkin@astro.fit.edu, theinz@fit.edu) ABSTRACT We present BVRI photometry of eleven binaries with white dwarf (WD) components. The observations were obtained at the SARA 0.9-meter telescope on Kitt Peak during the summer of 2002. Standard system (B-V), (V-R) and (R-I) color indices of four white dwarfs were determined. This data will be used to estimate the WD cooling ages in wide WD+dM binaries, as part of our ongoing research program to determine the chromospheric activity-age relation for M dwarf stars. Time-series differential photometry was also collected for eight cool white dwarfs as part of a program to explore the variability in the low luminosity, low temperature regime of the WD cooling track. We failed to detect any variability greater than ~0.04 magnitudes in these stars. Several nights of differential photometry data were collected on the DAO WD + K dwarf short-period variable HS1136+6646. From the light variations we determined a likely orbital period of 0.825 +/-0.009 days. Strong evidence is presented for two other possible periods within this light curve, possibly indicative of rotational modulation by the WD component. We gratefully acknowledge support from the National Science Foundation, which funds the SARA Research Experiences for Undergraduates program via grant AST-0097616 to Florida Tech. One of us (TDO) also acknowledges partial support for this work from NASA (subcontract Y701296) and the NSF (AST 0206115).

  8. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  9. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    Science.gov (United States)

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  10. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  11. Gas-Cooled Thermal Reactor Program. Semiannual technical progress report, October 1, 1982-March 3, 1983

    International Nuclear Information System (INIS)

    1983-06-01

    This report provides descriptions and results of the technical effort during the first half of FY 83 on the Gas-Cooled Thermal Reactor Program. The work on Integration and Management (WBS 01) includes the preparation of the Advanced Systems Concept Evaluation Plan and the Advanced Systems Technology Development Plan in addition to the program management activities. The Market Definition (WBS 03) efforts considered the application of the Modular Reactor System with reforming (MRS-R) to the production of methanol and ammonia and the refining of petroleum. Within the Plant Technology (WBS 13) task there were activities to develop anlytical methods for investigation of Coolant Transport Behavior and to define methods and criteria for High Temperature Structural Engineering design. In addition to the work on the advanced HTGR for process heat users, new activities were initiated in support of the HTGR-SC/C Lead plant Protect (WBS 30 and 31). The Plant Simulation task (WBS 31) was initiated to develop a computer code for simulation of plant operation and for plant transient systems analysis. The efforts on the advanced HTGR systems was performed under the Modular Systems task (WBS 41) to study the potential for multiple small reactors to provide lower costs, improved safety, and higher availability than the large monolithic core reactors

  12. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  13. Participation in Summer School and High School Graduation in the Sun Valley High School District

    Science.gov (United States)

    Trujillo, Gabriel

    2012-01-01

    This study examines the effectiveness of a summer school credit recovery program in the Sun Valley High School District. Using logistic regression I assess the relationship between race, gender, course failure, school of origin and summer school participation for a sample of students that failed one or more classes in their first year of high…

  14. Lessons learned in the environmental qualification of class IE equipment at Tennessee Valley Authority

    International Nuclear Information System (INIS)

    Bell, R.N.; Akos, T.

    1985-01-01

    Tennessee Valley Authority has been engaged in an extensive program for the environmental qualification of Class 1E components. This program has been conducted in accordance with the requirements set forth in various industry standards and federal regulations, including IEEE 323-1971, IEEE 323-1974, Nuclear Regulatory Commission (NRC) IE Bulletin 7901B, NRC NUREG-0588, and the Code of Federal Regulations 10CFR50.49. Valuable lessons have been learned as a result of this program, particularly in the area of environmental qualification testing. This paper describes some unique experiences in the qualification testing of main steam isolation valve control manifold assemblies, control relays, and motor control centers

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  17. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  18. Spatial risk modelling for water shortage and nitrate pollution in the lower Jordan valley

    International Nuclear Information System (INIS)

    Loibl, W.; Orthofer, R.

    2002-02-01

    This report summarizes the results of the spatial risk modeling activities (work package WP-4.4, 'GIS Risk Modeling') of the INCO-DC project 'Developing Sustainable Water Management in the Jordan Valley'. The project was funded by European Commission's INCO-DC research program. The main objective of the project was to develop the scientific basis for an integral management plan of water resources and their use in the Lower Jordan Valley. The outputs of the project were expected to allow a better understanding of the water management situation, and to provide a sound basis for a better future water management - not only separately in the three countries, but in the overall valley region. The risk modeling was done by the ARCS Seibersdorf research (ARCS), based on information and data provided by the regional partners from Israel (Hebrew University, Jerusalem, HUJ), Palestine (Applied Research Institute, Jerusalem, Bethlehem, ARIJ) and Jordan (EnviroConsult Office, Amman, ECO). The land use classification has been established through a cooperation between ARCS and the Yale University Center for Earth Observation (YUCEO). As a result of the work, the spatial patterns of agricultural and domestic water demand in the Lower Jordan Valley were established, and the spatial dimension of driving forces for water usage and water supply was analyzed. Furthermore, a conceptual model for nitrate leakage (established by HUJ) was translated into a GIS system, and the risks for nitrate pollution of groundwater were quantified. (author)

  19. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  20. Zn-Pb Ores of Mississippi Valley Type in the Lycksele-Storuman District, Northern Sweden: A Possible Rift-Related Cambrian Mineralisation Event

    Directory of Open Access Journals (Sweden)

    Kjell Billström

    2012-06-01

    Full Text Available The epigenetic Zn-Pb deposits in the Lycksele-Storuman ore district, northern Sweden, are hosted by Paleoproterozoic basement near the margin of the Caledonian mountains. A paleogeographic reconstruction suggests that platform sediments, including Cambrian shales, overlaid the mineralised basement. The mineralisation type, containing sphalerite, galena, calcite and fluorite, is confined to veins and breccias and interpreted to be of Mississippi Valley Type (MVT style. There is no appreciable wall rock alteration. Fluid inclusion work reveals coexisting aqueous and hydrocarbon fluids. Ore deposition is interpreted to have occurred during mixing of two fluids; a cool (

  1. West Valley demonstration project: Implementation of the kerosene mitigation plan

    International Nuclear Information System (INIS)

    Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.

    1987-05-01

    An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab

  2. Seismic assessment of air-cooled type emergency electric power supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  3. Seismic assessment of air-cooled type emergency electric power supply system

    International Nuclear Information System (INIS)

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  4. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  5. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  6. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  7. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Science.gov (United States)

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  8. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered

  9. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  10. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 3. Appendices

    International Nuclear Information System (INIS)

    1978-05-01

    Ten appendices are included: log data, elastic constants for transversely isotropic elastic media by ultrasonic velocity measurement, fracture toughness anisotropy of West Valley shale, in-situ stress measurement techniques, stress measurement data, hydraulic fracturing measurements, enhancement of horizontal crack initiation by jetting, finite element programs for analysis of crack propagation and for groundwater flow analysis, and well data

  11. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  12. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-60) - Rocky Reach - Maple Valley No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Mark A. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2002-04-15

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 110/1 to the Maple Valley Substation. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  13. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  14. The design of aircraft brake systems, employing cooling to increase brake life

    Science.gov (United States)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  15. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  16. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  17. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  18. Elk Valley Coal innovation paving the way

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Ednie, H.; Weldon, H.

