WorldWideScience

Sample records for program arid ecosystems

  1. Stability measures in arid ecosystems

    Science.gov (United States)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  2. On dew and micrometeorology in an arid coastal ecosystem

    NARCIS (Netherlands)

    Heusinkveld, B.G.

    2008-01-01

    This study investigated intriguing aspects of dew within a sandy arid ecosystem situated in the NW Negev desert, Israel. The goal was to quantify dew formation and evaporation processes through sensor design, field measurements and modelling. To do this, two new sensors were developed. The first

  3. Limits on carbon sequestration in arid blue carbon ecosystems.

    Science.gov (United States)

    Schile, Lisa M; Kauffman, J Boone; Crooks, Stephen; Fourqurean, James W; Glavan, Jane; Megonigal, J Patrick

    2017-04-01

    Coastal ecosystems produce and sequester significant amounts of carbon ("blue carbon"), which has been well documented in humid and semi-humid regions of temperate and tropical climates but less so in arid regions where mangroves, marshes, and seagrasses exist near the limit of their tolerance for extreme temperature and salinity. To better understand these unique systems, we measured whole-ecosystem carbon stocks in 58 sites across the United Arab Emirates (UAE) in natural and planted mangroves, salt marshes, seagrass beds, microbial mats, and coastal sabkha (inter- and supratidal unvegetated salt flats). Natural mangroves held significantly more carbon in above- and belowground biomass than other vegetated ecosystems. Planted mangrove carbon stocks increased with age, but there were large differences for sites of similar age. Soil carbon varied widely across sites (2-367 Mg C/ha), with ecosystem averages that ranged from 49 to 156 Mg C/ha. For the first time, microbial mats were documented to contain soil carbon pools comparable to vascular plant-dominated ecosystems, and could arguably be recognized as a unique blue carbon ecosystem. Total ecosystem carbon stocks ranged widely from 2 to 515 Mg C/ha (seagrass bed and mangrove, respectively). Seagrass beds had the lowest carbon stock per unit area, but the largest stock per total area due to their large spatial coverage. Compared to similar ecosystems globally, mangroves and marshes in the UAE have lower plant and soil carbon stocks; however, the difference in soil stocks is far larger than with plant stocks. This incongruent difference between stocks is likely due to poor carbon preservation under conditions of weakly reduced soils (200-350 mV), coarse-grained sediments, and active shoreline migration. This work represents the first attempt to produce a country-wide coastal ecosystem carbon accounting using a uniform sampling protocol, and was motivated by specific policy goals identified by the Abu Dhabi Global

  4. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  5. Ecosystem Analysis Program

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1978-01-01

    Progress is reported on the following research programs: analysis and modeling of ecosystems; EDFB/IBP data center; biome analysis studies; land/water interaction studies; and computer programs for development of models

  6. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.

    Science.gov (United States)

    Schwinning, Susanne; Sala, Osvaldo E

    2004-10-01

    In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

  7. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  8. Diversity and activity of denitrifiers of Chilean arid soil ecosystems

    Directory of Open Access Journals (Sweden)

    Julieta eOrlando

    2012-04-01

    Full Text Available The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study, we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of

  9. Diversity and activity of denitrifiers of chilean arid soil ecosystems.

    Science.gov (United States)

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

  10. Co-evolution and thresholds in arid floodplain wetland ecosystems.

    Science.gov (United States)

    Sandi, Steven; Rodriguez, Jose; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2017-04-01

    Vegetation in arid floodplain wetlands consist of water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The floodplain often consist of a complex system of marshes, swamps and lagoons interconnected by a network of streams and poorly defined rills. Over time, feedbacks develop between vegetation and flow paths producing areas of flow obstruction and flow concentration, which combined with depositional and erosional process lead to a continuous change on the position and characteristics of inundation areas. This coevolution of flow paths and vegetation can reach a threshold that triggers major channel transformations and abandonment of wetland areas, in a process that is irreversible. The Macquarie Marshes is a floodplain wetland complex in the semi-arid region of north western NSW, Australia. The site is characterised by a low-gradient topography that leads to channel breakdown processes where the river network becomes practically non-existent and the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Due to a combination of climatic and anthropogenic pressures, the wetland ecosystem in the Macquarie Marshes has deteriorated over the past few decades. This has been linked to decreasing inundation frequencies and extent, with whole areas of flood dependent species such as Water Couch and Common Reed undergoing complete succession to terrestrial species and dryland. In this presentation we provide an overview of an ecogeomorphological model that we have developed in order to simulate the complex dynamics of the marshes. The model combines hydrodynamic, vegetation and channel evolution modules. We focus on the vegetation component of the model and the transitional rules to predict wetland invasion by terrestrial vegetation.

  11. Development of land degradation spectral indices in a semi-arid Mediterranean ecosystem

    Science.gov (United States)

    Chabrillat, Sabine; Kaufmann, Hermann J.; Palacios-Orueta, Alicia; Escribano, Paula; Mueller, Andreas

    2004-10-01

    The goal of this study is to develop remote sensing desertification indicators for drylands, in particular using the capabilities of imaging spectroscopy (hyperspectral imagery) to derive soil and vegetation specific properties linked to land degradation status. The Cabo de Gata-Nijar Natural Park in SE Spain presents a still-preserved semiarid Mediterranean ecosystem that has undergone several changes in landscape patterns and vegetation cover due to human activity. Previous studies have revealed that traditional land uses, particularly grazing, favoured in the Park the transition from tall arid brush to tall grass steppe. In the past ~40 years, tall grass steppes and arid garrigues increased while crop field decreased, and tall arid brushes decreased but then recovered after the area was declared a Natural Park in 1987. Presently, major risk is observed from a potential effect of exponential tourism and agricultural growth. A monitoring program has been recently established in the Park. Several land degradation parcels presenting variable levels of soil development and biological activity were defined in summer 2003 in agricultural lands, calcareous and volcanic areas, covering the park spatial dynamics. Intensive field spectral campaigns took place in Summer 2003 and May 2004 to monitor inter-annual changes, and assess the landscape spectral variability in spatial and temporal dimension, from the dry to the green season. Up to total 1200 field spectra were acquired over ~120 targets each year in the land degradation parcels. The targets were chosen to encompass the whole range of rocks, soils, lichens, and vegetation that can be observed in the park. Simultaneously, acquisition of hyperspectral images was performed with the HyMap sensor. This paper presents preliminary results from mainly the field spectral campaigns. Identifying sources of variability in the spectra, in relation with the ecosystem dynamics, will allow the definition of spectral indicators of

  12. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania.

    Science.gov (United States)

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-06

    In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the forest ecosystems in South-Western Romania, changes due to the synergic context of the global climate changes and the anthropic pressures of the past three decades. In order to capture the evolution of aridization in the study area, specific aridization indexes have been calculated, such as the De Martonne index and the UNEP aridity index. 1990 and 2011 satellite images have been used in order to quantify the qualitative changes. The results obtained indicated that, in the past two decades, the quality of the biomass declined as a result of the increase in the climatic aridity conditions (De Martonne si UNEP aridity index, indicating in the last decades, annual values under 15 mm/°C, and under 0.5 mm/mm, that means that the values situated under these thresholds, describe arid and semi-arid climate conditions). Also, the uncontrolled logging across vast surfaces caused the loss of forest ecosystems by 7% in the overall study area, during the last three decades. The severe effects of aridization meant, first of all, a significant decline in the quality of the ecosystem services supplied by forests. In the absence of viable actions to correct the present situation, the extremely undesirable consequences of an ecological and social nature will arise in the near future.

  13. A review of research on ecosystem of arid area using RS-GIS in China

    Science.gov (United States)

    Han, Hongling

    2007-06-01

    Arid area is classical mountain-oasis-desert ecosystem in North-west China. As the ecosystem has its nature geography character obviously, it has superior to research with remote-sensing and geography information system. The study on arid ecosystem in RS-GIS' way is focused on that the landscape spatial pattern of complex MODS ecosystem, the dynamic development of Land use/land cover, the security of ecological environment of eco-tone and so on. At the same time, the research on the single system is more and more, which has provided more ways and deeper fields of arid area using RS-GIS. Through the use of RS-GIS, desertification, oasis' development, urbanization etc. can be known, which would provide precaution for human-being and suitable ways to adjust the problems.

  14. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods

  15. Summary: special waste form lysimeters - arid program

    International Nuclear Information System (INIS)

    Skaggs, R.L.; Walter, M.B.

    1987-01-01

    The purpose of the Special Waste Form Lysimeters - Arid Program is to determine the performance of solidified commercial low-level waste forms using a field-scale lysimeter facility constructed for measuring the release and migration of radionuclides from the waste forms. The performance of these waste forms, as measured by radionuclide concentrations in lysimeter effluent, will be compared to that predicted by laboratory characterization of the waste forms. Waste forms being tested include nuclear power reactor waste streams that have been solidified in cement, Dow polymer, and bitumen. To conduct the field leaching experiments a lysimeter facility was built to measure leachate under actual environmental conditions. Field-scale samples of waste were buried in lysimeters equipped to measure water balance components, effluent radionuclide concentrations, and to a limited extent, radionuclide concentrations in lysimeter soil samples. The waste forms are being characterized by standard laboratory leach tests to obtain estimates of radionuclide release. These estimates will be compared to leach rates observed in the field. Adsorption studies are being conducted to determine the amount of contaminant available for transport after the release. Theoretical solubility calculations will also be performed to investigate whether common solid phases could be controlling radionuclide release. 4 references, 8 figures, 1 table

  16. Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa

    CSIR Research Space (South Africa)

    Archibald, SA

    2009-01-01

    Full Text Available and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed...

  17. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    Science.gov (United States)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  18. Optimized estimation and its uncertainties of gross primary production over oasis-desert ecosystems in an arid region of China

    Science.gov (United States)

    Wang, H.; Li, X.; Xiao, J.; Ma, M.

    2017-12-01

    Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation

  19. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania

    OpenAIRE

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-01

    Background In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the f...

  20. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  1. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  2. Arid urban ecosystem not a hotspot for N deposition

    Science.gov (United States)

    Grimm, N. B.; Cook, E. M.; Hall, S. J.; Wheeler, M.

    2017-12-01

    Urban areas are omitted in most long-term data collection for nitrogen deposition in the United States. Nitrogen sources in and surrounding cities are notoriously variable in space and time. In the desert Southwest, cities are distinct and isolated from one another, deposition is dominated by dryfall, and rainfall is spatially and temporally heterogeneous. These conditions present a challenge for understanding the overall rate, spatial pattern, and fate of nitrogen deposition in urbanized aridlands. We quantified long-term spatial and temporal patterns of inorganic nitrogen deposition in protected aridland ecosystems across an extensive urban-rural gradient in central Arizona, using multiple sampling methods. Furthermore, we assessed the impact of nitrogen deposition along the same gradient on winter annual plant growth and community structure, as an integrative indicator of the fate and impact of nitrogen deposition. Best estimates of nitrogen deposition, based on ion-exchange resin collectors, wet-dry bucket collectors, and inferential estimates of dryfall using passive samplers, were 7.2 ± 0.4 kg N ha-1 y-1 within city boundaries and 6.1 ± 0.3 kg N ha-1 y-1 in nearby desert lands. Although the data indicate the city may not be a hotspot of nitrogen deposition, species diversity of annual plants in urban desert remnant parks is reduced in a manner similar to diversity losses associated with experimental nitrogen fertilization. Thus, reduced species diversity is a possible consequence of locally elevated nitrogen deposition within the city. The long-term mean urban deposition rate estimated with mixed methods is substantially lower than that predicted by regional models and by estimated inorganic nitrogen fixation from automobile and other combustion sources. This discrepancy raises a question about the fate of this excess nitrogen in the larger aridland region.

  3. Food habits of rodents inhabiting arid and semi-arid ecosystems of central New Mexico

    Science.gov (United States)

    Hope, Andrew G.; Parmenter, Robert R.

    2007-01-01

    In this study, we describe seasonal dietary composition for 15 species of rodents collected in all major habitats on the Sevilleta National Wildlife Refuge (Socorro County) in central New Mexico. A comprehensive literature review of food habits for these species from throughout their distribution also is provided. We collected rodents in the field during winter, spring and late summer in 1998 from six communities: riparian cottonwood forest; piñon-juniper woodland; juniper-oak savanna; mesquite savanna; short-grass steppe; and Chihuahuan Desert scrubland. Rodents included Spermophilus spilosoma (Spotted Ground Squirrel), Perognathus flavescens (Plains Pocket Mouse), Perognathus flavus (Silky Pocket Mouse), Dipodomys merriami (Merriam’s Kangaroo Rat), Dipodomys ordii (Ord’s Kangaroo Rat), Dipodomys spectabilis (Banner-tailed Kangaroo Rat), Reithrodontomys megalotis (Western Harvest Mouse), Peromyscus boylii (Brush Mouse), Peromyscus eremicus (Cactus Mouse), Peromyscus leucopus (White-footed Mouse), Peromyscus truei (Piñon Mouse), Onychomys arenicola (Mearn’s Grasshopper Mouse), Onychomys leucogaster (Northern Grasshopper Mouse), Neotoma albigula/leucodon (White-throated Woodrats), and Neotoma micropus (Southern Plains Woodrat). We collected stomach contents of all species, and cheek-pouch contents of heteromyids, and quantified them in the laboratory. We determined seasonal diets in each habitat by calculating mean percentage volumes of seeds, arthropods and green vegetation (plant leaves and stems) for each species of rodent. Seeds consumed by each rodent were identified to genus, and often species, and quantified by frequency counts. Comparisons of diets between and among species of rodents, seasons, and ecosystems were also examined. We provide an appendix of all plant taxa documented.

  4. Book title: Exotic brome grasses in arid and semi-arid ecosystems of the western US: causes, consequences, and management implications

    Science.gov (United States)

    Exotic invasive annual grass research and management in arid and semiarid ecosystems of the western US have historically focused on the outcome of efforts to reduce weed abundance. Given the current impact of invasive annual grasses and their continued spread in this region, we assessed components ...

  5. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  6. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Cropley, Ford

    2015-01-01

    variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature......-arid savanna sites; half-hourly GPP and Reco peaked at -43μmol CO2m-2s-1 and 20μmol CO2m-2s-1, and daily GPP and Reco peaked at -15gCm-2 and 12gCm-2, respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure...

  7. Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar

    Science.gov (United States)

    Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.

    2017-12-01

    Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in

  8. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    Science.gov (United States)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  9. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    Science.gov (United States)

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  10. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  11. The use of spatial empirical models to estimate soil erosion in arid ecosystems.

    Science.gov (United States)

    Abdullah, Meshal; Feagin, Rusty; Musawi, Layla

    2017-02-01

    The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.

  12. Photodegradation processes in arid ecosystems: controlling factors and potential application in land restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Luna-Ramos, Lourdes; Oyonarte, Cecilio; Sole Benet, Albert

    2017-04-01

    Water availability plays a fundamental part in controlling biotic processes in arid ecosystems. However, recent evidence suggests that other decisive drivers take part in these processes. Despite low annual rainfall and microbial activity, unexplained high rates of litter decomposition, net nitrogen mineralization, soil enzymatic activity and carbon turnover have been observed in arid ecosystems. These observations have been partly explained by photodegradation, a process that consists of the breakdown of organic matter via solar radiation (UV) and that can increase decomposition rates and lead to changes in the balance of carbon and nutrients between plants, soil and atmosphere. A complete understanding of these mechanisms and its drivers in arid ecosystems remains a critical challenge for the scientific community at the global level. In this research, we conducted a multi-site field experiment to test the effects of photodegradation on decomposition of organic amendments used in ecosystem restoration. The study was carried out during 12 months in two study areas: the Pilbara region in Western Australia (Southern Hemisphere) and the Cabo de Gata Nijar Natural Park, South Spain (Northern Hemisphere). In both sites, four treatments were applied in replicated plots (1x1 m, n=4) that included a control (C) with no soil amendment; organic amendment covering the soil surface (AS); organic amendment incorporated into the soil (AI); and a combination of both techniques, both covering the surface and incorporated into the soil (AS-AI). Different organic amendments (native mulch versus compost) and soil substrates were used at each site according to local practices, but in both sites these were applied to increase soil organic matter up to 2%. At the two locations, a radiometer and a logger with a soil temperature and soil moisture probe were installed to monitor UV radiation and soil conditions for the duration of the trial. Soil microbial activity, soil CO2 efflux, and

  13. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  14. New Possibilities for High-Resolution, Large-Scale Ecosystem Assessment of the World's Semi-Arid Regions

    Science.gov (United States)

    Burney, J. A.; Goldblatt, R.

    2016-12-01

    Understanding drivers of land use change - and in particular, levels of ecosystem degradation - in semi-arid regions is of critical importance because these agroecosystems (1) are home to the world's poorest populations, almost all of whom depend on agriculture for their livelihoods, (2) play a critical role in the global carbon and climate cycles, and (3) have in many cases seen dramatic changes in temperature and precipitation, relative to global averages, over the past several decades. However, assessing ecosystem health (or, conversely, degradation) presents a difficult measurement problem. Established methods are very labor intensive and rest on detailed questionnaires and field assessments. High-resolution satellite imagery has a unique role semi-arid ecosystem assessment in that it can be used for rapid (or repeated) and very simple measurements of tree and shrub density, an excellent overall indicator for dryland ecosystem health. Because trees and large shrubs are more sparse in semi-arid regions, sub-meter resolution imagery in conjunction with automated image analysis can be used to assess density differences at high spatial resolution without expensive and time-consuming ground-truthing. This could be used down to the farm level, for example, to better assess the larger-scale ecosystem impacts of different management practices, to assess compliance with REDD+ carbon offset protocols, or to evaluate implementation of conservation goals. Here we present results comparing spatial and spectral remote sensing methods for semi-arid ecosystem assessment across new data sources, using the Brazilian Sertão as an example, and the implications for large-scale use in semi-arid ecosystem science.

  15. Crop production and economic loss due to wind erosion in hot arid ecosystem of India

    Science.gov (United States)

    Santra, Priyabrata; Moharana, P. C.; Kumar, Mahesh; Soni, M. L.; Pandey, C. B.; Chaudhari, S. K.; Sikka, A. K.

    2017-10-01

    Wind erosion is a severe land degradation process in hot arid western India and affects the agricultural production system. It affects crop yield directly by damaging the crops through abrasion, burial, dust deposition etc. and indirectly by reducing soil fertility. In this study, an attempt was made to quantify the indirect impact of wind erosion process on crop production loss and associated economic loss in hot arid ecosystem of India. It has been observed that soil loss due to wind erosion varies from minimum 1.3 t ha-1 to maximum 83.3 t ha-1 as per the severity. Yield loss due to wind erosion was found maximum for groundnut (Arachis hypogea) (5-331 kg ha-1 yr-1), whereas minimum for moth bean (Vigna aconitifolia) (1-93 kg ha-1 yr-1). For pearl millet (Pennisetum glaucum), which covers a major portion of arable lands in western Rajasthan, the yield loss was found 3-195 kg ha-1 yr-1. Economic loss was found higher for groundnut and clusterbean (Cyamopsis tetragonoloba) than rest crops, which are about

  16. Ecosystem Services Evaluation and Its Spatial Characteristics in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China

    Directory of Open Access Journals (Sweden)

    Qi Fu

    2015-06-01

    Full Text Available Ecosystem services are important foundations to realize the sustainable development of economy and society. The question of how to quantitatively evaluate ecosystem services in a scientific way is a hot topic among international researchers. Studying the spatial characteristics of ecosystem services in arid regions can provide the theoretical and practical basis for coordinating a sustainable man-land relationship. Altay Prefecture of China, a typical arid region in Central Asia, was taken as the study area. It is on the Silk Road economic belt, which is a key region in the program of developing Western China. Three ecosystem services: water yield, soil conservation, and net primary productivity were quantitatively evaluated. The results show that (1 the spatial distribution pattern has a distinct characteristic of zonality; (2 mountain zone and mountain-oasis ecotone are the hotspots of ecosystem services; and (3 the correlation between water yield and net primary productivity shows a gradual increasing trend as altitude decreases. Objective analysis from the aspect of mechanism is given by discussing the causes of this particular pattern. It is found that altitude and slope have great influence on spatial distributions of ecosystem services, zones with the most amount of services are distributed in 1.5–2 km-altitude and 15–25°-slope. Different human activities in different regions and spatial distance decay of ecosystem services also contribute to the formation of spatial pattern. Thus, overgrazing, logging and mining are prohibited in mountain zones and mountain-oasis ecotones. Scholars are encouraged to focus on desert-ecosystem services in the future.

