WorldWideScience

Sample records for program atomic energy

  1. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  2. The Atomic Energy Commission's Annual Report to Congress for 1961. Major Activities in the Atomic Energy Programs, January - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    The document represents the 1961 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report consists of four parts: Part One, The Atomic Energy Industry for 1961 and Related Activities; Part Two, Nuclear Power Programs for 1961; Part Three, Major Activities in Atomic Energy Programs; and Part Four, Regulatory Activities. Sixteen appendices are also included.

  3. The Atomic Energy Commission's Annual Report to Congress for 1959. Major Activities in the Atomic Energy Programs, January - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  4. The Atomic Energy Commission's Annual Report to Congress for 1962. Major Activities in the Atomic Energy Programs, January - December 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1963-01-31

    The document represents the 1962 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report opens with a section of Highlights of the Atomic Energy Programs of 1962, followed by five parts: Part One, Commission Activities; Part Two, Nuclear Reactor Programs; Part Three, Production and Weapons Programs; Part Four, Other Major Programs; and Part Five, The Regulatory Program. Sixteen appendices are also included.

  5. The Atomic Energy Commission's Annual Report to Congress for 1960. Major Activities in the Atomic Energy Programs, January - December 1960

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1961-01-31

    The document covers activities for the period January - December 1960. The report consists of two parts: Part One, The Atomic Energy Industry in 1960 and Related Activities; and Part Two, Major Activities in Atomic Energy Programs. Twenty-one appendices are also included.

  6. Fourteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1953

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1953-07-31

    The document represents the fourteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1953.

  7. Twelfth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1952

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1952-07-01

    The document represents the twelfth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1952.

  8. Eighteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1955

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Lewis L.

    1955-07-30

    The document represents the eighteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1955.

  9. Fifteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, July - December 1953

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1954-01-31

    The document represents the fifteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period July - December 1953.

  10. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of

  11. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Case, R.; Berry, R.B.; Eras, A. [and others

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  12. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  13. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  14. The Russian Federation's Ministry of Atomic Energy: Programs and Developments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Craig M.

    2000-07-24

    The Ministry of Atomic Energy of the Russian Federation (Minatom) is one of Russia's largest and most influential federal bodies. Throughout 1999 its head, Yevgeny Adamov, has worked to increase the Ministry's commercial competitiveness by consolidating redundant facilities and tightening control over subsidiary organizations. Economic difficulties and budget constraints, however, have hindered Minatom's ability to achieve many of its programs and goals. As a result, the Ministry has continued, renewed or initiated contracts with several countries possessing questionable commitments to nonproliferation and has sought to expand its role in international nuclear waste management and spent fuel reprocessing in order to raise new sources of revenue. While many of these programs are not likely to come to fruition, others raise significant nonproliferation and environmental concerns. This paper reviews select programs driving Minatom's efforts to raise funds, comments on their potential viability, and highlights areas likely to be of particular concern for the United States over the next three to five years.

  15. US scientific contributions to the water resources program of the International Atomic Energy Agency

    Science.gov (United States)

    Aggarwal, P. K.; Schneider, V. R.

    2007-12-01

    It is well recognized that a better understanding of the water cycle and increased availability of hydrological information for surface and groundwater resources are key factors in the ability to sustainably manage water resources. Since its inception in 1957, the International Atomic Energy Agency (IAEA) has played a critical role in developing isotope applications for hydrology and building scientific capacity in developing countries. Through an active technical cooperation program with a funding of nearly $8M per biennium, the IAEA assists developing countries in using isotope techniques for the assessment and monitoring of water resources, in particular, groundwater resources. In addition, substantial human resources and institutional capacity are built through the provision of training and appropriate equipment for monitoring. The water resources program of the IAEA is implemented with the support of a number of experts and the United States contributes extensively to this program. Although spanning the entire 50 year history of the IAEA, the contribution of US scientists, and particularly those from the US Geological Survey, has been substantial over the past 10 years. These contributions have included assistance in technical cooperation projects in Africa, Latin America and Asia, as well as internationally coordinated research projects in vadose zone hydrology, surface water - groundwater interactions, and regional aquifer studies. In Ethiopia, a national groundwater assessment program was formulated and a computer database was provided to manage hydrological information. A robust program of capacity building in cooperation with the USGS and Argonne National Laboratory has provided training to a number of IAEA-sponsored candidates from Africa and Latin America. This paper will describe the objectives and results of some of these cooperative efforts.

  16. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1961. Major activities in the atomic energy programs, January 1961 - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    This volume contains a name and subject index for the 1961 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1961.

  17. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1962. Major activities in the atomic energy programs, January 1962 - December 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1963-01-31

    This volume contains a name and subject index for the 1962 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1962.

  18. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1960. Major activities in the atomic energy programs, January 1960 - December 1960

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1961-01-31

    This volume contains a name and subject index for the 1960 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1960.

  19. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1959. Major activities in the atomic energy programs, January 1959 - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    This volume contains a name and subject index for the 1959 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1959.

  20. The Russian Federation's Ministry of Atomic Energy: Programs and Developments

    Energy Technology Data Exchange (ETDEWEB)

    CM Johnson

    2000-07-24

    This paper reviews select programs driving the Ministry of Atomic Energy of the Russian Federation's (Minatom) efforts to raise funds, comments on their potential viability, and highlights areas likely to be of particular concern for the US over the next three to five years. The paper's findings are: (1) Despite numerous cabinet displacements throughout the Yeltsin administration, Yevgeny Adamov was reappointed Minister on four occasions. With Boris Yeltsin's January 1, 2000 resignation, Adamov's long-term position as the head of the Ministry is more tenuous, but he will likely retain his position until at least the March 2000 elections. Acting President Vladimir Putin is unlikely to reorganize his cabinet prior to that date and there are no signs that Putin is dissatisfied with Adamov's leadership of Minatom. (2) Adamov's chief priorities are downsizing Minatom's defense sector, increasing the oversight of subsidiary bodies by the central bureaucracy and consolidating commercial elements of the Ministry within an umbrella organization called Atomprom. (3) Viktor Mikhaylov, Adamov's predecessor and critic of his reform efforts, has been relieved of his duties as First Deputy Minister. While he retains his positions as Chief of the Science Councils and Chief Scientist at Arzamas-16, his influence on Minatom's direction is greatly diminished. Adamov will likely continue his efforts to further marginalize Mikhaylov in the coming year. (4) Securing extra-budgetary sources of income continues to be the major factor guiding Minatom's international business dealings. The Ministry will continue to aggressively promote the sale of nuclear technology abroad, often to countries with questionable nonproliferation commitments. (5) Given the financial difficulties in Russia and Minatom's client states, however, few nuclear development programs will come to fruition for a number of years, if ever. Nevertheless, certain

  1. Collisions of electrons with hydrogen atoms II. Low-energy program using the method of the exterior complex scaling

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    While collisions of electrons with hydrogen atoms pose a well studied and in some sense closed problem, there is still no free computer code ready for ;production use;, that would enable applied researchers to generate necessary data for arbitrary impact energies and scattering transitions directly if absent in on-line scattering databases. This is the second article on the Hex program package, which describes a new computer code that is, with a little setup, capable of solving the scattering equations for energies ranging from a fraction of the ionization threshold to approximately 100 eV or more, depending on the available computational resources. The program implements the exterior complex scaling method in the B-spline basis.

  2. U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    1999-09-22

    In 1946 the United States (U.S.) Congress passed the Atomic Energy Act and with it created the Atomic Energy Commission. For the ensuing half-century the AEC and its successors have pursued biological and environmental research with an unwavering mandate to exploit the use of fissionable and radioactive material for medical purposes and, at the same time, to ensure the health of it's workers, the public, and the environment during energy technology development and use (AEC. 1961; DOE 1983; DOE, 1997). The following pages are testimony to the success of this undeviating vision (Figure 1). From the early days of the AEC, cooperation has also linked researchers from the national laboratories, the academic community, and the private sector. The AEC-sponsored research both at national laboratories and universities, and also supported graduate students to develop a cadre of health physicists, radiation biologists, and nuclear engineers. Coordinating these diverse performers has been crucial to the unique teaming that has made many of the successes possible. The success of the biological and environmental research program has often been shared with other federal agencies. The future will demand even stronger and more substantive intraagency, interagency, and international collaborations.

  3. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  4. A History of the Atomic Energy Commission

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  5. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  6. Atom mapping with constraint programming.

    Science.gov (United States)

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  7. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  8. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  9. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    Science.gov (United States)

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  10. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  11. Jobs in the Atomic Energy Field

    Science.gov (United States)

    Occupational Outlook Quarterly, 1974

    1974-01-01

    According to a recent government survey, employment in privately-owned atomic energy facilities now exceeds employment in government facilities. In this field, engineers, scientists, technicians, and craft workers account for the highest proportion of total employment. (MW)

  12. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  13. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  14. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    Science.gov (United States)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  15. Ps-atom scattering at low energies

    CERN Document Server

    Fabrikant, I I

    2015-01-01

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  16. Army Programs: Army Energy Program

    Science.gov (United States)

    1997-02-03

    the Energy Program. o Expands the responsibilities of the Assistant Chief of Staff for Installation Management (para 1-4). o Includes ridesharing as...not been highlighted. Summary. This regulation establishes poli- cies, procedures, and responsibilities for the Army Energy Program. Applicability ...Energy Technology Service (FETS) • 3–13, page 6 Energy Surveys • 3–14, page 6 Army Energy Awareness Seminars • 3–15, page 6 Army ridesharing • 3–16

  17. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  18. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum, ...

  19. Transition energies of atomic lawrencium

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A.; Eliav, E.; Kaldor, U. [Tel Aviv Univ., School of Chemistry (Israel); Vilkas, M.J.; Ishikawa, Y. [Puerto Rico Univ., Dept. of Chemistry (United States)

    2007-10-15

    Transition energies of the superheavy element lawrencium, including the ionization potential, excitation energies and electron affinities, are calculated by the intermediate Hamiltonian coupled cluster method. A large basis set (37s31p26d21f16g11h6i) is used, as well as an extensive P space (6s5p4d2f1g). The outer 43 electrons are correlated. Accuracy is monitored by applying the same approach to lutetium, the lighter homologue of Lr, and comparing with experimentally known energies. QED corrections are included. The main goal is to predict excitation energies, in anticipation of planned spectroscopy of Lr. The ground state of Lr is 7s{sup 2}7p {sup 2}P(1/2), unlike the 5d6s{sup 2} {sup 2}D(3/2) of Lu. Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20.000-30.000 cm{sup -1}, are 7p {yields} 8s at 20.100 cm{sup -1} and 7p {yields} 7d at 28.100 cm{sup -1}. The average absolute error of 20 excitation energies of Lu is 423 cm{sup -1}, and the error limits for Lr are put at 700 cm{sup -1}. The two electron affinities measured recently for Lu are reproduced within 55 cm{sup -1}, and a third bound state of Lu{sup -} is predicted. (authors)

  20. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in India.

    Science.gov (United States)

    Lobo Gajiwala, Astrid; Morales Pedraza, Jorge

    2009-05-01

    The banking of tissues such bone and skin began in India in the 1980s and 1990s. Although eye banking started in 1945 there was little progress in this field for the next five decades. As part of the IAEA/RCA program to use ionising radiation for the sterilisation of biological tissues in Asia and the Pacific Region, the Tata Memorial Hospital (TMH) in 1986 decided to set up a tissue bank in Mumbai funded by the Government of India. The TMH Tissue Bank became operational in January 1988, and stands as a pioneering effort in the country to provide safe, clinically useful and cost-effective human allografts for transplantation. It uses the IAEA International Standards on Tissue Banking. All the grafts are sterilised terminally by exposure to a dose of 25 kGy of gamma radiation, which has been validated as recommended by the IAEA Code of Practice for the Radiation Sterilisation of Tissues Allografts: Requirements for Validation and Routine Control. The TMH Tissue Bank is registered with the Maharashtra State Health Authorities, and in May 2004, it became India's first Tissue Bank to receive ISO 9001:2000 certification of its Quality Management System. From 1989 to September 2007, the TMH Tissue Bank has supplied 11,369 allografts to 310 surgeons operating in 69 hospitals in Mumbai and 56 hospitals in other parts of India. These numbers have been limited by difficulties with the retrieval of tissues from deceased donors due to inadequate resources and tissue donation policies of hospitals. As the Government of India representative in the IAEA program, the TMH Tissue Bank has promoted and co-coordinated these activities in the country and the development of tissue banks using radiation sterilisation of tissue grafts. Towards this end it has been engaged in training personnel, drawing up project proposals, and supporting the establishment of a Tissue Retrieval Centre in Mumbai. Currently it networks with the Zonal Transplant Co-ordination Centre of the Government of

  1. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in Chile.

    Science.gov (United States)

    Aguirre Herrera, Paulina; Morales Pedraza, Jorge

    2009-05-01

    The Tissue Banking Project in Chile started as an idea in 1996. Before 1996 in Chile there were only a few small bone banks working with their own standards of quality. The first tissue bank (LPTR) was established in 1998, with the technical and financial support of the IAEA. Since 2001, the laboratory began to produce tissues for clinical use, starting with the processing of 6 amniotic membranes, 2 femoral heads and 19 batches of pig skin. In 2002, the laboratory began the processing of human skin. Five students from Chile have graduated from training courses carried out in Singapore and in Buenos Aires under the IAEA training program since 1998. The amount of tissues produced and sterilized using ionizing radiation by the LPTR in the last years was 320,000 cm(2) of human skin, 553,600 cm(2) of pig skin, 5,400 cm(2) of amniotic membrane, 49 femoral heads, 3 large bones and 300 g of bovine bone. The patients treated with sterilized tissues produced by the LPTR were 200 deep burns treated with human skin and pig skin, 40 bone transplants from femoral heads, 77 ophthalmologic patients treated with amniotic membrane and 150 bovine bone transplants for dental treatments.

  2. Scientists credit `Atoms for Peace' for progress on energy, security

    CERN Multimedia

    Jones, D

    2003-01-01

    "Fifty years after President Eisenhower unveiled his plan for developing peaceful uses for nuclear fission, the scientific advances spawned by his Atoms for Peace program have made possible major advances in energy and national security, a panel of physicists said last week" (1 page).

  3. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine Program. Part 2: Analysis of Results.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Ordonez, Felix Barajas; Paez, Diana; Pascual, Thomas

    2017-11-01

    The International Atomic Energy Agency has developed a program, named Quality Management Audits in Nuclear Medicine (QUANUM), to help its Member States to check the status of their nuclear medicine practices and their adherence to international reference standards, covering all aspects of nuclear medicine, including quality assurance/quality control of instrumentation, radiopharmacy (further subdivided into levels 1, 2, and 3, according to complexity of work), radiation safety, clinical applications, as well as managerial aspects. The QUANUM program is based on both internal and external audits and, with specifically developed Excel spreadsheets, it helps assess the level of conformance (LoC) to those previously defined quality standards. According to their level of implementation, the level of conformance to requested standards; 0 (absent) up to 4 (full conformance). Items scored 0, 1, and 2 are considered non-conformance; items scored 3 and 4 are considered conformance. To assess results of the audit missions performed worldwide over the last 8 years, a retrospective analysis has been run on reports from a total of 42 audit missions in 39 centers, three of which had been re-audited. The analysis of all audit reports has shown an overall LoC of 73.9 ± 8.3% (mean ± standard deviation), ranging between 56.6% and 87.9%. The highest LoC has been found in the area of clinical services (83.7% for imaging and 87.9% for therapy), whereas the lowest levels have been found for Radiopharmacy Level 2 (56.6%); Computer Systems and Data Handling (66.6%); and Evaluation of the Quality Management System (67.6%). Prioritization of non-conformances produced a total of 1687 recommendations in the final audit report. Depending on the impact on safety and daily clinical activities, they were further classified as critical (requiring immediate action; n = 276; 16% of the total); major (requiring action in relatively short time, typically from 3 to 6 months; n = 604

  4. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  5. Hanford Atomic Products Operation Five-Year Program

    Energy Technology Data Exchange (ETDEWEB)

    Priode, C.A.; Benoliel, R.W.; Gilbert, W.D.; McGrath, R.E.; Tomlinson, R.E.; Zuhr, H.F. [comps.

    1958-05-19

    The General Electric Company has prepared in past years numerous documents for the Atomic Energy Commission outlining in some detail its current and proposed programs at Hanford. Last year, at the request of the commission, program types of information were consolidated into one document, the HAPO Five Year Program. That document was well received and useful to an extent that the General Electric Company was requested by the Commission to prepare another covering the fiscal years 1959 through 1963. In outlining the five year program for the Hanford Atomic Products Operation, the General Electric Company has made assumptions regarding the US Atomic Energy Commission`s current and future programs and Hanford`s relationship to these programs. Two major objectives of the Commission were considered basic for future planning: first, to provide adequate atomic weapons for national defense; and second, to encourage and assist in the development of atomic energy for peaceful uses. The Hanford contributions to these objectives are conceived to include the acquisition and potential application of new technology in support of: (1) Increased production of plutonium, as nitrate solution, buttons, and as current and future shapes. (2) A program that will provide the technological capability to implement broad changes in the Commission`s programs such as conversion of Hanford reactors to tritium production, the separation and packaging of mixed and specific fission products, the recovery of transuranic elements, the processing of power reactor fuels, and the provision of weapons assembly capability. (3) Optimum costs, operating and capital. (4) New production reactor designs and concepts. (5) Use of plutonium as power reactor fuel. (6) Operation of nuclear reactors and associated plants with assured radiological protection of both workers and people and other forms of life in the environs.

  6. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  7. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  8. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  9. Seventh Semiannual Report of the Commission to the Congress: Atomic Energy and the Physical Sciences, January 1950

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.

    1950-01-01

    The document represents the seventh semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up briefly the major activities and developments in the national atomic energy program in Part I. Part II focuses on research in the physical sciences and progress in atomic energy.

  10. Annual Report to Congress of the Atomic Energy Commission for 1964

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1965-01-29

    The document represents the 1964 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report is divided into 6 areas for 1964, plus 8 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1964; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Other Major Activities; Part Five, Support-Type Activities; and Part Six, Regulatory Activities.

  11. Project of Atomic Energy Technology Record

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.; and others

    2012-12-15

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records.

  12. Atomic Mass and Nuclear Binding Energy for Pu-239 (Plutonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pu-239 (Plutonium, atomic number Z = 94, mass number A = 239).

  13. Atomic Mass and Nuclear Binding Energy for Hs-349 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-349 (Hassium, atomic number Z = 108, mass number A = 349).

  14. Atomic Mass and Nuclear Binding Energy for Hs-298 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-298 (Hassium, atomic number Z = 108, mass number A = 298).

  15. Atomic Mass and Nuclear Binding Energy for Hs-333 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-333 (Hassium, atomic number Z = 108, mass number A = 333).

  16. Atomic Mass and Nuclear Binding Energy for Hs-326 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-326 (Hassium, atomic number Z = 108, mass number A = 326).

  17. Atomic Mass and Nuclear Binding Energy for Hs-313 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-313 (Hassium, atomic number Z = 108, mass number A = 313).

  18. Atomic Mass and Nuclear Binding Energy for Hs-321 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-321 (Hassium, atomic number Z = 108, mass number A = 321).

  19. Atomic Mass and Nuclear Binding Energy for Hs-304 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-304 (Hassium, atomic number Z = 108, mass number A = 304).

  20. Atomic Mass and Nuclear Binding Energy for Hs-311 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-311 (Hassium, atomic number Z = 108, mass number A = 311).

  1. Atomic Mass and Nuclear Binding Energy for Hs-323 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-323 (Hassium, atomic number Z = 108, mass number A = 323).

  2. Atomic Mass and Nuclear Binding Energy for Hs-335 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-335 (Hassium, atomic number Z = 108, mass number A = 335).

  3. Atomic Mass and Nuclear Binding Energy for Hs-322 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-322 (Hassium, atomic number Z = 108, mass number A = 322).

  4. Atomic Mass and Nuclear Binding Energy for Hs-325 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-325 (Hassium, atomic number Z = 108, mass number A = 325).

  5. Atomic Mass and Nuclear Binding Energy for Hs-316 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-316 (Hassium, atomic number Z = 108, mass number A = 316).

  6. Atomic Mass and Nuclear Binding Energy for Hs-355 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-355 (Hassium, atomic number Z = 108, mass number A = 355).

  7. Atomic Mass and Nuclear Binding Energy for Hs-336 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-336 (Hassium, atomic number Z = 108, mass number A = 336).