    2006-09-15

    Elk Valley Coal maintains performance optimization across its six metallurgical coal operations. Performance, personnel issues, and training are discussed. Programmes at Fording River, Greenhills, and Coal Mountain are described. Fording River is implementing new computer systems and high-speed wireless networks. The pit control system and the equipment maintenance and remote maintenance programmes are being improved. The Glider Kit program to rebuild major equipment is described. Safety and productivity measures at Greenhills include testing and evaluation of innovations such as the Drilling and Blasting System (DABS), a payload monitor on a shovel, and two GPS-based systems. Blasting methods, a timing study that examines wall stability, fragmentation simulation, and the Six Mine structure at Coal Mountain are described. 5 photos.

  19. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    Science.gov (United States)

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  20. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  1. Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir

    Science.gov (United States)

    Owen, Lewis A.; Chen, Jie; Hedrick, Kathyrn A.; Caffee, Marc W.; Robinson, Alexander C.; Schoenbohm, Lindsay M.; Yuan, Zhaode; Li, Wenqiao; Imrecke, Daniel B.; Liu, Jinfeng

    2012-07-01

    The Quaternary glacial history of Tashkurgan valley, in the transition between the Pamir and Karakoram, in Xinjiang Province, China was examined using remote sensing, field mapping, geomorphic analysis of landforms and sediments, and 10Be terrestrial cosmogenic nuclide dating. Moraines were assigned to four glacial stages: 1) the Dabudaer glacial stage that dates to the penultimate glacial cycle and/or earlier, and may represent one or more glaciations; 2) the Tashkurgan glacial stage that dates to early last glacial, most likely Marine Oxygen Isotope Stage (MIS) 4; 3) the Hangdi glacial stage that dates to MIS 2, possibly early MIS 2; and 4) the Kuzigun glacial stage that dates to the MIS 2, possibly the global Last Glacial Maximum, and is younger than the Hangdi glacial stage. Younger moraines and rock glaciers are present at the heads of tributary valleys; but these were inaccessible because they are located close to politically sensitive borders with Pakistan, Afghanistan and Tajikistan. Glaciers during the Dabudaer glacial stage advanced into the central part of the Tashkurgan valley. During the Tashkurgan glacial stages, glaciers advanced several kilometers beyond the mouths of the tributary valleys into the Tashkurgan valley. Glaciers during the Hangdi and Kuzigun glacial stages advanced just beyond the mouths of the tributary valleys. Glaciation in this part of the Himalayan-Tibetan orogen is likely strongly controlled by northern hemisphere climate oscillations, although a monsoonal influence on glaciation cannot be ruled out entirely.

  2. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  3. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  4. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  5. Structure and thermal analysis of the water cooling mask at NSRL front end

    International Nuclear Information System (INIS)

    Zhao Feiyun; Xu Chaoyin; Wang Qiuping; Wang Naxiu

    2003-01-01

    A water cooling mask is an important part of the front end, usually used for absorbing high power density synchrotron radiation to protect the apparatus from being destroyed by heat load. This paper presents the structure of the water cooling mask and the thermal analysis results of the mask block at NSRL using Program ANSYS5.5

  6. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  7. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  8. Gravity and magnetic data of Midway Valley, southwest Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.; Sikora, R.F.

    1993-01-01

    Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley

  9. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  10. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    International Nuclear Information System (INIS)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-01-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km 2 -large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 o steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  11. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X. Q., E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, H. [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  12. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.

  13. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  14. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  15. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  16. NKS-R ExCoolSe mid-term report KTH severe accidents research relevant to the NKS-ExCoolSe project[KTH = Royal Institute of Technology, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hyun Sun Park; Truc-Nam Dinh [Royal Inst. of Technology (Sweden)

    2006-04-15

    The present mid-term progress report is prepared on the recent results from the KTH severe accident research program relevant to the objective of the ExCoolSe project sponsored by the NKS-R program. The previous PRE-MELT-DEL project at KTH sponsored by NKS provided an extensive assessment on the remaining issues of severe accidents in general and suggested the key issues to be resolved such as coolability and steam explosion energetics in ex-vessel which became a backbone of the ExCoolSe project in NKS. The EXCOOLSE project has been integrated with, and leveraged on, parallel research program at KTH on severe accident phenomena the MSWI project which is funded by the APRI program, SKI in Sweden and HSK in Switzerland and produced more understanding of the key remaining issues. During last year, the critical assessment of the existing knowledge and current SAMG and designs of Nordic BWRs identified the research focus and initiated the new series of research activities toward the resolution of the key remaining issues specifically pertaining to the Nordic BWRs.(au)

  17. West Valley Demonstration Project site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  18. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  19. Four newly recorded species of Dryopteridaceae from Kashmir valley, India

    Directory of Open Access Journals (Sweden)

    SHAKOOR AHMAD MIR

    2014-04-01

    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. Four newly recorded species of Dryopteridaceae from Kashmir valley, India. Biodiversitas 15: 6-11. Habitat diversity, elevation, cloud cover, rainfall, seasonal and temperature variations have created many ideal sites for the luxuriant growth of pteridophytes in the Kashmir valley, yet all the regions of the valley have not been surveyed. In Kashmir valley the family Dryopteridaceae is represented by 31 species. During the recent extensive field surveys of Shopian district four more species viz., Dryopteris caroli-hopei Fraser-Jenkins, Dryopteris blanfordii subsp. nigrosquamosa (Ching Fraser-Jenkins, Dryopteris pulvinulifera (Bedd. Kuntze and Polystichum Nepalense (Spreng C. Chr. have been recorded for the first time from the valley. The taxonomic description, synonyms, distribution and photographs of each species are given in this article.

  20. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  1. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  2. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  3. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  4. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  5. Ventilation potential during the emissions survey in Toluca Valley, Mexico

    Science.gov (United States)

    Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.

    2017-12-01

    During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.

  6. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    International Nuclear Information System (INIS)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG ampersand G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs

  7. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  8. The 'SURA' fast reactor program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  9. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  10. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  11. Interventions Against West Nile Virus, Rift Valley Fever Virus, and Crimean-Congo Hemorrhagic Fever Virus: Where Are We?

    NARCIS (Netherlands)

    Kortekaas, J.A.; Ergonul, O.; Moormann, R.J.M.