  17. Transfer of 137Cs in Zea mays and Phaseolus vulgaris in a semi-arid ecosystem

    International Nuclear Information System (INIS)

    Cervantes, M.L.; Segovia, N.; Gaso P, M.I.; Palacios, J.C.

    1999-01-01

    With the objective to analyse the transference of 137 Cs from soil to plants, it is realized a study in maize and bean plants in the Radioactive Waste Storage Center (CADER). This site is located in a semi-arid region with a characteristic vegetation of a sub humid temperature zone. So those plants maize and beans were cultivated in four zones near CADER during a four years period. The obtained results for 1991 to 1994 for 137 Cs in soil samples for those zones showed an evident contamination in zone 1, due to a rupture of an industrial source. In 1994 the effect of decontamination was evident since the values of specific activity found in roots were around magnitude lesser than found in 1992. In spite of exhaustive studies have been reported about the transference factors for 137 Cs in different agricultural foods, relatively few of them have paid attention to the interactions between cereals and leguminous associated in semiarid ecosystems. (Author)

  18. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem

    NARCIS (Netherlands)

    Lesschen, J.P.; Cammeraat, L.H.; Kooijman, A.M.; van Wesemael, B.

    2008-01-01

    To mitigate erosion on abandoned fields in semi-arid ecosystems, it is important to understand how vegetation and soil properties and patterns develop after land abandonment. Our objective was to investigate the development of spatial heterogeneity in vegetation and soil properties after land

  19. FAUNA OF COLEPTERA,TENEBRIORIDAE OF ARID COASTAL AND ISLAND ECOSYSTEMS OF THE CASPIAN SEA.

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Aim. The aim of the given paper is to expose species structure and geographical distribution of Coleoptera, Tenebrioridae (C, T of coastal and island ecosystem of the Caspian Sea. The given report is compiled of the matcrials, collected in different periods by authors (1961-2013 in the Caucasian part of the Caspian Sea, in the south of the European part of the Russian Federation, Kazakhstan, islands (the Chechen island, the Nord island. The Tuleniyisland. The Kulaly island, collective materials (ZIN; RAS, museum of Zoology of MSU, Institute NAN of Azerbaijan, National museum of Georgia and materials published (Kryzhanovsky, 1965, Medvedev, 1987, 1990; Medvedev, Nepesova, 1990; Shuster, 1934; Kaluzhnaya, 1982; Arzanov and others, 2004, Egorov, 2006.Methods. We used the traditional methods of collecting (hand picking, traps soil, soil traps light amplification light traps, processing and material definition. List of species composition discussed fauna composed by modern taxonomy using directories. Location. Coastal and island ecosystems of the Caspian sea.Results. Species structure and data on general and regional distribution of C,T of coastal and island ecosystems of the Caspian Sea is represented in the paper. Faund discussed is widely represented in the fauna of arid regions of land, especially in the fauna of subtropical deserts and semideserts.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the consequent level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  20. Post-Fire Evapotranspiration and Net Ecosystem Exchange over A Semi-Arid Grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2015-12-01

    The seasonal and interannual variability of evapotranspiration (E) and net ecosystem exchange (NEE) following a fire disturbance over a semi -arid grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA, and their relationships to environmental variables were examined using continuous measurements of water vapour and CO2 fluxes made from first week of June 2002 to 2009 using the eddy covariance technique. The research ranch was established in 1969 as an ecological research preserve and it is now one of the largest ungrazed, privately managed grassland sites in Arizona. A wild fire occurred in April - May 2002, and burned all the standing vegetation and litter on in research ranch (~38,000 acres) including 500 acres of grassland. The mean annual temperature and precipitation (P) at this site were ~16 deg C and ~370 mm, respectively. More than 60% of the annual P was received during the North American monsoon period (July-September) with the lowest annual P in the drought years of 2004 and 2009. Drastic changes in albedo, vegetation growth and evapotranspiration occurred following the onset of the monsoon season in July. The ecosystem was mostly a carbon sink during monsoon period. Daily total evapotranspiration during July-August increased from 2 mm d-1 in 2002 to >3 mm d-1 in 2007. The mean annual E over the site was during 2003 -2009 was 352 ±75 mm. With the onset of monsoon the ecosystem turned to carbon sink in 2002, with daily total net ecosystem exchange (NEE) varying up to ~vegetation index, longest monsoon growing season and the highest annual and July-September P. The interannual variations in annual E and NEE were mostly controlled by annual P, July-September NDVI and growing season length during 2002-2009.

  1. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Huber, S.

    2015-01-01

    strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights...... between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties...

  2. Ecosystem services provided by agricultural terraces in semi-arid climates.

    Science.gov (United States)

    Romero-Díaz, Asunción; Díaz-Pereira, Elvira; Boix-Fayos, Carolina; de Vente, Joris

    2016-04-01

    Since ancient times, agricultural terraces are common features throughout the world, especially on steep slope gradients. Nowadays many terraces have been abandoned or removed and few new terraces are build due to increased mechanisation and intensification of agriculture. However, terraces are amongst the most effective soil conservation practices, reducing the slope gradient and slope length, as well as runoff rate and soil erosion, and without terraces, it would be impossible to cultivate on many hillslopes. Moreover, their scenic interest is undeniable, as in some cases, terraced slopes have even become part of UNESCO World Heritage. In order to highlight the potential benefits, requirements and limitations of terraces, we reviewed different types of sustainable land management practices related to terraces and characterised their implications for provisioning, regulating, supporting, and cultural ecosystem services. We centred our review on terraces in semi-arid environments worldwide, as were documented in the WOCAT (World Overview of Conservation Approaches and Technologies) database. Our results show that the most important ecosystem services provided by terraces relate to regulation of the on-site and off-site effects of runoff and erosion, and maintenance of soil fertility and vegetation cover. The presence of terraces also favours the provision of food, fiber, and clean water. In short, our results stress the crucial environmental, geomorphological and hydrological functions of terraces that directly relate to improving the quality of life of the people that use them. These results highlight the need for renewed recognition of the value of terraces for society, their preservation and maintenance.

  3. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    Science.gov (United States)

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

  4. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    Science.gov (United States)

    Brandt, L. A.; Bohnet, C.; King, J. Y.

    2009-06-01

    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  5. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  6. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  7. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    Science.gov (United States)

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  8. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  9. Linking the spatial patterns of organisms and abiotic factors to ecosystem function and management: insights from semi-arid environments

    Directory of Open Access Journals (Sweden)

    F. T. Maestre

    2006-12-01

    Full Text Available Numerous theoretical and modeling studies have demonstrated the ecological significance of the spatial patterning of organisms on ecosystem functioning and dynamics. However, there is a paucity of empirical evidence that quantitatively shows how changes in the spatial patterns of the organisms forming biotic communities are directly related to ecosystem structure and functioning. In this article, I review a series of experiments and observational studies conducted in semi-arid environments from Spain (degraded calcareous shrubland, steppes dominated by Stipa tenacissima, and gypsum shrublands to: 1 evaluate whether the spatial patterns of the dominant biotic elements in the community are linked to ecosystem structure and functioning, and 2 test if these patterns, and those of abiotic factors, can be used to improve ecosystem restoration. In the semiarid steppes we found a significant positive relationship between the spatial pattern of the perennial plant community and: i the water status of S. tenacissima and ii perennial species richness and diversity. Experimental plantings conducted in these steppes showed that S. tenacissima facilitated the establishment of shrub seedlings, albeit the magnitude and direction of this effect was dependent on rainfall conditions during the first yr after planting. In the gypsum shrubland, a significant, direct relationship between the spatial pattern of the biological soil crusts and surrogates of ecosystem functioning (soil bulk density and respiration was found. In a degraded shrubland with very low vegetation cover, the survival of an introduced population of the shrub Pistacia lentiscus showed marked spatial patterns, which were related to the spatial patterns of soil properties such as soil compaction and sand content. These results provide empirical evidence on the importance of spatial patterns for maintaining ecosystem structure and functioning in semi-arid ecosystems

  10. Program on ecosystem change and society

    DEFF Research Database (Denmark)

    Carpenter, Stephen R.; Folke, Carl; Norström, Albert

    2012-01-01

    The Program on Ecosystem Change and Society (PECS), a new initiative within the ICSU global change programs, aims to integrate research on the stewardship of social-ecological systems, the services they generate, and the relationships among natural capital, human wellbeing, livelihoods, inequality...

  11. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China

    Science.gov (United States)

    Nan Lu; Shiping Chen; Burkhard Wilske; Ge Sun; Jiquan Chen

    2011-01-01

    Aims: Evapotranspiration (ET) is a key component of water balance and is closely linked to ecosystem productivity. In arid regions, large proportion of precipitation (PPT) is returned to the atmosphere through ET, with only a small amount available to plants. Our objective was to examine the variability in ET–soil water relationship based on a set of ecosystems that...

  12. Antecedent Moisture and Biological Inertia as Predictors of Plant and Ecosystem Productivity in Arid and Semiarid Systems

    Science.gov (United States)

    Ogle, K.

    2011-12-01

    Many plant and ecosystem processes in arid and semiarid systems may be affected by antecedent environmental conditions (e.g., precipitation patterns, soil water availability, temperature) that integrate over past days, weeks, months, seasons, or years. However, the importance of such antecedent exogenous effects relative to conditions occurring at the time of the observed process is relatively unexplored. Even less is known about the potential importance of antecedent endogenous effects that describe the influence of past ecosystem states on the current ecosystem state; e.g., how is current ecosystem productivity related to past productivity patterns? We hypothesize that incorporation of antecedent exogenous and endogenous factors can improve our predictive understanding of many plant and ecosystem processes, especially in arid and semiarid ecosystems. Furthermore, the common approach to quantifying the effects of antecedent (exogenous) variables relies on arbitrary, deterministic definitions of antecedent variables that (1) may not accurately describe the role of antecedent conditions and (2) ignore uncertainty associated with applying deterministic definitions. In this study, we employ a stochastic framework for (1) computing the antecedent variables that estimates the relative importance of conditions experienced each time unit into the past, also providing insight into potential lag responses, and (2) estimating the effect of antecedent factors on the response variable of interest. We employ this approach to explore the potential roles of antecedent exogenous and endogenous influences in three settings that illustrate the: (1) importance of antecedent precipitation for net primary productivity in the shortgrass steppe in northern Colorado, (2) dependency of tree growth on antecedent precipitation and past growth states for pinyon growing in western Colorado, and (3) influence of antecedent soil water and prior root status on observed root growth in the Mojave

  13. Water Scarcity, Food Insecurity and Drought Induced Displacement in an Arid Ecosystem: A Case Study in Indian Desert

    Science.gov (United States)

    Rehman Siddiqui, Azizur

    2017-04-01

    Indian Arid Ecosystem is characterised by scare as well as seasonal precipitation that have led to long term stress in a fragile ecosystem. In addition to this, over the years, Indian desert has experienced varying magnitude of drought, which have considerably influenced food and fodder production and led to the depletion of surface and ground water table. All these factors mean that the production potential of land is hardly sufficient to feed human as well as livestock population of the desert and this has led to extensive rural to urban migration in Indian Desert. In the present study, satellite data from Landsat TM, AWiFS, NOAA AVHRR have been used to detect the intensity and severity of drought condition, and data collected through primary survey has been used to measure the impact of water scarcity on food insecurity and drought induced migration. Rainfall trend analysis of the study area has been done with the help of Man Kendall Method to assess the meteorological vulnerability. In addition to these, NDVI, VCI, TCI, and VHI have also been used to find out the long term vegetation health in the study area. With the help of these scientific techniques, the paper focuses on the moisture deficiency during growing period and its effect on human population and livestock population. Keywords: Arid Ecosystem, Indian Desert, Drought, Migration

  14. Assessment of Ecosystem Services in a Semi-arid Agriculture-dominant Area: Framework and Case Study

    Science.gov (United States)

    Dhungel, R.; Chen, Y.; Maltos, R.; Sivakumaran, K.; Aguilar, A.; Harmon, T. C.

    2015-12-01

    California's Central Valley (CV) water crisis has increased in severity due to a prolonged drought. The drought is directly contributing to the overexploitation of groundwater, along with deficiency in agricultural, recreational and aesthetic water services. The population of the CV, home to about 6.5 million people, is projected to be 12 million by 2040. Balancing water demand between municipal use, agricultural supply, and other ecosystem services, will be challenging for this region in perpetuity. In the heart of CV lies the San Joaquin River (SJR) where Friant Dam is the main low-elevation reservoir regulating water release. The Friant Dam's reservoir fulfills agricultural, municipal and industrial water needs through the Friant-Kern and Madera canals, as well as through the mainstem SJR. The SJR restoration project (SJRRP) is a recent development that is imposing additional demands on water releases in order to restore sustainable aquatic habitat for Chinook salmon and other species on the mainstem below the Friant Dam. The Chinook require adequate flow to moderate river temperature, particularly during hot summer and fall months. Temperatures on CV rivers exhibit strong diurnal and seasonal patterns, and can rise to harmful levels when flows are inadequate. In this study, we developed a framework that allows for assessing the effectiveness and implied costs of ecosystem services provided by a restored SJR in a semi-arid agriculture-dominant area. This is done by explicitly linking economics-based farmers' model with a reduced-form hydrological model that is loosely coupled to a physical-based stream-temperature model, specifically CE-QUAL-W2. The farmers' model is based on positive mathematical program approach calibrated with twenty proxy crops for year 2005. The river-hydrology is simulated by a vector autoregression model that incorporates daily flow variability. We study the mandated release policies by the SJR restoration project, along with hypothetical

  15. Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services

    CSIR Research Space (South Africa)

    O'Farrell, PJ

    2010-06-01

    Full Text Available assessment with an ecosystem service assessment. Stakeholder engagement and expert consultation focussed our investigations on surface water, ground water, grazing and tourism as the key services in this region. The key ecosystem services and service hotspots...

  16. Woody plants in agro-ecosystems of semi-arid regions

    NARCIS (Netherlands)

    Breman, H.; Kessler, J.J.

    1995-01-01

    A quantitative analysis of the role of woody plants in semi-arid regions, focusing on the Sahel and Sudan zones in West-Africa, is given for the assessment of their benefits in agro-sylvopastoral land-use systems with productive and sustainability objectives.

  17. Bridging Thermal Infrared Sensing and Physically-Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Toivonen, Erika; Trebs, Ivonne

    2018-01-01

    model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a combined Penman‐Monteith Shuttleworth‐Wallace (PM‐SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.......2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10% – 52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12% – 25%) in all ecosystems. Uncertainty in TR versus moisture availability...

  18. Breaks in MODIS time series portend vegetation change: verification using long-term data in an arid grassland ecosystem.

    Science.gov (United States)

    Browning, Dawn M; Maynard, Jonathan J; Karl, Jason W; Peters, Debra C

    2017-07-01

    breaks accompanied changes in the contribution to biomass by perennial and/or annual grasses. The BFAST method using satellite imagery proved useful for detecting previously reported ground-based changes in vegetation in this arid ecosystem. We demonstrate that time series analysis of NDVI data holds potential for monitoring landscape condition in arid ecosystems at the large spatial scales needed to differentiate responses to a changing climate from responses to seasonal variability in rainfall. © 2017 by the Ecological Society of America.

  19. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  20. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  1. On the operationalization of a spatially explicit evaluation of the complexity of land use trajectories in semi-arid Mediterranean agro-ecosystems

    DEFF Research Database (Denmark)

    Nainggolan, Doan

    This thesis aims to unpack the complexity of trajectories of land use change in semi-arid Mediterranean agro-ecosystems – illustrated using findings from the Torrealvilla catchment in south-eastern Spain. The research looks at multiple dimensions of land use change and addresses the past, present...

  2. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  3. Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue

    Science.gov (United States)

    Goodrich, D.C.; Chehbouni, A.; Goff, B.; MacNish, B.; Maddock, T.; Moran, S.; Shuttleworth, W.J.; Williams, D.G.; Watts, C.; Hipps, L.H.; Cooper, D.I.; Schieldge, J.; Kerr, Y.H.; Arias, H.; Kirkland, M.; Carlos, R.; Cayrol, P.; Kepner, W.; Jones, B.; Avissar, R.; Begue, A.; Bonnefond, J.-M.; Boulet, G.; Branan, B.; Brunel, J.P.; Chen, L.C.; Clarke, T.; Davis, M.R.; DeBruin, H.; Dedieu, G.; Elguero, E.; Eichinger, W.E.; Everitt, J.; Garatuza-Payan, J.; Gempko, V.L.; Gupta, H.; Harlow, C.; Hartogensis, O.; Helfert, M.; Holifield, C.; Hymer, D.; Kahle, A.; Keefer, T.; Krishnamoorthy, S.; Lhomme, J.-P.; Lagouarde, J.-P.; Lo, Seen D.; Luquet, D.; Marsett, R.; Monteny, B.; Ni, W.; Nouvellon, Y.; Pinker, R.; Peters, C.; Pool, D.; Qi, J.; Rambal, S.; Rodriguez, J.; Santiago, F.; Sano, E.; Schaeffer, S.M.; Schulte, M.; Scott, R.; Shao, X.; Snyder, K.A.; Sorooshian, S.; Unkrich, C.L.; Whitaker, M.; Yucel, I.

    2000-01-01

    The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere-biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997-1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources.

  4. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão

    Directory of Open Access Journals (Sweden)

    Ran Goldblatt

    2017-12-01

    Full Text Available Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3–0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes—trees, shrubs/grasses, and bare land—across 1000 km 2 of the semi-arid Sertão region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses. This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.

  5. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    Science.gov (United States)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  6. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive

    Science.gov (United States)

    Huntington, Justin; McGwire, Kenneth C.; Morton, Charles; Snyder, Keirith A.; Peterson, Sarah; Erickson, Tyler; Niswonger, Richard G.; Carroll, Rosemary W.H.; Smith, Guy; Allen, Richard

    2016-01-01

    Groundwater dependent ecosystems (GDEs) rely on near-surface groundwater. These systems are receiving more attention with rising air temperature, prolonged drought, and where groundwater pumping captures natural groundwater discharge for anthropogenic use. Phreatophyte shrublands, meadows, and riparian areas are GDEs that provide critical habitat for many sensitive species, especially in arid and semi-arid environments. While GDEs are vital for ecosystem services and function, their long-term (i.e. ~ 30 years) spatial and temporal variability is poorly understood with respect to local and regional scale climate, groundwater, and rangeland management. In this work, we compute time series of NDVI derived from sensors of the Landsat TM, ETM +, and OLI lineage for assessing GDEs in a variety of land and water management contexts. Changes in vegetation vigor based on climate, groundwater availability, and land management in arid landscapes are detectable with Landsat. However, the effective quantification of these ecosystem changes can be undermined if changes in spectral bandwidths between different Landsat sensors introduce biases in derived vegetation indices, and if climate, and land and water management histories are not well understood. The objective of this work is to 1) use the Landsat 8 under-fly dataset to quantify differences in spectral reflectance and NDVI between Landsat 7 ETM + and Landsat 8 OLI for a range of vegetation communities in arid and semiarid regions of the southwestern United States, and 2) demonstrate the value of 30-year historical vegetation index and climate datasets for assessing GDEs. Specific study areas were chosen to represent a range of GDEs and environmental conditions important for three scenarios: baseline monitoring of vegetation and climate, riparian restoration, and groundwater level changes. Google's Earth Engine cloud computing and environmental monitoring platform is used to rapidly access and analyze the Landsat archive

  7. Redesigning A Program of Ecosystem Conservation Fund

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Seung Jun; Yoo, Seung Hoon [Korea University, Seoul (Korea)

    2000-08-01

    A program of ecosystem conservation fund was proposed by the Ministry of Environment in Korea and has been supposed to come into force in early 2001. However, currently the program is withheld because there are strong objections to it for several reasons. The prime purpose of this paper is to analyze the reasons and problems involved in the program, to suggest some guidances to revise the program, and to design a new program by using a multi attribute index based on environmental significance. We found that there are two major problems of the program: first, inequity in choosing those whom the fund are levied on; second, irrationality of the way the fund are imposed. The paper also provides a simulation study to analyze the effects of four scenarios concerning feasible alternatives. We argue that natural resource damages caused by development works cannot be fairly prevented by the existing environmental impact assessment system only and should be used in harmony with the new system. (author). 10 refs., 10 tabs.