  8. Atomic Mass and Nuclear Binding Energy for Hs-286 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-286 (Hassium, atomic number Z = 108, mass number A = 286).

  9. Atomic Mass and Nuclear Binding Energy for Hs-305 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-305 (Hassium, atomic number Z = 108, mass number A = 305).

  10. Atomic Mass and Nuclear Binding Energy for Hs-283 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-283 (Hassium, atomic number Z = 108, mass number A = 283).

  11. Atomic Mass and Nuclear Binding Energy for Hs-334 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-334 (Hassium, atomic number Z = 108, mass number A = 334).

  12. Atomic Mass and Nuclear Binding Energy for Hs-302 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-302 (Hassium, atomic number Z = 108, mass number A = 302).

  13. Atomic Mass and Nuclear Binding Energy for Hs-280 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-280 (Hassium, atomic number Z = 108, mass number A = 280).

  14. Atomic Mass and Nuclear Binding Energy for Hs-341 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-341 (Hassium, atomic number Z = 108, mass number A = 341).

  15. Atomic Mass and Nuclear Binding Energy for Hs-351 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-351 (Hassium, atomic number Z = 108, mass number A = 351).

  16. Atomic Mass and Nuclear Binding Energy for Hs-344 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-344 (Hassium, atomic number Z = 108, mass number A = 344).

  17. Atomic Mass and Nuclear Binding Energy for Hs-319 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-319 (Hassium, atomic number Z = 108, mass number A = 319).

  18. Atomic Mass and Nuclear Binding Energy for Hs-342 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-342 (Hassium, atomic number Z = 108, mass number A = 342).

  19. Atomic Mass and Nuclear Binding Energy for Hs-345 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-345 (Hassium, atomic number Z = 108, mass number A = 345).

  20. Atomic Mass and Nuclear Binding Energy for Hs-306 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-306 (Hassium, atomic number Z = 108, mass number A = 306).

  1. Atomic Mass and Nuclear Binding Energy for Hs-301 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-301 (Hassium, atomic number Z = 108, mass number A = 301).

  2. Atomic Mass and Nuclear Binding Energy for Hs-289 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-289 (Hassium, atomic number Z = 108, mass number A = 289).

  3. Atomic Mass and Nuclear Binding Energy for Hs-348 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-348 (Hassium, atomic number Z = 108, mass number A = 348).

  4. Atomic Mass and Nuclear Binding Energy for Hs-290 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-290 (Hassium, atomic number Z = 108, mass number A = 290).

  5. Atomic Mass and Nuclear Binding Energy for Hs-299 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-299 (Hassium, atomic number Z = 108, mass number A = 299).

  6. Atomic Mass and Nuclear Binding Energy for Hs-356 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-356 (Hassium, atomic number Z = 108, mass number A = 356).

  7. Atomic Mass and Nuclear Binding Energy for Hs-307 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-307 (Hassium, atomic number Z = 108, mass number A = 307).

  8. Atomic Mass and Nuclear Binding Energy for Hs-292 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-292 (Hassium, atomic number Z = 108, mass number A = 292).

  9. Atomic Mass and Nuclear Binding Energy for Hs-340 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-340 (Hassium, atomic number Z = 108, mass number A = 340).

  10. Atomic Mass and Nuclear Binding Energy for Hs-293 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-293 (Hassium, atomic number Z = 108, mass number A = 293).

  11. Atomic Mass and Nuclear Binding Energy for Hs-288 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-288 (Hassium, atomic number Z = 108, mass number A = 288).

  12. Atomic Mass and Nuclear Binding Energy for Hs-317 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-317 (Hassium, atomic number Z = 108, mass number A = 317).

  13. Atomic Mass and Nuclear Binding Energy for Hs-318 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-318 (Hassium, atomic number Z = 108, mass number A = 318).

  14. Atomic Mass and Nuclear Binding Energy for Hs-353 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-353 (Hassium, atomic number Z = 108, mass number A = 353).

  15. Atomic Mass and Nuclear Binding Energy for Hs-354 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-354 (Hassium, atomic number Z = 108, mass number A = 354).

  16. Atomic Mass and Nuclear Binding Energy for Hs-278 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-278 (Hassium, atomic number Z = 108, mass number A = 278).

  17. Atomic Mass and Nuclear Binding Energy for Hs-343 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-343 (Hassium, atomic number Z = 108, mass number A = 343).

  18. Atomic Mass and Nuclear Binding Energy for Hs-310 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-310 (Hassium, atomic number Z = 108, mass number A = 310).

  19. Atomic Mass and Nuclear Binding Energy for Hs-296 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-296 (Hassium, atomic number Z = 108, mass number A = 296).

  20. Atomic Mass and Nuclear Binding Energy for Hs-324 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-324 (Hassium, atomic number Z = 108, mass number A = 324).

  1. Atomic Mass and Nuclear Binding Energy for Hs-330 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-330 (Hassium, atomic number Z = 108, mass number A = 330).

  2. Atomic Mass and Nuclear Binding Energy for Hs-295 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-295 (Hassium, atomic number Z = 108, mass number A = 295).

  3. Atomic Mass and Nuclear Binding Energy for Hs-309 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-309 (Hassium, atomic number Z = 108, mass number A = 309).

  4. Atomic Mass and Nuclear Binding Energy for Hs-359 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-359 (Hassium, atomic number Z = 108, mass number A = 359).

  5. Atomic Mass and Nuclear Binding Energy for Hs-294 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-294 (Hassium, atomic number Z = 108, mass number A = 294).

  6. Atomic Mass and Nuclear Binding Energy for Hs-300 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-300 (Hassium, atomic number Z = 108, mass number A = 300).

  7. Atomic Mass and Nuclear Binding Energy for Hs-328 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-328 (Hassium, atomic number Z = 108, mass number A = 328).

  8. Atomic Mass and Nuclear Binding Energy for Hs-346 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-346 (Hassium, atomic number Z = 108, mass number A = 346).

  9. Atomic Mass and Nuclear Binding Energy for Hs-284 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-284 (Hassium, atomic number Z = 108, mass number A = 284).

  10. Atomic Mass and Nuclear Binding Energy for Hs-361 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-361 (Hassium, atomic number Z = 108, mass number A = 361).

  11. Atomic Mass and Nuclear Binding Energy for Hs-315 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-315 (Hassium, atomic number Z = 108, mass number A = 315).

  12. Atomic Mass and Nuclear Binding Energy for Hs-352 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-352 (Hassium, atomic number Z = 108, mass number A = 352).

  13. Atomic Mass and Nuclear Binding Energy for Hs-287 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-287 (Hassium, atomic number Z = 108, mass number A = 287).

  14. Atomic Mass and Nuclear Binding Energy for Hs-357 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-357 (Hassium, atomic number Z = 108, mass number A = 357).

  15. Atomic Mass and Nuclear Binding Energy for Hs-337 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-337 (Hassium, atomic number Z = 108, mass number A = 337).

  16. Atomic Mass and Nuclear Binding Energy for Hs-360 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-360 (Hassium, atomic number Z = 108, mass number A = 360).

  17. Atomic Mass and Nuclear Binding Energy for Hs-358 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-358 (Hassium, atomic number Z = 108, mass number A = 358).

  18. Atomic Mass and Nuclear Binding Energy for Hs-331 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-331 (Hassium, atomic number Z = 108, mass number A = 331).

  19. Atomic Mass and Nuclear Binding Energy for Hs-339 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-339 (Hassium, atomic number Z = 108, mass number A = 339).

  20. Atomic Mass and Nuclear Binding Energy for Hs-312 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-312 (Hassium, atomic number Z = 108, mass number A = 312).

  1. Atomic Mass and Nuclear Binding Energy for Hs-282 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-282 (Hassium, atomic number Z = 108, mass number A = 282).

  2. Atomic Mass and Nuclear Binding Energy for Hs-291 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-291 (Hassium, atomic number Z = 108, mass number A = 291).

  3. Atomic Mass and Nuclear Binding Energy for Hs-285 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-285 (Hassium, atomic number Z = 108, mass number A = 285).

  4. Atomic Mass and Nuclear Binding Energy for Hs-332 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-332 (Hassium, atomic number Z = 108, mass number A = 332).

  5. Atomic Mass and Nuclear Binding Energy for Hs-338 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-338 (Hassium, atomic number Z = 108, mass number A = 338).

  6. Atomic Mass and Nuclear Binding Energy for Hs-279 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-279 (Hassium, atomic number Z = 108, mass number A = 279).

  7. Atomic Mass and Nuclear Binding Energy for Hs-281 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-281 (Hassium, atomic number Z = 108, mass number A = 281).

  8. Atomic Mass and Nuclear Binding Energy for Hs-320 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-320 (Hassium, atomic number Z = 108, mass number A = 320).

  9. Atomic Mass and Nuclear Binding Energy for Hs-303 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-303 (Hassium, atomic number Z = 108, mass number A = 303).

  10. Atomic Mass and Nuclear Binding Energy for Hs-297 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-297 (Hassium, atomic number Z = 108, mass number A = 297).

  11. Atomic Mass and Nuclear Binding Energy for Hs-327 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-327 (Hassium, atomic number Z = 108, mass number A = 327).

  12. Atomic Mass and Nuclear Binding Energy for Hs-347 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-347 (Hassium, atomic number Z = 108, mass number A = 347).

  13. Atomic Mass and Nuclear Binding Energy for Hs-308 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-308 (Hassium, atomic number Z = 108, mass number A = 308).

  14. Atomic Mass and Nuclear Binding Energy for Hs-329 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-329 (Hassium, atomic number Z = 108, mass number A = 329).

  15. Atomic Mass and Nuclear Binding Energy for Hs-314 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-314 (Hassium, atomic number Z = 108, mass number A = 314).

  16. Atomic Mass and Nuclear Binding Energy for Hs-350 (Hassium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-350 (Hassium, atomic number Z = 108, mass number A = 350).

  17. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  18. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  19. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  20. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  1. Positronium-alkali atom scattering at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700 064 (India); Basu, Arindam [Department of Physics, Maheshtala College, Chandannagar, South 24 Parganas, Kolkata 700 140 (India); Sarkar, Nirmal K [Sodepur Chandrachur Vidyapith, 1, Desh Bandhu Nagar, Sodepur, 743 174 (India); Sinha, Prabal K [Department of Physics, Bangabasi College, 19, Raj Kumar Chakravorty Sarani, Kolkata 700 009 (India)

    2004-04-28

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time.

  2. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  3. Energy Technology Programs: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

  4. Fourth Semiannual Report to the Congress by the United States Atomic Energy Commission, July 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.; Waymack, William W.

    1948-07-01

    The document includes the letter of submittal and the Fourth semiannual report. These reports are called for pursuant to Section 17 of the Atomic Energy Act of 1946. This fourth report incorporates some changes to the report. In order to make these reports of maximum value to Members of Congress, the Commission has prepared this mid-year report as a specialized document giving a comprehensive account of several major phases of the atomic energy program.

  5. Renewable Energy Certificate Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwendolyn S. Andersen

    2012-07-17

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  6. Annual Report to Congress of the Atomic Energy Commission for 1963

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1964-01-30

    The document represents the 1963 Annual Report of the Atomic Energy Commission (AEC) to Congress. Beginning with this year's report, an index is included as part of the document, rather than as a separate publication.The report is divided into 7 areas for 1963, plus 11 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1963; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Public Safety; Part Five, Other Major Activities; Part Six, Support-Type Activities; and Part Seven, Regulatory Activities.

  7. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; de Boer, Hans L.; Tran, T.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  8. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  9. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  10. Energy Program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, I.Y. (ed.)

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  11. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Paul Essel; Eric T Glover; Serwaa Yeboah; Yaw Adjei-Kyereme; Israel Nutifafa Doyi Yawo; Mawutoli Nyarku; Godfred S Asumadu-Sakyi; Gustav Kudjoe Gbeddy; Yvette Agyiriba Agyiri; Evans Mawuli Ameho; Emmanuel Atule Aberikae

    2016-01-01

      Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the Rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  12. Rainfall erosivity index for the Ghana Atomic Energy Commission site

    National Research Council Canada - National Science Library

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule

    2016-01-01

    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate...

  13. Twenty-third Semiannual Report of the Commission to the Congress, January 1958. Progress in peaceful uses of atomic energy July - December 1957

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Lewis L.

    1958-01-31

    The document represents the twenty-third semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period July - December 1957. A special part one of this semiannual report is titled ''Progress in the Peaceful Uses of Atomic Energy - A 3-year Summary.

  14. A future vision of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking for Asia and the Pacific and Latin American regions.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2009-05-01

    In order to solve some of the problems that are affecting tissue banking activities in the world, a new program/project proposal could be prepared by the IAEA and interested Member States in order to implement it in 2009. The main objective of the new program/project proposal could be the following: To consolidate tissue banks activities in a selected group of IAEA Member States by increasing the quality of the tissue processing and sterilization methods used. The specific objective to be reached by the new program/project proposal could be the following: To reach international standards in all activities carried out by a selected group of tissue banks, as well as the establishment of a limited regional tissue processing centres in specific regions. The following are the conditions to be met by the interested tissue banks, in order to participate in the new program/project proposal: To process different types of tissues for medical treatment using the ionizing radiation technique for tissue sterilization; To apply at least one of the current version of the IAEA Code of Practice, the IAEA Standards and the IAEA Public Awareness Strategies and to have the support of national health authorities for the use of the remaining IAEA documents in the near future; To have in force agreements with public and private hospitals for the use of the sterilized tissues processed by the bank for medical treatment; To have in place a donor referral system, or has the approval by the national health authorities to adopt such system in the near future; To receive the support from the national health authority to participate in the implementation of the new program/project proposal.

  15. Programming a multicore architecture without coherency and atomic operations

    NARCIS (Netherlands)

    Rutgers, J.H.; Bekooij, Marco Jan Gerrit; Smit, Gerardus Johannes Maria

    2014-01-01

    It is hard to reason about the state of a multicore system-on-chip, because operations on memory need multiple cycles to complete, since cores communicate via an interconnect like a network-on-chip. To simplify programming, atomicity is required, by means of atomic read-modify-write (RMW)

  16. The evolution and impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in the Latin American region.

    Science.gov (United States)

    Morales Pedraza, Jorge; Phillips, Glyn O

    2009-05-01

    Since 1993, the IAEA supported the establishment or the consolidation of seven tissue banks in the region. As a direct or indirect consequence of the implementation of the IAEA program, more than 53 tissue banks are now operating in the participating countries. The fast development of tissue banks in the Latin America region under the ARCAL Agreement and with the financial and technical support of the IAEA program made it necessary to train new tissue bank operators and medical personnel. In general, 90 tissue bank operators and medical personnel were trained in the training centre of Buenos Aires. Another six tissue bank operators and medical personnel were trained in the International Training Centre of Singapore. The main impact of the IAEA program in the region was the following: the establishment or consolidation of fifty-three tissue banks in nine countries in the region; the implementation of five national projects, allocating $1,006,737 dollars for this purpose and of one regional project allocating $284,741 dollars for this purpose; the use of the IAEA Standards, the IAEA Code of Practice and the IAEA Public Awareness Strategies in several tissue banks in the region; the application of quality control and quality assurances manuals in all of the participating countries.

  17. Federal Wind Energy Program. Program summary. [USA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of the Federal Wind Energy Program is to accelerate the development of reliable and economically viable wind energy systems and enable the earliest possible commercialization of wind power. To achieve this objective for small and large wind systems requires advancing the technology, developing a sound industrial technology base, and addressing the non-technological issues which could deter the use of wind energy. This summary report outlines the projects being supported by the program through FY 1977 toward the achievement of these goals. It also outlines the program's general organization and specific program elements.

  18. Effect of external energy on atomic, crystalline and powder ...

    Indian Academy of Sciences (India)

    Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy on the ...

  19. Effect of external energy on atomic, crystalline and powder ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy ...

  20. Single atom identification by energy dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  1. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    energies. K CHAKRABARTI. Department of Mathematics, Scottish Church College, 1 & 3 Urquhart Square, Calcutta 700 006,. India. MS received 26 June 2000. Abstract. Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant ΘЅѕ, ...

  2. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  3. State Energy Program in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    2003-05-01

    The Hawaii Strategic Industry Division administers DOE's State Energy Program in Hawaii. The division's current accomplishments include establishing a Model Energy Code for the state, instituting a successful solar program, and making energy performance contracts available for government facilities.

  4. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975. [Program, abstracts, and author index

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics. (GHT)

  5. Atom-interferometry constraints on dark energy

    OpenAIRE

    Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacu...

  6. Progression of Technology Education for Atomic Energy Engineering in Tsuyama National College of Technology

    Science.gov (United States)

    Kato, Manabu; Kobayashi, Toshiro; Okada, Tadashi; Sato, Makoto; Sasai, Yuji; Konishi, Daijiro; Harada, Kanji; Taniguchi, Hironari; Toya, Hideaki; Inada, Tomomi; Sori, Hitoshi; Yagi, Hideyuki

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology.

  7. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  8. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  9. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  10. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in Uruguay: development of tissues quality control and quality management system in the National Multi-Tissue Bank of Uruguay.

    Science.gov (United States)

    Alvarez, I; Morales Pedraza, Jorge; Saldías, M C; Pérez Campos, H; Wodowóz, O; Acosta, María; Vicentino, W; Silva, W; Rodríguez, G; Machín, D; Alvarez, O

    2009-05-01

    BNOT was created and regulated in 1977 and started its operation in 1978 according to the Decree No. 86/1977. By the Decree 248/005 is transformed in the National Institute of Donation and Transplantation of Cells, Tissues and Organs (Instituto Nacional de Donación y Trasplante de Células, Tejidos y Organos--INDT). The organisation has been operating within the State University Medical School and the Public Health Secretary and it is the governmental organisation responsible for the regulation, policy and management of donation and transplantation in Uruguay. By the Decree 160/2006 is responsible for human cells and tissues regulation too. The participation of the INDT in the IAEA program facilitated the introduction of the radiation sterilisation technique for the first time in the country. The radiation sterilisation of tissues processed by INDT (ex BNOT), was initially carried out in the 60 Cobalt Industrial Plant in the National Atomic Energy Commission of Argentina and now is carried out in INDT, using a Gamma Cell 220 Excel, which was provided by the IAEA through the national project URU/7/005. The results of the implementation of tissues, quality control and quality management system, are showed.

  11. Federal Energy R&D Program Shaping Up

    Science.gov (United States)

    Zerkel, Fred H.

    1973-01-01

    Summarizes the programs proposed for the Administration's energy research and development efforts by a special task force headed by the Atomic Energy Commission chairman. Indicates that nuclear research would be stressed in striving for United States future self-sufficiency in energy. (CC)

  12. Annual Report to Congress of the Atomic Energy Commission for 1966

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1967-01-31

    The document represents the 1966 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1966 and includes 18 Chapters, 11 appendices and an index. Chapters are as follows: (1) Licensing and Regulating the Atom; (2) Reactor and Other Nuclear Facility Licensing; (3) The Regulation of Radioactive Materials; (4) Source and Special Nuclear Materials; (5) The Nuclear Defense Effort; (6) Naval Propulsion Reactors; (7) Reactor Development and Technology; (8) Space Nuclear Systems; (9) Isotopic Heat and Power Applications; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Research Facilities and Projects; (14) Nuclear Education and Training; (15) Informational Activities; (16) Operational Safety; (17) Industrial Participation Aspects; and, (18) Administrative and Management Matters.

  13. Annual Report to Congress of the Atomic Energy Commission for 1967

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-31

    The document represents the 1967 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1967 and includes 17 Chapters, 11 appendices and an index. Chapters are as follows: (1) Source and Special Nuclear Materials; (2) Safeguards and Materials Management; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power Units; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Informational Activities; (14) Nuclear Education and Training; (15) Basic Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  14. Annual Report to Congress of the Atomic Energy Commission for 1970

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1971-01-29

    The document represents the 1970 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1970'' followed by 14 Chapters, 8 appendices and an index. Chapters are as follows: (1) The Industrial Base; (2) Environmental and Safety Aspects; (3) Licensing and Regulating the Atom; (4) Source, Special, and Byproduct Nuclear Materials; (5) National Defense Programs; (6) Reactor Development and Technology; (7) Space Nuclear Systems; (8) Isotopic Systems Development; (9) Peaceful Nuclear Explosives; (10) International Affairs and Cooperation; (11) Nuclear Educational Activities; (12) Biomedical and Physical Research; (13) Administrative and Management Matters; and, (14) License Reviews and Adjudicatory Proceedings.