    2010-01-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and

  12. Fitness-valley crossing with generalized parent-offspring transmission.

    Science.gov (United States)

    Osmond, Matthew M; Otto, Sarah P

    2015-11-01

    Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene complexes separated by "valleys" of low fitness. Crossing such fitness valleys allows a population to escape suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright's shifting balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by allowing bias in parent-offspring transmission. This generalization extends the existing mathematical framework to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible enough to provide insight into shifts between alternate stable states in cultural systems with "transmission valleys". Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the limiting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance, and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times. Despite component traits being passed on poorly in the previous cultural background, small advantages in the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some of these assumptions can promote fitness-valley crossing. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex

    Science.gov (United States)

    Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.

    2012-10-01

    Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

  14. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-12-15

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km{sup 2}-large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 {sup o} steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  15. Condensation heat transfer coefficient of air-cooled condensing heat exchanger of emergency cooldown tank in long-term passive cooling system

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In

    2017-01-01

    For the design purpose of air-cooled condensing heat exchanger of emergency cooldown tank, average condensation heat transfer coefficient inside a circular tube was reduced by a thermal sizing program using the experimental data of Kim et al. It was compared to the existing condensation heat transfer correlations. Moreover, a sensitivity analysis of both inside condensation and outside air natural convection correlations was performed. Although condensation heat transfer did not play a great role to design over 10 3 W/m 2 /K, the improved Shah's correlation gives the best prediction for the design. Consequently, air natural convection coefficient significantly affects the design of air-cooled condensing heat exchanger. (author)

  16. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  17. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  18. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  19. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  20. Integrated Modeling of Water Policy Futures in the Imperial-Mexicali Valleys

    Science.gov (United States)

    Kjelland, M. K.; Forster, C. B.; Grant, W. E.; Collins, K.

    2004-12-01

    Divided by an international border, the Imperial-Mexicali Valleys (IMVs) are linked by shared history, natural resources, culture and economy. This region is experiencing changes driven by policy makers both within and outside the IMVs. The largest external decision, the Colorado River Quantification Settlement Agreement (QSA) of 2003, opens the door to a laboratory for studying the consequences of a massive transfer of agricultural water to municipal users. Two irrigation districts, two urban water agencies and the State of California have agreed to a 75 year of more than 30 million acre-feet of Colorado River water from agricultural to urban use. Although Imperial Valley farmers will be compensated for water conservation and land fallowing, the economic, environmental and social consequences are unclear. Farmers who fallow will likely cause a greater impact on local businesses and government than those choosing on-field water conservation. Reduced agricultural water use causes reduced flow of irrigation runoff, at higher salinity than before, to the Salton Sea that, in turn, impacts the population dynamics of Ichthyan and Avian species at the Salton Sea. Municipal wastewater discharged into the New River by Mexicali, Mexico is also an important source of inflow to the Salton Sea that will be reduce by plans to reclaim the wastewater for various uses, including cooling water for two new power plants in the Mexicali. A restoration program is funded to produce a Sea with much reduced surface area. But this approach may, in turn, lead to increases in windblown dust from the dry lakebed that will contribute to an air basin already designated as a federal nonattainment area for particulate emissions. Additional water will be conserved by lining the All American and Coachella canals. But, eliminating seepage from the All American canal reduces groundwater recharge to aquifers used by Mexican farmers. A complex interplay of water-related issues must be accounted for if

  1. Safety evaluation report on Tennessee Valley Authority: Watts Bar Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This safety evaluation report on the information submitted by the Tennessee Valley Authority in its Nuclear Performance Plan for the Watts Bar Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific corrective actions as part of the recovery program for licensing of Unit 1. The staff will be monitoring and inspecting the implementation of the programs. The plan does not address all licensing matters that will be required for fuel load and operation of Unit 1. Those remaining licensing matters have been addressed in previous safety evaluations or will be addressed in accordance with routing NRC licensing practices. 97 refs

  2. Cool Girls, Inc. and Self-Concept: The Role of Social Capital

    Science.gov (United States)

    Thomason, Jessica D.; Kuperminc, Gabriel

    2014-01-01

    Social capital was examined as a mediator of the association between youth development program participation and gains in self-concept in a sample of 86 primarily African American female adolescents in the Cool Girls, program, and 89 comparisons. Two dimensions of social capital (the diversity of girls' social networks and the number of life…

  3. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  4. UNDERSTANDING THE RELATIONSHIPS OF PROGRAM SATISFACTION, PROGRAM LOYALTY AND STORE LOYALTY AMONG CARDHOLDERS OF LOYALTY PROGRAMS

    Directory of Open Access Journals (Sweden)

    Nor Asiah Omar

    2011-01-01

    Full Text Available Loyalty programs have increasingly attracted interest in both academic marketing research and practice. One major factor that has been increasingly discussed is loyalty. In this study we examine the influence of cardholders' satisfaction on loyalty (program loyalty and store loyalty in a retail context, namely, in department stores and superstores. Data were collected from 400 cardholders of a retail loyalty program in Klang Valley, Malaysia via the drop-off-and-collect technique. Structural modelling techniques were applied to analyze the data. The results indicated that program satisfaction is not related to store loyalty (share-of-wallet, share-of-visit and store preference. However, loyalty to the program (program loyalty plays a crucial intervening role in the relationship between program satisfaction and store loyalty. The study underscores the principal importance of program loyalty in the retail loyalty program.

  5. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  6. Graphene valley pseudospin filter using an extended line defect

    Science.gov (United States)

    Gunlycke, Daniel; White, Carter

    2011-03-01

    Although graphene exhibits excellent electron and thermal transport properties, it does not have an intrinsic band gap, required to use graphene as a replacement material for silicon and other semiconductors in conventional electronics. The band structure of graphene with its two cones near the Fermi level, however, offers opportunities to develop non-traditional applications. One such avenue is to exploit the valley degeneracy in graphene to develop valleytronics. A central component in valleytronics is the valley filter, just as the spin filter is central in spintronics. Herein, we present a two-dimensional valley filter based on scattering of electrons and holes off a recently observed extended line defect [Nat. Nanotech.5, 326 (2010)] within graphene. The transmission probability depends strongly on the valley pseudospin and the angle of incidence of the incident quasiparticles. Quasiparticles arriving at the line defect at a high angle of incidence lead to a valley polarization of the transmitted beam that is near 100 percent. This work was supported by ONR, directly and through NRL.

  7. Hydrological responses to channelization and the formation of valley plugs and shoals

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  8. Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with field investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.

  9. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    . In particular, a model of a PCM-based heat exchanger was developed in this work by using the programming language Modelica. This device was designed to store cold energy during night-time and release it during daytime through the water circuit. Results for a typical office building model showed...... that the integration of free cooling devices can significantly reduce the primary energy use of the novel HVAC system. In particular, the thermal plant configuration including the PCM-based heat exchanger made it possible to almost completely avoid the use of mechanical cooling, leading to annual primary energy......This article presents a simulation-based study that estimates the primary energy use of a novel HVAC system for different configurations of a thermal plant. The main characteristic of the system is its ability to provide simultaneous heating and cooling to buildings by using a single hydronic...