  8. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation.

    Science.gov (United States)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.

    2017-12-01

    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  9. Phenocams bridge the gap between field and satellite observations in an arid grassland ecosystem

    Science.gov (United States)

    Near surface (i.e., camera) and satellite remote sensing metrics have become widely used indicators of plant growing seasons. While robust linkages have been established between field metrics and ecosystem exchange in many land cover types, assessment of how well remotely-derived season start and en...

  10. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  11. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  12. Assessment of Plant Functional Types in Tropical Arid and Semi-Arid Ecosystems of India Using Remote Sensing Data and GIS

    Science.gov (United States)

    Sudhakar Reddy, C.; Krishna, P. Hari; Murthy, M. S. R.

    2011-09-01

    Tropical ecosystems undergo changes caused by season, climate or multiple anthropogenic impacts. Such changes may cause gradual or rapid shifts from one state to another. There has been a focus on functional classifications of plants to find tools for monitoring and assessing species status in changing environments. It has been recognised that plant biological characteristics can be related to their response to predominant environmental factors and interactions between other organisms. These findings have resulted in a search for plant functional types (PFTs) that are user-defined groups of species with similar response to environmental resources and disturbance associated to common biological traits. Now, identification of plant functional types is priority area in the climate change research. Satellite Earth observation data is an important tool in providing considerable information on extracting PFT information at global and regional levels. From the modelling perspective, some of the current needs are the refinement of processes that govern community assembly, such as natural and anthropogenic disturbances. PFTs used in large-scale models are insufficient to represent the diversity of responses in natural plant communities. The currently available MODIS PFT map was generated by re-labeling the IGBP land cover type classes. However, the error magnitudes of the MODIS PFT product and their spatial and temporal distributions have not been fully characterized. Remotely sensed derived information of the phenology, community composition and vegetation structure are the key inputs to integrate with the variability in precipitation and temperature to map the spatial distribution of Plant functional types. PFTs allows accurate representation of the land surface by separately specifying the composition and structure of PFTs within a grid cell. Very little research efforts are discernible in India that explicitly address the PFTs. In the present study five natural

  13. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    Science.gov (United States)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. A modelling framework that is specifically adapted to mountain environments is currently lacking. Most studies make use of general river basin models that were originally parameterized and calibrated for temperate, low relief landscapes. Transposing these modelling concepts directly to steep environments with shallow and stony soils often leads to unrealistic model predictions, as model input parameters are rarely calibrated for the range of environmental conditions found in mountain regions. Here, we present a conceptual model that evaluates erosion regulation as a function of human disturbances in vegetation cover. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency-magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in-situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance in a given vegetation system. The model is then calibrated with field measurements from two mountainous sites with strongly different vegetation dynamics, climatic and geological settings: the Tropical Andes, and the Spanish Betic Cordillera. Natural erosion processes are important in mountainous sites, and natural erosion benchmarks are primordial to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant change in erosion due to human disturbance for uncultivated sites. The opposite is true for the

  14. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    Science.gov (United States)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions

  15. Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem

    Directory of Open Access Journals (Sweden)

    Haroun Chenchouni

    2015-03-01

    Full Text Available The current study highlights some knowledge on the diversity and structure of insect communities and trophic groups living in Sabkha Djendli (semi-arid area of Northeastern Algeria. The entomofauna was monthly sampled from March to November 2006 using pitfall traps at eight sites located at the vicinity of the Sabkha. Structural and diversity parameters (species richness, Shannon index, evenness were measured for both insect orders and trophic guilds. The canonical correspondence analysis (CCA was applied to determine how vegetation parameters (species richness and cover influence spatial and seasonal fluctuations of insect assemblages. The catches totalled 434 insect individuals classified into 75 species, 62 genera, 31 families and 7 orders, of which Coleoptera and Hymenoptera were the most abundant and constant over seasons and study stations. Spring and autumn presented the highest values of diversity parameters. Individual-based Chao-1 species richness estimator indicated 126 species for the total individuals captured in the Sabkha. Based on catch abundances, the structure of functional trophic groups was predators (37.3%, saprophages (26.7%, phytophages (20.5%, polyphages (10.8%, coprophages (4.6%; whereas in terms of numbers of species, they can be classified as phytophages (40%, predators (25.3%, polyphages (13.3%, saprophages (12%, coprophages (9.3%. The CCA demonstrated that phytophages and saprophages as well as Coleoptera and Orthoptera were positively correlated with the two parameters of vegetation, especially in spring and summer. While the abundance of coprophages was positively correlated with species richness of plants, polyphage density was positively associated with vegetation cover. The insect community showed high taxonomic and functional diversity that is closely related to diversity and vegetation cover in different stations of the wetland and seasons.

  16. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions.

    Science.gov (United States)

    Mahmoud, Shereif H; Gan, Thian Y

    2018-08-15

    The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km 2 between 1970 and 2014, an average increase of >53.4km 2 /yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area

  17. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  18. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    Science.gov (United States)

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  19. Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland

    Directory of Open Access Journals (Sweden)

    J. H. Shim

    2013-07-01

    Full Text Available We conducted high frequency measurements of the δ18O value of atmospheric CO2 from a juniper (Juniperus monosperma woodland in New Mexico, USA, over a four-year period to investigate climatic and physiological regulation of the δ18O value of ecosystem respiration (δR. Rain pulses reset δR with the dominant water source isotope composition, followed by progressive enrichment of δR. Transpiration (ET was significantly related to post-pulse δR enrichment because the leaf water δ18O value showed strong enrichment with increasing vapor pressure deficit that occurs following rain. Post-pulse δR enrichment was correlated with both ET and the ratio of ET to soil evaporation (ET/ES. In contrast, the soil water δ18O value was relatively stable and δR enrichment was not correlated with ES. Model simulations captured the large post-pulse δR enrichments only when the offset between xylem and leaf water δ18O value was modeled explicitly and when a gross flux model for CO2 retro-diffusion was included. Drought impacts δR through the balance between evaporative demand, which enriches δR, and low soil moisture availability, which attenuates δR enrichment through reduced ET. The net result, observed throughout all four years of our study, was a negative correlation of post-precipitation δR enrichment with increasing drought.

  20. Short Term Soil Respiration Response to Fire in a Semi-arid Ecosystem

    Science.gov (United States)

    Rozin, A. G.

    2015-12-01

    In the Intermountain West (USA), fire is an important driver of carbon cycling in the environment. Increasing frequency and severity of fires, either through management actions or wildfires, is expected with changing climates in the Western United States. When burning is used as a management tool, it may be beneficial and control the growth of nuisance vegetation, promote the regeneration of grasses and forage species, and reduce hazardous fuel loads to minimize the risk of future wildfires. However, high intensity wildfires often have a negative effect, resulting in a loss of carbon storage and a shift of vegetation communities. This delays recovery of the ecosystem for years or decades and alters the historic fire regime. A 2000 acre prescribed burn in the Reynolds Creek Critical Zone Observatory provided the opportunity to quantify pre and post-burn soil carbon stores and soil carbon losses by heterotrophic respiration. Pre and post-burn soil samples were collected for physical and biogeochemical characterization to quantify substrate availability and possible limitations for heterotrophic respiration. CO2 fluxes were continuously monitored in situ before and immediately after the fire to understand the short-term response of soil respiration to varying burn severities.

  1. Vegetation-induced soil water repellency as a strategy in arid ecosystems. A geochemical approach in Banksia woodlands (SW Australia)

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, Jose Antonio; Zavala, Lorena M.; Stevens, Jason; Jordan, Antonio

    2016-04-01

    Introduction Banksia woodlands (BW) are iconic ecosystems of Western Australia (WA) composed by an overstorey dominated by Proteaceae, e.g. Banksia menziesii and Banksia attenuata, in combination with other species, such as Eucalyptus spp., Verticordia spp. or Melaleuca spp. Although located in very poor dune soils, BW provide numerous ecosystem services and sustain a high biodiversity. In this area, annual rainfall is relatively high (about 800 mm) but permeability of the sandy substrate leads to a functionally arid ecosystem. Currently, BW are threatened by sand mining activities and urban expansion; therefore conservation and restoration of these woodlands are critical. Despite numerous efforts, the success of restoration plans is usually poor mostly due to the high sensitivity to drought stress and poor seedling survival rates (5-30%) (Benigno et al., 2014). A characteristic feature of BW is their root architecture, formed by a proteoid (cluster) system that spreads to form thick mats below the soil surface, favouring the uptake of nutrients (especially, P), and preventing soil erosion. Root exudates are related to numerous plant functions, as they facilitate penetration of roots in soil and enhance the extraction of scarce mineral nutrients and its further assimilation. Exudates may also interact directly with soil or indirectly through microbial mediated events being also related to soil water repellency (SWR; Lozano et al, 2014). Knowledge about the specific compounds able to induce SWR is limited (Doerr et al., 2000), but it is generally accepted that is caused by organic molecules coating the surface of soil mineral particles and aggregates (Jordán et al., 2013). Proteaceae release short-chained organic acids to enhance phosphate acquisition, which have been also reported to be related with SWR (Jiménez-Morillo et al., 2014). It is hypothesized that disruption of water dynamics in mature BW soils is underlying the failure of restoration plans. This

  2. Possible stakeholder concerns regarding volatile organic compound in arid soils integrated demonstration technologies not evaluated in the stakeholder involvement program

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    The Volatile Organic Compounds in Arid Soils Integrated Demonstration (VOC-Arid ID) supported the demonstration of a number of innovative technologies, not all of which were evaluated in the integrated demonstration's stakeholder involvement program. These technologies have been organized into two categories and the first category ranked in order of priority according to interest in the evaluation of the technology. The purpose of this report is to present issues stakeholders would likely raise concerning each of the technologies in light of commentary, insights, data requirements, concerns, and recommendations offered during the VOC-Arid ID's three-year stakeholder involvement, technology evaluation program. A secondary purpose is to provide a closeout status for each of the technologies associated with the VOC-Arid ID. This report concludes with a summary of concerns and requirements that stakeholders have for all innovative technologies

  3. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed.

    Science.gov (United States)

    Makkeasorn, Ammarin; Chang, Ni-Bin; Li, Jiahong

    2009-02-01

    Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies

  4. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    Science.gov (United States)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    In arid and semi-arid Mediterranean coastal areas, metals and metalloids (MM) pollution coming from unreclaimed brownfields has increased the negative environmental stresses leading to ecosystems degradations as soil erosion and losses of organic matter and biodiversity. On these sites, maintaining or restoring a local vegetation cover is considered as a key step to stop the degradation cycle. Furthermore, in a context of high pollution occurring in natural areas, phytoremediation is considered as an attractive alternative to conventional soil remediation techniques, the first reducing pollution transfers, improving the soil quality. In protected or natural areas, it is also important to perceive then design phytoremediation as a way to assist ecosystems recovery, using the restoration ecology concepts. However, only few works in the literature deal with the potential use of native Mediterranean plant species for phytoremediation. On the South-East coast of Marseille (France), the activity of the former smelting factory of l'Escalette, ceased since 1925. However, its brownfield is still a source of pollution by trace metals and metalloids for abiotic and biotic components of the surrounding massif. This massif hosts a rich biodiversity with rare and protected plant species despite the metallic pollution and this area has been included in the recently created first peri-urban French National Park of Calanques. In this context, an integrated research project is being conducted with local actors and stakeholders, from the selection of native plant species, assessment and optimization of phytostabilization capacities of selected species, to the development of ecological engineering techniques well adapted to local constraints and phytostabilization field trials. The first part of this study has been conducted on two areas, corresponding to different pollution pattern, plant communities and environmental drivers: a halophytic area, characterized by typical coastal

  5. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001

    International Nuclear Information System (INIS)

    Etchelecou, A.; Deletraz, G.; Elichegaray, Ch.

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  6. Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program

    International Nuclear Information System (INIS)

    Watson, L.R.

    1995-06-01

    The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program

  7. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    Science.gov (United States)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  8. [Temporal diversity dynamics of the arbuscular mycorrhizal fungi of Larrea tridentata (Sesse & Mocino ex DC) Coville in a semi-arid ecosystem].

    Science.gov (United States)

    Hernández-Zamudio, Genoveva; Sáenz-Mata, Jorge; Moreno-Reséndez, Alejandro; Castañeda-Gaytán, Gamaliel; Ogaz, Alfredo; Carballar-Hernández, Santos; Hernández-Cuevas, Laura

    2017-12-06

    Arbuscular mycorrhizal fungi (AMF) of arid and semiarid ecosystems are important for the development of plants that grow under biotic stress in wild or in agro-ecosystems. There is little information on the temporal diversity of these organisms in perennial plants from arid ecosystems in northern Mexico. On this study, the mycorrhizal colonization and the temporal diversity of AMF in the rhizosphere of Larrea tridentata, perennial plant abundant in the Chihuahuan Desert region were explored. Samples of the rhizosphere and roots of fifteen plants in each of the three sampling dates during the 2015 year were obtained. A total of 17 species of HMA belonging to 12 genera and 7 families within the phylum Glomeromycota in all three sampling dates were found. Funneliformis geosporum was the dominant species belonging to the family Glomeraceae which possess the highest genera number on L. tridentata. The highest mycorrhization percentage was in February with 83.22, followed by September and May with 75.27 and 65.27%, respectively. A maximum of 16 AM fungal species were isolated and identified from L. tridentata rhizosphere in February, 15 species in May and 12 species in September. Statistical analysis showed significant differences between sampling dates in the spores number. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Research of the Rio Grande Ecosystem Management Program

    Science.gov (United States)

    Deborah M. Finch

    2000-01-01

    This paper describes the mission, objectives, and preliminary results of the Middle Rio Grande Ecosystem Management Research Program managed at the Rocky Mountain Research Station's Albuquerque laboratory. This program was initiated in 1994 to address growing pressures to effectively manage the limited resources of the middle Rio Grande Basin. The program is...

  10. Building an Ecosystem for a New Engineering Program

    Science.gov (United States)

    Grebski, Wieslaw; Grebski, Michalene Eva

    2018-06-01

    Penn State Hazleton has recently developed and implemented a new Engineering program with a focus on energy efficiency and energy sustainability. To accelerate the implementation cycle of the program, it was necessary to very rapidly create and establish the components of an ecosystem needed for the Engineering program to prosper and grow. This paper describes the individual components of the ecosystem as well as the methods used to establish them. The paper also discusses the different initiatives to increase enrollment as well as placement rates for graduates. Continuous quality improvement procedure applied to maintain the quality of the program is also being discussed.

  11. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Science.gov (United States)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  12. The possibilities and pitfalls presented by a pragmatic approach to ecosystem service valuation in an arid biodiversity hotspot

    CSIR Research Space (South Africa)

    O'Farrell, PJ

    2011-01-01

    Full Text Available Arid regions are home to unique fauna, flora, and vulnerable human populations, and present a challenge for sustainable land-use management. The authors undertook an assessment and valuation of three key services, grazing, tourism and water supply...

  13. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal

    Science.gov (United States)

    Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; Sambou, B.; Diop, C.; Mougin, E.

    2017-05-01

    The alternating between dry and wet seasons and the consecutive microbial responses to soil water content in semiarid ecosystems has significant consequences on nitrogen exchanges with the atmosphere. Three field campaigns were carried out in a semi arid sahelian rangeland in Dahra (Ferlo, Senegal), two at the beginning of the wet season in July 2012 and July 2013, and the third one in November 2013 at the end of the wet season. The ammonia emission potentials of the soil ranged from 271 to 6628, indicating the soil capacity to emit NH3. The ammonia compensation point in the soil ranged between 7 and 150 ppb, with soil temperatures between 32 and 37 °C. Ammonia exchange fluctuated between emission and deposition (from -0.1-1.3 ng N.m-2 s-1), depending on meteorology, ambient NH3 concentration (5-11 ppb) and compensation point mixing ratios. N2O fluxes are supposed to be lower than NO fluxes in semi arid ecosystems, but in Dahra N2O fluxes (5.5 ± 1.3 ng N m-2 s-1 in July 2013, and 3.2 ± 1.7 ng N m-2 s-1 in November 2013) were similar to NO fluxes (5.7 ± 3.1 ng N m-2 s-1 in July 2012, 5.1 ± 2.1 ng N m-2 s-1 in July 2013, and 4.0 ± 2.2 ngN m-2 s-1 in November 2013). Possible reasons are the influence of soil moisture below the surface (where N2O is produced) after the beginning of the wet season, the potential aerobic denitrification in microsites, the nitrifier denitrification, and nitrification processes. The presence of litter and standing straw, and their decomposition dominated N compounds emissions in November 2013, whereas emissions in July 2012 and 2013, when the herbaceous strata was sparse, were dominated by microbial processes in the soil. CO2 respiration fluxes were high in the beginning (107 ± 26 mg m-2 h-1 in July 2013) and low in the end of the wet season (32 ± 5 mg m-2 h-1 in November 2013), when autotrophic and heterotrophic activity is reduced due to low soil moisture conditions These results confirm that contrasted ecosystem conditions due

  14. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    Science.gov (United States)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  15. Inter-annual Variability of Evapotranspiration in a Semi-arid Oak-savanna Ecosystem: Measured and Modeled Buffering to Precipitation Changes

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Baldocchi, D. D.

    2010-12-01

    Precipitation (P) is the primary control on vegetation dynamics and productivity, implying that climate induced disturbances in frequency and timing of P are intimately coupled with fluxes of carbon, water and energy. Future climate change is expected to increase extreme rainfall events as well as droughts, suggesting linked vegetation changes to an unknown extent. Semi-arid climates experience large inter-annual variability (IAV) in P, creating natural conditions adequate to study how year-to-year changes in P affect atmosphere-biosphere fluxes. We used a 10-year flux database collected at a semi-arid savanna site in order to: (1) define IAV in P by means of frequency and timing; (2) investigate how changes in P affect the ecohydrology of the forest and its partitioning into the main vapor fluxes, and (3) evaluate model capability to predict IAV of carbon and water fluxes above and below the canopy. This is based on the perception that the capability of process-oriented models to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site was a low density and low LAI (0.8) semi-arid (P=523±180 mm yr-1) savanna site, combined of oaks and grass, and located at Tonzi ranch, California. Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Measured fluxes were compared to modeled based on two bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Our results show that IAV in P was large, and standard deviation (STD) was 38% of the average. Accordingly, the wet soil period (measured volumetric water content > 8%) varied between 156 days in dry years to 301 days in wet years. IAV of the vapor fluxes were lower than that of P (STD was 17% for the trees and 23% for the floor components), suggesting on ecosystem buffering to changes in P. The timing of grass green up

  16. Development phase of corrosion program in aquatic ecosystems

    International Nuclear Information System (INIS)

    Moreira, P.A.

    1983-01-01

    Providences adopted to implantation of corrosion program in aquatic ecosystems, developed by CDTN, NUCLEN and FURNAS are presented. The area, the atmospheric exposition station of Angra dos Reis, the marine floating, the material to test specimen and its preparation are described. (C.M.) [pt

  17. Planning aquatic ecosystem restoration monitoring programs

    Energy Technology Data Exchange (ETDEWEB)

    Thom, R.M.; Wellman, K.F.