  15. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  16. A Bibliography of Basic Books on Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-01-01

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  17. Delegation from the Pakistan Atomic Energy Commission (PAEC)

    CERN Document Server

    Patrice Loiez

    2002-01-01

    L. to r.: Dr Hafeez Hoorani (NCP) and Dr Michel Della Negra, Spokesman, CMS experiment with a delegation from the Pakistan Atomic Energy Commission: Mr Saeed Ahmed, Director SES, PAEC, Mr Muhammad Naeem, Director PWI and Mr Javed Iqleem, Deputy Chairman PAEC visiting the CMS magnet assembly hall at Point 5.

  18. Fossil energy program. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  19. THE INTERNATIONAL ATOMIC ENERGY AGENCY’s SAFEGUARDS SYSTEM

    OpenAIRE

    Eugenio-Andrés, Gabriel; Universidad Católica de Cordoba

    2008-01-01

    Entrusted with the responsibility of establishing and administering the international safeguards system with the purpose of ensuring that nuclear energy would not be used for furthering military purposes, the International Atomic Energy Agency (hereinafter “IAEA” or “the Agency”) is a key piece of the international system for the maintenance of world peace and security. Despite the initial enthusiasm surrounding the foundation of the IAEA in the 1950s, it required several years for the Agency...

  20. Calculation of Rydberg energy levels for the francium atom

    Science.gov (United States)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  1. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  2. Development of a microlesson in teaching energy levels of atoms

    Science.gov (United States)

    Rodriguez, Cherilyn A.; Buan, Amelia T.

    2018-01-01

    Energy levels of atoms is one of the difficult topics in understanding atomic structure of matter. It appears tobe abstract, theoretical and needs visual representation and images. Hence, in this study a microlesson in teaching the high school chemistry concept on the energy levels of atoms is developed and validated. The researchers utilized backward curriculum design in planning the microlesson to meet the standards of the science K-12 curriculum. The planning process of the microlesson involved a) Identifying the learning competencies in K-12 science curriculum b) write learning objectives c) planning of assessment tools d) making a storyboard e) designing the microlesson and validate and revise the microlesson. The microlesson made use of varied resources in the internet from which the students accessed and collected information about energy levels of atoms. Working in groups, the students synthesized the information on how and why fireworks produce various colors of light through a post card. Findings of the study showed that there was an increase of achievement in learning the content and the students were highly motivated to learn chemistry. Furthermore, the students perceived that the microlesson helped them to understand the chemistry concept through the use of appropriate multimedia activities.

  3. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  4. Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms.

    Science.gov (United States)

    McDonagh, James L; Silva, Arnaldo F; Vincent, Mark A; Popelier, Paul L A

    2017-12-06

    We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.

  5. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  6. Annual Report to Congress of the Atomic Energy Commission for 1969

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  7. Annual Report to Congress of the Atomic Energy Commission for 1968

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  8. Atomic Energy is "Moonshine": What did Rutherford Really Mean?

    Science.gov (United States)

    Jenkin, John G.

    2011-06-01

    In the 1930s Ernest Rutherford (1871-1937) repeatedly suggested, sometimes angrily, that the possibility of harnessing atomic energy was "moonshine." Yet, as war approached he secretly advised the British government to "keep an eye on the matter." I suggest that Rutherford did not really believe his "moonshine" claim but did have profound reasons for making it. If I am correct, then this casts additional light on his personality, stature, and career.

  9. Calculation of the Rydberg Energy Levels for Francium Atom

    Directory of Open Access Journals (Sweden)

    Huang Shizhong

    2010-01-01

    Full Text Available Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of nsS21/2(n=8--50, ndD23/2(n=6--50, and ndD25/2(n=6--50 spectrum series for francium atom are calculated. The calculated results are in excellent agreement with the 74 known experimentally measured levels (the absolute difference is less than 0.03 cm-1 and 58 energy levels for highly excited states are predicted.

  10. Calculation of the Rydberg Energy Levels for Francium Atom

    OpenAIRE

    Huang Shizhong; Sun Qiufeng

    2010-01-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of nsS21/2(n=8--50), ndD23/2(n=6--50), and ndD25/2(n=6--50) spectrum series for francium atom are calculated. The calculated results are in excellent agreement with the 74 known experimentally measured levels (the absolute difference is less than 0.03 cm-1) and 58 energy levels for highly excited states are predicted.

  11. Energy Conversion and Storage Program

    Science.gov (United States)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  12. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  13. Energy distributions for ionization in ion-atom collisions

    CERN Document Server

    Amaya-Tapia, A

    2016-01-01

    In this paper we discuss how through the process of applying the Fourier transform to solutions of the Schr\\"odinger equation in the Close Coupling approach, good results for the ionization differential cross section in energy for electrons ejected in ion-atom collisions are obtained. The differential distributions are time dependent and through their time average, the comparison with experimental and theoretical data reported in the literature can be made. The procedure is illustrated with reasonable success in two systems, $p+H$ and $p+He$, and is expected to be extended without inherent difficulties to more complex systems. This allows advancing in the understanding of the calculation of ionization processes in ion-atom collisions.

  14. Fifth Semiannual Report of the Commission to the Congress: Atomic Energy Development, 1947- 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.

    1949-01-01

    The document represents the fifth semiannual report to Congress, covering specifically the various developments in atomic energy since the inception of the Atomic Energy Commission in 1946. This fifth report represents an expansion of effort in all phases of atomic energy development and is prepared against a background of world affairs.

  15. A Simple Local Correlation Energy Functional for Spherically Confined Atoms from ab Initio Correlation Energy Density.

    Science.gov (United States)

    Vyboishchikov, Sergei F

    2017-09-03

    We propose a simple method of calculating the electron correlation energy density ec (r) and the correlation potential Vc (r) from second-order Møller-Plesset amplitudes and its generalization for the case of a configuration interaction wavefunction, based on Nesbet's theorem. The correlation energy density obtained by this method for free and spherically confined Be and He atoms was employed to fit a local analytical density functional based on Wigner's functional. The functional is capable of producing a strong increase in the correlation energy with decreasing confined radius for the Be atom. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  17. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  18. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  19. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  20. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  1. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  2. Conservation and Renewable Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1991-05-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1991. Information on documents published prior to 1986 can be obtained from ORNL. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  3. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  4. Wind energy: Program overview, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  5. The Atoms for Peace USIS Films: Spreading the Gospel of the "Blessing" of Atomic Energy in the Early Cold War Era

    Directory of Open Access Journals (Sweden)

    Yuka Tsuchiya

    2014-08-01

    Full Text Available In 1955, the U.S. Information Service (USIS Tokyo produced a thirty-minute documentary film Blessing of Atomic Energy in commemoration of the tenth anniversary of the Atomic bombing of Hiroshima and Nagasaki. The film introduced how the Japanese government, researchers, and companies were using radioisotopes offered by the U.S. Argonne National Laboratory for the “peaceful” purposes in agriculture, medicine, hygiene, industry, and disaster prevention. The film also showed the mechanism of atomic power generation, and explained that it was already put into practice in the U.S. and Europe. The images of Japanese people enjoying the “blessing” of the “peaceful” use of atomic energy, ten years after the traumatic experience of A-bombs, were not only shown all over Japan, but also translated into different languages and shown in many countries, including the UK, Finland, Indonesia, Sudan, and Venezuela. The film was part of some fifty educational and documentary films produced for President Eisenhower’s “Atoms for Peace” campaign – a global information dissemination programs on the U.S. leadership in the civilian use of nuclear energy. This paper will explore the roles USIS films played in disseminating information on the “peaceful” use of nuclear energy in the early Cold War era.

  6. The Brazilian time and frequency atomic standards program

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmed

    2008-06-01

    Full Text Available Cesium atomic beam clocks have been the workhorse for many demanding applications in science and technology for the past four decades. Tests of the fundamental laws of physics and the search for minute changes in fundamental constants, the synchronization of telecommunication networks, and realization of the satellite-based global positioning system would not be possible without atomic clocks. The adoption of optical cooling and trapping techniques, has produced a major advance in atomic clock precision. Cold-atom fountain and compact cold-atom clocks have also been developed. Measurement precision of a few parts in 10(15 has been demonstrated for a cold-atom fountain clock. We present here an overview of the time and frequency metrology program based on cesium atoms under development at USP São Carlos. This activity consists of construction and characterization of atomic-beam, and several variations of cold-atom clocks. We discuss the basic working principles, construction, evaluation, and important applications of atomic clocks in the Brazilian program.Relógios atômicos de feixe de Césio têm sido a base para diversas aplicações em ciência e tecnologia nas últimas quatro décadas. Testes de leis fundamentais de física, buscas por mínimas variações em constantes fundamentais, sincronização de redes de telecomunicações e o funcionamento do sistema de posicionamento global, baseado em satélites de navegação, não seriam possíveis sem os relógios atômicos. A adoção de técnicas de aprisionamento e resfriamento ópticos tem permitido um grande avanço na precisão dos relógios atômicos. Chafarizes de átomos frios e relógios compactos de átomos frios também têm sido desenvolvidos. Precisões de medida de algumas partes em 1015 foram demonstradas para relógios do tipo chafariz de átomos frios. Apresentamos uma visão geral do programa de metrologia de tempo e freqüência baseado em átomos de césio, em

  7. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  8. Proposal for the International Atomic Energy Agency Training Course

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1994-06-01

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O`Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site.

  9. Annual Report to Congress of the Atomic Energy Commission for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, James R.

    1971-01-31

    The document represents the 1971 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1971'' followed by 3 Parts, each with various chapters, plus a final index. Parts and Chapters are as follows. Part One, Regulatory Activities, has Chapters (1) Licensing and Regulation; (2) Reactor Licensing; and (3) Materials Control. Part Two, Environmental Safety, has Chapters (4) Environmental Considerations; (5) Radioactive Wastes; and (6), Operational Safety. Part Three, Operating and Developmental Functions, has Chapters (7) National Defense; (8) Reactor Technology; (9) Nuclear Materials; (10) Applications Research; (11) Basic Research; (12) International Affairs; and, (13) Educational and Administrative.

  10. Low energy neutral atom imaging on the Moon with the SARA ...

    Indian Academy of Sciences (India)

    This paper reports on the Sub-keV Atom Reflecting Analyzer (SARA) experiment that will be flown on the first Indian lunar mission Chandrayaan-1. The SARA is a low energy neutral atom. (LENA) imaging mass spectrometer, which will perform remote sensing of the lunar surface via detection of neutral atoms in the energy ...

  11. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  12. Multipole expansion of the retarded interatomic potential energy: induction energy for degenerate ground-state atoms

    NARCIS (Netherlands)

    Michels, M.A.J.; Suttorp, L.G.

    1972-01-01

    The inductive contribution to the retarded interatomic potential energy of two atoms in degenerate ground states is calculated up to all multipole orders on the basis of quantum electrodynamics. The result, which is found to have nonretarded character, is written in such a way as to show the

  13. Annual Report to Congress of the Atomic Energy Commission for 1965

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8) Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.

  14. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  15. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    Science.gov (United States)

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2011-11-16

    Most protein structural prediction algorithms assemble structures as reduced models that represent amino acids by a reduced number of atoms to speed up the conformational search. Building accurate full-atom models from these reduced models is a necessary step toward a detailed function analysis. However, it is difficult to ensure that the atomic models retain the desired global topology while maintaining a sound local atomic geometry because the reduced models often have unphysical local distortions. To address this issue, we developed a new program, called ModRefiner, to construct and refine protein structures from Cα traces based on a two-step, atomic-level energy minimization. The main-chain structures are first constructed from initial Cα traces and the side-chain rotamers are then refined together with the backbone atoms with the use of a composite physics- and knowledge-based force field. We tested the method by performing an atomic structure refinement of 261 proteins with the initial models constructed from both ab initio and template-based structure assemblies. Compared with other state-of-art programs, ModRefiner shows improvements in both global and local structures, which have more accurate side-chain positions, better hydrogen-bonding networks, and fewer atomic overlaps. ModRefiner is freely available at http://zhanglab.ccmb.med.umich.edu/ModRefiner. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  18. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  19. The impact of atomic precision measurements in high energy physics

    OpenAIRE

    Casalbuoni, Roberto

    2000-01-01

    In this talk I discuss the relevance of atomic physics in understanding some important questions about elementary particle physics. A particular attention is devoted to atomic parity violation measurements which seem to suggest new physics beyond the Standard Model. Atomic physics might also be relevant in discovering possible violations of the CPT symmetry.

  20. Model Energy Efficiency Program Impact Evaluation Guide

    Science.gov (United States)

    This document provides guidance on model approaches for calculating energy, demand, and emissions savings resulting from energy efficiency programs. It describes several standard approaches that can be used in order to make these programs more efficient.

  1. Evaluating the environmental impacts of the energy system: The ENPEP (ENergy and Power Evaluation Program) approach

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, B.P.; Sapinski, P.F.; Cirillo, R.R.; Buehring, W.A.

    1990-01-01

    Argonne National Laboratory (ANL) has developed the ENergy and Power Evaluation Program (ENPEP), a PC-based energy planning package intended for energy/environmental analysis in developing countries. The IMPACTS module of ENPEP examines environmental implications of overall energy and electricity supply strategies that can be developed with other ENPEP modules, including ELECTRIC, the International Atomic Energy Agency's Wien Automatic System Planning Package (WASP-III). The paper presents the status and characteristics of a new IMPACTS module that is now under development at ANL. 3 figs.

  2. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  3. Sixth Semiannual Report of the Commission to the Congress: Atomic Energy and the Life Sciences, July 1949

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.

    1949-07-01

    The document represents the sixth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up briefly the major developments in the national atomic energy program and further gives a comprehensive review of one of its major phases -- the biological and medical activities. It outlines the AEC program in all phases of medicine and biology, reviews research results and projects under way, reports what is known of the effects of radiation on man and other living things, and surveys the benefits which may be derived from the use of radiation for diagnosis and treatment of disease and for the study of plants and animals. Since radiation from atomic sources also is potentially harmful to all living things, the Commission has set up safeguards for all who might, without such protection, be exposed to harmful radiation.

  4. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  5. Rainfall erosivity index for the Ghana Atomic Energy Commission site.

    Science.gov (United States)

    Essel, Paul; Glover, Eric T; Yeboah, Serwaa; Adjei-Kyereme, Yaw; Yawo, Israel Nutifafa Doyi; Nyarku, Mawutoli; Asumadu-Sakyi, Godfred S; Gbeddy, Gustav Kudjoe; Agyiri, Yvette Agyiriba; Ameho, Evans Mawuli; Aberikae, Emmanuel Atule

    2016-01-01

    Rainfall erosivity is the potential ability for rainfall to cause soil loss. The purpose of this study was to estimate the rainfall erosivity index for the Ghana Atomic Energy Commission site in order to compute the surface erosion rate. Monthly rainfall data, for the period 2003-2012 were used to compute annual rainfall erosivity indices for the site, using the Modified Fournier index. Values of the annual rainfall erosivity indices ranged from 73.5 mm for 2004 to 200.4 mm for the year 2003 with a mean annual erosivity index of 129.8 mm for the period. The Pearson's Coefficient of Correlation was used to establish the relationship between annual rainfall and annual rainfall erosivity. This showed a high degree of positive relationship (r = 0.7) for the study area. The computed mean annual erosivity index revealed that the site is in the high erosion risk zone. Therefore, it is necessary to develop soil protection and management strategies to protect the soil from erosion.

  6. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  7. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    Energy Technology Data Exchange (ETDEWEB)

    Guiberteau, Ph.; Nokhamzon, J.G. [French Atomic and Alternatives Energy Commission CEA/DEN/DADN Saclay 91191 Gif-sur-Yvette Cedex (France)

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling

  8. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  9. Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    TECS

    09) was determined by calibration method in which CH4 photolysis at 121⋅6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity ...

  10. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Science.gov (United States)

    2010-04-21

    ... COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic Power Plant Unit 1, (Fermi-1) located in Monroe County, Michigan. Environmental Assessment Identification of...

  11. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  12. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  13. Fission energy program of the U. S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs.

  14. Revitalize Electrical Program with Renewable Energy Focus

    Science.gov (United States)

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  15. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  16. Degradation of fast electrons energy and atomic hydrogen generation in an emission plume from atomic power stations

    Science.gov (United States)

    Kolotkov, G. A.; Penin, S. T.; Chistyakova, L. K.

    2006-02-01

    The problem of remote detecting of a radioactivity in emissions from atomic power stations (APS) is devoted. The basic radionuclides contained in emissions of nuclear energy stations with various types of reactors have been analyzed. The total power spectrum of electrons is determined taking into account their multiplication. Physical and chemical reactions reducing to generation of atomic hydrogen are considered. For definition of the radiating volume in the emission from APS, the spatial distribution of atomic hydrogen concentration has been calculated with the use Pasquill- Gifford model. Power radiating by the emission plume from the APS with the BWR (Boiling Water Reactor) is estimated. It has been shown, that for estimation of radiation effect on the atmosphere, it is necessary to take into account many generations of electrons, because they have average energies exceeding considerably the ionization potentials for atoms and molecules of the atmospheric components. The area of the maximum concentration of atomic hydrogen in an emission plume can be determined by modelling the transport processes of admixture. The power radiated at frequency 1420 MHz by the volume 1 km from the APS emissions can amount to ~10 -13 W that allows one to detect the total level of activity confidently. The possible configuration of an emission plume has been calculated for various atmospheric stratification and underlying surfaces.

  17. The history for fifty years of Korea Atomic Energy Research Institut

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    This book deals with the history for fifty years of Korea Atomic Energy Research Institute with the title ; rich energy, clean environment and healthy life. It reports the message of publication and congratulatory address, the period of building foundation in 1970s the period of technical independence in 1980s, the period of maturity of technical independence in 1990s the period of advanced technology in 2000s, prospect on research and development on Korea atomic energy, research on atomic reactor for studying, introduction on nuclear reactor for generating energy, safety, radiation, nuclear fuel cycle human resource and international cooperation and general management.

  18. Fast-ion-beam laser probing of ion-source energy distributions and atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Richard A., E-mail: rholt@uwo.ca; Rosner, S. David [University of Western Ontario, Physics and Astronomy Department (Canada)

    2013-04-15

    Collinear fast-ion-beam laser spectroscopy is a very high resolution probe for measuring ion-beam energy distributions and atomic structure parameters of interest in nuclear physics, atomic physics, and astrophysics. We have used offline 10-keV beams of atomic ions and a CW laser system to study the behavior of a Penning ion source and to measure hyperfine structure, isotope shifts, atomic lifetimes, spontaneous-emission branching fractions, oscillator strengths, and absolute wavelengths of a variety of atomic species from the lanthanide and transition-metal groups.

  19. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  20. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  1. Energy analysis program, FY 1979

    Science.gov (United States)

    1980-04-01

    Energy analysis attempts to understand the volitional choices of energy use and supply available to human society, and the multi-faceted consequences of choosing any one of them. Topics deal with economic impacts; assessments of regional issues and impacts; air quality evaluation; institutional and political issues in California power plant siting; assessment of environmental standards; water issues; characterization of aquatic systems dissolved oxygen profiles; modeling; computer-generated interactive graphics; energy assessment in Hawaii; solar energy in communities; utilities solar financial data; population impacts of geothermal development; energy conservation in colleges and residential sectors; energy policy; decision making; building energy performance standards; standards for residential appliances; and impact of energy performance standards on demand for peak electrical energy.

  2. Status of contamination monitoring in radiation activities of National Atomic Energy Agency (NAEA) in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suhariyono, Gatot [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-06-01

    National Atomic Energy Agency (NAEA) or Badan Tenaga Atom Nasional (BATAN) is a non departmental governmental agency, headed by a Director General who is directly responsible to the President. Center for Standardization and Radiation Safety Research (CSRSR) is one of the research centers within the deputy for the assessment of nuclear science and technology of the NAEA. The main task of the CSRSR is to implement research and development program, development and services in the field of radiation safety, standardization, dosimetry, radiation health as well as the application of nuclear techniques in medicine, according to the policy confirmed by the director general of BATAN. Task of radiation protection division is to set up programs and to develop radiation protection, personal monitoring system and radiation level of the working areas and their surroundings as well as dose limitation system, to carry out technical up grading of radiation protection officials skill and to help coping with radiation accident. The key factor on contamination monitoring is to reduce human error and mechanical failures. These problems can be achieved to the highest degree by developing knowledge and skill of staffs via trainings or courses on contamination and decontamination, so that they are hoped to become trained and qualified staffs. (G.K.)