  10. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  11. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  12. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  13. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  14. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  15. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  16. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  17. Passive decay heat removal by sump cooling after core meltdown

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, U.

    1996-01-01

    This article presents the basic physical phenomena and scaling criteria of decay heat removal from a large coolant pool by single-phase and two-phase natural circulation flow. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives first measurement results of the 1:20 linearly scaled plane two-dimensional SUCOS-2D test facility. The experimental results of the model geometry are transformed to prototype conditions

  18. Solar assisted conditioning of residences with floor heating and ceiling cooling: review and simulation results

    OpenAIRE

    Egrican, Nilufer; Korkmaz, Adnan

    2015-01-01

    Solar or solar assisted heating and cooling systems are becoming widespread to reduce CO2 emissions. Efficient radiant space heating and cooling systems can be used to decrease the energy bills and improve occupant thermal comfort in buildings. This study uses the TRNSYS program, for the modeling and simulation of solar assisted radiant heating and cooling of a building with the domestic hot water supply, to examine the effects of various parameters on energy consumption. Calculations are per...

  19. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  20. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  1. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  2. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  3. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  4. Using Technology to Enhance an Automotive Program

    Science.gov (United States)

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  5. Startup of the FFTF sodium cooled reactor

    International Nuclear Information System (INIS)

    Redekopp, R.D.; Umek, A.M.

    1981-03-01

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed

  6. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  7. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  8. Preliminary report on the geology of the Red River Valley drilling project, eastern North Dakota and northwestern Minnesota

    International Nuclear Information System (INIS)

    Moore, W.L.

    1979-01-01

    Thirty-two wells, 26 of which penetrated the Precambrian, were drilled along the eastern edge of the Williston Basin in the eastern tier of counties in North Dakota and in nearby counties in northwestern Minnesota. These tests, along the Red River Valley of the North, were drilled to study the stratigraphy and uranium potential of this area. The drilling program was unsuccessful in finding either significant amounts of uranium or apparently important shows of uranium. It did, however, demonstrate the occurrence of thick elastic sections in the Ordovician, Jurassic and Cretaceous Systems, within the Red River Valley, along the eastern margins of the Williston Basin which could serve as host rocks for uranium ore bodies

  9. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  10. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.

    1979-10-01

    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  11. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  12. Preventing anxiety problems in children with Cool Little Kids Online: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Morgan, Amy J; Rapee, Ronald M; Tamir, Elli; Goharpey, Nahal; Salim, Agus; McLellan, Lauren F; Bayer, Jordana K

    2015-11-05

    Anxiety disorders are the most common type of mental health problem and begin early in life. Early intervention to prevent anxiety problems in young children who are at risk has the potential for long-term impact. The 'Cool Little Kids' parenting group program was previously established to prevent anxiety disorders in young children at risk because of inhibited temperament. This group program was efficacious in two randomised controlled trials and has recently been adapted into an online format. 'Cool Little Kids Online' was developed to widen and facilitate access to the group program's preventive content. A pilot evaluation of the online program demonstrated its perceived utility and acceptability among parents. This study aims to evaluate the efficacy of Cool Little Kids Online in a large randomised controlled trial. Parents of young children who are 3-6 years old and who have an inhibited temperament will be recruited (n = 385) and randomly assigned to either immediate access to Cool Little Kids Online or delayed access after a waiting period of 24 weeks. The online program contains eight modules that help parents address key issues in the development of anxiety problems in inhibited children, including children's avoidant coping styles, overprotective parenting behaviours, and parents' own fears and worries. Intervention participants will be offered clinician support when requested. The primary outcome will be change in parent-reported child anxiety symptoms. Secondary outcomes will be child internalising symptoms, child and family life interference due to anxiety, over-involved/protective parenting, plus child anxiety diagnoses assessed by using a new online diagnostic tool. Assessments will take place at baseline and 12 and 24 weeks after baseline. This trial expands upon previous research on the Cool Little Kids parenting group program and will evaluate the efficacy of online delivery. Online delivery of the program could result in an easily accessible

  13. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  14. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  15. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U 3 O 8 by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive

  16. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  17. Phase I Inspection Report. National Dam Safety Program. Round Valley South Dam, Hunterdon County, New Jersey.

    Science.gov (United States)

    1978-05-01

    defined by the Recommended Guidelines for Safety Inspection of Dams. .M • wwM •^^^nmifgnmmmm’m •PH J.I.I MPU C. Hazard Classification - The...Conservation and Economic Development, August 1958. 3) Contract RV-1, State of New Jersey Department of Conservation and Economic Development...FIGURE 4 iymmmmr STATE OF NEW JERSEY DEPARTMENT OF CONSERVATION AND ECONOMIC DEVFl OtVNKM OF WATNt FOUCY «MO mm 1 ROUND VALLEY RESERVOIR

  18. Optimal decentralized valley-filling charging strategy for electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Kangkang; Xu, Liangfei; Ouyang, Minggao; Wang, Hewu; Lu, Languang; Li, Jianqiu; Li, Zhe

    2014-01-01

    Highlights: • An implementable charging strategy is developed for electric vehicles connected to a grid. • A two-dimensional pricing scheme is proposed to coordinate charging behaviors. • The strategy effectively works in decentralized way but achieves the systematic valley filling. • The strategy allows device-level charging autonomy, and does not require a bidirectional communication/control network. • The strategy can self-correct when confronted with adverse factors. - Abstract: Uncoordinated charging load of electric vehicles (EVs) increases the peak load of the power grid, thereby increasing the cost of electricity generation. The valley-filling charging scenario offers a cheaper alternative. This study proposes a novel decentralized valley-filling charging strategy, in which a day-ahead pricing scheme is designed by solving a minimum-cost optimization problem. The pricing scheme can be broadcasted to EV owners, and the individual charging behaviors can be indirectly coordinated. EV owners respond to the pricing scheme by autonomously optimizing their individual charge patterns. This device-level response induces a valley-filling effect in the grid at the system level. The proposed strategy offers three advantages: coordination (by the valley-filling effect), practicality (no requirement for a bidirectional communication/control network between the grid and EV owners), and autonomy (user control of EV charge patterns). The proposed strategy is validated in simulations of typical scenarios in Beijing, China. According to the results, the strategy (1) effectively achieves the valley-filling charging effect at 28% less generation cost than the uncoordinated charging strategy, (2) is robust to several potential affecters of the valley-filling effect, such as (system-level) inaccurate parameter estimation and (device-level) response capability and willingness (which cause less than 2% deviation in the minimal generation cost), and (3) is compatible with

  19. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    Science.gov (United States)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  20. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  1. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  2. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  3. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  4. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  5. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  6. Instability during bunch shortening of an electron-cooled beam

    Directory of Open Access Journals (Sweden)

    M. Takanaka

    2003-10-01

    Full Text Available Bunch shortening causes an electron-cooled beam to be space charge dominated at low energies. Instability during the bunch shortening has been studied using a particle-tracking program where the 3D space-charge field due to the beam is calculated with a simplifying model.