    1997-01-01

    This study was conducted as part of the Evaluation of Environmental Investments Research Program (EEIRP). The EEIRP is sponsored by the US Army Corps of Engineers. The objectives of this work are to (1) identify relevant approaches and features for environmental investment measures to be applied throughout the project life; (2) develop methods to access the effectiveness of the approach or feature for providing the intended environmental output; (3) develop and provide guidance for formulating environmental projects; and (4) provide guidance for formulating and identifying relevant cost components of alternate restoration plans.

  18. Do agrometeorological data improve optical satellite-based estimations of the herbaceous yield in Sahelian semi-arid ecosystems?

    DEFF Research Database (Denmark)

    Diouf, Abdoul Aziz; Hiernaux, Pierre; Brandt, Martin Stefan

    2016-01-01

    evapotranspiration satellite gridded data to estimate the annual herbaceous yield in the semi-arid areas of Senegal. It showed that a machine-learning model combining FAPAR seasonal metrics with various agrometeorological data provided better estimations of the in situ annual herbaceous yield (R2 = 0.69; RMSE = 483...... kg·DM/ha) than models based exclusively on FAPAR metrics (R2 = 0.63; RMSE = 550 kg·DM/ha) or agrometeorological variables (R2 = 0.55; RMSE = 585 kg·DM/ha). All the models provided reasonable outputs and showed a decrease in the mean annual yield with increasing latitude, together with an increase...

  19. Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. Reviews Environmental Contamination and Toxicology 168:43-98.

    Energy Technology Data Exchange (ETDEWEB)

    Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.; Michael, D.I.; Hlohowskyj, I.

    2001-02-01

    This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems.

  20. Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. Reviews Environmental Contamination and Toxicology 168:43-98

    International Nuclear Information System (INIS)

    Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.; Michael, D.I.; Hlohowskyj, I.

    2001-01-01

    This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems

  1. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil

    Science.gov (United States)

    Teixeira, A. H. de Castro; Bastiaanssen, W. G. M.; Ahmad, M. D.; Moura, M. S. B.; Bos, M. G.

    2008-11-01

    SummaryKnowledge on evapotranspiration is essential in quantifying water use depletion and to allocate scarce water resources to competing uses. Despite that an extensive literature describes the theoretical mechanisms of turbulent water vapour transport above and within crop canopies fewer studies have examined land surface parameters within composite landscapes of irrigated crops and semi-arid natural vegetation. Aiming to improve parameterizations of the radiation and energy balance in irrigated crops and natural vegetation, micro-climatic measurements were carried out on irrigated land (vineyards and mango orchard) and natural vegetation (caatinga) in the semi-arid zone of the São Francisco River basin (Brazil) from 2002 to 2005. The fractions of 24 h incident solar radiation available for net radiation were 46%, 55%, 51% and 53%, for wine grape, table grape, mango orchard and caatinga, respectively. Daily evaporative fractions of the net available energy used as latent heat flux ( λE) were 0.80, 0.88, 0.75 and 0.33 respectively. The daylight values of bulk surface resistances ( rs) averaged 128 s m -1, 73 s m -1, 133 s m -1 and 1940 s m -1 for wine grape, table grape, mango orchard and caatinga, respectively. Simplified parameterizations on roughness and evaporation resistances were performed. It could be concluded that net radiation can be estimated by means of a linear expression with incident global solar radiation depending on the type of vegetation. The variability of aerodynamic resistance ( ra) could be mainly explained by the friction velocity ( u ∗) which on turn depends on the surface roughness length for momentum transport ( z 0m). The experimental data showed that for sparse canopies z 0m being 9% of the mean vegetation height is a doable operational rule for the semi-arid region of São Francisco River basin. The seasonal values of rs for irrigated crops were highly correlated with water vapour pressure deficit. The availability of analytical

  2. Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa

    2015-01-01

    he Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ......), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable...

  3. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  4. Breaks in MODIS time series portend vegetation change: verification using long-term data in an arid grassland ecosystem

    Science.gov (United States)

    Frequency and severity of extreme climatic events are forecast to increase in the 21st century. Predicting how managed ecosystems may respond to climatic extremes is intensified by uncertainty associated with knowing when, where, and how long effects of the extreme events will be manifest in the eco...

  5. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils

    Czech Academy of Sciences Publication Activity Database

    Bastida, F.; Torres, I.F.; Moreno, J.L.; Baldrian, Petr; Ondono, S.; Ruiz-Navarro, A.; Hernández, T.; Richnow, H. H.; Starke, R.; Garcia, C.; Jehmlich, N.

    2016-01-01

    Roč. 25, č. 18 (2016), s. 4660-4673 ISSN 0962-1083 R&D Projects: GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : bacteria * community ecology * ecosystem services Subject RIV: EE - Microbiology, Virology Impact factor: 6.086, year: 2016

  6. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    Science.gov (United States)

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation ( 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes.

  7. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent; Cusack, Michael; Almahasheer, Hanan; Serrano, Oscar; Masqué , Pere; Arias-Ortiz, Ariane; Krishnakumar, Periyadan Kadinjappalli; Rabaoui, Lotfi; Qurban, Mohammad Ali; Duarte, Carlos M.

    2018-01-01

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  8. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent

    2018-04-12

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  9. The terrestrial ecosystem program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.

    1994-01-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain

  10. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    Science.gov (United States)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  11. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001; Rapport de synthese: programme ecosystemes, transport, pollutions, 1998 - 2001

    Energy Technology Data Exchange (ETDEWEB)

    Etchelecou, A.; Deletraz, G.; Elichegaray, Ch

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  12. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001; Rapport de synthese: programme ecosystemes, transport, pollutions, 1998 - 2001

    Energy Technology Data Exchange (ETDEWEB)

    Etchelecou, A; Deletraz, G; Elichegaray, Ch

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  13. Comment on: Shukla, M.K. et al., 2006: Physical and chemical properties of soils under some pinon-juniper-oak canopies in a semi-arid ecosystem in New Mexico

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Jensen, Jens Raunsø

    2008-01-01

    The paper by Shukla et al. [2006. Physical and chemical properties of soils under some pinon-juniper-oak canopies in an semi-arid ecosystem in New Mexico. Journal of Arid Environment 66, 673-685] treats interesting topics of sustainability of different ecosystems and their water availability....... However, the physical-based infiltration theories by Green and Ampt [1911. Studies on soil physics, I, flow of air and water through soils. Journal of Agricultural Science 4, 1-24] and Philip [1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science 83, 345-357] seems...... to be applied without necessary reflections. The actual analysis can have resulted in coefficients without their original physical significance...

  14. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    Science.gov (United States)

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  15. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    Science.gov (United States)

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  16. EnviroAtlas - Ecosystem Services Market-Based Programs Web Service, U.S., 2016, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers...

  17. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    Science.gov (United States)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen

  18. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    Directory of Open Access Journals (Sweden)

    J. Zörner

    2016-07-01

    Full Text Available We present a top-down approach to infer and quantify rain-induced emission pulses of NOx ( ≡  NO + NO2, stemming from biotic emissions of NO from soils, from satellite-borne measurements of NO2. This is achieved by synchronizing time series at single grid pixels according to the first day of rain after a dry spell of prescribed duration. The full track of the temporal evolution several weeks before and after a rain pulse is retained with daily resolution. These are needed for a sophisticated background correction, which accounts for seasonal variations in the time series and allows for improved quantification of rain-induced soil emissions. The method is applied globally and provides constraints on pulsed soil emissions of NOx in regions where the NOx budget is seasonally dominated by soil emissions. We find strong peaks of enhanced NO2 vertical column densities (VCDs induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Detailed investigations show that the rain-induced NO2 pulse detected by the OMI (Ozone Monitoring Instrument, GOME-2 and SCIAMACHY satellite instruments could not be explained by other sources, such as biomass burning or lightning, or by retrieval artefacts (e.g. due to clouds. For the Sahel region, absolute enhancements of the NO2 VCDs on the first day of rain based on OMI measurements 2007–2010 are on average 4 × 1014  molec cm−2 and exceed 1 × 1015  molec cm−2 for individual grid cells. Assuming a NOx lifetime of 4 h, this corresponds to soil NOx emissions in the range of 6 up to 65 ng N m−2 s−1, which is in good agreement with literature values. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced (2 × 1014  molec cm−2 compared to the background over the following 2 weeks, suggesting potential further emissions during that period of about 3.3 ng N m−2

  19. Role of vegetation and edaphic factors in controlling diversity and use of different carbon sources in semi-arid ecosystems

    Science.gov (United States)

    Lohse, K. A.; McLain, J. E.; Harman, C. J.; Sivapalan, M.; Troch, P. A.

    2010-12-01

    Microbially-mediated soil carbon cycling is closely linked to soil moisture and temperature. Climate change is predicted to increase intra-annual precipitation variability (i.e. less frequent yet more intense precipitation events) and alter biogeochemical processes due to shifts in soil moisture dynamics and inputs of carbon. However, the responses of soil biology and chemistry to predicted climate change, and their concomitant feedbacks on ecosystem productivity and biogeochemical processes are poorly understood. We collected soils at three different elevations in the Santa Catalina Mountains, AZ and quantified carbon utilization during pre-monsoon precipitation conditions. Contrasting parent materials (schist and granite) were paired at each elevation. We expected climate to determine the overall activity of soil fungal and bacterial communities and diversity of soil C utilization, and differences in parent material to modify these responses through controls on soil physical properties. We used EcoPlateTM C utilization assays to determine the relative abundance of soil bacterial and fungal populations and rate and diversity of carbon utilization. Additional plates were incubated with inhibitors selective to fungal or bacterial activity to assess relative contribution of these microbial groups to overall C utilization. We analyzed soils for soil organic matter, total C and N, particle size analysis and soil moisture content via both gravimetric and volumetric methods to assess the influences of soil physical and chemical properties on the measured biological responses. Consistent with our expectations, overall microbial activity was highest at the uppermost conifer elevation sites compared to the middle and lower elevation sites. In contrast to our expectations, however, overall activity was lower at the mid elevation oak woodland sites compared to the low elevation desert sites. Also consistent with our expectations was the observation that overall activities

  20. An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana

    Directory of Open Access Journals (Sweden)

    Biola K. Badmos

    2015-07-01

    Full Text Available Soil loss is not limited to change from forest or woodland to other land uses/covers. It may occur when there is agricultural land-use/cover modification or conversion. Soil loss may influence loss of carbon from the soil, hence implication on greenhouse gas emission. Changing land use could be considered actually or potentially successful in adapting to climate change, or may be considered maladaptation if it creates environmental degradation. In semi-arid northern Ghana, changing agricultural practices have been identified amongst other climate variability and climate change adaptation measures. Similarly, some of the policies aimed at improving farm household resilience toward climate change impact might necessitate land use change. The heterogeneity of farm household (agents cannot be ignored when addressing land use/cover change issues, especially when livelihood is dependent on land. This paper therefore presents an approach for simulating soil loss from an agro-ecosystem using multi-agent simulation (MAS. We adapted a universal soil loss equation as a soil loss sub-model in the Vea-LUDAS model (a MAS model. Furthermore, for a 20-year simulation period, we presented the impact of agricultural land-use adaptation strategy (maize cultivation credit i.e., maize credit scenario on soil loss and compared it with the baseline scenario i.e., business-as-usual. Adoption of maize as influenced by maize cultivation credit significantly influenced agricultural land-use change in the study area. Although there was no significant difference in the soil loss under the tested scenarios, the incorporation of human decision-making in a temporal manner allowed us to view patterns that cannot be seen in single step modeling. The study shows that opening up cropland on soil with a high erosion risk has implications for soil loss. Hence, effective measures should be put in place to prevent the opening up of lands that have high erosion risk.

  1. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  2. Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China

    Directory of Open Access Journals (Sweden)

    Jiaoyang Zhang

    2018-05-01

    Full Text Available Background Long-term fertilisation has a large influence on soil physical and chemical properties in agro-ecosystems. The effects on the distribution of aggregates, however, are not fully understood. We determined the dynamic change of the distribution of aggregates and soil organic carbon (SOC content over time in a long-term field experiment established in 1998 on the Loess Plateau of China and illustrated the relationship between them. Methods We determined SOC content and the distribution of aggregates in nine fertiliser treatments: manure (M; nitrogen (N; phosphorus (P; M and N; M, N, and P; M and P; N and P; bare land; and an unfertilised control. These parameters were then used for a path analysis and to analyse the fractal dimension (Dv. Results The organic fertiliser increased SOC content. The proportions of 0.1–0.25 mm microaggregates and 0.25–0.5 mm macroaggregates were higher and the proportion of the 0.01–0.05 mm size class of the silt + clay fraction was lower in the treatments receiving organic fertiliser (M, MN, MNP, and MP than that in the control, indicating that the addition of organic fertiliser promoted aggregation. The distribution of aggregates characterised by their fractal dimension (Dv, however, did not differ among the treatments. Discussion Dv was strongly correlated with the proportion of the <0.002 mm size class of the silt + clay fraction that did not differ significantly among the treatments. The change in the distribution of aggregates was strongly correlated with SOC content, which could produce organic polymer binding agents to increase the proportion of larger particles. Long-term application of organic fertiliser is thus necessary for the improvement and maintenance of soil quality in semi-arid agricultural land when residues are removed.

  3. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    Science.gov (United States)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  4. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    Science.gov (United States)

    Bochet, E.

    2015-01-01

    Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist

  5. Soil and Plant Water Relations Determine Photosynthetic Responses of C3 and C4 Grasses in a Semi‐arid Ecosystem under Elevated CO2

    OpenAIRE

    LECAIN, DANIEL R.; MORGAN, JACK A.; MOSIER, ARVIN R.; NELSON, JIM A.

    2003-01-01

    To model the effect of increasing atmospheric CO2 on semi‐arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open‐top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 µmol mol–1 CO2 (elevated CO2) in a semi‐arid shortgrass s...

  6. Marine Ecosystems Analysis (MESA) Program, New York Bight Surficial Sediment Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Ecosystems Analysis (MESA) Program, New York Bight Study was funded by NOAA and the Bureau of Land Management (BLM). The Atlas was a historical...

  7. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    Science.gov (United States)

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  8. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink

    DEFF Research Database (Denmark)

    Ahlström, Anders; Raupach, Michael R.; Schurgers, Guy

    2015-01-01

    to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic...

  9. Program on ecosystem change and society: An international research strategy for integrated social-ecological systems

    NARCIS (Netherlands)

    Carpenter, S.R.; Folke, C.; Norström, A.V.; Olsson, O.; Schultz, L.; Agarwal, B.; Balvanera, P.; Campbell, B.; Castilla, J.C.; Cramer, W.; DeFries, R.; Eyzaguirre, P.; Hughes, T.P.; Polasky, S.; Sanusi, Z.A.; Scholes, R.J.; Spierenburg, M.J.

    2012-01-01

    The Program on Ecosystem Change and Society (PECS), a new initiative within the ICSU global change programs, aims to integrate research on the stewardship of social-ecological systems, the services they generate, and the relationships among natural capital, human wellbeing, livelihoods, inequality

  10. Program on ecosystem change and society: an international research strategy for integrated social–ecological systems

    NARCIS (Netherlands)

    Carpenter, S.R; Folke, C.; Nordström, A.; Olsson, O.; Schultz, L.; Agarwal, B.; Balvanera, P.; Campbell, B.; Castilla, J.C.; Cramer, W.; DeFries, R.; Eyzaguirre, P.; Hughes, T.P.; Polasky, S.; Sanusi, Z.; Spierenburg, M.J.

    2012-01-01

    The Program on Ecosystem Change and Society (PECS), a new initiative within the ICSU global change programs, aims to integrate research on the stewardship of social-ecological systems, the services they generate, and the relationships among natural capital, human wellbeing, livelihoods, inequality

  11. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests

    Directory of Open Access Journals (Sweden)

    Kim André Vanselow

    2014-07-01

    Full Text Available In many arid mountains, dwarf shrubs represent the most important fodder and firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan, they are assumed to be overused. However, empirical evidence on this issue is lacking. We aim to provide a method capable of mapping vegetation in this mountain desert. We used random forest models based on remote sensing data (RapidEye, ASTER GDEM and 359 plots to predictively map total vegetative cover and the distribution of the most important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as present in 33.8% of the study area (accuracy 90.6%. The total cover of the dwarf shrub communities ranged from 0.5% to 51% (per pixel. Areas with very low cover were limited to the vicinity of roads and settlements. The model could explain 80.2% of the total variance. The most important predictor across the models was MSAVI2 (a spectral vegetation index particularly invented for low-cover areas. We conclude that the combination of statistical models and remote sensing data worked well to map vegetation in an arid mountainous environment. With this approach, we were able to provide tangible data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about their extensive depletion.

  12. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program.

    Science.gov (United States)

    Zheng, Hua; Robinson, Brian E; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C

    2013-10-08

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers' livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China's capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit-cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants.

  13. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program

    Science.gov (United States)

    Zheng, Hua; Robinson, Brian E.; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C.

    2013-01-01

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers’ livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China’s capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit–cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants. PMID:24003160

  14. Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration

    Science.gov (United States)

    Cao, Shixiong; Chen, Li; Shankman, David; Wang, Chunmei; Wang, Xiongbin; Zhang, Hong

    2011-02-01

    Afforestation is a primary tool for controlling desertification and soil erosion in China. Large-scale afforestation, however, has complex and poorly understood consequences for the structure and composition of future ecosystems. Here, we discuss the potential links between China's historical large-scale afforestation practices and the program's effects on environmental restoration in arid and semi-arid regions in northern China based on a review of data from published papers, and offer recommendations to overcome the shortcomings of current environmental policy. Although afforestation is potentially an important approach for environmental restoration, current Chinese policy has not been tailored to local environmental conditions, leading to the use of inappropriate species and an overemphasis on tree and shrub planting, thereby compromising the ability to achieve environmental policy goals. China's huge investment to increase forest cover seems likely to exacerbate environmental degradation in environmentally fragile areas because it has ignored climate, pedological, hydrological, and landscape factors that would make a site unsuitable for afforestation. This has, in many cases, led to the deterioration of soil ecosystems and decreased vegetation cover, and has exacerbated water shortages. Large-scale and long-term research is urgently needed to provide information that supports a more effective and flexible environmental restoration policy.

  15. Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs.

    Science.gov (United States)

    Schaefer, Mark; Goldman, Erica; Bartuska, Ann M; Sutton-Grier, Ariana; Lubchenco, Jane

    2015-06-16

    The concept of nature as capital is gaining visibility in policies and practices in both the public and private sectors. This change is due to an improved ability to assess and value ecosystem services, as well as to a growing recognition of the potential of an ecosystem services approach to make tradeoffs in decision making more transparent, inform efficient use of resources, enhance resilience and sustainability, and avoid unintended negative consequences of policy actions. Globally, governments, financial institutions, and corporations have begun to incorporate natural capital accounting in their policies and practices. In the United States, universities, nongovernmental organizations, and federal agencies are actively collaborating to develop and apply ecosystem services concepts to further national environmental and economic objectives. Numerous federal agencies have begun incorporating these concepts into land use planning, water resources management, and preparations for, and responses to, climate change. Going forward, well-defined policy direction will be necessary to institutionalize ecosystem services approaches in federal agencies, as well as to guide intersector and interdisciplinary collaborative research and development efforts. In addition, a new generation of decision support tools are needed to further the practical application of ecosystem services principles in policymaking and commercial activities. Improved performance metrics are needed, as are mechanisms to monitor the status of ecosystem services and assess the environmental and economic impacts of policies and programs. A greater national and international financial commitment to advancing ecosystem services and natural capital accounting would likely have broad, long-term economic and environmental benefits.

  16. Physical and chemical properties of soils under some wild Pistachio (Pistacia atlantica Desf) canopies in a semi-arid ecosystem, southwestern Iran.