  3. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  4. Third Semiannual Report to the Congress by the United States Atomic Energy Commission, February 2, 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.; Waymack, William W.

    1948-02-02

    The document includes the letter of submittal and the third semiannual report. These reports are called for pursuant to Section 17 of the Atomic Energy Act of 1946. The letter of submittal was titled ''Letter from the Chairman and Members of the United States Atomic Energy Commission transmitting pursuant to law the third semiannual report of the Atomic Energy Commission''. It was authored by David E. Lilienthal, Chairman, and Robert F. Bacher, Sumner T. Pike, Lewis L. Strauss, and William W. Waymack of the AEC.

  5. Low-energy Scattering of Positronium by Atoms

    Science.gov (United States)

    Ray, Hasi

    2007-01-01

    The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.

  6. Low-energy sputterings with the Monte Carlo Program ACAT

    Science.gov (United States)

    Yamamura, Y.; Mizuno, Y.

    1985-05-01

    The Monte Carlo program ACAT was developed to determine the total sputtering yields and angular distributions of sputtered atoms in physical processes. From computer results of the incident-energy dependent sputterings for various ion-target combinations the mass-ratio dependence and the bombarding-angle dependence of sputtering thresholds was obtained with the help of the Matsunami empirical formula for sputtering yields. The mass-ratio dependence of sputtering thresholds is in good agreement with recent theoretical results. The threshold energy of light-ion sputtering is a slightly increasing function of angle of incidence, while that of heavy-ion sputtering has a minimum value near theta = 60 deg. The angular distributions of sputtered atoms are also calculated for heavy ions, medium ions, and light ions, and reasonable agreements between calculated angular distributions and experimental results are obtained.

  7. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  8. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Piskur, J.; Borg, L. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Stupnik, A.; Leisch, M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Ernst, W.E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Holst, B. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)], E-mail: bodil@cantab.net

    2008-05-15

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  9. Perturbation calculations of the interaction energies between non-bonded hydrogen atoms - Part 2

    NARCIS (Netherlands)

    Laidlaw, W.G.; Lekkerkerker, H.N.W.; Wieser, H.

    1971-01-01

    Calculations of the interaction energy between non-bonded hydrogen atoms in the fragments A—H---H'—A' for selected displacements of the hydrogen atoms enable one to evaluate corrections to the force field due to the non-bonded interactions and to discuss the changes in the stretching vibration

  10. Mr Parvez Butt, Chairman of the Atomic Energy Commission (PAEC), Pakistan

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Photo 01: Mr. Parvez Butt, Chairman Pakistan Atomic Energy Commission (standing 4th from left) with his delegation and ATLAS team standing in front of the Barrel Supports manufactured in HMC3 - Pakistan.

  11. 76 FR 69295 - Strata Energy, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2011-11-08

    ... COMMISSION Strata Energy, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by... over the following proceeding: Strata Energy, Inc. (Ross In Situ Recovery Uranium Project) This proceeding involves a license application from Peninsula Minerals, Ltd., doing business as Strata Energy, Inc...

  12. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  13. Low-energy measurements of electron capture by multicharged ions from excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Havener, C.C. (Oak Ridge National Laboratory, Oak Ridge, Tennesse 37831-6372 (United States)); Haque, M.A. (Alcorn State University, Lorman, Mississippi 39096 (United States)); Smith, A.C.H. (University College London, WC1E 6BT (United Kingdom)); Urbain, X. (Universite Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)); Zeijlmans van Emmichoven, P.A. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831-6374 (United States))

    1993-06-05

    For very low collision energies electron capture from excited hydrogen by multicharged ions is characterized by enormous cross sections, the predicted maximum being comparable to the geometric size of the Rydberg atom. The ion-atom merged-beams technique is being used to study these collisions for the variety of charge states and the wide range of energies (0.1 to 1000 eV/amu) accessible to the apparatus. A neutral D beam containing a Rydberg atom population proportional to 1/n[sup 3] is produced by collisional electron detachment of 8 keV D[sup [minus

  14. Collisions of electrons with hydrogen atoms I. Package outline and high energy code

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    Being motivated by the applied researchers' persisting need for accurate scattering data for the collisions of electrons with hydrogen atoms, we developed a computer package-Hex-that is designed to provide trustworthy results for all basic discrete and continuous processes within non-relativistic framework. The package consists of several computational modules that implement different methods, valid for specific energy regimes. Results of the modules are kept in a common database in the unified form of low-level scattering data (partial-wave T-matrices) and accessed by an interface program which is able to produce various derived quantities like e.g. differential and integral cross sections. This article is the first one of a series of articles that are concerned with the implementation and testing of the modules. Here we give an overview of their structure and present (a) the command-line interface program hex-db that can be also easily compiled into a derived code or used as a backend for a web-page form and (b) simple illustrative module specialized for high energies, hex-dwba, that implements distorted and plane wave Born approximation.

  15. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2017-04-15

    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  16. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  17. New effects in low energy scattering of p{mu} atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, J. [Institute of Physics and Nuclear Techniques (Poland); Adamczak, A. [Institute of Nuclear Physics (Poland); Beer, G.A. [University of Victoria (Canada); Bystritsky, V.M. [Joint Institute for Nuclear Research (Russian Federation); Filipowicz, M. [Institute of Physics and Nuclear Techniques (Poland); Fujiwara, M.C. [University of British Columbia (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [University of Fribourg (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P.E. [University of Fribourg (Switzerland); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Mulhauser, F. [University of Fribourg (Switzerland); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada); Stolupin, V.A. [Joint Institute for Nuclear Research (Russian Federation)] (and others)

    1999-06-15

    Strong solid state effects in low energy scattering of p{mu} atoms in solid hydrogen are reported and analyzed. Such effects have been observed in TRIUMF experiment E742 where muons are stopped in thin frozen (3 K) layers of hydrogen. Emission of low energy p{mu} atoms from the hydrogen layer into adjacent vacuum was much higher than expected, based on calculations which ignored the solid nature of hydrogen. Monte Carlo simulations, performed using the scattering cross-sections with solid state effects taken into account, show the important role of the coherent elastic Bragg scattering in the diffusion of p{mu} atoms. For p{mu} energies lower than the Bragg cut-off limit ({approx}2 meV) the total scattering cross-section falls by several orders of magnitude, the hydrogen target becomes transparent and the emission of cold p{mu} atoms takes place.

  18. Matter, energy, and heat transfer in a classical ballistic atom pump.

    Science.gov (United States)

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  19. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  20. The industrial development of atomic energy; Le developpement industriel de l'energie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure {sup 235}U and {sup 239}Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ({sup 235}U or {sup 239}Pu) or concentrated material ({sup 235}U mixed with small quantities of {sup 238}U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with {sup 238}U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate {sup 238}U or Thorium with the regeneration of fissile material in {sup 239}Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and {sup 238}U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England

  1. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    Science.gov (United States)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  2. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  3. The USGS World Energy Program

    Science.gov (United States)

    Ahlbrandt, Thomas S.

    1997-01-01

    The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.

  4. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  5. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  6. Thermophotovoltaic Energy Conversion Development Program

    Science.gov (United States)

    Shukla, Kailash; Doyle, Edward; Becker, Frederick

    1998-01-01

    Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.

  7. 76 FR 56242 - Duke Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety...

    Science.gov (United States)

    2011-09-12

    ... Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety and Licensing...: Duke Energy Carolinas, LLC, (William States Lee III Nuclear Station, Units 1 and 2), Docket Nos. 52-018... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY...

  8. Atomic collision and spectroscopy experiments with ultra-low-energy antiprotons

    CERN Document Server

    Torii, Hiroyuki A; Toyoda, Hiroshi; Imao, Hiroshi; Kuroda, Naofumi; Varentsov, Victor L; Yamazaki, Yasunori

    2009-01-01

    Antiproton, the antiparticle of proton, is a unique projectile in the study of atomic collision physics, which can be treated theoretically either as a 'negative proton' or a 'heavy electron'. Atomic capture of an antiproton will result in formation of a highly excited exotic atom. Antiprotonic helium atom has been studied intensively by means of precision laser spectroscopy, which has led to a stringent determination of antiproton mass and charge to a level of ppb. Comparison of these values with those of proton gives one of the best tests of CPT invariance, the most fundamental symmetry in physics. However, the dynamic processes of antiproton capture remain unclarified. With an aim to produce an antiproton beam at atomic-physics energies for 'pure' collision experiments, we have so far developed techniques to decelerate, cool and confine antiprotons in vacuo, using a sequential combination of the Antiproton Decelerator (AD) at CERN, a Radio-Frequency Quadrupole Decelerator (RFQD), and an electromagnetic tra...

  9. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  10. BASIC program calculates flue gas energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1993-10-01

    Engineers always seek cost-cutting, energy-efficient ways to operate boilers and waste-heat recovery systems. The starting point in the design or performance evaluation of any heat transfer equipment is an energy balance calculation. This easy-to-use BASIC program tackles this problem. Using the gas stream analysis as percent weight or volume, the program calculates inlet and exit temperatures, heat duty, the gas stream's molecular weight, etc. This program is a definite must for the plant engineering notebook.

  11. REFERENCE MATERIALS IN THE SPHERE OF USE OF ATOMIC ENERGY

    Directory of Open Access Journals (Sweden)

    V. A. Borisov

    2015-01-01

    Full Text Available The article describes the chronology of development of the system of reference materials in the nuclear industry of the Russian Federation. The basic documents used in the sphere of nuclear energy are described. The nomenclature of reference materials and feature of their application in the "Rosatom" is given. The prospects of development activities in the field of reference materials are formulated.

  12. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  13. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  14. A tabulation of the bound-state energies of atomic hydrogen

    CERN Document Server

    Horbatsch, M

    2016-01-01

    We present tables for the bound-state energies for atomic hydrogen. The tabulated energies include the hyperfine structure, and thus this work extends the work of Rev. Mod. Phys. {\\bf 84}, 1527 (2012), which excludes hyperfine structure. The tabulation includes corrections of the hyperfine structure due to the anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of the hyperfine Hamiltonian. These corrections are treated incorrectly in most other works. Simple formulas valid for all quantum numbers are presented for the hyperfine corrections. The tabulated energies have uncertainties of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement [Nature, {\\bf 466}, 213 (2010); Science, {\\bf 339}, 417] of the proton radius. The effect of this new radius on the energy levels is also tabulated, and the energies are compared to precision measurements of atomic hydrogen energy intervals.

  15. Atomic energy: The rosetta stone of space flight

    Science.gov (United States)

    Dewar, James A.

    1994-05-01

    From 1955 to 1973, the United States had a nuclear rocket development program that had many potential missions, although never an assigned one, and an unparalleled record of technical achievement. Project Rover/NERVA, as it was called, never fully cleared the hurdles of the US political process and its future was considered annually by US Presidents Kennedy, Johnson, and Nixon. The program began at the two nuclear weapons laboratories, Los Alamos and Livermore, in 1955 with potential intercontinental ballistic missile missions in mind; but, as weapons designers were able to make weapons smaller and lighter, the need for a heavy lifting nuclear rocket disappeared. Sputnik increased interest in 1957, but President Kennedy accelerated the program in his lunar landing speech of 1961, giving it focus, direction and, most important, funding. Private industrial contractors were brought in to engineer the pioneering work done by Los Alamos on the Kiwi series of reactors. Aerojet General and Westinghouse developed a number of reactors in 1964-69 - NRX-A2, NRX-A3, NRX-EST, NRX-A5, NRX-A6, and XE - each of which was more successful than its predecessor. A decision now was needed on a flight engine program. Influenced by his close friend and political ally Senator Clinton P. Anderson, President Johnson approved the development of NERVA II in February 1967, a 200 - 250,000 -pound-thrust engine capable of a wide variety of space missions: lunar resupply, deep space, and manned planetary. The Saturn rocket was to carry the NERVA II to Earth orbit. Despite strong support from a pocket of influential Senators led by Anderson, Congress rebelled, arguing that this was the camel's nose in the tent for a manned Mars mission. That would cost $200 billion. NERVA II was killed. NERVA I, a 75,000 -pound-thrust engine, was the compromise. President Nixon was no friend of the space program, at least expensive manned space efforts. The big Saturn rocket programme was terminated, NASA was

  16. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.

    2005-07-13

    The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and

  17. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    Science.gov (United States)

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be(2+) , and Ne atoms. The variation of the correlation energy with the confinement radius Rc is relatively small for the He, Be(2+) , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small Rc . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing Rc . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small Rc . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Energy 10 CFR Part 430 Energy Conservation Program: Energy Conservation Standards for Residential Water... Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating... conservation standards for residential water heaters (other than tabletop and electric instantaneous models...

  19. Fossil Energy Materials Program conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. (comp.)

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  20. International Atomic Energy Agency safeguards after Iraq - some Austrailian perceptions

    Energy Technology Data Exchange (ETDEWEB)

    Bardsley, J.; Carlson, J.; Hill, J.

    1994-12-31

    Iraq`s nuclear weapons development program used facilities and nuclear material separate from its safeguarded activities. To detect such a strategy the IAEA`s safeguards inspectors need access to locations and information beyond that foreseen in NPT safeguards agreements. But the IAEA is short of money. And detecting undeclared activities could be expensive. If the IAEA can establish a capability to detect undeclared activities, then it might be able to save on regular safeguards. But it`s important not to put the cart before the horse - effective safeguards must come first, savings second.

  1. An aerial survey of radioactivity associated with Atomic Energy plants

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  2. Energy Analysis Program. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  3. Collisions between low-energy antihydrogen and atoms

    CERN Document Server

    Armour, E A G; Liu, Y; Martin, G D R

    2004-01-01

    Antihydrogen is currently the subject of great interest as cold H has recently been prepared at CERN by the ATHENA and ATRAP projects. This work is described elsewhere in this volume. In this paper, we describe a calculation that we have carried out recently for very low-energy HH scattering using the Kohn variational method and including three rearrangement channels in addition to the elastic channel. We also consider the He-H system and give a progress report on the calculation that we are currently carrying out for this system.

  4. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, Kozo; Kobayashi, T.; Matukawa, Tokuo; Honda, Makoto; Awata, Takaaki; Fukuoka, Noboru [Naruto University of Education, Naruto, Tokushima (Japan); Okada, Moritami [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa (Japan)

    2001-01-01

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  5. Mr. Ansar Shamsi, Member Finance, Mr. Malik Adalat Khan, Director Finance, Pakistan Atomic Energy Commission

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    Photo 01: Mr Ansar Shamsi, Member Finance, Pakistan Atomic Energy Commission (centre), visiting the ATLAS Tile Calorimeter in building 191 with, from left to right, Mr Syed Shaukat Hussain, Pakistan Mission in Geneva and Dr Peter Jenni, ATLAS Spokesperson. Photo 02: Mr Ansar Shamsi, Member Finance, Pakistan Atomic Energy Commission (2nd form left), visiting the ATLAS Tile Calorimeter in building 191 with, from left to right, Mr Syed Shaukat Hussain, Pakistan Mission in Geneva; Dr Peter Jenni, ATLAS Spokesperson; Dr David Jacobs and Dr Philip Bryant, Joint Pakistan-CERN Committee.

  6. SWEEP - Save Water & Energy Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  7. All-atom calculation of protein free-energy profiles

    Science.gov (United States)

    Orioli, S.; Ianeselli, A.; Spagnolli, G.; Faccioli, P.

    2017-10-01

    The Bias Functional (BF) approach is a variational method which enables one to efficiently generate ensembles of reactive trajectories for complex biomolecular transitions, using ordinary computer clusters. For example, this scheme was applied to simulate in atomistic detail the folding of proteins consisting of several hundreds of amino acids and with experimental folding time of several minutes. A drawback of the BF approach is that it produces trajectories which do not satisfy microscopic reversibility. Consequently, this method cannot be used to directly compute equilibrium observables, such as free energy landscapes or equilibrium constants. In this work, we develop a statistical analysis which permits us to compute the potential of mean-force (PMF) along an arbitrary collective coordinate, by exploiting the information contained in the reactive trajectories calculated with the BF approach. We assess the accuracy and computational efficiency of this scheme by comparing its results with the PMF obtained for a small protein by means of plain molecular dynamics.

  8. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  9. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  10. Energy Programs at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.

    1999-05-11

    ;'a secure and reliable energy system that is environmentally and economically sustainable'' as the first component of its mission. The strategic goal established for energy resources, identified as one of DOE's four businesses, is for ''the Department of Energy and its partners [to] promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.'' DOE has also identified four strategic goals for its programs in energy resources: (1) strengthening the economy and raising living standards through improvements in the energy field; (2) protecting the environment by reducing the adverse environmental impacts associated with energy production, distribution, and use; (3) keeping America secure by reducing vulnerabilities to global energy market shocks; and (4) enhancing American competitiveness in a growing world energy market.

  11. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    Science.gov (United States)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  12. Solving atomic structures using statistical mechanical searches on x-ray scattering derived potential energy surfaces

    Science.gov (United States)

    Wright, Christopher James

    Engineering the next generation of materials, especially nanomaterials, requires a detailed understanding of the material's underlying atomic structure. These structures give us better insight into structure-property relationships, allowing for property driven material design on the atomic level. Even more importantly, understanding structures in-situ will translate stimuli and responses on the macroscopic scale to changes on the nanoscale. Despite the importance of precise atomic structures for materials design, solving atomic structures is difficult both experimentally and computationally. Atomic pair distribution functions (PDFs) provide information on atomic structure, but the difficulty of extracting the PDF from x-ray total scattering measurements limits their use. Translating the PDF into an atomic structure requires the search of a very high dimensional space, the set of all potential atomic configurations. The large computational cost of running these simulations also limits the use of PDF as an atomistic probe. This work aims to address these issues by developing 1) novel statistical mechanical approaches to solving material structures, 2) fast simulation of x-ray total scattering and atomic pair distribution functions (PDFs), and 3) data processing procedures for experimental x-ray total scattering measurements. First, experimentally derived potential energy surfaces (PES) and the statistical mechanical ensembles used to search them are developed. Then the mathematical and computational framework for the PDF and its gradients will be discussed. The combined PDF-PES-ensemble system will be benchmarked against a series of nanoparticle structures to ascertain the efficiency and effectiveness of the system. Experimental data processing procedures, which maximize the usable data, will be presented. Finally, preliminary results from experimental x-ray total scattering measurements will be discussed. This work presents one of the most complete end

  13. Energy conversion & storage program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  14. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  15. Kinetic Energy Distribution of D(2p) Atoms From Analysis of the D Lyman-a Line Profile

    Science.gov (United States)

    Ciocca, Marco; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The absolute cross sections of the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coeffiecients are given for the energy dependence of the measured slow atom cross section.

  16. Richland Community College BioEnergy Program

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Douglas C. [Richland Community College, Decatur, IL (United States)

    2012-09-25

    The purpose of this project was to focus on education and community outreach. As such, it reflected anticipated growth in the renewable/alternative energy industry creating a vast need for trained industry professionals, engineers, operations managers, and technicians to operate state-of-the art production facilities. This project's scope leveraged Richland's initial entry in the renewable energy education, which included Associate of Applied Science degrees and certificates in biofuels and bioprocessing. This facilitated establishing a more comprehensive sustainability and renewable energy programs including experiential learning laboratory components needed to support new renewable energy education degree and certificate specialties, as well as community outreach. Renewable energy technologies addressed included: a) biodiesel, c) biomass, d) wind, e) geothermal, and f) solar. The objective is to provide increasingly innovative hands on experiential learning and knowledge transfer opportunities.

  17. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  18. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  19. Deer browse resources of the Atomic Energy Commission's Savannah River project area

    Science.gov (United States)

    William H. Moore

    1967-01-01

    A procedure developed in Georgia was used to inventory the browse resources of the Atomic Energy Commission's Savannah River Project Area near Aiken, South Carolina. Through this procedure, the forest land manager is supplied with relative carrying capacity data for deer . If silvical practices can be related to habitat quality and quantity, he can adjust...

  20. Presentation to the Atomic Energy Commission and the Air Force, June 14, 1962

    Energy Technology Data Exchange (ETDEWEB)

    none

    1962-10-01

    This volume contains the charts and backup material presented to the Atomic Energy Commission and Air Force on June 14, 1962 concerning General Electric's Nuclear Materials and Propulsion Operation (formerly the Aircraft Nuclear Propulsion Department), during its work on the development of a nuclear power plant for manned aircraft.