  7. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  8. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  9. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  10. Identification of gap cooling phenomena from LAVA-4 experiment using MELCOR

    International Nuclear Information System (INIS)

    Park, Jong-Hwa; Kim, Dong-Ha; Kim, See-Darl; Kim, Sang-Baik; Kim, Hee-Dong

    2000-01-01

    During the severe accident, whether the hot debris in. lower head will be cool-down or not is the important issue concerning the plant safety. KAERI has launched the 'LAVA' experimental program to examine the existence of initial gap and its effect on the cooling of hot debris. The objective of this study is to identify the gap cooling phenomena from the analysis of simulation results on LAVA-4 experiment using MELCOR1.8.4 code. Three parameters on the debris coolability in MELCOR are the quenching heat transfer coefficient for the interaction between molten Al 2 O 3 and water, the heat transfer coefficient from debris to wall and the diameter of the particulate debris for calculating the available heat transfer area with water. The sensitivity study was performed with these three parameters. However it was believed that there must be a gap between debris and inside wall during the transient. MELCOR1.8.4 does not consider these gap-cooling phenomena. Therefore a conceptual gap-cooling model has been developed and implemented into the lower plenum model in MELCOR to take into account the gap effect in the lower plenum. When the 'gap model' is implemented, the peak temperature of the vessel wall was reduced and its cooling rate was increased. (author)

  11. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  12. Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

    Science.gov (United States)

    Potess, Marla D.; Rainwater, Ken; Muirhead, Dean

    2004-01-01

    Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications. Two households within the colonia are demonstration sites for constructed wetlands. A colonia resident and activist identified educational opportunities for colonia children as a primary goal for many colonia residents. Colonia parents view education as the door to opportunity and escape from poverty for their children. The educational outreach component of the project in Green Valley Farms was a Science and Space Club for middle-school age students. Involved parents, schoolteachers, and school administrators enthusiastically supported the monthly club meetings and activities. Each month, students participated in interactive learning experiences about water use and reuse in space and on earth. Activities increased knowledge and interest in water resource issues and in science and engineering fields. The Institute for the Development and Enrichment of Advanced Learners (IDEAL) at Texas Tech University provided full scholarships for five students from Green Valley Farms to attend the Shake Hands With Your Future camp at Texas Tech University in June 2003. The educational outreach

  13. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  14. Status of the R and D Towards Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-01-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R and D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components

  15. Medicinal plants of Usherai valley, Dir, NWFP, Pakistan

    International Nuclear Information System (INIS)

    Hazarat, A.; Shah, J.; Ahmad, S.; Nasir, M.; Jan, A.K.; Skindar

    2010-01-01

    This research is based on the results of an ethno-botanical research conducted in Usherai Valley. The main objective was to enlist the wealth of medicinal plants. In total 50 species, belonging to 32 families of wild herbs, shrubs and trees were found to be used as medicinal plants by the inhabitants in the valley. (author)

  16. AIR POLLUTION FEATURES OF THE VALLEY-BASED TOWNS IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Z. UTASI

    2016-03-01

    Full Text Available There are 30 valley-based towns with >10,000 inhabitants in Hungary, filled by 1.023 million people i.e. 10 % of the population. Two criteria are used to define the valley-based town. They are: (i Vertical difference between the lowest point in the town and the highest one around it should be >100 m. At the same time, (ii the same difference on the opposite side should be >50 m. Air pollution data by the National Air Pollution Observation Network are used. Five contaminants were selected and analysed for 2007, 2010 and 2013. Due to a sharp reduction in the network, we could find data for a small part of the valley-based towns. Control towns with equal air-quality observations and similar cumulative number of inhabitants were also selected. The contaminants and the number of the settlements are: NO2 manual (14 valley-based vs. 2x14 control, NO2 automatic (8 vs. 8, SO2 automatic (7 vs. 2x6, PM10 automatic (8 vs. 2x7 and PM10 deposition manual (6 vs. 8. Average values, as well as high concentration episodes (>98%thresholds are equally analysed and evaluated. The main conclusion is that there are so big differences between the years both in absolute values and relative sequence of valley-based and control groups that the analysed there years is not enough to make any final conclusion. For step-over frequencies, however valley-based towns have some advantage, possibly due to the valley-hill wind system.

  17. Next-generation avionics packaging and cooling 'test results from a prototype system'

    Science.gov (United States)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  18. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  19. Private lands habitat programs benefit California's native birds

    Directory of Open Access Journals (Sweden)

    Ryan T. DiGaudio

    2015-10-01

    Full Text Available To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites.

  20. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  1. Performance evaluation of micro thermoelectric module for hot spot cooling

    International Nuclear Information System (INIS)

    Kim, Ook Joong; Lee, Kong Hoon

    2008-01-01

    The experimental and numerical study is carried out to investigate the availability of micro TEM for hot spot cooling of an IC chip. It is found that an acrylic plate integrating with copper plate and imbedded micro TEM represents good hot spot cooling of the IC chip when CO2 laser is used to hot spot heating. Effective active local cooling phenomena by the TEM are well investigated by experiment. The measured temperature drop in the hot spot point is compared to numerical result using the TAS program for every case. Numerical result shows good agreement with experiment using some appropriate thermal and thermoelectric properties of TEM and TIM obtained by trial and error. Measurement of thermo-physical properties such as contact thermal resistance and thickness of liquid TIM is difficult but can be estimated by numerical analysis

  2. Primary state formation in the Viru Valley, north coast of Peru.

    Science.gov (United States)

    Millaire, Jean-François

    2010-04-06

    The origins of urban life and functioning states are two of the most fascinating research problems in anthropological archeology and a topic that has intrigued generations of scholars working on the Peruvian north coast. In this region, Andeanists have documented the rise of Moche as a dominant culture during the first millennium A.D., and the emergence of urban life and stately institutions at this society's principal center. Although there is a broad consensus that Moche represents an archaic state, it is still unclear whether it is an example of primary state formation or a case of a second-generation state. To document this question, archaeological excavations were recently carried out at the Gallinazo Group site in the Virú Valley. Results from a radiocarbon dating program indicate that a functioning state probably emerged in this valley during the second century B.C., possibly preceding Moche by a few centuries. These results necessarily raise question regarding the nature of state development on the north coast of Peru and, in particular, whether there was a single center of state development in this region or multiple sites where similar conditions and processes led to the parallel emergence of functioning states.