    Science.gov (United States)

    Owliaie, Hamidreza

    2010-05-01

    Pistacia atlantica Desf. is one of the most important wild species in Zagros forests which is of high economical and environmental value. Sustainability of these forests primarily depends on soil quality and water availability. Study the relationships between trees and soil is one of the basic factors in management and planning of forests. Hence, this study was undertaken with the objective of assessing the effect of tree species on soil physical and chemical properties in a semi-arid region (Kohgilouye Province) in the southwestern part of Iran. The experimental design was a factorial 4×2 (4 depths and 2 distances) in a randomized complete block design with six replications. Soil samples (0-20, 20-40, 40-60 and 60-80 cm depth) were taken from beneath the tree crowns and adjacent open areas. Soil samples were analyzed for physical and chemical properties. The results showed that wild pistachio canopy increased mostly organic carbon, hydraulic conductivity, total N, SP, available K+, P (olsen), EC, EDTA extractable Fe2+ and Mn2+, while bulk density, CCE and DTPA extractable Cu2+ were decreased. Pistachio canopy had no significant effect on soil texture, Zn2+ and pH.

  17. Using vegetation structure estimates derived from multi-source remote sensing to predict dynamics of a semi-arid ecosystem in the western US

    Science.gov (United States)

    Shrestha, R.; Mitchell, J. J.; Glenn, N. F.; Flores, A. N.

    2014-12-01

    The distribution of species and vegetation types across the western US are expected to shift in response to climate change. Previous studies have documented the change in fire regime and the increasing fire-invasive grass cycle occurring in the western U.S. The change in vegetation structure due to climate change and invasive species alters the fuel load, making these ecosystems vulnerable to high-severity fire. Synergistic remote sensing data, such as hyperspectral data and high-resolution lidar, can be leveraged to capture the composition and structural variability of short-statured semiarid vegetation (e.g. sagebrush, annual grasses). We use a random-forests based fusion technique to integrate multi-source airborne data (hyperspectral and LiDAR) and generate spatially-explicit estimates of vegetation composition and structure (biomass, cover, density, height, LAI) and associated uncertainty across a climate and elevation gradient in southern Idaho. The results will be used to initialize an individual-based terrestrial biosphere model (Ecosystem Demography, ED2) and estimate structural dynamics under future scenarios. This study will provide a basis for understanding feedback mechanisms related to changing climate conditions, fire regimes and patterns of non-native plant invasion. The forthcoming field and remote sensing collection campaigns are also designed for parameterizing a dryland shrub plant functional type in the ED2 model.

  18. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  19. Herbivore-plant interactions and desertification in arid lands

    Science.gov (United States)

    Arid lands around the world have experienced or are currently experiencing degradation that is known as desertification. Animal-plant interactions that have an effect on desertification are among the most important function of animals in arid ecosystems. Desertification has been defined as land de...

  20. Transfer of {sup 137}Cs in Zea mays and Phaseolus vulgaris in a semi-arid ecosystem; Transferencia de {sup 137}Cs en Zea mays y Phaseolus vulgaris en un ecosistema semiarido

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, M.L.; Segovia, N.; Gaso P, M.I.; Palacios, J.C. [Instituto Nacional de Investigaciones Nucleares, Laboratorio de Vigilancia Radiologica Ambiental, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With the objective to analyse the transference of {sup 137} Cs from soil to plants, it is realized a study in maize and bean plants in the Radioactive Waste Storage Center (CADER). This site is located in a semi-arid region with a characteristic vegetation of a sub humid temperature zone. So those plants maize and beans were cultivated in four zones near CADER during a four years period. The obtained results for 1991 to 1994 for {sup 137} Cs in soil samples for those zones showed an evident contamination in zone 1, due to a rupture of an industrial source. In 1994 the effect of decontamination was evident since the values of specific activity found in roots were around magnitude lesser than found in 1992. In spite of exhaustive studies have been reported about the transference factors for {sup 137} Cs in different agricultural foods, relatively few of them have paid attention to the interactions between cereals and leguminous associated in semiarid ecosystems. (Author)

  1. Increasing aridity threats to Himalayan alpine ecosystems? A millenial history of hydroclimate from the Tibetan plateau derived from a δ18O tree-ring network

    Science.gov (United States)

    Griessinger, J.

    2015-12-01

    The Tibetan plateau (TP) plays an important role as an elevated heat source responsible for the establishment of the Asias monsoonal systems. Besides the Indian Summer Monsoon (ISM), also the East Asian Summer Monsoon (EASM) is triggering the regional precipitation regimes during the vegetation period from May to September. Within recent decades, fundamental climate changes on the southeastern part of the TP were detected leading to substantial changes within the regional hydrological budget and affecting local ecosystems. By using a spatial network of multicentennial to 1.5 millenial year old tree-ring δ18O time-series from the southeastern part of the TP, the regional climate history as well as the late Holocene monsoonal variability will be presented. Since the main climatically sensitive periods like the Medieval Warm Period and the Little Ice Age are displayed in all chronologies, their typical hydroclimatological characteristics and impacts will be discussed especially in regard to the recent warming trend on the TP and the responsible climatic triggers. Arising from these results, regional impacts and differences of the proposed hydrological changes will be discussed. In addition, first results of a comparison between proxy-based (δ18O) and model-based (re-analysis datasets) trajectory calculations will be presented, trying to give insights in the origin and impact of air masses for the most striking last three decades on the southeastern part of the TP.

  2. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  3. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China.

    Science.gov (United States)

    Fu, Qi; Li, Bo; Hou, Ying; Bi, Xu; Zhang, Xinshi

    2017-12-31

    The sustainable use of ecosystem services (ES) can contribute to enhancing human well-being. Understanding the effects of land use and climate change on ES can provide scientific and targeted guidance for the sustainable use of ES. The objective of this study was to reveal the way in which land use and climate change influence the spatial and temporal variations of ES in the mountain-oasis-desert system (MODS). In this study, we assessed water yield, soil conservation, crop production, and sand fixation in 1990, 2000, and 2010 in Altay Prefecture, which is representative of the MODS, based on widely used biophysical models. Moreover, we analyzed the effects of different land use and climate change conditions on ES. The results show that the area of forest and bare land decreased in Altay Prefecture. In contrast, the area of grassland with low coverage and cropland increased. The climate of this area presented an overall warming-wetting trend, with warming-drying and cooling-wetting phenomena in some areas. Soil conservation in the mountain zone, water yield in the oasis zone, and sand fixation in the desert zone all decreased under the influence of land use change alone. The warming-drying trend led to decreased water yield in the oasis zone and increased wind erosion in the desert zone. Based on the results, we recommend that local governments achieve sustainable use of ES by planting grasslands with high coverage in the oasis zone, increasing investment in agricultural science and technology, and establishing protected areas in the mountain and desert zones. The methodology in our study can also be applied to other regions with a MODS structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    Science.gov (United States)

    Zhou, Qingtao; Flores, Alejandro; Glenn, Nancy F; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3-0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial

  5. The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Annual Report, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre M.; Johnson, Gary E.; Borde, Amy B.; Diefenderfer, Heida L.; Sather, Nichole K.; Seiple, Timothy E.; Serkowski, John A.

    2013-11-10

    Pacific Northwest National Laboratory (PNNL) conducted this project for the U.S. Army Corps of Engineers, Portland District (Corps). The purpose of the project is to develop a geospatial, web-accessible database (called “Oncor”) for action effectiveness and related data from monitoring and research efforts for the Columbia Estuary Ecosystem Restoration Program (CEERP). The intent is for the Oncor database to enable synthesis and evaluation, the results of which can then be applied in subsequent CEERP decision-making. This is the first annual report in what is expected to be a 3- to 4-year project, which commenced on February 14, 2012.

  6. GSD Update: Year in Review: Spotlight on 2013 research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2014-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  7. GSD Update: Year in Review: Spotlight on 2015 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah. Finch

    2016-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research...

  8. GSD Update: Year in Review: Spotlight on 2017 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2018-01-01

    In this issue of the GSD Update, we feature selected studies of the RMRS Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that focus on the theme of fire. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities and goals of the USDA Forest...

  9. Ecological restoration of groundwater-dependent vegetation in the arid Ejina Delta: evidences from satellite evapotranspiration

    Science.gov (United States)

    Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao

    2017-04-01

    The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.

  10. Performance and prospects of payments for ecosystem services programs: evidence from China.

    Science.gov (United States)

    Yang, Wu; Liu, Wei; Viña, Andrés; Luo, Junyan; He, Guangming; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2013-09-30

    Systematic evaluation of the environmental and socioeconomic effects of Payments for Ecosystem Services (PES) programs is crucial for guiding policy design and implementation. We evaluated the performance of the Natural Forest Conservation Program (NFCP), a national PES program of China, in the Wolong Nature Reserve for giant pandas. The environmental effects of the NFCP were evaluated through a historical trend (1965-2001) analysis of forest cover to estimate a counter-factual (i.e., without-PES) forest cover baseline for 2007. The socioeconomic effects of the NFCP were evaluated using data collected through household interviews carried out before and after NFCP implementation in 2001. Our results suggest that the NFCP was not only significantly associated with increases in forest cover, but also had both positive (e.g., labor reduction for fuelwood collection) and negative (e.g., economic losses due to crop raiding by wildlife) effects on local households. Results from this study emphasize the importance of integrating local conditions and understanding underlying mechanisms to enhance the performance of PES programs. Our findings are useful for the design and implementation of successful conservation policies not only in our study area but also in similar places around the world. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

    2012-05-31

    The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

  12. The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates

    Energy Technology Data Exchange (ETDEWEB)

    Sather, Nichole K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serkowski, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Andre M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    This Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates is designed to support the Oncor geodatabase for the Columbia Estuary Ecosystem Restoration Program (CEERP). The following data categories are covered: water-surface elevation and temperature, sediment accretion rate, photo points, herbaceous wetland vegetation cover, tree plots and site summaries, fish catch and density, fish size, fish diet, fish prey, and Chinook salmon genetic stock identification. The handbook is intended for use by scientists collecting monitoring and research data for the CEERP. The ultimate goal of Oncor is to provide quality, easily accessible, geospatial data for synthesis and evaluation of the collective performance of CEERP ecosystem restoration actions at a program scale.

  13. Developing and governing entrepreneurial ecosystems:The structure of entrepreneurial support programs in Edinburgh, Scotland

    OpenAIRE

    Spigel, Benjamin

    2016-01-01

    Entrepreneurial ecosystems have emerged a popular concept within entrepreneurship policy and practitioner communities. Entrepreneurial ecosystems are seen as a regional economic development strategy based around creating supportive environments that foster innovative startups. However, existing research on entrepreneurial ecosystems has been largely atheoretical and has not yet explored how they influence the entrepreneurship process. This paper critically examines the relationships between e...

  14. Columbia Estuary Ecosystem Restoration Program: Restoration Design Challenges for Topographic Mounds, Channel Outlets, and Reed Canarygrass

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinks, Ian A. [Columbia Land Trust, Vancouver, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    The purpose of this study was to provide science-based information to practitioners and managers of restoration projects in the Columbia Estuary Ecosystem Restoration Program (CEERP) regarding aspects of restoration techniques that currently pose known challenges and uncertainties. The CEERP is a program of the Bonneville Power Administration (BPA) and the U.S. Army Corps of Engineers (Corps), Portland District, in collaboration with the National Marine Fisheries Service and five estuary sponsors implementing restoration. The estuary sponsors are Columbia Land Trust, Columbia River Estuary Study Taskforce, Cowlitz Tribe, Lower Columbia Estuary Partnership, and Washington Department of Fish and Wildlife. The scope of the research conducted during federal fiscal year 2015 included three aspects of hydrologic reconnection that were selected based on available scientific information and feedback from restoration practitioners during project reviews: the design of mounds (also called hummocks, peninsulas, or berms); the control of reed canarygrass (Phalaris arundinaceae); and aspects of channel network design related to habitat connectivity for juvenile salmonids.

  15. Evaluation of the conservation program of the paramo ecosystem and its socio-environmental effects in a rural commune

    Directory of Open Access Journals (Sweden)

    Mónica Virginia Tapia Zúñiga

    2017-12-01

    Full Text Available The paramo Casaiches Arenal, shares its resources with the community of the same name. Although conservation has been carried out in Ecuador on a voluntary basis, this has not been enough for the productive and population requirements, which has caused the loss of characteristics typical of the páramo. In this situation, the world community has joined efforts to mitigate the anthropogenic effects on this ecosystem. In 2008, the Association of Agricultural Workers Casaiches Arenal entered the forest conservation program and put 80 ha of páramo under this system. The knowledge of the socio-environmental effects of the program will allow us to answer your questioning. To know aspects of socio-economic development in the community under study, the empirical method of the survey was used, which investigated socioeconomic aspects in the area. As an independent variable, the paramos conservation incentive program was conceived and as dependent variables, social development; economic development and the conservation of the páramo ecosystem. To assess the environmental impact from the adhesion as beneficiaries, a cause-effect matrix was applied, as a method of identification and assessment with qualitative and quantitative results. It is concluded that the national policies on which the conservation program is based decrease the pressures on the paramo ecosystem, as long as it is complemented with on-site actions that allow for an efficient and systematic intervention in the region.

  16. Modelling annual evapotranspiration in a semi-arid, African savanna ...

    African Journals Online (AJOL)

    Accurately measuring evapotranspiration (ET) is essential if we are to derive reasonable estimates of production and water use for semi-arid savannas. Estimates of ET are also important in defining the health of an ecosystem and the quantity of water used by the vegetation when preparing a catchment-scale water balance.

  17. Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

    Directory of Open Access Journals (Sweden)

    I. Ilie

    2017-09-01

    Full Text Available Accurate model representation of land–atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions. Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall

  18. Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

    Science.gov (United States)

    Ilie, Iulia; Dittrich, Peter; Carvalhais, Nuno; Jung, Martin; Heinemeyer, Andreas; Migliavacca, Mirco; Morison, James I. L.; Sippel, Sebastian; Subke, Jens-Arne; Wilkinson, Matthew; Mahecha, Miguel D.

    2017-09-01

    Accurate model representation of land-atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising

  19. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  20. Actinobacteria from arid and desert habitats: diversity and biological activity

    Directory of Open Access Journals (Sweden)

    Joachim eWink

    2016-01-01

    Full Text Available Abstract The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability.At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS and nonribosomal peptide synthetase (NRPS genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria

  1. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity.

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2015-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  2. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  3. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India.

    Science.gov (United States)

    Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C

    2018-01-15

    Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio

  4. Ecosystem Model Performance at Wetlands: Results from the North American Carbon Program Site Synthesis

    Science.gov (United States)

    Sulman, B. N.; Desai, A. R.; Schroeder, N. M.; NACP Site Synthesis Participants

    2011-12-01

    Northern peatlands contain a significant fraction of the global carbon pool, and their responses to hydrological change are likely to be important factors in future carbon cycle-climate feedbacks. Global-scale carbon cycle modeling studies typically use general ecosystem models with coarse spatial resolution, often without peatland-specific processes. Here, seven ecosystem models were used to simulate CO2 fluxes at three field sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, from 2002-2006. Flux residuals (simulated - observed) were positively correlated with measured water table for both gross ecosystem productivity (GEP) and ecosystem respiration (ER) at the two fen sites for all models, and were positively correlated with water table at the bog site for the majority of models. Modeled diurnal cycles at fen sites agreed well with eddy covariance measurements overall. Eddy covariance GEP and ER were higher during dry periods than during wet periods, while model results predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP had no significant dependence on water table, while models predicted higher GEP during wet periods. All models significantly over-estimated GEP at the bog site, and all but one over-estimated ER at the bog site. Carbon cycle models in peatland-rich regions could be improved by incorporating better models or measurements of hydrology and by inhibiting GEP and ER rates under saturated conditions. Bogs and fens likely require distinct treatments in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  5. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    NARCIS (Netherlands)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, W.K.; Prinzing, A.; Dong, Ming; Cornelissen, J.H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such

  6. Rural Household Preferences for Active Participation in "Payment for Ecosystem Service" Programs: A Case in the Miyun Reservoir Catchment, China.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available Many payment for ecosystem services (PES programs, such as the Slope Land Conversion Program (SLCP, are passive and require full participation by impacted households. In contrast, this study considers the alternative of "active and incomplete" participation in PES programs, in which participants are not obliged to contract their own land, and have the right to select into the program or not. This type of program has been popular over the last decade in China; however, there have been few studies on the characteristics of willingness to participate and implementation. As such, this paper uses the Choice Experiment (CE method to explore ways for inducing effective program participation, by analyzing the effects of different regime attributes. The case study used to analyze participation utility was the Jing-Ji Afforestation Program for Ecological and Water Protection (JAPEWP, a typical active-participation forestry PES program, and a key source of water near Beijing in the Miyun Reservoir Catchment (MRC. Analyzing rural household survey data indicated that the program faces a variety of challenges, including long-term maintenance, implementation performance, cost-effectiveness, and monitoring approaches. There are also challenges with one-size-fits-all payment strategies, due to ineffective program participation or imperfect implementation regimes. In response, this study proposes several policies, including providing secure and complete land tenure to the participants, creating more local off-farm employment opportunities, designing performance-based monitoring systems that are integrated with financial incentives, applying differentiated payment strategies, providing capacity building to support forestation activities, and establishing a comprehensive implementation regime that would address these challenges. These policy conclusions provide valuable lessons for other active-participation PES programs as well.

  7. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    Science.gov (United States)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  8. Rainwater harvesting in arid and semi-arid zones

    NARCIS (Netherlands)

    Boers, T.M.

    1994-01-01

    In arid and semi-arid regions, the scarcity of water can be alleviated by rainwater harvesting, which is defined as a method of inducing, collecting, storing, and conserving local surface runoff for agriculture. Rainwater harvesting can be applied with different

  9. Toward More Successful Biomedical Informatics Education Programs and Ecosystems in the Arab World.

    Science.gov (United States)

    Wageih, Mohamed A; Marcano-Cedeño, Alexis; Gómez, Enrique J; Mantas, John

    2015-01-01

    Biomedical & Health Informatics (BMHI) is relatively new in Arab States. However, several programs/ tracks are running, with high promises of expansion. Programs are evaluated by national authorities, not by a specialized body/association. This does not always mean that the program is of an international standard. One of the possible ways of ensuring the quality of these programs is to be evaluated by international agencies. The International Medical Informatics Association (IMIA) has the expertise in the evaluation BMHI education programs. Accredited programs staffs will have the opportunities for Internationalization and to be engaged with other top-notch organizations, which will have great impacts on the overall implementations of the BMHI in the Arab World. The goal of this document is to show to Arab Universities (pilot: Egypt) how to apply for IMIA Accreditation for their programs.

  10. Application of Isotope techniques in the arid and semi-arid zone hydrology

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Louvat, D.; Aranyossy, J.F.

    1993-01-01

    The paper presents a brief introduction on the scientific background of isotope hydrology,and after, explains the applications of environment isotope techniques in groundwater hydrology of the arid and semi-arid zones. It includes the study of aquifer recharge and discharge, identification of palaeorecharge, groundwater movement and age in unconfined and confined aquifers, and interconnections between aquifers. The contribution of isotopes is highlighted with many examples of field case studies, with emphasis on studies carried out with IAEA support. Finally, a short description of IAEA program on isotope hydrology is given, with a list of regional projects supported through the IAEA Technical Cooperation program, and of Coordinated Research Programs. The latter give the modern research trends in isotope application to hydrology and hydrosphere environmental studies. (author). 2 tabs., 25 figs., 69 refs

  11. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  12. Partner-built ecosystem science - The National Ocean Partnership Program as a builder of EBM Tools and Data

    Science.gov (United States)

    Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.