  1. A Study on the Efficient Operating Management of Atomic Energy Commission

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sungwon; Chung, W. S.; Lee, D. S.; Park, S. J.

    2013-04-15

    This study aimed to provide professionals in humanities and social sciences, not only nuclear, with a place for communication by establishing a website of Atomic Energy Commission and people with a place for participation which help the nuclear policy reflect public opinions. By establishing the website of Atomic Energy Commission, experts (including those in humanities and social sciences) can suggest policy agenda and public opinions can be suggested through the place for public participation. Also the website should restrict on indiscreet search by separating sections only for experts and provide experts with a section for active and creative debate on nuclear policy. All the accessible meeting agenda and minutes have been chronologically organized and the findings of the committee have been announced to share with people concerning nuclear policy. In terms of the effective operation of Atomic Energy Commission, research has been conducted for standing committee, regular meeting, activating the commission through system change and expert committee in addition to support for the 2nd meeting of Atomic Energy Committee and the 31st Nuclear Expert Committee. Activation measures to improve the operating system of the commission is proposed as following; changing of the commission's chairman operating system, standing commission regular meeting, activation of subcommittee and expanding and diversifying of agenda.

  2. Photovoltaic energy program overview: Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  3. Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Igashov, S. Yu., E-mail: igashov@theor.mephi.ru [All-Russian Research Institute of Automatics (Russian Federation); Tchuvil’sky, Yu. M. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-12-15

    The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the {sup 226}Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.

  4. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    Science.gov (United States)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  5. Quantum Monte Carlo programming for atoms, molecules, clusters, and solids

    CERN Document Server

    Schattke, Wolfgang

    2013-01-01

    In one source, this textbook provides quick and comprehensive access to quantitative calculations in materials science. The authors address both newcomers as well as researchers who would like to become familiar with QMC in order to apply to their research. As such, they cover the basic theory required for applying the method, and describe how to transfer this knowledge into calculation. The book includes a series of problems of increasing difficulty with associated stand-alone programs which will be available for free download.

  6. Identifying the minimum-energy atomic configuration on a lattice: Lamarckian twist on Darwinian evolution

    Science.gov (United States)

    D'Avezac, Mayeul; Zunger, Alex

    2008-08-01

    We examine how the two different mechanisms proposed historically for biological evolution compare for the determination of crystal structures from random initial lattice configurations. The Darwinian theory of evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new offspring, in which case evolution is a product of environmental pressure and chance. In addition to this mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we show that the minimum-energy configurations of a binary A1-xBx alloy in the full 0≤x≤1 concentration range can be found much faster if the conventional Darwinian genetic progression—mating configurations and letting the lowest-energy (fittest) offspring survive—is allowed to experience Lamarckian-style fitness improvements during its lifetime. Such improvements consist of A↔B transmutations of some atomic sites (not just atomic relaxations) guided by “virtual-atom” energy gradients. This hybrid evolution is shown to provide an efficient solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic Au1-xPdx using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of success of the search strategies and their practical applicability are rigorously documented in terms of average number of evaluations required to find the solution out of 400 independent evolutionary runs with different random seeds. We show that all exact ground states of a 12-atom supercell ( 212 configurations) can be found within 330 total-energy evaluations, whereas a 36-atom supercell ( 236 configurations) requires on average 39000 evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy functionals [e.g., density-functional theory (DFT) based] unless it is limited to ≤20 atoms. The computational cost can be reduced at the

  7. A simple image based method for obtaining electron density and atomic number in dual energy CT

    Science.gov (United States)

    Szczykutowicz, Timothy P.; Qi, Zhihua; Chen, Guang-Hong

    2011-03-01

    The extraction of electron density and atomic number information in computed tomography is possible when image values can be sampled using two different effective energies. The foundation for this extraction lies in the ability to express the linear attenuation coefficient using two basis functions that are dependent on electron density and atomic number over the diagnostic energy range used in CT. Material basis functions separate images into clinically familiar quantities such as 'bone' images and 'soft tissue' images. Physically, all basis function choices represent the expression of the linear attenuation coefficient in terms of a photoelectric and a Compton scattering term. The purpose of this work is to develop a simple dual energy decomposition method that requires no a priori knowledge about the energy characteristics of the imaging system. It is shown that the weighted sum of two basis images yields an electron density image where the weights for each basis image are the electron density of that basis image's basis material. Using the electron density image, effective atomic number information can also be obtained. These methods are performed solely in the image domain and require no spectrum or detector energy response information as required by some other dual energy decomposition methods.

  8. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  9. Dynamical theory of low-energy ionization of inert-gas atoms at surfaces

    Science.gov (United States)

    Muda, Y.; Newns, D. M.

    1988-04-01

    A quasi-ab-initio calculation of the ionization probability of a low-energy He atom at the surface of a linear chain of n atoms (modeling Si) has been made using the technique of numerical solution of the equations of motion for scrNij(t)≡Vak(z) between the orbitals centered on the He atom and the target atom must go through zero at distances z~=RC (the distance of closest approach). (2) The diabatic level centered on the projectile must shift up to near ɛF there. Fortunately, the first condition will be rather generally encountered, because of the oscillations in the target valence orbitals at small radius. On the other hand, feature (2) is more specific to the projectile-target material combination and leads to some target material dependencies. At energies higher than 2 keV, the ionization probabilities with and without the level shift Δ become identical, and only condition (1) is necessary. Thus, in this energy region the surface ionization effect will be more generally expected for such systems as, e.g., the He-->Cu surface, which has a noncrossing energy-level diagram or Δ=0, in good agreement with experiment. For energies greater than 50 or 100 keV, neither condition is necessary, and Pion oscillates as a function of E0, representing the quasiresonant ionization process. It is also found that the ionization probability Pion in surface scattering (n>=30) is nearly 1 order of magnitude greater than that in a binary collision (n=1), at an energy of 1 keV. The effect of the energy-band occupation has also been shown to be of essential importance.

  10. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  11. Energy Extension Service Program planning manual

    Energy Technology Data Exchange (ETDEWEB)

    Liersch, Judith M.

    1979-06-01

    The manual is the first revision of the EES Program Planning Manual. At the states' request, there have been a number of changes to the state EES contacts list, and an updated list is included in this package as the revised Appendix D. Part I, Introduction, presents: How to Use the State Program Planning Manual and The Energy Extension Service Program. Part II, Applying for an EES Grant, presents: The Annual State Application for Financial Assistance; State Financial Assistance and Associated Requirements; Preparing the State Plan. Part III, Operating a State EES, presents: Start-Up Considerations; State Program Reporting; Recordkeeping and Financial Management. Part IV, DOE's Role, presents DOE Functions and Responsibilities and Special Cases: Development and Implementation of a State Plan by the EES Director and Administrative Review.

  12. Circular dichroism in free-free transitions of high energy electron-atom scattering

    CERN Document Server

    Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.62.063406

    2013-01-01

    We consider high energy electron scattering by hydrogen atoms in the presence of a laser field of moderate power and higher frequencies. If the field is a superposition of a linearly and a circularly polarized laser beam in a particular configuration, then we can show that circular dichroism in two photon transitions can be observed not only for the differential but also for the integrated cross sections, provided the laser-dressing of the atomic target is treated in second order perturbation theory and the coupling between hydrogenic bound and continuum states is involved.

  13. Physics and Its Multiple Roles in the International Atomic Energy Agency

    Science.gov (United States)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  14. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  15. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany)]. E-mail: t.stoehlker@gsi.de; Beier, T. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Beyer, H.F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Bosch, F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Gumberidze, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Hagmann, S. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kozhuharov, C. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kuehl, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Liesen, D. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mann, R. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mokler, P.H. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Quint, W. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Warczak, A. [Institute of Physics, Jagiellonian University, Cracow (Poland)

    2005-07-01

    In the current report a short overview about the envisioned program of the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration, at the new international accelerator Facility for Antiproton and Ion Research (FAIR) at GSI is given. In addition, a condensed description of the planned experimental areas devoted to atomic physics research at the new facility is presented.

  16. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  17. 76 FR 17751 - Hazardous Materials: Request for U.S. Competent Authority Approval of International Atomic Energy...

    Science.gov (United States)

    2011-03-30

    ... arrangement transport certificate issued in accordance with the International Atomic Energy Agency (IAEA... Authority Approval of International Atomic Energy Agency Special Arrangement CDN/ 5255/X-96 (Rev. 0... February 4, 2011, the Canadian Nuclear Safety Commission (CNSC) issued a transport license and certificate...

  18. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  19. Photovoltaic Energy Program Overview, Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, P.

    2001-03-02

    This ''annual report'' details the FY 2000 achievements of the U.S. Department of Energy PV Program in the categories of Research and Development, Technology Development, and Systems Engineering and Applications. Highlights include development of a record-breaking concentrator solar cell that is 32.4% efficient; fabrication of a record CIGS (copper indium gallium diselenide) cell at 18.8% efficiency; sharing an R and D 100 award with Siemens Solar Industries and the California Energy Commission for development and deployment of commercial CIS thin-film modules; and support for the efforts of the PV Industry Roadmap Workshop.

  20. Japan Returns to Atom. Current Status and Prospects of the Japanese Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Łukasz Tolak

    2015-12-01

    Full Text Available In a year and a half after the events of March 2011, Japan excluded all their nuclear reactors, returning to fossil fuels as a basis in the energy field. The shock associated with nuclear disaster seemed to indicate an ultimate end of Japanese adventure with the atom. The situation has, however, significantly changed during the last several months, and the first nuclear reactor connected again to the electric network, is a proof of the change of the energy policy. The article aims to identify the current state of knowledge on the future of nuclear energy in the Japanese energy sector and adjustments proposed in the future energy mix. At the same time, it is an attempt to analyze the reasons that led the current Government of Prime Minister Abe to take very unpopular decisions to return to nuclear energy.

  1. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)

    2014-12-01

    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  2. Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    CERN Document Server

    Post, D; Clark, R E H; Putvinskaya, N

    1995-01-01

    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses f...

  3. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    Science.gov (United States)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  4. On Atoms-in-Molecules Energies from Kohn-Sham Calculations.

    Science.gov (United States)

    Tognetti, Vincent; Joubert, Laurent

    2017-10-06

    Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms-in-molecules theory and in the particular context of Kohn-Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed "standard" and "model", are based on Pendás' interacting-quantum-atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  6. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  7. Renewable energy water supply - Mexico program summary

    Energy Technology Data Exchange (ETDEWEB)

    Foster, R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  8. The Atoms for Peace USIS Films: Spreading the Gospel of the "Blessing" of Atomic Energy in the Early Cold War Era

    OpenAIRE

    Yuka Tsuchiya

    2014-01-01

    In 1955, the U.S. Information Service (USIS) Tokyo produced a thirty-minute documentary film Blessing of Atomic Energy in commemoration of the tenth anniversary of the Atomic bombing of Hiroshima and Nagasaki. The film introduced how the Japanese government, researchers, and companies were using radioisotopes offered by the U.S. Argonne National Laboratory for the “peaceful” purposes in agriculture, medicine, hygiene, industry, and disaster prevention. The film also showed the mechanism of at...

  9. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    Science.gov (United States)

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 Å). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 Å) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1×106 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons.

  10. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges

    Science.gov (United States)

    Morawietz, Tobias; Sharma, Vikas; Behler, Jörg

    2012-02-01

    Understanding the unique properties of water still represents a significant challenge for theory and experiment. Computer simulations by molecular dynamics require a reliable description of the atomic interactions, and in recent decades countless water potentials have been reported in the literature. Still, most of these potentials contain significant approximations, for instance a frozen internal structure of the individual water monomers. Artificial neural networks (NNs) offer a promising way for the construction of very accurate potential-energy surfaces taking all degrees of freedom explicitly into account. These potentials are based on electronic structure calculations for representative configurations, which are then interpolated to a continuous energy surface that can be evaluated many orders of magnitude faster. We present a full-dimensional NN potential for the water dimer as a first step towards the construction of a NN potential for liquid water. This many-body potential is based on environment-dependent atomic energy contributions, and long-range electrostatic interactions are incorporated employing environment-dependent atomic charges. We show that the potential and derived properties like vibrational frequencies are in excellent agreement with the underlying reference density-functional theory calculations.

  11. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  12. Industrial energy-efficiency improvement program

    Science.gov (United States)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  13. A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, Peter

    1966-01-01

    the projectile and each ring atom is described by a Born-Mayer potential, and the scattering is assumed to be elastic and governed by the classical equations of motion. Because of symmetry, the problem can be reduced to plane motion of a particle in a potential of elliptic symmetry. The elliptic force field...... the elliptic to the spherical potential are investigated. Special attention is paid to proper definitions of collision time and collision length which are important in collisions in crystals. Limitations to classical scattering arising from the uncertainty principle prove to be more serious than assumed...... previously. Inelastic contributions to the energy loss can easily be included. The oscillator forces binding lattice atoms turn out to influence the scattering process only at very small energies. The validity of the so-called momentum approximation and a related perturbation method are also investigated....

  14. Molecular Energy Decompositions in the Hilbert-Space of Atomic Orbitals at Correlated Level

    Science.gov (United States)

    Alcoba, Diego R.; Bochicchio, Roberto C.; Lain, Luis; Torre, Alicia

    This work describes a new model to partition the molecular energy into one- and two-center contributions in the Hilbert-space of atomic orbitals at correlated level. Our proposal makes explicit use of the pairing nature of chemical bonding phenomena to accommodate appropriately the correlation effects within these contributions. The model is based on the treatment of the kinetic energy as contributing to both one- and two-atom terms, according to the pairing or unpairing character of the electron cloud, and on the appropriate assignment of the density cumulant dependent contributions. Numerical results for selected systems are reported and compared with those arising from other models, showing the reliability of our predictions.

  15. Local enhancement of radiation dose by using high atomic number materials with high energy photon beam

    Science.gov (United States)

    Alkhatib, Ahmad Khaled

    The goal of treatment planning in radiation therapy is to maximize the absorbed dose in abnormal cells and minimize the dose in normal cells. It is long established that the probability of pair production interactions (converting photon to electron and positron see chapter II) increases with the increase of the photon energy above a 1.02 MV threshold and with the square of the atomic number of the medium. In this work I tried to locally enhance the absorbed dose by using both a high energy photon beam and high Z material (Gold foils), to observe the effect of the secondary electrons that are produced in the high z material (gold) with high energy photons (end point energy 25MV). To observe the range of these secondary electrons, I changed the gap between two gold foils. I studied also the effect of varying the thickness of both gold foils. To verify the dependence of the atomic number (Z) I repeated the measurements with two Aluminum foils, and to observe the effect of The Higher photon energy I used a range of photon beams with end point energies 6, 10, 15, 18 and 25 MV. I used Monte Carlo code to confirm the result. The calculated dose enhancements from the simulation were in general 5% higher the measured values.

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    Science.gov (United States)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-29

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  17. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Directory of Open Access Journals (Sweden)

    Shi H.

    2016-01-01

    Full Text Available In the exotic atoms where one atomic 1s electron is replaced by a K−, the strong interaction between the K− and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z = 1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s state of K− p and the 2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  18. 13. Amendment of the Atomic Energy Act and fundamental rights; 13. Atomgesetznovelle und Grundrechte

    Energy Technology Data Exchange (ETDEWEB)

    Kloepfer, Michael

    2011-11-15

    The contribution discusses whether the faster nuclear phaseout according to the 13th amendment of 2011 of the German Atomic Energy Act is in compliance with the fundamental rights as specified in the German constitution (Art. 14, 12, 3 GG). The focus is on the limited residual operating periods specified for each nuclear power plant and the annulment of the additional electricity capacities granted in 2010.

  19. Protein structure prediction by all-atom free-energy refinement

    Science.gov (United States)

    Verma, Abhinav; Wenzel, Wolfgang

    2007-01-01

    Background The reliable prediction of protein tertiary structure from the amino acid sequence remains challenging even for small proteins. We have developed an all-atom free-energy protein forcefield (PFF01) that we could use to fold several small proteins from completely extended conformations. Because the computational cost of de-novo folding studies rises steeply with system size, this approach is unsuitable for structure prediction purposes. We therefore investigate here a low-cost free-energy relaxation protocol for protein structure prediction that combines heuristic methods for model generation with all-atom free-energy relaxation in PFF01. Results We use PFF01 to rank and cluster the conformations for 32 proteins generated by ROSETTA. For 22/10 high-quality/low quality decoy sets we select near-native conformations with an average Cα root mean square deviation of 3.03 Å/6.04 Å. The protocol incorporates an inherent reliability indicator that succeeds for 78% of the decoy sets. In over 90% of these cases near-native conformations are selected from the decoy set. This success rate is rationalized by the quality of the decoys and the selectivity of the PFF01 forcefield, which ranks near-native conformations an average 3.06 standard deviations below that of the relaxed decoys (Z-score). Conclusion All-atom free-energy relaxation with PFF01 emerges as a powerful low-cost approach toward generic de-novo protein structure prediction. The approach can be applied to large all-atom decoy sets of any origin and requires no preexisting structural information to identify the native conformation. The study provides evidence that a large class of proteins may be foldable by PFF01. PMID:17371594

  20. International Atomic Energy Agency (IAEA) and the Diplomacy of Sustainable International Nuclear Security

    OpenAIRE

    Martin Uadiale

    2011-01-01

    The increasing threat and proliferation of Nuclear Weapons and materials across national and international boundaries have combined to pose severe threat to the stability of the international system. In this respect, the International Atomic Energy Agency (IAEA) has through its robust activities helped to enthrone the virtues of sustainable Nuclear security in our fast, but ever-changing world. This study concluded the IAEA, regardless of its numerous short comings, have proved to be an all i...

  1. Treatment of non-nuclear attractors within the theory of atoms in molecules II: Energy decompositions

    Science.gov (United States)

    Alcoba, Diego R.; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C.

    2006-08-01

    This work describes the partitioning of the electronic energy in systems in which the atoms in molecules theory predicts the existence of non-nuclear attractors. The procedure is based on our previous proposals within studies of topological population analysis [D.R. Alcoba, L. Lain, A. Torre, R.C. Bochicchio, Chem. Phys. Lett. 407 (2005) 379]. Numerical determinations in the acetylene and dilithium molecules are reported and compared with those arising from other approaches.

  2. State Energy Program Results: More Projects That Work

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    A Summary of Success stories of the State Energy Programs. The goal of the State Energy Program is to strengthen the capabilities of States to promote energy efficiency and to adopt renewable energy technologies, thereby helping the nation save energy and realize a stronger economy, cleaner environment, and a more secure future.

  3. The search for minimum-energy atomic configurations on a lattice: Lamarckian twist on Darwinian Evolution

    Science.gov (United States)

    D'Avezac, Mayeul; Zunger, Alex

    2008-03-01

    We examine how two different mechanisms proposed historically for biological evolution compare for the determination of crystal structures from random initial lattice-configurations. The Darwinian theory of evolution contends that the genetic makeup inherited at birth is the one passed on to offsprings. Lamarck surmised additionally that offspring can inherit acquired traits. In the case of lattice-configurations, such improvements consist in AB transmutations of atomic sites as guided by ``Virtual Atom'' energy-gradients(M. d'Avezac and Alex Zunger, J. Phys.: Cond. Matt. 19, 402201 (2007)). This hybrid evolution is shown to provide an efficient solution to a generalized Ising Hamiltonian, illustrated by finding the ground-states of face-centered cubic Au1-xPdx using a cluster-expansion functional fitted to first-principles total-energies. For example, finding all minimum-energy structures of a 32-atom supercell with 95,% confidence requires evaluating 750, 000 configurations using local improvements only, 150, 000 using a reciprocal-space genetic algorithm only, and 14,000 using the hybrid approach. We consider applying the lamarckian search to further functionals.

  4. New Strategies for Atomic Scale Measurements at Interfaces using Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Muller, David A.

    1997-03-01

    The local electronic structure of a material can be measured directly from the energy loss spectrum of a swift electron scattered through it. When the electron beam is focussed down to the width of an atomic column, the electronic density of states at an interface, grain boundary or impurity site can be decomposed by site, chemical species and angular momentum. Here, we discuss the use of electron energy loss spectroscopy (EELS) fine structure to provide insight into the origin of grain boundary and interfacial properties. EELS can reveal the physics underlying why a particular local bonding arrangement develops. Even a qualitative understanding of local bonding can help indentify possible sites for chemical reactions and potentially weak points at a grain boundary. More can be done however: an EELS sum rule allows quantitative estimates of grain boundary energies. This is particularly useful at general, large angle grain boundaries where no other atomic scale information can be obtained. As an example, we show how atomic-scale EELS measurements of grain boundaries in Ni_3Al (D.A. Muller, S. Subramanian, P.E. Batson, S.L. Sass, J. Silcox, Phys. Rev. Lett.) 75 4744 (1995). lead not only to rules-of-thumb for segregation and bond strength, but also to quantitative estimates of the boundary cohesion. Application to magnetic multilayers and Al:Cu interconnects will also be touched on. (Work at Cornell supported by DOE grant DE-FG02-87ER45322 and NSF grant DMR-9121654.)