  3. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  4. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  5. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  6. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  7. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    Science.gov (United States)

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  8. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  9. Control of medfly by SIT in the Nereva river valley

    International Nuclear Information System (INIS)

    Bjelis, Mario; Ljubetic, Visnja; Novosel, Nevenka

    2006-01-01

    A feasibility study of medfly suppression by means of sterile males released program in the Neretva Vallley, Croatia, is presented. The increase of medfly infestation is considered, as almost all cultures of the region represent host plants for the insect. Environmental friendly methods such well developed SIT technique associated with other organic methods are mentioned as an option of no disruption of the present natural balance. Area study and strategy planning is briefly presented. Population dynamics of Ceratitis capitata in the different parts of the delta Neretva valley, during period 2002 - 2004 Year is reported. Medfly capture on selected locations with different host availability in Neretva river is studied. (MAC)

  10. Control of medfly by SIT in the Nereva river valley

    Energy Technology Data Exchange (ETDEWEB)

    Bjelis, Mario, E-mail: mario.bjelis@zzb.h [Institut for Plant Protection in Agriculture and Foresty of Republic of Croatia, Zagreb, Zvonimirova (Croatia); Ljubetic, Visnja [Ministry of Agriculture, Forestry and Watter Managment of Republic of Croatia, Zagreb (Croatia); Novosel, Nevenka [State Office for Nuclear Safety, Zagreb (Croatia)

    2006-07-01

    A feasibility study of medfly suppression by means of sterile males released program in the Neretva Vallley, Croatia, is presented. The increase of medfly infestation is considered, as almost all cultures of the region represent host plants for the insect. Environmental friendly methods such well developed SIT technique associated with other organic methods are mentioned as an option of no disruption of the present natural balance. Area study and strategy planning is briefly presented. Population dynamics of Ceratitis capitata in the different parts of the delta Neretva valley, during period 2002 - 2004 Year is reported. Medfly capture on selected locations with different host availability in Neretva river is studied. (MAC)

  11. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  12. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  13. The role of inspection and maintenance in controlling vehicular emissions in Kathmandu valley, Nepal

    Science.gov (United States)

    Faiz, Asif; Bahadur Ale, Bhakta; Nagarkoti, Ram Kumar

    Motor vehicles are a major source of air pollutant emissions in Kathmandu valley, Nepal. In-use vehicle emission limits were first introduced in Nepal in 1998 and updated in 2000. The emission regulations for gasoline vehicles limit CO emissions to 3-4.5% by volume and HC emissions to 1000 ppm for four-wheeled vehicles, and 7800 ppm for two- and three- wheelers. Emission limits for LPG/CNG vehicles are 3% for CO and 1000 ppm for HC. For diesel vehicles, smoke density must not exceed 65-75 HSU depending on the age of the vehicle. The Government operates a rudimentary inspection and maintenance (I/M) program based on an idle engine test, utilizing an exhaust gas analyzer (for gasoline/LPG/CNG vehicles) and an opacimeter for diesel vehicles. The I/M program is confined to four-wheeled vehicles and occasional three-wheelers. The inspections are required at least once a year and are conducted at designated vehicle testing stations. The I/M program is supplemented by roadside checks. This paper is based on the findings of an analysis of vehicle emissions test data for the period June 2000 to July 2002, covering some 45,000 data sets. Each data set includes information on vehicle type and ownership, the model year, and CO/HC test emission values. The analysis reported in this paper covers the characteristics and statistical distribution of emissions from gasoline-fuelled vehicles, including the impact of gross emitters. The effects of vehicle age, model year (with or without catalysts), usage, and ownership (private vs. public) on emissions of gasoline-fuelled vehicles are discussed. The findings for diesel vehicles have been reported earlier by Ale and Nagarkoti (2003b. Evaluation of Kathmandu valley inspection and maintenance program on diesel vehicles. Journal of the Institute of Engineering 3(1)). This study identifies the limitations of the current I/M program, given that it does not include 70% of the fleet consisting of two-wheelers and concludes with proposed

  14. The effects of age on nuclear power plant containment cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A. [Brookhaven National Lab., Upton, NY (United States); Davis, J. [Science Applications International Corp., New York, NY (United States)

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated.

  15. The effects of age on nuclear power plant containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A.; Davis, J.

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated

  16. Cryostratigraphy and sedimentology of high-Arctic fjord-valleys

    OpenAIRE

    Gilbert, Graham Lewis

    2018-01-01

    Fjord-valleys, as sediment-filled palaeofjords, are characteristic of formerly glaciated mountainous coastal areas. High-Arctic fjord-valleys commonly host permafrost, but are poorly accessible and hence have drawn relatively little research. The research presented in this thesis combines the methods of cryostratigraphy, clastic sedimentology, sequence stratigraphy, geomorphology and geochronology to investigate the sedimentary infilling, permafrost formation and late Quaternary landscape dev...

  17. Paleoenvironmental changes across the Cretaceous/Tertiary boundary in the northern Clarence valley, southeastern Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Hollis, C.J.; Rodgers, K.A.; Strong, C.P.; Field, B.D.; Rogers, K.M.

    2003-01-01

    Strata outcropping in Mead and Branch Streams, northern Clarence valley, provide important records of pelagic-hemipelagic sedimentation through the Cretaceous-Paleocene transition in a southern high-latitude, upwelling system flanking a carbonate platform. The two stream sections, 13 C) indicate that high biological productivity continued across the K/T boundary and through the biosiliceous episode. Siliceous plankton thrived in the Marlborough upwelling zone during the Early Paleocene. Fluctuations in abundance and lithofacies can be related to significant changes in sea level, which may be the result of local tectonic or global climate changes. The delayed recovery of calcareous plankton after mass extinction at the K/T boundary, in both outer neritic and bathyal settings, indicates a relatively cool oceanic regime for the first 1.5 m.y. of the Paleocene. (author). 68 refs., 11 figs., 6 tabs

  18. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  19. Legionnaires' Disease Outbreaks and Cooling Towers, New York City, New York, USA.

    Science.gov (United States)

    Fitzhenry, Robert; Weiss, Don; Cimini, Dan; Balter, Sharon; Boyd, Christopher; Alleyne, Lisa; Stewart, Renee; McIntosh, Natasha; Econome, Andrea; Lin, Ying; Rubinstein, Inessa; Passaretti, Teresa; Kidney, Anna; Lapierre, Pascal; Kass, Daniel; Varma, Jay K

    2017-11-01

    The incidence of Legionnaires' disease in the United States has been increasing since 2000. Outbreaks and clusters are associated with decorative, recreational, domestic, and industrial water systems, with the largest outbreaks being caused by cooling towers. Since 2006, 6 community-associated Legionnaires' disease outbreaks have occurred in New York City, resulting in 213 cases and 18 deaths. Three outbreaks occurred in 2015, including the largest on record (138 cases). Three outbreaks were linked to cooling towers by molecular comparison of human and environmental Legionella isolates, and the sources for the other 3 outbreaks were undetermined. The evolution of investigation methods and lessons learned from these outbreaks prompted enactment of a new comprehensive law governing the operation and maintenance of New York City cooling towers. Ongoing surveillance and program evaluation will determine if enforcement of the new cooling tower law reduces Legionnaires' disease incidence in New York City.