    2016-12-01

    The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System

  13. Aquaculture and mangrove ecosys of temproductivity in arid and semi-arid Balochistan coastal environments

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2005-01-01

    A survey of coastal shrimp-pond operations, and the structure and functioning of coastal mangrove forest ecosystems with particular reference to Ecuador, indicates that certain physical parameters may be good predictors of key biological processes. The most important factors are those associated with the regional water balance, tidal and surface water circulation patterns, and the physicochemical properties of the underlying soils. One important conclusion to emerge from the analyses is that at both regional and local levels, well-developed and productive mangrove forest areas often represent the least desirable sites for the construction and operation of commercial shrimp ponds. In certain regards semi-arid and arid coastal environments where mangroves are poorly developed, shrimp ponds that are constructed on barren mud flats and inland salt pans appear to have the potential to produce higher yields of shrimp with fewer management problems and at a relatively lower production cost. The data and research results from coast of Baluchistan and elsewhere are briefly summarized to suggest why productive mangrove ecosystems to not make the best areas in which to obtain maximum shrimp-pond yields. (author)

  14. Payments for Ecosystem Services

    DEFF Research Database (Denmark)

    Chan, Kai M.A; Anderson, Emily K.; Chapman, Mollie

    2017-01-01

    Payments for ecosystem services (PES) programs are one prominent strategy to address economic externalities of resource extraction and commodity production, improving both social and ecological outcomes. But do PES and related incentive programs achieve that lofty goal? Along with considerable en...... sustainable relationships with nature, conserving and restoring ecosystems and their benefits for people now and in the future....

  15. VOCs in Arid soils: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE's Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40

  16. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    Science.gov (United States)

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  17. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  18. Assessing the effects of USDA conservation programs on ecosystem services provided by wetlands

    Science.gov (United States)

    The Conservation Effects Assessment Project (CEAP) is led by the U.S. Department of Agriculture (USDA) in an effort to quantify the environmental effects of conservation programs and practices on privately owned agricultural landscapes across the United States. CEAP’s approach includes application ...

  19. 'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems

    Science.gov (United States)

    Francisco Rodriguez y Silva; Armando Gonzalez-Caban

    2010-01-01

    Historically, in Spain and most European countries, forest fire budgets have never been subjected to an objective and rigorous economic analysis indicative of the returns on investments in fire management protection programs. Thus far we have witnessed expansive growth of costs without any investment planning. New economic realities and more focussed oversight by...

  20. Estimating annual rainfall threshold for establishment of tree species in water-limited ecosystems using tree-ring data

    NARCIS (Netherlands)

    Lopez, B.C.; Holmgren, M.; Sabate, S.; Gracia, C.A.

    2008-01-01

    In arid and semi-arid ecosystems, water availability is discontinuous, highly variable, and characterized by discrete pulse events separated by long periods of limited resource availability. Plant recruitment in these ecosystems is also episodic and dependent on the water available during and after

  1. The National Heart, Lung, and Blood Institute Small Business Program: A Comprehensive Ecosystem for Biomedical Product Development.

    Science.gov (United States)

    Marek, Kurt W

    2016-12-01

    Small companies working to develop products in the cardiovascular space face numerous challenges, from regulatory, intellectual property, and reimbursement barriers to securing funds to keep the lights on and reach the next development milestone. Most small companies that spin out from universities have the scientific knowledge, but product development expertise and business acumen are also needed to be successful. Other challenges include reduced interest in early stage technologies (Pharma & Biotech 2015 in Review, EP Vantage) and limited deal flow for cardiovascular products (Gormley B., Wall Street Journal, September 15, 2014). The NHLBI small business program is a comprehensive ecosystem designed to address these critical challenges and to provide resources and expertise to assist early stage companies developing cardiovascular and other products within the institute's mission. This article describes steps that NHLBI has taken to enhance our small business program to more effectively translate basic discoveries into commercial products to benefit patients and public health, including enhancing internal expertise and developing non-financial resources to assist small businesses as they develop their products and seek private sector investment and partnership.

  2. RESTORATION PLUS: A COLLABORATIVE ENVIRONMENTAL PROTECTION AGENCY RESEARCH PROGRAM TO DEVELOP AND EVALUATE ECOSYSTEM RESTORATION AND MANAGEMENT OPTIONS TO ACHIEVE ECOLOGICALLY AND ECONOMICALLY SUSTAINABLE SOLUTIONS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (U.S. EPA) is evaluating ecosystem restoration and management techniques to ensure they create sustainable solutions for degraded watersheds. The ORD/NRMRL initiated the Restoration Plus (RePlus) program in 2002, which emphasizes collabora...

  3. Incubation Programs from Public Research Organizations as Catalysts for Open Business Ecosystems

    Directory of Open Access Journals (Sweden)

    Sven H. De Cleyn

    2013-04-01

    Full Text Available In many economies, new knowledge and technology creation and transfer towards local entities and new startups have been recognized as catalysts for industry renewal and tools for safeguarding (or even enhancing a region’s employment and prosperity. This article presents a case study of iMinds, a network organization in Flanders, Belgium. The organization fosters interdisciplinary research in information and communication technologies (ICT and strongly engages in transferring these new technologies towards local actors and in creating and supporting new startups. iMinds’ incubation and entrepreneurship programs act as catalysts for open innovation and company startup activities in the Flemish region.

  4. Arid oil-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs

    Science.gov (United States)

    1. Long-lived, drought-tolerant shrubs are dominant components of many arid ecosystems, and shrubs provide multiple ecosystem services (e.g., soil stabilization, herbaceous plant facilitation, carbon storage and wildlife habitat). On denuded sites, shrub restoration is hindered by abiotic (erosion ...

  5. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  6. Gardens on the Arid Climate

    Science.gov (United States)

    Eka Saputra, Weldy

    2017-12-01

    Bahrain is located in the climate of the arid zone which rainfall is low and irregular. This paper discusses the approaches which response to the local context that has been implemented by the government of Bahrain to sustain the quality of the public garden in the arid climate, turning to green. Generally, the approach is an improvement in the central treatment of waste water system plant that used to irrigate the landscaping, agriculture as well as for industry use. These approaches are not the only technologically, but also involves the participation of community to achieve sustainable garden in this country.

  7. Sustainability of Smallholder Agriculture in Semi-Arid Areas under Land Set-aside Programs: A Case Study from China’s Loess Plateau

    Directory of Open Access Journals (Sweden)

    Qirui Li

    2016-04-01

    Full Text Available This article analyzes agricultural sustainability in the context of land degradation, rural poverty and social inequality, taking China’s Loess Hills as an example. The analysis attempts to understand the multi-dimensionality of sustainability at the farm level and its relationship with physical-socio-economic-infrastructural-technological framework conditions in the context of the land set-aside program viz. the Grain for Green Project (GGP. We developed composite indices of sustainability and its environmental, economic and social dimensions using a principal component analysis (PCA-based weighting scheme. Regression analyses were conducted to examine the relationship between the estimated sustainability indicators and the variables representing framework conditions of knowledge, demographics, resource endowment and production techniques. The stated analysis was conducted on a dataset collected by means of household surveys in 2014 in valleys and flood plain areas in Yanhe Township. Findings reveal hidden correlations among the indicators of environmental, economic, and social pillars of sustainability. The ratio of land under the conservation program to actual farmland emerged as a key determinant of overall agricultural sustainability and its social dimension, which reaches the maximum when the ratio is around 0.56 and 0.64, respectively. The results also show that there is need to balance off-farm and on-farm income diversification as well as highlight the role of women in ensuring the sustainability of farming households. The core achievement of the article is the definition of the thresholds for the land set-aside program and the identification of major determinants of agricultural sustainability in the rural Chinese context in particular and in rural farming communities in general.

  8. ARID1B is a specific vulnerability in ARID1A-mutant cancers.

    Science.gov (United States)

    Helming, Katherine C; Wang, Xiaofeng; Wilson, Boris G; Vazquez, Francisca; Haswell, Jeffrey R; Manchester, Haley E; Kim, Youngha; Kryukov, Gregory V; Ghandi, Mahmoud; Aguirre, Andrew J; Jagani, Zainab; Wang, Zhong; Garraway, Levi A; Hahn, William C; Roberts, Charles W M

    2014-03-01

    Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.

  9. Soil fertility management strategies and practices by smallholder farmers in semi-arid areas of Zimbabwe

    NARCIS (Netherlands)

    Mapfumo, P.; Giller, K.E.

    2001-01-01

    Indigenous soil fertility management strategies in semi-arid Communal Areas of Zimbabwe have largely been driven by an extensive use of resources. The shrinking of common property resources (CPRs) due to expansion of cultivated lands, the general loss of productivity in natural ecosystems (e.g.,

  10. Climate change impacts on freshwater wetland hydrology and vegetation cover cycling along a regional aridity gradient

    Science.gov (United States)

    Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients, impacting the hydrology, productivity, diversity, and ecosystem goods and services from freshwater wetlands, where the water balance is tightly cou...

  11. An overview of the floristic richness and conservation of the arid regions of northern Mexico

    Science.gov (United States)

    Laura Arriaga; Elizabeth Moreno; Claudia Aguilar

    2005-01-01

    The arid and semiarid regions of Northern Mexico harbor diverse, highly endemic, and geographically complex ecosystems. These share topographic and biogeographic similarities that can be used as an analytical framework to assess biodiversity patterns. This study presents the current status of vascular plant inventories for Mexican Aridamerica. The spatial distribution...

  12. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  13. Evaluation of methods for delineating riparian zones in a semi-arid montane watershed

    Science.gov (United States)

    Jessica A. Salo; David M. Theobald; Thomas C. Brown

    2016-01-01

    Riparian zones in semi-arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high-resolution imagery and terrain data...

  14. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Jeffries, Thomas C; Singh, Brajesh K

    2018-04-02

    Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Flower diversity and bee reproduction in an arid ecosystem

    Directory of Open Access Journals (Sweden)

    Jimena Dorado

    2016-07-01

    Full Text Available Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site, and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative—instead of positive—effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

  16. Flower diversity and bee reproduction in an arid ecosystem.

    Science.gov (United States)

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

  17. Flower diversity and bee reproduction in an arid ecosystem

    OpenAIRE

    Dorado, Jimena; V?zquez, Diego P.

    2016-01-01

    Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occ...

  18. Self-organization of vegetation in arid ecosystems

    NARCIS (Netherlands)

    Rietkerk, M.G.; Boerlijst, M.; Langevelde, F. van; HillerisLambers, R.; Koppel, J. van de; Kumar, L.; Prins, H.H.T.; Roos, A.M. de

    2002-01-01

    Scientists are still searching for possible unifying mechanisms to explain this range of spatial patterns (Tongway and Ludwig 2001), and an important question of this research is whether this range is the result of preexisting environmental heterogeneity, the result of spatial

  19. Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique.

    Science.gov (United States)

    Alslaibi, Tamer M; Kishawi, Yasser; Abunada, Ziyad

    2017-05-01

    The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0-2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl - and NO 3 - levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.

  20. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Directory of Open Access Journals (Sweden)

    Yizhao Chen

    Full Text Available Water-use efficiency (WUE, defined as the ratio of net primary productivity (NPP to evapotranspiration (ET, is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS, to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES. The Aridity Index (AI was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH with 0.88 gC mm-1 and the lowest was in arid sub-region (AR with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  1. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Science.gov (United States)

    Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel

    2017-01-01

    Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  2. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  3. The Effect of Payments for Ecosystem Services Programs on the Relationship of Livelihood Capital and Livelihood Strategy among Rural Communities in Northwestern China

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-07-01

    Full Text Available The security and quality of livelihoods for peasant households is the core issue for rural areas in China. A stable livelihood contributes to the harmonious development of related polices, poverty eradication and sustainable use of resources. In Qinghe County, located in the extremely arid zone of Northwest China, 238 validated surveys were conducted. The analysis focuses on the importance of livelihood capitals for the selection of on- or off-farm livelihood strategies among beneficiaries of different kinds of ecological compensation packages. The goal is to see if different groups of beneficiaries are better able to pursue off-farm livelihoods activity, which reduces pressure on the resource base, and whether specific capitals are especially effective in helping households pursue off-farm livelihoods, which benefits their well-being. The findings show that proportionally more herdsmen (who participated in a pastureland rehabilitation program were able to pursue off-farm livelihoods than farmers (who participated in the cultivated land reforestation program, and especially agro-pastoralists (who participated in both programs. Further, models of livelihood strategy show that human and financial capitals facilitate off-farm livelihoods, while productive capital tends to lead to on-farm livelihoods. These findings indicate that there is no single determinant of livelihood strategy, and future policies must consciously differentiate among beneficiaries to reach the desired result.

  4. Distribution of greenhouse gases in hyper-arid and arid areas of northern Chile and the contribution of the high altitude wetland microbiome (Salar de Huasco, Chile).

    Science.gov (United States)

    Molina, Verónica; Eissler, Yoanna; Cornejo, Marcela; Galand, Pierre E; Dorador, Cristina; Hengst, Martha; Fernandez, Camila; Francois, Jean Pierre

    2018-04-06

    Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH 4 and CO 2 , particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (> 40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N 2 O and a source for CH 4 and CO 2 .

  5. Should we plant trees to offset greenhouse gas emissions in semi-arid environments?

    Science.gov (United States)

    Pataki, D. E.; Pincetl, S.; Gillespie, T. W.; Li, W.; McCarthy, H. R.; Saatchi, S.; Saphores, J.

    2008-12-01

    Urban tree planting programs have been gaining popularity in the United States. Urban trees have been associated with a variety of environmental benefits, including improvements in air quality, mitigation of urban heat island effects, reductions in stormwater runoff, and more recently, carbon sequestration. There are also other potential aesthetic and economic benefits of urban forests, which have been shown to affect real estate values. However, there may also be significant economic and environmental costs of planting and maintaining trees in urban areas, particularly in semi-arid environments where trees are not native and require irrigation and fertilization. We are conducting an analysis of the Million Tree Initiative in the city of Los Angeles, which has committed to a major tree planting program. Los Angeles currently has a low tree canopy cover relative to other cities, particularly in its low income neighborhoods. We are evaluating the decision-making processes associated with the new tree planting program, its perceived benefits, and its actual benefits based on measurements of plant and ecosystem processes such as transpiration, photosynthesis, and water use efficiency; remote sensing analyses of tree cover and surface temperature; and economic analyses. We have found great variability in the interpretation of the program by its various participants, but also significant institutional learning as the program has evolved. Our datasets have challenged some of the common assumptions of the program, for example, the assumption that native species use less water than imported species and are therefore more environmentally beneficial in terms of water resources. We have also found significant impacts of the urban forest on air temperature, which may reduce energy use during the summer due to reductions in air conditioning. This is likely to be a larger effect of urban trees on greenhouse gas emissions than direct carbon sequestration alone, which is a very

  6. Factors Affecting Adoption of Agroforestry Farming System as a Mean for Sustainable Agricultural Development and Environment Conservation in Arid Areas of Northern Kordofan State, Sudan

    International Nuclear Information System (INIS)

    Muneer, Siddig El Tayeb

    2008-01-01

    Arid and semi-arid areas represent about 60 percent of Sudan total area. One of the main environmental problems in the arid and semi-arid areas is diffraction's which reduces the natural potential of the already fragile ecosystems and renders rural people vulnerable to food shortages, the vagaries of weather and natural disasters. Deforestation which is considered one of the most critical environmental problems facing the world is one of the main causes of diffraction's. Between the years 1990 and 2005 Sudan lost about 8.8 millions hectares of forests, which represents 11%, of its forests mainly because of subsistence activities such as overgrazing, trees cutting and expansion of traditional agriculture. One of the areas that are very much affected by diffraction's is Northern Kordofan State. To rescue the situation the government of Sudan, with assistance from the United Nations Development Program (UNDP) and some donors, implemented a project that aimed primarily at restocking Acacia Senegal trees in Northern Kordofan State. This study is intended to explore the factors that caused differential rate of farmers' adoption rate of the Acacia Senegal based agroforestry farming system. The study data was collected from a clustered random sample of 300 farmers, through face to face interviews using a questionnaire that was pre-tested and validated. Frequency distribution and multiple regression analysis were used to analyze the data. It has been found that farmers' adoption of agroforestry farming system in Northern Kordofan state was significantly affected by the farmers' level of formal education, contact with extension agents, level of environmental awareness, cosmopoliteness, total area of owned land and extent of social participation. (author)

  7. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts.

    Science.gov (United States)

    Good, Stephen P; Moore, Georgianne W; Miralles, Diego G

    2017-12-01

    Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T ) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T /P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P ) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T /P occurs at an aridity index (defined as E P /P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T /P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.

  8. Analysis and evaluation of tillage on an alfisol in a semi-arid tropical region of India

    NARCIS (Netherlands)

    Klaij, M.C.

    1983-01-01

    Tillage field experiments were conducted on Alfisols in a semi-arid tropical environment in India. The research was conducted within the framework of the Farming Systems Research Program of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

    To put the

  9. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  10. Ecosystem Jenga!

    Science.gov (United States)

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  11. Improving satellite-based post-fire evapotranspiration estimates in semi-arid regions

    Science.gov (United States)

    Poon, P.; Kinoshita, A. M.

    2017-12-01

    Climate change and anthropogenic factors contribute to the increased frequency, duration, and size of wildfires, which can alter ecosystem and hydrological processes. The loss of vegetation canopy and ground cover reduces interception and alters evapotranspiration (ET) dynamics in riparian areas, which can impact rainfall-runoff partitioning. Previous research evaluated the spatial and temporal trends of ET based on burn severity and observed an annual decrease of 120 mm on average for three years after fire. Building upon these results, this research focuses on the Coyote Fire in San Diego, California (USA), which burned a total of 76 km2 in 2003 to calibrate and improve satellite-based ET estimates in semi-arid regions affected by wildfire. The current work utilizes satellite-based products and techniques such as the Google Earth Engine Application programming interface (API). Various ET models (ie. Operational Simplified Surface Energy Balance Model (SSEBop)) are compared to the latent heat flux from two AmeriFlux eddy covariance towers, Sky Oaks Young (US-SO3), and Old Stand (US-SO2), from 2000 - 2015. The Old Stand tower has a low burn severity and the Young Stand tower has a moderate to high burn severity. Both towers are used to validate spatial ET estimates. Furthermore, variables and indices, such as Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) are utilized to evaluate satellite-based ET through a multivariate statistical analysis at both sites. This point-scale study will able to improve ET estimates in spatially diverse regions. Results from this research will contribute to the development of a post-wildfire ET model for semi-arid regions. Accurate estimates of post-fire ET will provide a better representation of vegetation and hydrologic recovery, which can be used to improve hydrologic models and predictions.

  12. Remedial action technology - arid

    International Nuclear Information System (INIS)

    Hakonson, T.E.; DePoorter, G.L.; Nyhan, J.W.; Perkins, B.A.; Lane, L.J.

    1982-01-01

    A summary is presented of the low-level waste remedial action program at Los Alamos. The experimental design and progress is described for the experiments on second generation intrusion barriers, subsidence effects on SLB components, moisture cycling effects on chemical transport, and erosion control methodologies. The soil moisture data from the bio-intrusion and moisture cycling experiments both demonstrate the overwhelming importance of vegetation in minimizing infiltration of water through trench covers and backfill. Evaporation, as a water loss component in trench covers, is only effective in reducing soil moisture within 40 cm of the trench cover surface. Moisture infiltrating past the zone of evaporation in unvegetated or poorly vegetated trench covers is in storage and accumulates until drainage out of the soil profile occurs. Judicious selection of vegetation species for revegetating a low-level waste site may prevent infiltration of moisture into the trench and, when coupled with other design features (i.e. trench cover slope, tilling and seeding practice), may greatly reduce problems with erosion. Standard US Department of Agriculture erosion plots, when coupled with a state-of-the-art water balance and erosion model (CREAMS) promises to be highly useful in screening proposed remedial action cover designs for low-level waste sites. The erosion plot configuration allows for complete accounting of the water balance in a soil profile. This feature enables the user to optimize cover designs to minimize erosion and infiltration of water into the trench

  13. Consequences of cool-season drought induced plant mortality to Chihuahuan Desert grassland ecosystem and soil respiration dynamics

    Science.gov (United States)

    Global climate change is predicted to increase the severity and frequency of cool-season drought across the arid Southwest US. We quantified net ecosystem carbon dioxide exchange (NEE), ecosystem respiration (Reco), and gross ecosystem photosynthesis (GEP) in response to interannual seasonal precip...

  14. The Soil Program of the Restoration Seedbank Initiative: addressing knowledge gaps in degraded soils for use in dryland restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Bateman, Amber; Erickson, Todd E.; Turner, Shane; Merritt, David J.