  5. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  6. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.

    Science.gov (United States)

    Loreau, J; van der Avoird, A

    2015-11-14

    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  7. Update on DOE's Nuclear Energy University Program

    Science.gov (United States)

    Lambregts, Marsha J.

    2009-08-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R&D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  8. Using uncertainty principle to find the ground-state energy of the helium and a helium-like Hookean atom

    Energy Technology Data Exchange (ETDEWEB)

    Harbola, Varun, E-mail: varunh@iitk.ac.in [Kendriya Vidyalaya (Central School) Indian Institute of Technology, Kanpur-208 016 (India)

    2011-11-15

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron cloud. Our calculation also shows how the Coulomb interaction between electrons affects their distribution. This leads to a physical picture of how electrons are located with respect to each other in these atoms. Finally, we also obtain through our calculations a general formula for the estimate of ground-state energy and radius of two electron atoms and ions with atomic number Z.

  9. Energy analysis program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.

    1995-04-01

    This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

  10. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  11. Report realized on the behalf of the Foreign Affairs Commission on the law project, adopted by the Senate, authorizing the added protocol ratification to the agreement between France, the European Atomic Energy Community and the International Atomic Energy Agency relative to the guaranties application in France; Rapport fait au nom de la Commission des Affaires Etrangeres sur le projet de Loi, adopte par le Senat, autorisant la ratification du protocole additionnel a l'accord entre la France, la Communaute europeenne de l'energie atomique et l'Agence internationale de l'energie atomique relatif a l'application de garanties en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This document presents the analyse of the law project, adopted by the Senate, authorizing the added protocol ratification to the agreement between France, the Atomic Energy European Community and the International Atomic Energy Agency relative to the guaranties application in France. It deals with the nuclear proliferation fight in France and the the program of enhancement of guaranties in the framework of the IAEA. (A.L.B.)

  12. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW.... Brenda Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy...

  13. Review of the Inertial Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  14. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  15. Sharing success: State energy program special projects results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-15

    The State Energy Program was created in 1996 by an act of Congress through the consolidation of the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP). Formerly, SECP provided funding for a variety of energy efficiency and renewable energy projects, and ICP assisted schools and hospitals with technical analysis and installation of energy conservation measures. Through these programs, more than 8,000 specific State conservation projects have been implemented since 1983 and more than 69,000 buildings have been made more energy efficient since 1979. The Department of Energy's Office of Energy Efficiency and Renewable Energy recognized the value of delivering programs through the States and created Special Projects in 1996. This report is an overview of State Energy Program operations, strategic focus, activities and accomplishments.

  16. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. Assessment of the Fusion Energy Sciences Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  18. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  19. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  20. Construction of an upconversion nanoprobe with few-atom silver nanoclusters as the energy acceptor.

    Science.gov (United States)

    Xiao, Yan; Zeng, Lingyu; Xia, Tian; Wu, Zhengjun; Liu, Zhihong

    2015-04-27

    Herein we report that few-atom silver nanoclusters (Ag NCs) can be effective energy acceptors for upconversion phosphors (UCPs). A luminescence resonance energy transfer (LRET) probe for biothiols was constructed by decorating UCPs with dithiol-stabilized Ag NCs. Owing to the unique properties of ultrasmall NCs, properties which bridge the gap between those of small molecules and those of nanoparticles, the use of approximately 1.9 nm Ag NCs as energy acceptors endows the probe with high energy-transfer efficiency, good biocompatibility, and flexibility. The UCP-Ag NC nanoprobe enables rapid and robust target assay in solutions. It was also uploaded into living cells and used to detect intracellular biothiol levels with high discrimination. Moreover, the probe shows transportability in vivo and can be used for tissue imaging. The facile growth of few-atom metal NCs on diverse templates may enable the development of various nanoprobes combining UCPs and metal NCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 75 FR 32459 - National Energy Rating Program for Homes

    Science.gov (United States)

    2010-06-08

    ... Efficiency and Renewable Energy National Energy Rating Program for Homes AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information (RFI). SUMMARY: The Department of Energy (DOE) is seeking comments and information from interested parties to assist DOE in developing a...

  2. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study.

    Science.gov (United States)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-21

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  3. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Photo 01: Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing. Looking on are Christoph Eck (far left), resource manager of the LCG Project and Les Robertson, LCG Project Leader. Photo 02: (left to right) Christoph Eck, resource manager of the LCG Project; G. Govindrajan, Director of the Electronics and Instrumentation G...

  4. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing.

  5. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  6. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Science.gov (United States)

    2012-07-26

    ... Conservation programs (EE Programs) undertaken by an eligible utility system to finance demand side management... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... implementing demand side management, energy efficiency and conservation programs, and on-grid and off-grid...

  7. Communities of the Future: Energy Programs for Livable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J. G.; Strawn, N.

    1999-04-13

    This document relates how several of the US Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) programs help communities across the nation deal with the issues of livability and sustainable growth. Highlights include background information on renewable energy technologies, some outstanding program anecdotes, and regional and Internet contact information.

  8. The role of coherent excitation and collisional energy transfer in atomic vapor filters and photon detectors

    Science.gov (United States)

    Correll, Tiffany Lee

    Many optical techniques, including laser Doppler velocimetry, free space optical communications, and chemical imaging, require-or can be enhanced by-high spectral resolution photon detection. Such detection is characterized by spectral discrimination on the order of GHz or MHz i.e., approximately 10-4 nm in the near-infrared region. This spectral resolution has recently been achieved by exploiting the narrow absorption features of gas phase atoms. Absorption of light by alkali vapors is intrinsically selective and can be monitored by detecting the fluorescence resulting from laser excitation coupled to selectively excited atomic states. Imaging can be accomplished by spatially expanding the excitation lasers into two dimensions. Fluorescence photons are only created and detected when the interrogated object is forced to scatter radiation of an energy precisely matching one of the transitions of a pre-determined optimal excitation/fluorescence scheme. Devices based on resonance fluorescence photon detection have recently been described using cesium atoms. In this work, the sensitivity and spectral resolution of cesium-based photon detectors were evaluated and improved. To this end, initial experiments focused on laser induced fluorescence in room temperature cesium vapor. The fluorescence response of the detector was augmented by the use of cesium-induced collisional excitation energy transfer between states involved in the chosen excitation scheme. Additional studies focused on helium and argon-induced collisions in the vapor to increase the signal output while maintaining adequate spatial resolution in imaging mode. The probability or cross section of helium-cesium collisions at the operating temperature of the detector was determined by use of a simplified rate equation model. The spectral response of the detector was improved by the use of coherent optical effects resulting from the interaction of a multi-level atomic system with narrowband radiation. Superior

  9. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    Science.gov (United States)

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N 4 B 2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N 4 B 2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N 4 B 2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N 4 B 2 releases more heat than the corresponding isomer of N 4 C 2 does under well-oxygenated conditions. Our study suggests that the three most stable N 4 B 2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N 4 B 2 isomers were investigated by means of density functional theory.

  10. Using research metrics to evaluate the International Atomic Energy Agency guidelines on quality assurance for R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1994-06-01

    The objective of the International Atomic Energy Agency (IAEA) Guidelines on Quality Assurance for R&D is to provide guidance for developing quality assurance (QA) programs for R&D work on items, services, and processes important to safety, and to support the siting, design, construction, commissioning, operation, and decommissioning of nuclear facilities. The standard approach to writing papers describing new quality guidelines documents is to present a descriptive overview of the contents of the document. I will depart from this approach. Instead, I will first discuss a conceptual framework of metrics for evaluating and improving basic and applied experimental science as well as the associated role that quality management should play in understanding and implementing these metrics. I will conclude by evaluating how well the IAEA document addresses the metrics from this conceptual framework and the broader principles of quality management.

  11. A model for energy transfer in collisions of atoms with highly excited molecules.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  12. Electron-induced desorption of europium atoms from oxidized tungsten surface: concentration dependence of low-energy peak

    CERN Document Server

    Davydov, S Y

    2002-01-01

    One discusses nature of electron induced desorption of Eu sup 0 europium atoms under E sub e irradiating electron low-energies (approx 30 eV) and peculiarities of yield dependence of Eu sup 0 atoms on their concentration at oxidized tungsten surface. Primary act of vacancy origination in europium adatom inner 5p-shell turned to be the determining stage. Evaluations have shown that just the first of two possible scenarios of ionization (electron intra-atomic to Eu adatom external quasi-level or realise of knocked out electron into vacuum) leads to Eu sup 0 desorption. One determined concentration threshold for yield of Eu sup 0 atoms

  13. The standard calibration instrument automation system for the atomic absorption spectrophotometer. Part 3: Program documentation

    Science.gov (United States)

    Ryan, D. P.; Roth, G. S.

    1982-04-01

    Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.

  14. 75 FR 34656 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Certain...

    Science.gov (United States)

    2010-06-18

    ... Perkins, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Proposed rule.... Postal Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J...

  15. 76 FR 39245 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-07-06

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J... Efficiency and Renewable Energy, U.S. Department of Energy. ACTION: Direct final rule; correction. SUMMARY... Technology Development, Energy Efficiency and Renewable Energy. BILLING CODE 6450-01-P ...

  16. 77 FR 13026 - Energy Conservation Program: Energy Conservation Standard for Automatic Commercial Ice Makers

    Science.gov (United States)

    2012-03-05

    .... Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Commercial Ice Makers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION..., U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J, Preliminary TSD for...

  17. 76 FR 69122 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Science.gov (United States)

    2011-11-08

    ... Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW., Washington, DC 20585...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final rule; correction.... Kathleen B. Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable Energy...

  18. Effects of the atomic environment on the electron binding energies in samarium

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent, Republic of Uzbekistan (Uzbekistan); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M.; Vénos, D. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Yushkevich, Yu.V.; Perevoshchikov, L.L. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zhdanov, V.S. [Nuclear Physics Institute, Almaty, Republic of Kazakhstan (Kazakhstan)

    2016-02-15

    Highlights: • Eight different matrices (evaporated and implanted at 30 keV) used. • The greatest average difference in the binding energies amounted to 3.1 ± 0.1 eV. • The presence of trivalent and divalent Sm ions found in some implanted samples. • No significant differences in Sm natural atomic level widths were observed. - Abstract: Effects of the atomic environment on the L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, M{sub 3}, and N{sub 1} electron binding energies in samarium generated in the electron capture decay of radioactive {sup 149}Eu were investigated by means of the internal conversion electron spectroscopy using the conversion electron spectrum of the 22.5 keV M1 + E2 nuclear transition in the daughter {sup 149}Sm. In this investigation, four pairs of {sup 149}Eu sources prepared by vacuum evaporation deposition and by ion implantation at 30 keV with the use of four different source backing materials, namely polycrystalline carbon, aluminium, gadolinium and platinum foils, were employed. The greatest average difference of (3.1 ± 0.1) eV in the L{sub 1}, L{sub 2}, L{sub 3}, and M{sub 1} subshell electron binding energies was observed between the {sup 149}Eu sources prepared by ion implantation into the aluminium and platinum substrates. On the other hand, minimal differences in the electron binding energies were generally found between samarium generated in the evaporated layer and in the bulk for the individual investigated source backings with the exception of the gadolinium foil. A doublet structure of all investigated conversion electron lines with the average values of 8.1 ± 0.2 eV and 1.5 ± 0.1 for the separation energy and the intensity ratio of the low-energy to high-energy components, respectively, was observed for the {sup 149}Eu sources prepared by ion implantation into the aluminium and carbon foils. This structure was presumably caused by the presence of both the trivalent and divalent Sm ions in the sources. No

  19. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster.

    Science.gov (United States)

    Baer, Roi; Siam, Nidal

    2004-10-01

    Gas-phase hydrogen atoms are accelerated towards metallic surfaces in their vicinity. As it approaches the surface, the velocity of an atom increases and this motion excites the metallic electrons, causing energy loss to the atom. This dissipative dynamics is frequently described as atomic motion under friction, where the friction coefficient is obtained from ab initio calculations assuming a weak interaction and slow atom. This paper tests the aforementioned approach by comparing to a real-time Ehrenfest molecular dynamics simulation of such a process. The electrons are treated realistically using standard approximations to time-dependent density functional theory. We find indeed that the electronic excitations produce a friction-like force on the atom. However, the friction coefficient strongly depends on the direction of the motion of the atom: it is large when the atom is moving towards the cluster and much smaller when the atom is moving away. It is concluded that a revision of the model for energy dissipation at metallic surfaces, at least for clusters, may be necessary. (c) 2004 American Institute of Physics

  20. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  1. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  2. The University of Rochester Atomic Energy Project quarterly report, April 1, 1950--June 30, 1950

    Energy Technology Data Exchange (ETDEWEB)

    Blair, H.A.

    1950-12-31

    This quarterly progress report gives an overview of the University of Rochester Atomic Energy Project for April 1, 1950 thru June 30, 1950. Sections included are entitled (1) Biological Effects of External Radiation (X-rays and gamma rays), (2) Biological Effects of External Radiation (Infra-red and ultraviolet), (3) Biological effects of radioactive materials (polonium, radon, thoron, and miscellaneous project materials), (4) Uranium, (5) Beryllium, (7) thorium, (8) fluoride, (9) zirconium, (10) special materials, (11) Isotopes, (12) Outside services, (12) Project health, (13) Health physics, (14) Special Clinical Service, and (15) Instrumentation (Spectroscopy, electron microscopy, x-ray and nuclear radiation detectors, x-ray diffraction, and electronics).

  3. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    Science.gov (United States)

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  4. Charge transfer and association of Na+ with 87Rb atoms from extremely low to intermediate energies

    Science.gov (United States)

    Yan, L. L.; Liu, L.; Wu, Y.; Qu, Y. Z.; Wang, J. G.; Buenker, R. J.

    2013-07-01

    The nonradiative charge-transfer processes in Na++87Rb(5s) collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method for the energy range of 10-4-5 and 0.3-100 keV/u, respectively. The radiative charge-transfer, radiative-decay, and radiative-association processes have been investigated by using the fully quantum, optical-potential, and semiclassical methods for the energy range of 10-18-0.2 eV/u. The nonradiative charge-transfer processes dominate the collisions for energies above 0.2 eV/u and radiative-decay processes dominate in the lower-energy region. At the very low collision energies of 10-18-10-3 eV/u, the radiative-association process is more important than the radiative charge-transfer process. Most importantly, it is found that the radiative cross sections exhibit Langevin behavior as E-1/2 for energies less than 10-2 eV/u.

  5. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 me...... an absorbing potential at large distance. The times now extend to beyond 100 ps and enable a clarification of processes involving transient trapping of the He atoms. The wave packet is made more monochromatic by significantly increasing the spatial width of the initial Gaussian shape. The narrower energy...

  6. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Muller, Holger; /UC, Berkeley; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  10. Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion.

    Science.gov (United States)

    Bayatsarmadi, Bita; Zheng, Yao; Vasileff, Anthony; Qiao, Shi-Zhang

    2017-06-01

    Nanostructured metal-contained catalysts are one of the most widely used types of catalysts applied to facilitate some of sluggish electrochemical reactions. However, the high activity of these catalysts cannot be sustained over a variety of pH ranges. In an effort to develop highly active and stable metal-contained catalysts, various approaches have been pursued with an emphasis on metal particle size reduction and doping on carbon-based supports. These techniques enhances the metal-support interactions, originating from the chemical bonding effect between the metal dopants and carbon support and the associated interface, as well as the charge transfer between the atomic metal species and carbon framework. This provides an opportunity to tune the well-defined metal active centers and optimize their activity, selectivity and stability of this type of (electro)catalyst. Herein, recent advances in synthesis strategies, characterization and catalytic performance of single atom metal dopants on carbon-based nanomaterials are highlighted with attempts to understand the electronic structure and spatial arrangement of individual atoms as well as their interaction with the supports. Applications of these new materials in a wide range of potential electrocatalytic processes in renewable energy conversion systems are also discussed with emphasis on future directions in this active field of research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Collisions at thermal energy between metastable hydrogen atoms and hydrogen molecules: Total and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, G.; Perales, F.; Miniatura, C.; Robert, J.; Reinhardt, J.; Vecchiocattivi, F.; Baudon, J. (Paris-13 Univ., 93 - Villetaneuse (France). Lab. de Physique des Lasers)

    1990-10-01

    A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3-5 km/s). Total integral cross sections for H{sup *}(D{sup *})(2s)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}, {nu}=0) collisions have been measured in a wide range of relative velocity (2,5-30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H{sup *} and D{sup *}, as functions of the relative velocity, are different, especially in the low velocity range. H{sup *}+H{sub 2} total differential cross sections have also been measured, with an angular spread of 3.6deg, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented. (orig.).

  12. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency, and...

  13. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  14. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, Anne, E-mail: annebonnin@free.fr [ESRF, 6 Jules Horowitz, F-38073 Grenoble Cedex (France); LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Duvauchelle, Philippe, E-mail: philippe.duvauchelle@insa-lyon.fr [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Kaftandjian, Valérie [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Ponard, Pascal [Thales Electron Devices SAS, 2 Rue Marcel Dassault, BP23 78141 Vélizy, Villacoublay Cedex (France)

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage.

  15. Development of selective photoionization spectroscopy technology - Development of a computer program to calculate selective ionization of atoms with multistep processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Soon; Nam, Baek Il [Myongji University, Seoul (Korea, Republic of)

    1995-08-01

    We have developed computer programs to calculate 2-and 3-step selective resonant multiphoton ionization of atoms. Autoionization resonances in the final continuum can be put into account via B-Spline basis set method. 8 refs., 5 figs. (author)

  16. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  17. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ün, Adem, E-mail: ademun25@yahoo.com; Han, İbrahim, E-mail: ibrahimhan25@hotmail.com [Ağrı İbrahim Çeçen University, Faculty of Arts and Sciences, Department of Physics, 04100 Ağrı (Turkey); Ün, Mümine, E-mail: mun@agri.edu.tr [Ağrı İbrahim Çeçen University, Vocational School, Department of Electricity and Energy, 04100 Ağrz (Turkey)

    2016-04-18

    Effective atomic (Z{sub eff}) and electron numbers (N{sub eff}) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Z{sub eff} and N{sub eff} for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  18. The Cold War legacy of regulatory risk analysis: The Atomic Energy Commission and radiation safety

    Science.gov (United States)

    Boland, Joseph B.

    From its inception in 1946 the Atomic Energy Commission pioneered the use of risk analysis as a mode of regulatory rationality and political rhetoric, yet historical treatments of risk analysis nearly always overlook the important role it played in the administration of atomic energy during the early Cold War. How this absence from history has been achieved and why it characterizes most historical accounts are the subjects of Chapter II. From there, this study goes on to develop the thesis that the advent of the atomic bomb was a world-shattering event that forced the Truman administration to choose between two novel alternatives: (1) movement towards global governance based initially on cooperative control of atomic energy or (2) unsparing pursuit of nuclear superiority. I refer to these as nuclear internationalism and nuclear nationalism, respectively. Each defined a social risk hierarchy. With the triumph of nuclear nationalism, nuclear annihilation was designated the greatest risk and a strong nuclear defense the primary means of prevention. The AEC's mission in the 1950s consisted of the rapid development of a nuclear arsenal, continual improvements in weapons technologies, and the promotion of nuclear power. The agency developed a risk-based regulatory framework through its dominant position within the National Committee on Radiation Protection. It embraced a technocratic model of risk analysis whose articulation and application it controlled, largely in secret. It used this to undergird a public rhetoric of reassurance and risk minimization. In practice, safety officials adjusted exposure levels within often wide parameters and with considerable fluidity in order to prevent safety concerns from interfering with operations. Secrecy, the political climate of the time, and a lack of accountability enabled the agency to meld technical assessments with social value judgments in a manner reflective of nuclear nationalism's risk hierarchy. In the late fifties

  19. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    Science.gov (United States)

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  20. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    Science.gov (United States)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  1. Commercial Midstream Energy Efficiency Incentive Programs: Guidelines for Future Program Design, Implementation, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Milostan, Catharina [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States); Guzowski, Leah Bellah B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  2. Atomic energy and how it was transformed into a political issue. Die Politisierung des Themas Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Overhoff, K.