  20. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools.

    Science.gov (United States)

    van den Bos, Ruud

    2015-02-01

    Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.

  1. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Science.gov (United States)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  2. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  3. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  4. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition

    International Nuclear Information System (INIS)

    Goodarzi, M.; Ramezanpour, R.

    2014-01-01

    Highlights: • Alternative cross sections for natural draft cooling tower were proposed. • Numerical solution was applied to study thermal and hydraulic performances. • Thermal and hydraulic performances were assessed by comparative parameters. • Cooling tower with elliptical cross section had better thermal performance under crosswind. • It could successfully used at the regions with invariant wind direction. - Abstract: Cooling efficiency of a natural draft dry cooling tower may significantly decrease under crosswind condition. Therefore, many researchers attempted to improve the cooling efficiency under this condition by using structural or mechanical facilities. In this article, alternative shell geometry with elliptical cross section is proposed for this type of cooling tower instead of usual shell geometry with circular cross section. Thermal performance and cooling efficiency of the two types of cooling towers are numerically investigated. Numerical simulations show that cooling tower with elliptical cross section improves the cooling efficiency compared to the usual type with circular cross section under high-speed wind moving normal to the longitudinal diameter of the elliptical cooling tower

  5. Validation of the kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The purpose of this report is to present a validation of a previously described kinetic model which was developed to predict the composition of chlorinated fresh water discharged from power plant cooling systems. The model was programmed in two versions: as a stand-alone program and as a part of a unified transport model developed from consistent mathematical models to simulate the dispersion of heated water and radioisotopic and chemical effluents from power plant discharges. The results of testing the model using analytical data taken during operation of the once-through cooling system of the Quad Cities Nuclear Station are described. Calculations are also presented on the Three Mile Island Nuclear Station which uses cooling towers

  6. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  7. Completely independent electrical control of spin and valley in a silicene field effect transistor

    International Nuclear Information System (INIS)

    Zhai, Xuechao; Jin, Guojun

    2016-01-01

    One-atom-thick silicene is a silicon-based hexagonal-lattice material with buckled structure, where an electron fuses multiple degrees of freedom including spin, sublattice pseudospin and valley. We here demonstrate that a valley-selective spin filter (VSSF) that supports single-valley and single-spin transport can be realized in a silicene field effect transistor constructed of an npn junction, where an antiferromagnetic exchange field and a perpendicular electric field are applied in the p -doped region. The nontrivial VSSF property benefits from an electrically controllable state of spin-polarized single-valley Dirac cone. By reversing the electric field direction, the device can operate as a spin-reversed but valley-unreversed filter due to the dependence of band gap on spin and valley. Further, we find that all the possible spin-valley configurations of VSSF can be achieved just by tuning the electric field. Our findings pave the way to the realization of completely independent electrical control of spin and valley in silicene circuits. (paper)

  8. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    Science.gov (United States)

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    On May 25-27, 1980, Long Valley caldera was rocked by four M=6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO2 emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory. The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970s, intensive studies of the area began through the USGS Geothermal Investigations Program, owing to the presence of a large young silicic volcanic system. The paroxysmal eruption of Long Valley caldera about 760,000 years ago produced the Bishop Tuff and associated Bishop ash. The Bishop Tuff is a well-preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite-forming eruptions. Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to

  9. Safety Evaluation report on Tennessee Valley Authority: Sequoyah nuclear performance plan

    International Nuclear Information System (INIS)

    1988-05-01

    This Safety Evaluation Report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Sequoyah Nuclear Performance Plan, through Revision 2, and supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of either of the Sequoyah units. In particular, the SER addresses required actions for Unit 2 restart. In many cases, the programmatic aspects for Unit 1 are identical to those for Unit 2; the staff will conduct inspections of implementation of those programs. Where the Unit 1 program is different, the staff evaluation will be provided in a supplement to this SER. On the basis of its review, the staff concludes that Sequoyah-specific issues have been resolved to the extent that would support restart of Sequoyah Unit 2

  10. Gas-cooled fast reactors. Motivation and presentation of the ENIGMA program in the MASURCA experimental critical facility

    International Nuclear Information System (INIS)

    Tommasi, Jean; Jacqmin, Robert; Mellier, Frederic

    2005-01-01

    This paper describes a new experimental physics program in support of gas cooled fast reactor (GCFR) design studies, called ENIGMA, to be performed in the MASURCA critical facility at CEA-Cadarache, France. The prospective GCFR design studies at CEA are presented, as well as the specific neutronics features needing an extension of the validation of calculation tools and nuclear data. The relevant existing experiments are briefly reviewed and the need for new experimental data is pointed out. The first phase of the proposed new experiments includes a reference core with a representative spectrum, and a series of central core substitutions involving spectrum shifts, streaming studies, low-grade Pu substitutions, innovative material (Si, Zr) substitutions. Reflector substitution zones will include elements foreseen for the reflectors (Si, Zr, C). Subsequent phases will involve larger amounts of low-grade Pu or innovative materials, and configurations representative of experimental and demonstration GCFRs. (author)

  11. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  12. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  13. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  14. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.; Hong, X.; Jin, C.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, F.

    2014-01-01

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  15. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    Science.gov (United States)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  16. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  17. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  18. French study and research program on water cooled reactor safety

    International Nuclear Information System (INIS)

    Zammite, R.

    1985-05-01

    Electricite de France and the CEA (Commissariat a l'Energie Atomique), joined to obtain, in several fields, the knowledge and qualified calculation tools, they need to develop new means to face the potential consequences of accidents. The bringing on of an important number of PWR units in France in the eightys involves a focusing on these studies. The main fields concerned are the following ones: core cooling accidents and severe accident prevention; fuel behavior in case of accident; containment behavior in accidental situation; emission, transfer and release of fission products in case of accident; probabilistic risk analysis, human factor and earthquakes [fr

  19. Development of Cooling Design Technique for an Electronic Telecommunication System Using HPHE

    International Nuclear Information System (INIS)

    Lee, Jung Hwan; Ryoo, Seong Ryoul; Chun, Ji Hwan; Kim, Jong Man; Kim, Hyun Jun; Kim, Chul Ju; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of Heat Pipe Heat Exchanger(HPHE) for an electronic telecommunication system by adequate convection condition. Heat generation rates of electronic components, the temperature distributions of HPHE and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program is useful to a user who is not familiar with an electronic telecommunication system. The simulation results showed that the HPHE were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 17.4 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared

  20. Structural inspection and wind analysis of redwood cooling towers at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Chung, T.; Solack, T.; Hortel, J.