    2017-04-01

    Global environmental changes and other anthropogenic impacts are rapidly transforming the structure and functioning of ecosystems worldwide. These changes are leading to land degradation with an estimated 25 % of the global land surface being affected. Landscape-scale restoration of these degraded ecosystems has therefore been recognised globally as an international priority. In the resource-rich biodiverse semi-arid Pilbara region of north-west Western Australia hundreds of thousands of hectares are disturbed due to established and emerging iron-ore mine operations. At this scale, the need to develop cost-effective large-scale solutions to restore these landscapes becomes imperative to preserve biodiversity and achieve functionality and sustainability of these ecosystems. The Restoration Seedbank Initiative (RSB) (http://www.plants.uwa.edu.au/ research/restoration-seedbank-initiative) is a five-year multidisciplinary research project that aims to build knowledge and design strategies to restore mine-impacted landscapes in the Pilbara and other arid and semi-arid landscapes worldwide (Kildiseheva et al., 2016). The RSB comprises four research programs that focus on seedbank management and curation, seed storage, seed enhancement, and the use of alternative soil substrates (soil or growing medium program) respectively. These multi-disciplinary programs address the significant challenges of landscape scale restoration in arid systems. In the soil program we follow an integrated approach that includes the characterization of undisturbed ecosystems, assessment of restored soils with the use of soil quality indicators, and design of alternative soil substrates to support the establishment of native plant communities. A series of glasshouse studies and field trials have been conducted in the last three years to advance our knowledge on soil limitations and to provide solutions to effectively overcome these challenges in arid ecosystem restoration. These studies include

  15. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Science.gov (United States)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  16. The tides and inflows in the mangroves of the Everglades (TIME) interdisciplinary project of the South Florida Ecosystem Program

    Science.gov (United States)

    Schaffranek, R.W.

    2001-01-01

    The U. S. Geological Survey (USGS) has a prominent role in the Federal Government's comprehensive restoration plan for the south Florida ecosystem encompassing the Everglades-the largest remaining subtropical wilderness in the continental United States. USGS scientists, in collaboration with researchers from the National Park Service (NPS), other governmental agencies, and academia, are providing scientific information to land and resource managers for planning, executing, and evaluating restoration actions. One major thrust of the restoration effort is to restore the natural functioning of the ecosystem to predrainage conditions, an objective that requires knowledge of the hydrologic and hydraulic factors that affect the flow of water. A vast network of interlaced canals, rimmed with levees and fitted with hydraulic control structures, and highways, built on elevated embankments lined by borrow ditches and undercut by culverts, now act to control and direct the flow of water through the shallow low-gradient wetlands. As water flows south from Lake Okeechobee past the city of Miami and through Everglades National Park (ENP), it is diminished by canal diversions, augmented by seasonably variable precipitation, and depleted through evapotranspiration. Along its path, the shallow flowing water, referred to as sheet flow, interacts with surficial aquifers and is subject to the resistance effects of variably dense vegetation and forcing effects of winds. New scientific investigations are providing additional insight into the hydrologic and hydraulic processes governing the flow, and recent data-collection efforts are supplying more comprehensive data describing the flow behavior, both of which are benefiting development of improved numerical models to evaluate and restore the natural functioning of the ecosystem.

  17. Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.; Spigel, Ben

    2016-01-01

    This paper reviews and discusses the emergent entrepreneurial ecosystem approach. Entrepreneurial ecosystems are defined as a set of interdependent actors and factors coordinated in such a way that they enable productive entrepreneurship within a particular territory. The purpose of this paper is to

  18. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds.

    OpenAIRE

    Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B.

    2015-01-01

    Urbanization alters watershed ecosystem functioning, including nutrient budgets and processes of nutrient retention. It is unknown, however, how variation in stormwater infrastructure design affects the delivery of water and materials from urban watersheds. In this study, we asked: (1) How does stormwater infrastructure design vary over time and space in an arid city (Phoenix, Arizona, USA)?, and (2) How does variation in infrastructure design affect fluxes of dissolved nitrogen (N), phosphor...

  19. Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    DEFF Research Database (Denmark)

    Schumacher, Paul; Mislimshoeva, Bunafsha; Brenning, Alexander

    2016-01-01

    to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically...... red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data...

  20. WIRE project- Soil water repellence in biodiverse semi arid environments: new insights and implications for ecological restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio

    2017-04-01

    Background Soil water repellency (SWR) can have a critical effect on the restoration of disturbed ecosystems causing poor plant establishment and promoting erosion processes. Although SWR has been reported in most continents of the world for different soil types, climate conditions and land uses, there are still many research gaps in the knowledge of its causes and controlling factors (Doerr et al.,2000; Jordan et al., 2013), particularly in Mediterranean arid semi arid environments which are largely affected by this phenomenon. The WIRE project aims to investigate SWR in soils under different vegetation types of dominant biodiverse ecosystems of Western Australia (WA), e.g. hummock grasslands and Banksia woodlands, as well as characterizing organic compounds that induce hydrophobicity in these soils. Banksia woodlands (BW) are of particular interest in this project. These are iconic ecosystems of WA composed by an overstorey dominated by Proteaceae that are threatened by sand mining activities and urban expansion. Conservation and restoration of these woodlands are critical but despite considerable efforts to restore these areas, the success of current rehabilitation programs is poor due to the high sensitivity of the ecosystem to drought stress and the disruption of water dynamics in mature BW soils that result in low seedling survival rates (5-30%). The main objectives of this collaborative research are: i) to identify SWR intensity and severity under different vegetation types and evaluate controlling factors in both hummock grasslands and BW (ii) to characterize hydrophobic compounds in soils using analytical pyrolysis techniques and iii) to investigate the impact of SWR on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Methods In a series of field trials and experimental studies, we measured SWR of soil samples under lab conditions in oven-dry samples (48 h, 105 °C) that were previously collected under

  1. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Science.gov (United States)

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  2. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  3. China’s Conversion of Cropland to Forest Program for Household Delivery of Ecosystem Services: How Important is a Local Implementation Regime to Survival Rate Outcomes?

    Directory of Open Access Journals (Sweden)

    Michael T. Bennett

    2014-09-01

    Full Text Available China’s Conversion of Cropland to Forests Program (CCFP is the world’s largest afforestation-based Payments for Ecosystem Services (PES program, having retired and afforested over 24 million ha involving 32 million rural households. Prior research has primarily focused on the CCFP’s rural welfare impacts, with few studies on program-induced environmental improvements, particularly at the household level. In this study, data from a 2010 survey covering 2808 rural households from across China was analyzed using an interval regression model to explain household-reported survival rates of trees planted on program-enrolled cropland. In addition to household-level factors, we explore the influence of local conditions and institutional configurations by exploiting the wide diversity of contexts covered by the data set. We find that households with more available labor and more forestry experience manage trees better, but that higher opportunity costs for both land and labor have the opposite effect. We also find that the local implementation regime- e.g., the degree of prior consultation with participants and regular monitoring - has a strong positive effect on reported survivorship. We suggest that the level of subsidy support to participating households will be key to survivorship of trees in planted CCFP forests for some time to come.

  4. Application of a Double-Sided Chance-Constrained Integer Linear Program for Optimization of the Incremental Value of Ecosystem Services in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Baofeng Cai

    2017-08-01

    Full Text Available The Interconnected River System Network Project (IRSNP is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 × 109 ¥ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services.

  5. Urban ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Duvigneaud, P

    1974-01-01

    The author considers the town as an ecosystem. He examines its various subdivisions (climate, soil, structure, human and non-human communities, etc.) for which he chooses examples with particular reference to the city of Brussels.

  6. Protocol for VOC-Arid ID remediation performance characterization

    International Nuclear Information System (INIS)

    Tegner, B.J.; Hassig, N.L.; Last, G.V.

    1994-09-01

    The Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID) is a technology development program sponsored by the US Department of Energy's Office of Technology Development that is targeted to acquire, develop, demonstrate, and deploy new technologies for the remediation of VOC contaminants in the soils and groundwaters of arid DOE sites. Technologies cannot be adequately evaluated unless sufficient site characterization and technology performance data have been collection and analyzed. The responsibility for identifying these data needs has been placed largely on the Principal Investigators (PIs) developing the remediation technology, who usually are not experts in site characterization or in identification of appropriate sampling, analysis, and monitoring techniques to support the field testing. This document provides a protocol for planning the collection of data before, during, and after a test of a new technology. This generic protocol provides the PIs and project managers with a set of steps to follow. The protocol is based on a data collection planning process called the Data Quality Objectives (DQO) process, which was originally developed by the US Environmental Protection Agency and has been expanded by DOE to support site cleanup decisions. The DQO process focuses on the quality and quantity of data required to make decision. Stakeholders to the decisions must negotiate such key inputs to the process as the decision rules that will be used and the acceptable probabilities of making decision errors

  7. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  8. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  9. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    water transport confer a competitive advantage. Our results highlight the need to consider the specific leaf hydraulic architecture of aridity-adapted plants when studying ecohydrological processes in arid ecosystems.

  10. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    Directory of Open Access Journals (Sweden)

    Silvia Pajares

    2016-09-01

    Full Text Available Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content at local scale (meters occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b determined soil chemical parameters, and (c identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+ and anions (HCO ${}_{3}^{-}$ 3 − , Cl−, SO ${}_{4}^{2-}$ 4 2 − content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  11. Water conservation for semi-arid rangelands

    International Nuclear Information System (INIS)

    Willis, W.O.

    1983-01-01

    Water deficiency is most often the cause for low forage production on rangelands in semi-arid and arid regions. Water conservation methods have been developed but additional research is needed to develop the best management practices for various climatic regions. Poor management is another major cause of low rangeland production. Better management, including the application of research findings, depends on attitudes, policies, adaptability of findings, resources for implementation and a good understanding of the governing biotic and abiotic factors. (author)

  12. Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models.

    Science.gov (United States)

    Deng, Jian; Sun, Pingsheng; Zhao, Fazhu; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong

    2016-04-15

    Studies on the ecological conservation behavior of farmers usually focus on individual and socio-economic characteristics without consideration of the underlying psychological constructs, such as farmers' intention and perceptions. This study uses the theory of planned behavior (TPB), a typical social psychology construct, to analyze the factors affecting the intention and behavior of farmers for conserving the ecological achievements from payment for ecosystem service (PES) programs in eco-environmentally fragile areas. Questionnaires based on TPB were administered to 1004 farmers from the Grain to Green Program area in the Loess Plateau, China, with the resulting dataset used to identify the underlying factors determining farmers' intention and behavior based on the structural equation model. The results show that the farmers' intention and behavior toward conserving ecological achievements were explained well by TPB. The farmers'behavior was significantly positively affected by their intention toward conserving ecological achievements, and their intention was significantly influenced by their attitude (positive or negative value of performance), the subjective norm (social pressure in engaging behavior), and perceived behavioral control (perceptions of their ability). The farmers' degree of support for PES programs and their recognition of environmental effects were the factors that most influenced the farmers' attitude. Pressure from neighbors was the most potent driver of the subjective norm. Meanwhile, perceptions of their ability to perform the behavior were the most potent factors affecting intention and it was mostly driven by the farmers' feelings toward environmental improvement and perceived ability (time and labor) to participate in ecological conservation. The drivers of attitude, subjective norm, and perceived behavioral control can be used by policy makers to direct farmers' intention and behavior toward conserving ecological achievements in fragile

  13. Strategic ecosystems of Colombia

    International Nuclear Information System (INIS)

    Marquez Calle German

    2002-01-01

    The author relates the ecosystems in Colombia, he makes a relationship between ecosystems and population, utility of the ecosystems, transformation of the ecosystems and poverty and he shows a methodology of identification of strategic ecosystems

  14. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China

    OpenAIRE

    Aynur Mamat; Ümüt Halik; Aihemaitijiang Rouzi

    2018-01-01

    Increasing anthropogenic activities have significantly altered ecosystems in arid oasis regions. Estimating the impact on a wide range of ecosystem services is important for decision making and the sustainable development of these regions. This study analyzed time-series Landsat data to determine the influences of oasis land-use changes on the ecosystem services in the Kashgar region in Northwest China. The following results were found. The total value of the ecosystem services in the Kashgar...

  15. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.

    Science.gov (United States)

    Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah

    2013-05-01

    The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.

  16. Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia

    Science.gov (United States)

    Jiao, Linlin; Wang, Xunming; Li, Danfeng

    2018-06-01

    Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.

  17. Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China.

    Directory of Open Access Journals (Sweden)

    Yajun Hu

    Full Text Available Arbuscular mycorrhizal (AM fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT, soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.

  18. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    Science.gov (United States)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  19. Greening reclamation of arid region

    Energy Technology Data Exchange (ETDEWEB)

    Kamichika, Makio [Tottori Univ. (Japan)

    1989-01-20

    Arid regions occupy a third of the whole land in the world, and desertification in the rimland makes a problem become more acute. It is also a problem that the large part of such areas is distributed in developing countries. Desertification is defined as a phenomenon, by which the ecological system is degenerated by the change of weather conditions and the pressure of human beings and livestock, and productivity of land is markedly deteriorated. In order to prevent desertification and to promote greening reclamation and agricultural development, it is necessary to analyze desertification mechanism in detail. Artificial factors are overpopulation, too much pasturage, and conversion of grassland into farmland. Natural environmental factors are weather conditions, water resources, soil conditions, etc. It is also important for greening reclamation and development of farm land to evaluate the amount of meteorological resources (such as water resources, energy resources, etc.) and to search for the possibility of their utilization. Because of major condition to grow plants is water environment, investigation and development of water resources are important. If a project ignores the cycle of the ecological system, it might be in danger of retrogradation toward desertification. 8 refs., 10 figs., 4 tabs.

  20. Global Analysis of Ecosystem Evapotranspiration Response to Precipitation Deficits

    Science.gov (United States)

    He, Bin; Wang, Haiyan; Guo, Lanlan; Liu, Junjie

    2017-12-01

    Changes in ecosystem evapotranspiration (ET) due to precipitation deficits (PD) can relieve or aggravate soil moisture shortages, thus impacting drought severity. Previous findings have conflicted with regard to response of ET to PD. The present study relies on a global land ET synthesis data set (ETsyn) and observations from eddy-covariance towers (ETobs) to thoroughly examine the sensitivity of ET to PD, which is represented by the standardized precipitation index. There was a contrast in the response to PD between arid and humid ecosystems. ETsyn of arid ecosystems was typically reduced promptly in response to a reduction of precipitation, while ETsyn in humid ecosystems experienced a two-staged change: First, there was an enhancement, and then a reduction associated with persisting PD. Compared with ETsyn, ETobs suggests the occurrence of a more significant ET transition in response to PD. In arid ecosystems, ET typically negatively correlated with low PD, but this was limited by a large PD. Findings from this study are crucial for understanding the role of ET in drought evolution.

  1. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  2. Agricultural intensification and drought frequency increases may have landscape-level consequences for ephemeral ecosystems.

    Science.gov (United States)

    Dalu, Tatenda; Wasserman, Ryan J; Dalu, Mwazvita T B

    2017-03-01

    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition. © 2016 John Wiley & Sons Ltd.

  3. Evaluating rainwater harvesting systems in arid and semi-arid regions

    NARCIS (Netherlands)

    Ammar, Adham Ali

    2017-01-01

    Rainwater harvesting (RWH) is an ancient traditional technology practised in many parts of the world, especially in arid and semi-arid regions (ASARs). ASARs represent 40% of the earth’s land surface and are characterised by low average annual rainfall and uneven temporal and spatial

  4. Development of hardy sorghum cultivars for the arid and semi arid ...

    African Journals Online (AJOL)

    Development of hardy sorghum cultivars for the arid and semi arid regions. MN Makobe, EM Kahangi, AK Misra, MO Imbuga. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL.

  5. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile

    Science.gov (United States)

    Neilson, Julia W.; Quade, Jay; Ortiz, Marianyoly; Nelson, William M.; Legatzki, Antje; Tian, Fei; LaComb, Michelle; Betancourt, Julio L.; Wing, Rod A.; Soderlund, Carol A.; Maier, Raina M.

    2012-01-01

    Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.

  6. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile.

    Science.gov (United States)

    Neilson, Julia W; Quade, Jay; Ortiz, Marianyoly; Nelson, William M; Legatzki, Antje; Tian, Fei; LaComb, Michelle; Betancourt, Julio L; Wing, Rod A; Soderlund, Carol A; Maier, Raina M

    2012-05-01

    Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.

  7. Designer ecosystems

    NARCIS (Netherlands)

    Awasthi, Ashutosh; Singh, Kripal; O'Grady, Audrey; Courtney, Ronan; Kalra, Alok; Singh, Rana Pratap; Cerda Bolinches, Artemio; Steinberger, Yosef; Patra, D.D.

    2016-01-01

    Increase in human population is accelerating the rate of land use change, biodiversity loss and habitat degradation, triggering a serious threat to life supporting ecosystem services. Existing strategies for biological conservation remain insufficient to achieve a sustainable human-nature

  8. Is annual recharge coefficient a valid concept in arid and semi-arid regions?

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2017-10-01

    Full Text Available Deep soil recharge (DSR (at depth greater than 200 cm is an important part of water circulation in arid and semi-arid regions. Quantitative monitoring of DSR is of great importance to assess water resources and to study water balance in arid and semi-arid regions. This study used a typical bare land on the eastern margin of Mu Us Sandy Land in the Ordos Basin of China as an example to illustrate a new lysimeter method of measuring DSR to examine if the annual recharge coefficient is valid or not in the study site, where the annual recharge efficient is the ratio of annual DSR over annual total precipitation. Positioning monitoring was done on precipitation and DSR measurements underneath mobile sand dunes from 2013 to 2015 in the study area. Results showed that use of an annual recharge coefficient for estimating DSR in bare sand land in arid and semi-arid regions is questionable and could lead to considerable errors. It appeared that DSR in those regions was influenced by precipitation pattern and was closely correlated with spontaneous strong precipitation events (with precipitation greater than 10 mm other than the total precipitation. This study showed that as much as 42 % of precipitation in a single strong precipitation event can be transformed into DSR. During the observation period, the maximum annual DSR could make up 24.33 % of the annual precipitation. This study provided a reliable method of estimating DSR in sandy areas of arid and semi-arid regions, which is valuable for managing groundwater resources and ecological restoration in those regions. It also provided strong evidence that the annual recharge coefficient was invalid for calculating DSR in arid and semi-arid regions. This study shows that DSR is closely related to the strong precipitation events, rather than to the average annual precipitation, as well as the precipitation patterns.

  9. Assessing Riparian Vegetation Condition and Function in Disturbed Sites of the Arid Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Lara Cornejo-Denman

    2018-01-01

    Full Text Available Transformation or modification of vegetation distribution and structure in arid riparian ecosystems can lead to the loss of ecological function. Mexico has 101,500,000 ha of arid lands, however there is a general lack of information regarding how arid riparian ecosystems are being modified. To assess these modifications, we use eight sites in the San Miguel River (central Sonora to analyze (1 riparian vegetation composition, structure and distribution using field sampling and remote sensing data from Unmanned Aerial Vehicles (UAV; (2 productivity (proxies, using vegetation indices derived from satellite data; and (3 variability posed by riparian vegetation and vegetation adjacent to riparian habitats. The development of a simple yet informative Anthropogenic-disturbance Index (ADI allowed us to classify and describe each study site. We found sharp differences in vegetation composition and structure between sites due to the absence/presence of obligate-riparian species. We also report significant difference between EVI (Enhanced Vegetation Index values for the dry season among vegetation types that develop near the edges of the river but differ in composition, suggesting that land cover changes form obligate-riparian to facultative-riparian species can lead to a loss in potential productivity. Finally, our tests suggest that sites with higher disturbance present lower photosynthetic activity.

  10. The Florida Seagrass Integrated Mapping and Monitoring (SIMM) Program: Indications of the effects of regional climate variability on these vital ecosystems

    Science.gov (United States)

    Yarbro, L.; Carlson, P. R., Jr.