    1984-01-01

    The mass media are the most important source of information and opinion moulding for politically interested citizens. The way in which facts and events relating to the benefits and disadvantages of certain matters are presented exercises an influence on their acceptance or rejection, especially if - as in the case of atomic energy - new unstructured problem complexes turn up on which the public has not yet formed a firm opinion or on which no other sources of information and experience are available. This work therefore aims to answer the following questions: What are the principles according to which the mass media present the atomic energy question to the public. How do the mass media influence the public opinion process during the controversy. It is assumed that the mass media have played an important part in opinion moulding and therefore have influenced the course of the entire controversy. By putting a topic on the agenda they either permit the coordination of divergent opinions or produce a one-sided opinion climate. As broadcasting and television documents were not accessible, this work is restricted to the evaluation of press organs.

  3. Hope over fear. The establishment of the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Forland, A.

    1995-12-01

    President Eisenhower`s ``Atoms for Peace`` speech in 1953 started a process that led to the establishment of the International Atomic Energy Agency (IAEA). This study analyses the negotiations of the Statute of the Agency. It focuses on how the Agency`s scope of action regarding safeguards was negotiated. The Statute is seen as a reflection of the dual purpose of the new Agency to promote peaceful uses of nuclear energy, and to control that peaceful nuclear activities receiving IAEA assistance are not diverted to military purposes. On one hand, the countries receiving assistance from the Agency accepted a degree of international control that represented a breakthrough in international relations. On the other hand, many countries strongly resented controls. Consequently, compromises had to be made in the course of the negotiations in order to reach a consensus. Thus, although the IAEA was established as a competent and technical body, the underlying compromises meant that its scope of actions was restricted. 6 refs.

  4. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    Science.gov (United States)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  5. INVOLVEMENT OF THE FACULTY OF MINING, GEOLOGY & PETROLEUM ENGINEERING IN TECHNICAL COOPERATION OF THE REPUBLIC OF CROATIA WITH THE INTERNATIONAL ATOMIC ENERGY AGENCY

    Directory of Open Access Journals (Sweden)

    Biljana Kovačević Zelić

    2012-07-01

    Full Text Available The article discusses the question of energy production from nuclear sources considering the growing demand for energy worldwide, the advantages and disadvantages of using nuclear energy. International Atomic Energy Agency (IAEA promotes the peaceful use of nuclear energy, and the State Office for Radiological and Nuclear Safety (DZNRS monitors the use of ionizing radiation sources in Republic of Croatia. Paper describes the role of the IAEA technical cooperation program involving Croatia (INT9173 "Training in Radioactive Waste Disposal Technologies in Underground Research Facilities - URFs". The importance of the involvement of Croatian scientists and experts, in the said project of technical cooperation in the field of radioactive waste management, is presented through activities conducted during the period since 2009 to date, taking into account Croatia's obligations regarding the disposal of radioactive waste generated by operation of the nuclear power plant Krško (the paper is published in Croatian.

  6. 78 FR 25626 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Science.gov (United States)

    2013-05-02

    .... Lucy deButts, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... for Ceiling Fans and Ceiling Fan Light Kits AGENCY: Office of Energy Efficiency and Renewable Energy.... Postal Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J...

  7. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Science.gov (United States)

    2010-06-03

    ... Renewable Energy, Building Technologies, EE-2J, 1000 Independence Avenue, SW., Washington, DC 20585-0121... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000... Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting and availability of...

  8. 78 FR 16443 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Science.gov (United States)

    2013-03-15

    ... Energy, Office of Energy Efficiency and Renewable Energy, ] Building Technologies Program, EE-2J, 1000... Renewable Energy, Department of Energy. ACTION: Notice of public meeting and availability of the Framework....gov/buildings/appliance_standards/rulemaking.aspx/ruleid/65 and http://www1.eere.energy.gov/buildings...

  9. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Science.gov (United States)

    2010-07-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC22 Energy Conservation Program: Energy Conservation Standards... establish energy conservation standards for the use of electricity for purposes of circulating air through... (DOE) initiated a rulemaking to consider establishing new energy conservation standards or energy use...

  10. 78 FR 20842 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2013-04-08

    ... Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW., Washington, DC 20585... Clothes Dryers and Room Air Conditioners AGENCY: Office of Energy Efficiency and Renewable Energy.../Courier: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, 950 L'Enfant Plaza...

  11. 76 FR 70865 - Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators...

    Science.gov (United States)

    2011-11-16

    ... / Wednesday, November 16, 2011 / Rules and Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AB79 Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators...

  12. The Interstellar Boundary Explorer High Energy (IBEX-Hi) Neutral Atom Imager

    Science.gov (United States)

    Funsten, H. O.; Allegrini, F.; Bochsler, P.; Dunn, G.; Ellis, S.; Everett, D.; Fagan, M. J.; Fuselier, S. A.; Granoff, M.; Gruntman, M.; Guthrie, A. A.; Hanley, J.; Harper, R. W.; Heirtzler, D.; Janzen, P.; Kihara, K. H.; King, B.; Kucharek, H.; Manzo, M. P.; Maple, M.; Mashburn, K.; McComas, D. J.; Moebius, E.; Nolin, J.; Piazza, D.; Pope, S.; Reisenfeld, D. B.; Rodriguez, B.; Roelof, E. C.; Saul, L.; Turco, S.; Valek, P.; Weidner, S.; Wurz, P.; Zaffke, S.

    2009-08-01

    The IBEX-Hi Neutral Atom Imager of the Interstellar Boundary Explorer (IBEX) mission is designed to measure energetic neutral atoms (ENAs) originating from the interaction region between the heliosphere and the local interstellar medium (LISM). These ENAs are plasma ions that have been heated in the interaction region and neutralized by charge exchange with the cold neutral atoms of the LISM that freely flow through the interaction region. IBEX-Hi is a single pixel ENA imager that covers the ENA spectral range from 0.38 to 6 keV and shares significant energy overlap and overall design philosophy with the IBEX-Lo sensor. Because of the anticipated low flux of these ENAs at 1 AU, the sensor has a large geometric factor and incorporates numerous techniques to minimize noise and backgrounds. The IBEX-Hi sensor has a field-of-view (FOV) of 6.5°×6.5° FWHM, and a 6.5°×360° swath of the sky is imaged over each spacecraft spin. IBEX-Hi utilizes an ultrathin carbon foil to ionize ENAs in order to measure their energy by subsequent electrostatic analysis. A multiple coincidence detection scheme using channel electron multiplier (CEM) detectors enables reliable detection of ENAs in the presence of substantial noise. During normal operation, the sensor steps through six energy steps every 12 spacecraft spins. Over a single IBEX orbit of about 8 days, a single 6.5°×360° swath of the sky is viewed, and re-pointing of the spin axis toward the Sun near perigee of each IBEX orbit moves the ecliptic longitude by about 8° every orbit such that a full sky map is acquired every six months. These global maps, covering the spectral range of IBEX-Hi and coupled to the IBEX-Lo maps at lower and overlapping energies, will answer fundamental questions about the structure and dynamics of the interaction region between the heliosphere and the LISM.

  13. Status of The General Atomics Low Speed Urban Maglev Technology Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gurol, S; Baldi, R; Bever, D; Post, R

    2004-06-16

    This paper presents the status of General Atomics Urban Maglev Program. The development provides an innovative approach for low speed transportation suitable for very challenging urban environments. Permanent magnets arranged in a 'Halbach' array configuration produce a relatively stiff magnetic suspension operating with an air gap of 25 mm. The project has progressed from design and prototype hardware testing, to the construction of a 120-meter full-scale test track, located in San Diego, California. Dynamic testing of the levitation, propulsion and guidance systems is being performed.

  14. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  15. Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

  16. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    Science.gov (United States)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  17. Energy efficiency in nonprofit agencies: Creating effective program models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Prindle, B.; Scherr, M.I.; White, D.L.

    1990-08-01

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programs for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.

  18. International Rivalry In The Energy Sector: The Eastern European Market Of Atomic Energy In Focus

    Directory of Open Access Journals (Sweden)

    Y. V. Borovsky

    2017-01-01

    Full Text Available In the post-bipolar world nuclear power has become one of the areas of competition and rivalry betweenRussiaand the West. The comprehensive analysis of theoretical publications allows us to consider international competition as an abstract, depoliticized contest of states and other international actors (including companies for some limited (mainly economic benefits. International rivalry is more a political process, necessarily involving some rival pairs of states (or groups of states that compete with each other not only to get some benefits, but to expand their territory or power. The competition and rivalry betweenRussiaand the West in the sphere of nuclear power are especially apparent in the Eastern European region where the American, European and Japanese corporations, with the support of the Western foreign ministries and EU institutions, try to achieve two main goals. The first goal is to win the contracts to build new power units, especially in tenders where Rosatom participates. The second goal is to become suppliers of nuclear fuel for multiple Russian- or Soviet-made VVER-type reactors, which are functioning or will be run in a number of countries in the region (Slovakia,CzechRepublic,Hungary,Bulgaria, andUkraine. Such activities can involve high risks. The West’s efforts to curb the dominant position of "Rosatom" inEastern Europeare formally associated with the need to create a "competitive market" of nuclear services in the region and to ensure the European energy security. It is also noteworthy that the expansion of Rosatom (and its predecessors to foreign markets, including Eastern Europe, is actively supported by the Russian state which in the second half of the 1990s – after a failed attempt of following in the footsteps of the West – joined in the rivalry, mostly imposed by the U.S. and their allies. As shown by the analysis,Russiaand the West, primarily theUnited States, are involved in the nuclear power sector to

  19. 77 FR 12087 - Atomic Safety and Licensing Board Panel; Strata Energy, Inc.; Memorandum and Order (Notice of...

    Science.gov (United States)

    2012-02-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board Panel; Strata Energy, Inc.; Memorandum and Order (Notice of..., Dr. Kenneth L. Mossman. This proceeding concerns the January 4, 2011 application of Strata Energy...

  20. 78 FR 56944 - Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and...

    Science.gov (United States)

    2013-09-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and Licensing... (Board) in the above-captioned Strata Energy, Inc. case is hereby reconstituted by appointing...

  1. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Science.gov (United States)

    2010-05-05

    ... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste Shipment Tracking Requirements In 10 CFR Part 20 Appendix G 1.0 Background DTE Energy (DTE) is the licensee.... DTE is in the process of decommissioning Fermi-1 and radioactive waste shipments from the site are...

  2. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  3. Energy siting in Utah: a programming model

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, D.L.; Keith, J.E.; Glover, T.F.; Wooldridge, G.L.

    1981-06-01

    Using a conceptual model of a multiple-product firm, the necessary conditions for an optimal input and output allocation were determined for a region constrained by resource availabilities and/or policy constraints. A linear-programing model was developed to determine the optimal allocation of water between agricultural and coal-fired electrical generating entities as well as the trade offs which could occur if electrical generation were increased. Other areas of potential trade offs such as coal source restrictions and air quality regulations were also examined. Coal mining and transportation costs were included as were SO/sub 2/, NO/sub x/, and particulate emission rates on a coal and plant basis. Few trade-offs between electrical power generation and irrigated agriculture were noted. However, substantial changes within the energy sector were discovered as coal capacities and air-quality standards were changed. Net revenues declined sharply as air costs after and/or pollution and coal-capacity restrictions were imposed and/or increased. It was determined that substantial changes in regional economic activity occurred as a result of these restrictions on development.

  4. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  5. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  6. Effective atomic number estimation using kV-MV dual-energy source in LINAC.

    Science.gov (United States)

    Sakata, Dousatsu; Haga, Akihiro; Kida, Satoshi; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2017-07-01

    Dual-energy computed tomography (DECT) imaging can measure the effective atomic number (EAN) as well as the electron density, and thus its adoption may improve dose calculations in brachytherapy and external photon/particle therapy. An expanded energy gap in dual-energy sources is expected to yield more accurate EAN estimations than conventional DECT systems, which typically span less than 100kV. The aim of this paper is to assess a larger energy gap DECT by using a linear accelerator (LINAC) radiotherapy system with a kV X-ray imaging device, which are combined to provide X-rays in both the kV- and MV-energy ranges. Traditionally, the EAN is determined by parameterising the Hounsfield Unit; however, this is difficult in a kV-MV DECT due to different uncertainties in the reconstructed attenuation coefficient at each end of the energy spectrum. To overcome this problem, we included a new calibration step to produce the most likely linear attenuation coefficients, based upon the X-ray spectrum. To determine the X-ray spectrum, Monte Carlo calculations using GEANT4 were performed. Then the images were calibrated using information from eight inserts of known materials in a CIRS phantom (CIRS Inc., Norfolk, VA). Agreement between the estimated and empirical EANs in these inserts was within 11%. Validation was subsequently performed with the CatPhan500 phantom (The Phantom Laboratory, Salem). The estimated EAN for seven inserts agreed with the empirical values to within 3%. Accordingly, it can be concluded that, given properly reconstructed images based upon a well-determined X-ray spectrum, kV-MV DECT provides an excellent prediction for the EAN. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Low-Altitude Emission of Energetic Neutral Atoms: Multiple Interactions and Energy Loss

    Science.gov (United States)

    LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-10-01

    Low-altitude emissions (LAEs) are the energetic neutral atom (ENA) signature of ring current ions precipitating along the magnetic field to an altitude of 200-800 km. This altitude region is considered to be "optically thick" because ring current ions undergo multiple charge changing interactions (MCCIs) with Earth's dense oxygen exosphere. While each interaction involves an energy loss of 36 eV, no prior study has determined the accumulated energy lost by 1-100 keV H+ emerging as LAEs. We have developed a 2-D model with a geomagnetic dipole that captures the net effects in energy loss and pitch angle evolution as a result of MCCIs without the computational requirements of a full Monte Carlo simulation. Dependent on the amount of latitudinal migration, the energy loss is greater than 20% for ions below 60 keV for equatorward moving particles (30 keV for poleward). Since the ENA travels ballistically across a geomagnetic dipole, upon reionization, ion velocity along the local field increases (antiparallel in the northern hemisphere). Redirecting the particle upward through MCCIs is most effective during poleward ENA motion. The net effect is to redirect precipitating ions (below 2,500 km) to eventually emerge from the optically thick region either as an ion or ENA. Precipitation is a joint ion-neutral process, affecting both the energy and pitch angle distribution through the transverse motion of ENA segments in a converging field. For particles that enter the MCCI regime, the energy loss and evolution of the pitch angle distribution must be considered within a realistic magnetic field.

  8. Utility investments in low-income energy-efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1995-06-01

    In the increasingly competitive utility industry, it is imperative that equity programs be as cost-effective as possible. In some cases, this is accomplished by working in partnership with government programs such as the US Department of Energy`s low-income Weatherization Assistance Program. This paper provides an overview of the DSM and conservation programs being operated by utilities for low-income customers and describes the types of utility-government partnerships that exist.

  9. Effective atomic numbers of polypyrrole via transmission method in the energy range 15.74-40.93 keV

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan [Department of Physics Education, Education Faculty of Erzincan, Erzincan University, Erzincan (Turkey)], E-mail: orhanicelli@gmail.com; Erzeneoglu, Salih; Saglam, Mustafa [Department of Physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey)

    2008-03-15

    Effective atomic numbers (Z{sub eff}) of polypyrrole have been determined for total photon interactions in the energy range 15.74-40.93 keV from the accurately measured total attenuation coefficients, for characteristic K and K X-rays of Zr, Mo, Ag, In, Sb, Ba and Pr. The results were compared with the theoretical atomic numbers obtained using the XCOM.

  10. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  11. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  12. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction.

    Science.gov (United States)

    Sun, Yongfu; Gao, Shan; Xie, Yi

    2014-01-21

    Atomically-thick two-dimensional crystals can provide promising opportunities to satisfy people's requirement of next-generation flexible and transparent nanodevices. However, the characterization of these low-dimensional structures and the understanding of their clear structure-property relationship encounter many great difficulties, owing to the lack of long-range order in the third dimensionality. In this review, we survey the recent progress in fine structure characterization by X-ray absorption fine structure spectroscopy and also overview electronic structure modulation by density-functional calculations in the ultrathin two-dimensional crystals. In addition, we highlight their structure-property relationship, transparent and flexible device construction as well as wide applications in photoelectrochemical water splitting, photodetectors, thermoelectric conversion, touchless moisture sensing, supercapacitors and lithium ion batteries. Finally, we outline the major challenges and opportunities that face the atomically-thick two-dimensional crystals. It is anticipated that the present review will deepen people's understanding of this field and hence contribute to guide the future design of high-efficiency energy-related devices.

  13. Atomic configuration of hydrogenated and clean tantalum(111) surfaces: Bond relaxation, energy entrapment and electron polarization

    Science.gov (United States)

    Bo, Maolin; Li, Lei; Guo, Yongling; Yao, Chuang; Peng, Cheng; Sun, Chang Q.

    2018-01-01

    By studying the tantalum (Ta)(111) surface with X-ray photoemission spectroscopy and density functional theory, we determined binding energy values for the clean Ta(111) (+3.068 eV) and hydrogenated Ta(111) (+3.421 eV) surfaces with an isolated atom level of 18.977 eV. Using the bond-band barrier and zone-selective electron spectroscopy correlation, we investigated the mechanism of hydrogenation adsorption on the Ta(111) surface. We found the local densities of states of the first layer of Ta atoms in the reconstructed structure, which formed on the adsorbent hydrogen of the surface chemical bond contracts and dipole polarization. Moreover, we showed that on the Ta(111) surface, the hydrogen-induced surface core level shifts are dominated by quantum entrapment and are proportional to the calculated hybridized orbitals of the valence band. The latter is therefore correlated to the local surface chemical reactivity and is useful for other adsorbate systems on transition metals.

  14. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    Science.gov (United States)

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  15. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Armend Gazmeno Håti

    Full Text Available Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ, lifetimes in the absence of external perturbation (τ0 and free energies (ΔG# were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate

  16. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Science.gov (United States)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2018-01-01

    Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the

  17. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Directory of Open Access Journals (Sweden)

    Guillaume Froehlicher

    2018-01-01

    Full Text Available Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe_{2}] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene/MoSe_{2} is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps room-temperature MoSe_{2} exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe_{2} Raman modes, which reveals net photoinduced electron transfer from MoSe_{2} to graphene and hole accumulation in MoSe_{2}. Remarkably, the steady-state Fermi energy of graphene saturates at 290±15  meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe_{2}. This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron

  18. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  19. 77 FR 22472 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies...

    Science.gov (United States)

    2012-04-16

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J... and Renewable Energy. For the reasons set forth in the preamble, DOE corrects 10 CFR part 430 as set... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR...

  20. 78 FR 73737 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for General...

    Science.gov (United States)

    2013-12-09

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence... Conservation Standards for General Service Lamps AGENCY: Office of Energy Efficiency and Renewable Energy... available at: http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx?productid=82 . DATES...

  1. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Science.gov (United States)

    2010-02-03

    ...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of extension of... Edwards, U.S. Department of Energy, Building Technologies Program, 950 L'Enfant Plaza, SW., 6th Floor... background documents or comments received, visit the U.S. Department of Energy, Resource Room of the Building...

  2. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency... Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence Avenue SW...

  3. The State and atomic energy. From progress to inhumanity. Der Atomstaat. Vom Fortschritt in die Unmenschlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Jungk, R.

    1991-01-01

    Illustrous, eloquent, and yet easy to read for the interested layman, the book begins with alleged deplorable conditions at the reprocessing centra La Hague, portrays, amongst other things, the spying on and supervision of persons in the nuclear field and in research, the misuse of fissile material, and threats and blackmail as a consequence thereof, human error as a cause of accidents, and it concludes with a nonviolent new International against the state and atomic energy, against technological tyranny. Titles of chapters: The hard road; radiation feed; the gamblers; homo atomicus; the intimidated; the ''proliferators''; nuclear terrorists; those supervised; the smooth road. It remains an open question whether the book contributes to defusing the nuclear controversy - in the book almost an ideology - and to bringing the two sides closer together. (HP).