    1991-01-01

    As part of the plant upgrade program, structural analyses and field inspections were performed on four redwood cooling towers at the DOE Portsmouth gaseous diffusion plant located in Piketon, Ohio. The cooling towers are categorized as important hazard facilities. The loadings are derived from UCRL-15910 according to the pertinent hazard category. In addition to the seismic and wind loadings, the wood cooling towers are constantly subject to adverse environmental effects such as elevated temperature, chemical attack, icing and snow load, and motor vibrations. A thorough structural evaluation for all load combinations was performed for each of the cooling towers based on the structural code requirements of the Cooling Tower Institute and National Forest Products Association. Most stress criteria are unique for the redwood material. This evaluation was performed using finite element techniques on the global structural integrity and supplemented by hand calculations on the individual connection joints. Overloaded wood structural members and joints are identified by the analysis. The rectangular tower structure sits on a concrete basin that span across 60 ft by 200 ft. A major part of the cooling towers upgrading program involved field inspections of the individual cells of each tower. The primary purpose of these inspections was to identify any existing structural damage or deficiencies such as failed members, degraded wood, and deficiencies resulting from poor construction practice. Inspection of 40 cells identified some generic deficiencies that mostly are consistent with the analytical finding. Based on the analysis, some effective but inexpensive upgrading techniques were developed and recommended to bring the cooling towers into compliance with current DOE requirements

  1. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley

    Science.gov (United States)

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree

  2. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  3. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds

  4. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  5. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  6. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  7. Application of apatite fission tract analysis to problems of Mississippi Valley-type Pb-Zn ore genesis

    International Nuclear Information System (INIS)

    Arne, D.C.; Duddy, I.R.; Green, P.F.; Lambert, I.B.

    1987-01-01

    Epigenetic, carbonate-hosted Pb-Zn mineralization of the Mississippi Valley-Type (MVT) is considered to form from warm basinal brines in the temperature range 50-200 deg.C. A variety of genetic fluid flow models have been proposed to explain MVT mineralization, but all suffer from a lack of constraint concerning the timing of ore formation. Fission tracks in apatite resulting from the spontaneous decay of trace amounts of 238 U are thermally unstable over the range of temperatures proposed for MVT ore formation, and may therefore record thermal events related to Pb-Zn mineralization provided sufficient time is allowed for track annealing to occur. Zinc mineralization in Devonian carbonates of the Lennard Shelf, northwest Australia is also considered to be of the Mississippi Valley-type. Mean apatite ages from Precambrian basement and from Devonian carbonates generally average 300Ma. Studies of well sequences indicate a period of uplift for the Lennard Shelf area around the Late Triassic/Early Jurassic. For carbonate outcrop samples, a thermal history is proposed involving burial in the Late Paleozoic/Early Mesozoic followed by uplift and cooling from peak temperatures around 70 deg.C. No difference in apatite annealing effects are observed in the vicinity of zinc mineralization. Coupled with other evidence, this suggests that the mineralizing episode was of short duration given temperatures of ore formation in the range 70-110 deg.C indicated by fluid inclusion homogenization temperatures. 3 refs

  8. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  9. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  10. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    Science.gov (United States)

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic

  11. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  12. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  13. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    International Nuclear Information System (INIS)

    Hsieh, S. H.; Chu, C. S.

    2016-01-01

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions

  14. Cooling in the food industry. Special issue; Koelen in de voedingsindustrie. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-03-01

    In five brief articles attention is paid to the cooling and freezing processes and equipment in the food industry. The following subjects are discussed: the Hazard Analysis and Critical Control Points system (HACCP) to reduce the hygienic risks in the food processing industry to a minimum, indoor climate control for the chicory-roots storage facilities, temperature control of the freezing process for baguettes, a total supermarket management system that meets the HACCP standard, and the use of a cooling simulation program to save energy in a slaughterhouse

  15. The Drentsche Aa valley system

    International Nuclear Information System (INIS)

    Gans, W. de.

    1981-01-01

    This thesis is composed of five papers concerned with Late Quaternary geology and geomorphology of the Aa valley system. The correlation and chronostratigraphic position of the layers have been established by radiocarbon dating. (Auth.)

  16. Land Subsidence Caused by Groundwater Exploitation in Quetta Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Najeebullah Kakar

    2016-12-01

    Full Text Available Land subsidence is affecting several metropolitan cities in developing as well as developed countries around the world such as Nagoya (Japan, Shanghai (China, Venice (Italy and San Joaquin valley (United States. This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortage in the region was further aggravated by the drought during (1998-2004 that hit the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS stations were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of this study revealed that the land of Quetta valley is subsiding from 30mm/y on the flanks to 120 mm/y in the central part. 1.5-5.0 m/y of groundwater level drop was recorded in the area where the rate of subsidence is highest. So the extensive groundwater withdrawals in Quetta valley is considered to be the driving force behind land subsidence.

  17. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  18. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai; Moody, Galan; Wu, Fengcheng; Dass, Chandriker Kavir; Xu, Lixiang; Chen, Chang Hsiao; Sun, Liuyang; Li, Ming-yang; Li, Lain-Jong; MacDonald, Allan H.; Li, Xiaoqin

    2016-01-01

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge

  19. Dynamics and developing of natural circulation cooling from vertical upflow and downflow conditions

    International Nuclear Information System (INIS)

    Yang, B.W.; Ouyang, W.

    2004-01-01

    Several research programs have been conducted to evaluate the capability of natural circulation cooling of reactors following a loss of cooling accident. Both experimental and RELAP5 simulation results were obtained for these studies in a facility with vertical heated tube(s) and a unheated bypass channel. The analytical results showed that, under a certain power level, a natural circulation pattern can be developed from both initial upflow and downflow conditions, and maintained for a significant cooling period. This power level, for the discussion of this paper, is defined as the natural circulation cooling (NCC) power limit. Two import factors, namely the pump coastdown rate and the initial flow direction, are examined in this paper. In the benchmark case, as compared to the experimental results, the RELAP5 simulation program accurately predicted the transient phenomena from forced convection through flow reversal, then, into natural circulation cooling. Generally, the two-phase NCC power limit is higher and also more stable for the cases with initial upflow forced convection than for the cases with initial downflow. The transient phenomena (dynamics) of the natural circulation cooling was examined by varying the pump coast down rate in approaching the flow reversal natural circulation. A significant pump coastdown effect on the NCC power limit was observed for the analytical tests with initial downflow forced convection. For the tests with initial downflow condition, the higher the coastdown rate (or the shorter the coastdown period), the higher the NCC power limit. For the case with initial upflow forced convection, there may be an optimal coastdown rate for a given subcooled condition. However, for the subcooled condition used in this study, the effect of pump coast down rate is not as significant as in the downward forced convection. (author)

  20. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.