  4. Negotiating supranational rules - The genesis of the International Atomic Energy Agency Safeguards System

    Energy Technology Data Exchange (ETDEWEB)

    Forland, Astrid

    1998-12-31

    The object of this thesis is the evolution from 1954-56 up until the mid 1970s of the nuclear safeguards system administered by the International Atomic Energy Agency (IAEA) in Vienna. The evolution is traced not through the practical implementation of the safeguards system, but through the various multilateral negotiations through which it was created. The focus is on analysing the arguments advanced in the various negotiations, and the main objective is to single out the factors determining the result. The discussion is organised into the following chapters: (1) The statute of the IAEA, (2) The IAEA 1961 safeguard document (INFCIRC/26), (3) The IAEA 1965 safeguards document (INFCIRC/66), (4) The non-proliferation treaty, (5) NPT safeguards. 92 refs.

  5. Lifetime Measurements of $ \\pi ^+ \\pi ^- $ and $\\pi^{+-} K^{-+}$ Atoms to Test Low-Energy QCD Predictions

    CERN Multimedia

    Iliescu, M A; Ponta, T C; Dumitriu, D E; Afanasyev, L; Zhabitskiy, M; Rykalin, V; Hons, Z; Schacher, J; Yazkov, V; Gerndt, J; Detraz, C C; Guaraldo, C; Dreossi, D; Smolik, J; Gorchakov, O; Nikitin, M; Dudarev, A; Kluson, J; Hansroul, M; Okada, K; Constantinescu, S; Kruglov, V; Komarov, V; Takeutchi, F; Tarta, P D; Kuptsov, A; Nemenov, L; Karpukhin, V; Shliapnikov, P; Brekhovskikh, V; Saborido silva, J J; Drijard, D; Rappazzo, G F; Pentia, M C; Gugiu, M M; Kruglova, L; Pustylnik, Z; Trojek, T; Vrba, T; Duma, M; Ciocarlan, C; Kulikov, A; Ol'shevskiy, V; Ryazantsev, A; Chiba, M; Anania, A; Tarasov, A; Gritsay, K; Lapchine, V; Cechak, T; Lopez aguera, A

    2002-01-01

    %PS212 \\\\ \\\\ The proposed experiment aims to measure the lifetime of $ \\pi ^+ \\pi ^- $ atoms in the ground state with 10\\% precision, using the 24~GeV/c proton beam of the CERN Proton Synchrotron. As the value of the above lifetime of order 10$ ^- ^{1} ^{5} $s is dictated by a strong interaction at low energy, the precise measurement of this quantity enables to determine a combination of S-wave pion scattering lengths to 5\\%. Pion scattering lengths have been calculated in the framework of chiral perturbation theory and values predicted at the same level of accuracy have, up to now, never been confronted with accurate experimental data. Such a measurement would submit the understanding of chiral symmetry breaking of QCD to a crucial test.

  6. Disposal of radioactive wastes arising in the United Kingdom from the peaceful uses of atomic energy

    CERN Document Server

    Bryant, P M

    1971-01-01

    This paper describes United Kingdom policy in relation to radioactive waste and summarises the relevant legislation ad methods of control. Data are given on the amounts of radioactivity discharged as waste from establishments of the United Kingdom Atomic Energy Authority, the nuclear power stations operated by the Electricity Generating Boards and other users of radioactive materials. Studies of the behaviour of radioactivity in the environment are reported with particular reference to food chains and other potential sources of irradiation of the public. The results of environmental monitoring are presented and estimates are made of radiation doses received by individual members of the public and larger population groups as a result of waste disposal. It is concluded that the doses received are all within the appropriate limits recommended by the International Commission on Radiological Protection, and in most cases are trivial.

  7. Safeguarding of installations, industrial safety regulations, and labour-management relations in Atomic Energy Law

    Energy Technology Data Exchange (ETDEWEB)

    Herkommer, E.; Wollenschlaeger, M.

    1982-10-01

    The contribution first deals with the legal provisions governing physical protection against sabotage and other unauthorized activities, as required by the Atomic Energy Law and the Radiation Protection Ordinance. In order to obtain a more precise explanation of the concept of ''physical protection'', catalogues of recommended physical protection measures and strategies, issued by the Conference of the Home Secretaries of the Laender or by the Gesellschaft fuer Reaktorsicherheit, (GRS), are referred to. Also, the recommendations published by the IAEA in INFCIRC 225 are mentioned. In the second part, the legal provisions governing occupational safety in the FRG are reviewed, especially regulations concerning the prevention of accidents and protection from the hazards of ionizing radiation. Examples are given to explain situations in practice where the interests of occupational safety (radiation protection) and physical protection may not be easy to reconcile.

  8. Determining Nuclear Fingerprints: Glove Boxes, Radiation Protection, and the International Atomic Energy Agency.

    Science.gov (United States)

    Rentetzi, Maria

    2017-06-01

    In a nuclear laboratory, a glove box is a windowed, sealed container equipped with two flexible gloves that allow the user to manipulate nuclear materials from the outside in an ostensibly safe environment. As a routine laboratory device, it invites neglect from historians and storytellers of science. Yet, since especially the Gulf War, glove boxes have put the interdependence of science, diplomacy, and politics into clear relief. Standing at the intersection of history of science and international history, technological materials and devices such as the glove box can provide penetrating insight into the role of international diplomatic organizations to the global circulation and control of scientific knowledge. The focus here is on the International Atomic Energy Agency. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu [JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440 (United States); Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Baraban, Joshua H. [Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Matthews, Devin A. [Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)

    2015-06-21

    We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  10. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  11. The international atomic energy agency's programme on utilization of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, Nikolai [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Mank, Guenter [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria)]. E-mail: g.mank@iaea.org; Rosengard, Ulf [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Bamford, Samuel [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Markowicz, Andrzej [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria); Wegrzynek, Dariusz [International Atomic Energy Agency, Wagramer Str. 5, A-1400 Vienna (Austria)

    2006-06-23

    Low-energy accelerators have in the past produced a major part of our current knowledge of nuclear physics. Today they are mainly used for applied research and industrial applications. In view of this, the International Atomic Energy Agency (IAEA) has during recent years initiated several Coordinated Research Projects (CRPs) concerning Ion Beam Analysis of Materials, Accelerator Mass Spectrometry and Nuclear Microprobe Techniques. The CRPs involve laboratories from developing as well as developed Member States, networking on a common topic coordinated by the IAEA. In order to facilitate networking, the IAEA has recently published the 'World Survey of Accelerator Based Analytical Techniques' available on the Internet and as a CD-ROM. The IAEA maintains also a beamline at a 6 MV Van de Graaff accelerator in the Rudjer Boskovic Institute, Zagreb, Croatia. Small and medium power accelerator driven spallation neutron sources will become more important as many small neutron producing research reactors are approaching the end of their useful working life. The IAEA has, within its Department for Nuclear Sciences and Applications, a programme on the Effective Utilization of Accelerators. This programme helps Member States, in particular developing Member States, in finding new areas of applications for their low and medium energy accelerators through increased participation in activities such as Coordinated Research Projects, Technical Meetings and Conferences. This paper describes the IAEA's current programme on accelerator utilization and proposed future activities.

  12. Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy

    Science.gov (United States)

    Vasić, Borislav; Matković, Aleksandar; Gajić, Radoš

    2017-11-01

    We investigate the phase imaging of supported graphene using amplitude modulation atomic force microscopy (AFM), the so-called tapping mode. The phase contrast between graphene and the neighboring substrate grows in hard tapping conditions and the contrast is enhanced compared to the topographic one. Therefore, phase measurements could enable the high-contrast imaging of graphene and related two-dimensional materials and heterostructures, which is not achievable with conventional AFM based topographic measurements. Obtained phase maps are then transformed into energy dissipation maps, which are important for graphene applications in various nano-mechanical systems. From a fundamental point of view, energy dissipation gives further insight into mechanical properties. Reliable measurements, obtained in the repulsive regime, show that the energy dissipation on a graphene-covered substrate is lower than that on a bare one, so graphene provides certain shielding in tip–substrate interaction. Based on the obtained phase curves and their derivatives, as well as on correlation measurements based on AFM nanoindentation and force modulation microscopy, we conclude that the main dissipation channels in graphene–substrate systems are short-range hysteresis and long-range interfacial forces.

  13. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  14. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang

    2018-02-19

    Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  16. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  17. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  18. Tribal Energy Program for California Indian Tribes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-10

    A strategic plan is needed to catalyze clean energy in the more than 100 California Indian tribal communities with varying needs and energy resources. We propose to conduct a scoping study to identify tribal lands with clean energy potential, as well as communities with lack of grid-tied energy and communications access. The research focus would evaluate the energy mixture and alternatives available to these tribal communities, and evaluate greenhouse gas emissions associated with accessing fossil fuel used for heat and power. Understanding the baseline of energy consumption and emissions of communities is needed to evaluate improvements and advances from technology. Based on this study, we will develop a strategic plan that assesses solutions to address high energy fuel costs due to lack of electricity access and inform actions to improve economic opportunities for tribes. This could include technical support for tribes to access clean energy technologies and supporting collaboration for on-site demonstrations.

  19. Energy analysis program. 1995 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.

    1996-05-01

    This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

  20. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Houben, L. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Mayer, J. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen (Germany); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2014-12-15

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti–L{sub 2,3} and O–K edges for a specimen of SrTiO{sub 3} oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti–L{sub 2,3} and O–K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. - Highlights: • Achromatic atomic-resolution EFTEM images were obtained for STO 〈110〉. • Simulations were in qualitative agreement with Ti–L{sub 2,3} and O–K edge maps. • The experimental EFTEM maps are not directly interpretable as elemental maps. • Image intensities are strongly determined by preservation of elastic contrast. • Interpretation of EFTEM images is ideally accompanied by detailed simulations.

  1. Implementation of dose management system at radiation protection board of Ghana Atomic Energy Commission.

    Science.gov (United States)

    Hasford, F; Amoako, J K; Darko, E O; Emi-Reynolds, G; Sosu, E K; Otoo, F; Asiedu, G O

    2012-01-01

    The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10-y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv.

  2. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    Science.gov (United States)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of

  3. Springfield/L-COG Energy Plan Implementation Program, Internal Energy Management Project: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lane Council of Governments (Or.); Tumidaj, Les

    1985-09-01

    The Internal Energy Management Project was developed as a component of the Springfield/L-COG Energy Plan Implementation Program. The project also took advantage of the ground work laid by the Lane Council of Governments through the Lane County Electric Energy Planning Program. This program, conducted in 1982 and 1983, developed detailed recommendations for Lane County cities concerning energy management and planning. Based on these recommendations, many jurisdictions committed themselves to implement energy management programs. Initially, the participating cities included Springfield, Veneta, Oakridge, Creswell, and Lowell. Two other local governments - Florence and Lane County - requested assistance once the project commenced.

  4. On the performance of two-component energy-consistent pseudopotentials in atomic Fock-space coupled cluster calculations.

    Science.gov (United States)

    Figgen, Detlev; Wedig, Anja; Stoll, Hermann; Dolg, Michael; Eliav, Ephraim; Kaldor, Uzi

    2008-01-14

    The four-component atomic intermediate-Hamiltonian Fock-space coupled cluster (IHFSCC) code of Landau et al. [J. Chem. Phys. 115, 6862 (2001)] has been adapted to two-component calculations with relativistic pseudopotentials of the energy-consistent variety. Recently adjusted energy-consistent pseudopotentials for group 11 and 12 transition elements as well as group 13 and 14 post-d main group elements, which were fitted to atomic valence spectra from four-component multiconfiguration Dirac-Hartree-Fock calculations, are tested in IHFSCC calculations for ionization potentials, electron affinities, and excitation energies of a variety of atoms and ions. Where comparison is possible, the deviations from experimental data are in good agreement with those found in previously published IHFSCC all-electron calculations: experimental data are usually reproduced within a few hundred wavenumbers.

  5. TimeSet: A computer program that accesses five atomic time services on two continents

    Science.gov (United States)

    Petrakis, P. L.

    1993-01-01

    TimeSet is a shareware program for accessing digital time services by telephone. At its initial release, it was capable of capturing time signals only from the U.S. Naval Observatory to set a computer's clock. Later the ability to synchronize with the National Institute of Standards and Technology was added. Now, in Version 7.10, TimeSet is able to access three additional telephone time services in Europe - in Sweden, Austria, and Italy - making a total of five official services addressable by the program. A companion program, TimeGen, allows yet another source of telephone time data strings for callers equipped with TimeSet version 7.10. TimeGen synthesizes UTC time data strings in the Naval Observatory's format from an accurately set and maintained DOS computer clock, and transmits them to callers. This allows an unlimited number of 'freelance' time generating stations to be created. Timesetting from TimeGen is made feasible by the advent of Becker's RighTime, a shareware program that learns the drift characteristics of a computer's clock and continuously applies a correction to keep it accurate, and also brings .01 second resolution to the DOS clock. With clock regulation by RighTime and periodic update calls by the TimeGen station to an official time source via TimeSet, TimeGen offers the same degree of accuracy within the resolution of the computer clock as any official atomic time source.

  6. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  7. Underground-Energy-Storage Program, 1982 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  8. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  9. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, Nicholas F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C2H3 and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  10. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  11. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Forbes, B D; Houben, L; Mayer, J; Dunin-Borkowski, R E; Allen, L J

    2014-12-01

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti-L2,3 and O-K edges for a specimen of SrTiO3 oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti-L2,3 and O-K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. New development on electrochemical etching processes at the Atomic Energy Organization of Iran

    CERN Document Server

    Sohrabi, M

    1999-01-01

    Some highlights of new developments made in our laboratory at the Atomic Energy Organization of Iran on chemical and electrochemical etching (ECE) of polymer track detectors like polycarbonate (PC) are presented. They include introduction of new ECE chamber systems and methods for production of ECE signs and symbols, and a new versatile ECE chamber (VECE) system for multi-purpose, multi-size, and/or multi-shape detector processing; determination of photoneutron doses in and around high-energy X-ray beams of a 20 MV medical accelerator; verification of the Smythe and Mason equations for ECE of tracks in polymers; ECE of alpha and recoil tracks in PC using PMW, PEW and PEMW etchants; introduction of a novel method using ethylene diamine for treatment of PC detectors with its applications, for example in precision removal of surface layers of PC (e.g. bulk removal rates of about 0.04, 0.15, 0.36, 0.66, and 1.33 mm min sup - sup 1 for 60%, 65%, 70%, 75% and 80% ethylene diamine solution (v/v) in water respectivel...

  13. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    Science.gov (United States)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  14. Conservation and solar energy program: congressional budget request, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  15. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  16. Bilevel programming problems theory, algorithms and applications to energy networks

    CERN Document Server

    Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya

    2015-01-01

    This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.

  17. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  18. Weatherization and Intergovernmental Program - Accelerating Adoption of Energy Efficiency and Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The DOE/EERE Weatherization and Intergovernmental Program (WIP) increases awareness and accelerates adoption of practices and technologies that cost-effectively increase energy efficiency, the use of renewable energy, and oil displacement.

  19. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  20. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study.

    Science.gov (United States)

    Thacker, Joseph C R; Popelier, Paul L A

    2018-02-08

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [ Thacker , J. C. R. ; Popelier , P. L. A. Theor. Chem. Acc . 2017 , 136 , 86 ], as implemented in the in-house program ANANKE. We challenge the common explanation that hyperconjugation is responsible for the gauche stability in 1,2-difluoroethane and instead present electrostatics as the cause of gauche stability. Our explanation of the gauche effect is also is seen in other molecules displaying local gauche conformations, such as the recently synthesized "all-cis" hexafluorocyclohexane and its conformers where all the fluorine atoms are in the equatorial positions. Using our extension of the traditional IQA methodology that allows for the partitioning of electrostatic terms into polarization and charge transfer, we propose that the cause of gauche stability is 1,3 C···F electrostatic polarization interactions. In other words, if a number of fluorine atoms are aligned, then the stability due to polarization of nearby carbon atoms is increased.

  1. Resolution on the program energy-climate; Resolution sur le paquet energie-climat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  2. 75 FR 19296 - Energy Conservation Program: Test Procedures and Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-04-14

    ... Efficiency and Renewable Energy, Department of Energy. ACTION: Proposed rule; extension of public comment... form of encryption. Postal Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies.... Department of Energy, Building Technologies Program, 950 L'Enfant Plaza, SW., 6th Floor, Washington, DC 20024...

  3. 76 FR 57897 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies

    Science.gov (United States)

    2011-09-19

    ... RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Certain External Power... exclude external power supplies used in specific applications from certain energy conservation standards prescribed under the Energy Policy and Conservation Act (EPCA). Congress enacted this exclusion, which...

  4. 77 FR 10997 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction

    Science.gov (United States)

    2012-02-24

    ... Part 431 RIN 1904-AC04 Energy Conservation Program: Energy Conservation Standards for Distribution... regarding energy conservation standards for distribution transformers. It was recently discovered that... the Energy Policy and Conservation Act of 1975 (EPCA or the Act), Public Law 94-163 (42 U.S.C. 6291...

  5. 75 FR 27227 - Energy Conservation Program: Energy Conservation Standards for Residential Central Air...

    Science.gov (United States)

    2010-05-14

    ... Part 431 RIN 1904-AB47 Energy Conservation Program: Energy Conservation Standards for Residential... preliminary analyses performed by DOE for these products; and potential energy conservation standard levels... on the energy conservation standards notice of public meeting (NOPM) and availability of the...

  6. 76 FR 43941 - Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Science.gov (United States)

    2011-07-22

    ... Part 430 RIN 1904-AC56 Energy Conservation Program: Energy Conservation Standards for Direct Heating... proposed rulemaking and announcement of public meeting. SUMMARY: The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and...

  7. Department of Energy: Photovoltaics program - FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  8. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  9. What`s new in federal energy management: FEMP program overview. SAVEnergy program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The SAVEnergy Program provides direct assistance to Federal agencies in identifying and implementing energy efficiency and water conservation measures. The Energy Policy Act of 1992 (EPAct) and Executive Order 12902 require that Federal agencies reduce the energy consumed in Federal buildings. The Executive Order increases the goal to a 30% reduction, compared with 1985, by 2005. In addition, agencies are required, to the maximum extent possible, to install all energy and water conservation measures with paybacks of less than 10 years. To help meet these goals, the US Department of Energy`s (DOE`s) Federal Energy management Program (FEMP) recently initiated the SAVEnergy Program. The SAVEnergy approach has three key elements: The Action Plan with recommended conservation actions and complete proposals on how the agency can implement them; The Action Team to implement the SAVEnergy Action Plan; The FEMPTracks database to evaluate the SAVEnergy Program (and all other FEMP programs) and record progress toward conservation goals.

  10. Geothermal Energy Research Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  11. Passive and Hybrid Solar Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

  12. 2010 Second Refrigerator Recycling Program NV Energy - Southern Nevada: Program Year 2010

    Science.gov (United States)

    This measurement and verification report provides measured and verified energy impacts achieved by the Second Refrigerator Recycling Program that NV Energy offered to its customers in southern Nevada during 2010.

  13. A bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry

    NARCIS (Netherlands)

    Arzano, M.; Kowalski-Glikman, J.; Walkus, A.

    2010-01-01

    High-sensitivity measurements in atomic spectroscopy were recently used by Amelino- Camelia et al. (Phys. Rev. Lett., 103 (2009) 171302) to constraint the form of possible modifications of the energy-momentum dispersion relation resulting from Lorentz invariance violation (LIV). In this letter we

  14. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Science.gov (United States)

    2010-01-01

    ... Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. (a) It is my opinion that an... incident occurs.” (c) In the case of damage outside of the United States caused by a nuclear facility based... (1959). (f) The point in question received scant consideration during the hearings preceding adoption of...

  15. Using Concept Maps as Instructional Materials to Foster the Understanding of the Atomic Model and Matter-Energy Interaction

    Science.gov (United States)

    Aguiar, Joana G.; Correia, Paulo R. M.

    2016-01-01

    In this paper, we explore the use of concept maps (Cmaps) as instructional materials prepared by teachers, to foster the understanding of chemistry. We choose fireworks as a macroscopic event to teach basic chemical principles related to the Bohr atomic model and matter-energy interaction. During teachers' Cmap navigation, students can experience…

  16. 75 FR 6070 - Notice of Public Meeting on the International Atomic Energy Agency Basic Safety Standards Version...

    Science.gov (United States)

    2010-02-05

    ... COMMISSION Notice of Public Meeting on the International Atomic Energy Agency Basic Safety Standards Version 3.0, Draft Safety Requirements DS379 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Public... open forum with the public and other stakeholders on a revision to the International Basic Safety...

  17. Process evaluation of the Regional Biomass Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  18. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  19. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  20. PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules

    Science.gov (United States)

    Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.

    2018-03-01

    The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.