    2016-12-01

    The SIMM program was developed to protect and manage seagrass resources in Florida by providing a collaborative vehicle for seagrass mapping, monitoring, data sharing, and reporting. We summarize and interpret mapping data and field assessments of seagrass abundance and diversity and water quality gathered by regional scientists and managers who work in estuaries from the Panhandle to the northeast Florida coast. Since 2013, regional reports summarizing the status and trends of seagrass ecosystems have been available on the web. The format provides current information for a wide stakeholder community. Ongoing collaborative efforts of more than 30 seagrass researchers and managers provide timely information on environmental and ecosystem changes in these important systems. Since the first published seagrass assessments in 2009, we have observed large changes in seagrass abundance and diversity in several regions; most but not all changes were likely due to variations in water quality that determine the light available to benthic vegetation. In the Panhandle and the Big Bend, in 2012-2104, increases in the frequency and severity of storms and resulting runoff reduced water quality which in turn decreased the abundance and distribution of seagrasses. The storm pattern resulted from changes in the subtropical jet stream and persisted for 3 years. In south Florida, heat and drought elevated salinities to extreme levels in Florida Bay in 2015; the resulting stratification along with high temperatures caused die-off of thousands of hectares of seagrass in the north central Bay. Extremely wet conditions in southeast Florida in 2015-2016 strained the water management system, resulting in large releases of polluted freshwater to estuaries on the southwest and southeast coasts, reducing light availability and causing large blooms of noxious algae. While other regions have also experienced algal blooms that reduced available light (Indian River Lagoon), seagrasses have

  11. A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China

    Science.gov (United States)

    Zhenmin Zheng; Bojie Fu; Haitang Hu; Ge Sun

    2014-01-01

    Ecosystem services are increasingly recognized as the foundations of a well-functioning society. Large-scale ecological restoration projects have been implemented around China with the goal of restoring and sustaining ecosystem services, especially in vulnerable semi-arid regions where soil and water resources are most stressed due to historic human activities. The...

  12. Special waste form lysimeters-arid. Annual report, 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1985-09-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes. 2 refs

  13. Special Waste Form Lysimeters-Arid: annual report 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1986-01-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes

  14. Attribute Analysis of Aridity Variability in North Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Yanfeng Wu

    2016-01-01

    Full Text Available Identifying the dominant meteorological factors affecting aridity variability can improve our understanding of climate change and its future trend in arid and semiarid regions. This study investigated the spatiotemporal aridity variability in North Xinjiang, China, from 1961 to 2013, based on the UNESCO aridity index (precipitation/potential evapotranspiration, and analyzed its association with meteorological factors. The results suggest that North Xinjiang is becoming more humid with an increasing trend in aridity index. Precipitation, temperature, and relative humidity have positive correlation with aridity, and evapotranspiration, sunshine hours, and wind speed have negative correlation with aridity. Wind speed and sunshine hours have a higher sensitivity and more contribution to aridity. This study provides an understanding of the effect of recent climate change on drought in northwest China.

  15. Ecotoxicology for risk assessment in arid zones: some key issues.

    Science.gov (United States)

    Everts, J W

    1997-01-01

    In the hot arid zones of the world, ecotoxicological research is in statu nascendi. In these zones, the major sources of contamination by toxicants are: (1) plant protection and vector control in wet zones; (2) large-scale crop protection campaigns in dry and ephemeral wet zones; (3) refuse and obsolete pesticides in dry zones; and (4) mining. Economic development in many of these zones requires an adequate knowledge of certain basic principles, i.e., where extrapolating existing knowledge does not apply. The vulnerability of ecosystems to contaminants is closely related to water flow. In dry areas, species are susceptible to factors that interfere with the ecophysiological properties regulating water loss. Most hot arid areas are found at low latitudes where temperatures show striking extremes both in time and space. Living organisms are physiologically resistant and/or show adaptive behavior to these temperature extremes. Very little is known about the effects of toxicants on these key resistant and adaptive functions, although by extrapolation a few assumptions can be made. The effects of hyperthermia, for instance, can be aggravated by GSH depleting substances, and the temporary disabling effects characteristic of many pesticides may prove fatal under these circumstances. Most wet areas show a spatial concentration of both human activity and wildlife. In mesic zones, the contamination of water represents a health risk to both humans and other living organisms. The vast majority of aquatic communities are those inhabiting temporary pools and streams. Their populations are characterized by short reproductive cycles and/or long dormant stages. Toxicants affecting growth in these areas have been shown to have a deleterious effect. In a synthesis of existing knowledge the most prominent gaps are identified and priorities for further research are made.

  16. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    Science.gov (United States)

    Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng

    2011-01-01

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...

  17. Isotope techniques in water resource investigations in arid and semi-arid regions

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Project (CRP) on the Use of Isotope Techniques in Water Resources Investigations in Arid and Semi-arid Regions was initiated with the aim od contributing to the assessment of groundwater resources in arid areas through the use of environmental isotope techniques, and thereby to help in better management of these valuable fresh groundwater resources. The main emphases identified were in three key areas: (i) the evaluation of water balance components such as recharge rate estimation and recharge and discharge cycles at different spatial scales, (ii) paleohydrology and hydroclimatic change and, (iii) anthropogenic impacts and the assessment of the vulnerability of arid zone ground waters to salinisation and pollution impacts. This publication presents individual projects carried out within the frameworks of the CRP. Each paper has been indexed separately

  18. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    Energy Technology Data Exchange (ETDEWEB)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard, E-mail: ranjeet.john@utoledo.ed [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States)

    2009-10-15

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km{sup 2}, respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km{sup 2} and 2197 km{sup 2}, respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  19. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    International Nuclear Information System (INIS)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard

    2009-01-01

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km 2 , respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km 2 and 2197 km 2 , respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  20. Analysis of the feasibility to integrate the semi-arid family agriculture in the National Program for Production and Use of Biodiesel: Ceara case, Brazil; Analise da viabilidade para insercao da agricultura familiar do semiarido no Programa Nacional de Producao e Uso de Biodiesel: o caso do Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Siniscalchi, Carina Renno

    2010-03-15

    In 2004, it was established the National Program for Production and Use of Biodiesel (PNPB) which encourages the participation of family farming in the biodiesel production chain, boosting rural development and social inclusion of these workers. From 2008 on, the PNPB decided that it would be mandatory the add 2% of biodiesel into diesel, named B2, and from 2010 on, the obligation of B5 was imposed. However, after two years of mandatory mixing, over 80% of the raw material for biodiesel production comes from large producers of soybeans in the Midwest. Thus, the focus of this study was to identify the main constraints and opportunities for family farming to participate in the program, based on the analysis of design parameters and guiding PNPB and the main stages of the agricultural seeds in the semi-arid. The study focused on Ceara as it is the state that greatly encourages the participation of small farmers through subsidies associated with the adoption of agro-ecological farming practices (author)

  1. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  2. Arid and semiarid land stewardship: A 10-year review of accomplishments and contributions of the lnternational Arid Lands Consortium

    Science.gov (United States)

    Peter F. Ffolliott; Jeffrey O. Dawson; James T. Fisher; Itshack Moshe; Darrell W. DeBoers; Timothy. E. Fulbright; John Tracy; Abdullah Al Musa; Carter Johnson; Jim P. M. Chamie

    2001-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training activities related to the development, management, and restoration or reclamation of arid and semiarid lands worldwide. The IALC, a leading international organization, supports ecological sustainability and development of arid and semiarid lands. Building...

  3. Land use structure change and response from ecosystem service value in the northwest arid regions:taking Minle County as a case study%西北干旱区土地利用结构变化及生态服务价值的响应--以民乐县为例

    Institute of Scientific and Technical Information of China (English)

    刘春雨; 董晓峰; 刘英英

    2013-01-01

    根据民乐县土地利用变更和二调数据,运用灰色预测法和平均增长率法对民乐县地类规模的规划面积进行预测。利用农田生态系统生物量因子和生态服务价值当量因子,进行民乐县土地利用结构和生态服务价值分析。研究表明:民乐县土地利用结构多样性指数和均匀度指数增加而优势度指数降低,土地利用趋于多样化和均匀化;各地类中林地生态服务价值贡献最大,土地利用生态服务价值总体呈增加趋势;土地利用结构与土地利用生态服务价值呈线性相关,通过增加林地、园地等生态用地面积,提高土地利用集约度;土地利用结构的调整有利于促进土地利用的多样化和均匀化,进而增加生态系统稳定性和提高生态系统服务价值的经济价值,指导土地结构调整和合理利用土地。%Based on land use change data and the second land use survey data, the grey prediction method and average growth rate method were applied to all types of land use in Minle County’s planning area, in order to carry a forecast. Replying farmland ecosystem biomass factors and revising formula correction factor coefficient of ecological service value equivalency factors, we analyzed the response relationship of land use structure and ecosystem services value change. The results showed that land use structure diversity index and evenness index were increasing while the dominance index became lower;land use itself was more diversified and homogenized. The forest constitued the greatest contribution value of ecosystem services, while land use value of ecosystem services was in a overall increasing trend. Land use structure and land use ecosystem service value were linearly correlated. By increasing the area of forest, garden and other ecological land and by improving land use intensity, the land use structure adjustment was conducive to promoting the diversification of land use and

  4. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  5. CHARACTERISTICS OF ARIDITY CONDITIONS IN SOUTH DOBRUDJA

    Directory of Open Access Journals (Sweden)

    A. TISCOVSCHI

    2013-04-01

    Full Text Available Characteristics of Aridity Conditions in South Dobrudja. For most people, the arid and semi-arid lands are those where precipitation is low (less than 200 mm per year, and yet enough for supplying streams capable of temporarily carrying the debris resulted from weathering, but insufficient for encouraging the development of a vegetal cover meant to protect the soil blanket against eroding agents. The drought is a major and permanent climatic risk for the Dobrudja territory as a whole and for South Dobrudja in particular, a territory where hydrographic network is underdeveloped, streams are ephemeral, and semi-endorheic areas are well developed. When the period of moisture deficiency lasts longer, it can bring about a significant water imbalance, which results in crop losses or restrictions in water consumption, thus leading to a number of economic problems. Under the circumstances, the risk of aridity expansion is significant, this being the reason why a better water management system in Romania is urgently needed. In the last decades, the numerous specialty studies undertaken in the area have emphasized an intensification of the process of dryness, because atmospheric and pedological droughts have become more and more serious. Romania is a member of the United Nations Convention to Combat Desertification (UNCCD and the World Meteorological Organization (WMO. It actively participates within the drought management network and the Drought Management Center for Southeastern Europe, which comprises 11 countries. The scope is to work together and exchange experience with the neighboring countries that have recorded positive results and acquired a rich experience in terms of drought management. The employment of appropriate pluvial indices in identifying the areas prone to aridity may prove to be convenient tool for finding practical solutions meant to mitigate the impact of this phenomenon on the local communities living in South Dobrudja.

  6. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  7. PRODUCERS’ PERCEPTION OF GEOGRAPHICAL INDICATIONS AS A PRODUCT DIVERSIFICATION TOOL FOR AGRIFOOD PRODUCTS IN SEMI-ARID REGIONS OF KENYA

    Directory of Open Access Journals (Sweden)

    Fredah Wangui Maina

    2018-04-01

    Full Text Available The study assessed producers’ awareness and perceptions of territorial-based qualities and the economic potential of two potential origin-based geographical indications in two semi-arid counties in Kenya. Protection of the origin products as geographical indications is presented as an option for ecosystem approach in managing fragile semi-arid regions while providing producers economic incentives and social inclusion; key components of green growth. Factor analysis was conducted on Likert scale perception questions administered to producers of goats (Baringo and mangoes (Makueni. The producers were aware of the uniqueness of their products and its geographical source. The resultant factors reveal the importance of public policies, institutions, market access and public sector actors as important to producers’ perception of the success of protecting their products as geographical indications. Clustering revealed producer heterogeneity in their perceptions of protecting their respective products as geographical indications. The constitution of the clusters was significantly different based on the number of years the producers had practiced farming in the region, their awareness of the uniqueness of their goats, income received from goat production and institutional factors. Enhanced collective action for both goats and mangoes in the semi-arid regions would ensure collective reputation in the product presented to the market. The producers’ perceptions emphasise geographical indications as a marketing tool rather than an environmental tool, agreeing with Principle 4 of the ecosystem approach on managing ecosystem in an economic context.

  8. Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate

    Science.gov (United States)

    Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel

    2016-07-01

    This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.

  9. Applying an Avian Index of Biological Integrity to Assess and Monitor Arid and Semi-arid Riparian Ecosystems

    Science.gov (United States)

    2009-01-01

    e.g., foraging or reproduction behavior). Measurement of the IHD. The purpose of the IHD is to establish a gradient of human disturbance that may...sparverius Resident Insectivore Ground Hawk PIF 2A Non-Dependent Native Cavity Domestic Peacock Pavo cristatus Resident Granivore Ground Captive

  10. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    Science.gov (United States)

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  11. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  12. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions

    Science.gov (United States)

    Kahil, Mohamed Taher; Dinar, Ariel; Albiac, Jose

    2015-03-01

    Growing water extractions combined with emerging demands for environment protection increase competition for scarce water resources worldwide, especially in arid and semiarid regions. In those regions, climate change is projected to exacerbate water scarcity and increase the recurrence and intensity of droughts. These circumstances call for methodologies that can support the design of sustainable water management. This paper presents a hydro-economic model that links a reduced form hydrological component, with economic and environmental components. The model is applied to an arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to assess alternative adaptation policies. Results indicate that drought events have large impacts on social welfare, with the main adjustments sustained by irrigation and the environment. The water market policy seems to be a suitable option to overcome the negative economic effects of droughts, although the environmental effects may weaken its advantages for society. The environmental water market policy, where water is acquired for the environment, is an appealing policy to reap the private benefits of markets while protecting ecosystems. The current water management approach in Spain, based on stakeholders' cooperation, achieves almost the same economic outcomes and better environmental outcomes compared to a pure water market. These findings call for a reconsideration of the current management in arid and semiarid basins around the world. The paper illustrates the potential of hydro-economic modeling for integrating the multiple dimensions of water resources, becoming a valuable tool in the advancement of sustainable water management policies.

  13. Cereals for the semi-arid tropics

    International Nuclear Information System (INIS)

    De Wet, J.M.J.

    1989-01-01

    The region of semi-arid tropics is the most famine prone area of the world. This region with nearly one billion people extends across some 20 million square kilometres. Major domesticated cereals adapted to semi-arid regions are sorghum (Sorghum bicolor (L.) Moench), foxtail millet (Setaria italica (L.) P. Beauv.) and pearl millet (Pennisetum glaucum (L.) R. Br.). Several minor cereals are grown as speciality crops, or harvested in the wild in times of severe drought and scarcity. Important in the African Sahel are the fonios Digitaria iburua Stapf, D. exilis (Kapist) Stapf and Brachiaria deflexa (Schumach). C.E. Hubbard. These species are aggressive colonizers and are commonly encouraged as weeds in cultivated fields. Sown genotypes differ from their close wild relatives primarily in the lack of efficient natural seed dispersal. The fonios lend themselves to rapid domestication. Several wild cereals extend well beyond the limits of agriculture into the Sahara. Commonly harvested are the perennial Stipagrostis pungens and Panicum turgidum, and the annual Cenchrus biflorus (kram-kram). Kram-kram yields well under extreme heat and drought stress, and holds promise as a domesticated cereal. Sauwi millet (Panicum sonorum) is promising cereal in arid northwestern Mexico. (author). 31 refs

  14. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important

  15. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems Riqueza e distribuição de macrófitas aquáticas em ecossistemas aquáticos do semi-árido brasileiro

    Directory of Open Access Journals (Sweden)

    Gustavo Gonzaga Henry-Silva

    2010-06-01

    Full Text Available AIM: The aim of this study was to evaluate the richness and distribution of the aquatic macrophytes in the basin of the Apodi/Mossoró River, in the semi-arid region (caatinga of Rio Grande do Norte, Brazil; METHODS: A survey of the floristic composition of the aquatic macrophytes was made at 20 sampling stations in the basin at four seasons (August/2007, November/2007, February/2008, May/2008. Specimens of each species were collected and deposited in the Dárdano de Andrade Lima Herbarium of the Universidade Federal Rural do Semi-Árido; RESULTS: We found 40 species of aquatic macrophytes, in 33 genera and 22 families. The families with the most species were Poaceae and Cyperaceae, and the most species-rich genera were Cyperus and Eleocharis. The most common plant form was amphibian (42.5%, followed by emergent (27.5%, free-floating (12.5%, rooted-submersed (10.0%, and floating-leaved (7.5%. The lowest richness was observed at the estuarine region (3 species, and the highest richness in the upper basin (17 species. The rooted-submersed Hydrothrix gardneri Hooker f. and Ceratophyllum demersum L. were observed in great abundance and frequency in the Santa Cruz Reservoir of Apodi, especially in areas close to cage farms of Nile tilapia (Oreochromis niloticus (Linnaeus, 1758. The most common free-floating species were Eichhornia crassipes (Mart. Solms., Pistia stratiotes L., and Salvinia auriculata Aubl., predominantly in stretches that run through urban centers; CONCLUSION: The species richness of aquatic macrophytes in aquatic environments of the caatinga is similar to that observed in other basins of Brazil. Because of the many dams and reservoirs in the semi-arid Northeast, inventory and monitoring of aquatic macrophytes have become essential, especially in basins that will receive water from the diversion of the São Francisco River.OBJETIVO: Nós objetivamos avaliar a riqueza e a distribuição das macrófitas aquáticas nos ambientes aqu

  16. Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China

    Science.gov (United States)

    Jin, T. T.; Fu, B. J.; Liu, G. H.; Wang, Z.

    2011-08-01

    Hydrologic viability, in terms of moisture availability, is fundamental to ecosystem sustainability in arid and semi-arid regions. In this study, we examine the spatial distribution and after-planting variations of soil moisture content (SMC) in black locust tree (Robinia pseudoacacia L.) plantings in the Loess Plateau of China at a regional scale. Thirty sites (5 to 45 yr old) were selected, spanning an area of 300 km by 190 km in the northern region of the Shaanxi Province. The SMC was measured to a depth of 100 cm at intervals of 10 cm. Geographical, topographic and vegetation information was recorded, and soil organic matter was evaluated. The results show that, at the regional scale, SMC spatial variability was most highly correlated with rainfall. The negative relationship between the SMC at a depth of 20-50 cm and the stand age was stronger than at other depths, although this relationship was not significant at a 5 % level. Watershed analysis shows that the after-planting SMC variation differed depending upon precipitation. The SMC of plantings in areas receiving sufficient precipitation (e.g., mean annual precipitation (MAP) of 617 mm) may increase with stand age due to improvements in soil water-holding capacity and water-retention abilities after planting. For areas experiencing water shortages (e.g., MAP = 509 mm), evapotranspiration may cause planting soils to dry within the first 20 yr of growth. It is expected that, as arid and semi-arid plantings age, evapotranspiration will decrease, and the soil profile may gradually recover. In extremely dry areas (e.g., MAP = 352 mm), the variation in after-planting SMC with stand age was found to be negligible. The MAP can be used as an index to divide the study area into different ecological regions. Afforestation may sequentially exert positive, negative and negligible effects on SMCs with a decrease in the MAP. Therefore, future restoration measures should correspond to the local climate conditions, and the

  17. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    Science.gov (United States)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff

  18. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  19. Geochemical Weathering Increases Lead Bioaccessibility in Semi-Arid Mine Tailings

    Science.gov (United States)

    Hayes, Sarah M.; Webb, Sam M.; Bargar, John R.; O'Day, Peggy A.; Maier, Raina M.; Chorover, Jon

    2012-01-01

    Mine tailings can host elevated concentrations of toxic metal(loid)s that represent a significant hazard to surrounding communities and ecosystems. Eolian transport, capable of translocating small (micrometer-sized) particles, can be the dominant mechanism of toxic metal dispersion in arid or semi-arid landscapes. Human exposure to metals can then occur via direct inhalation or ingestion of particulates. The fact that measured doses of total lead (Pb) in geomedia correlate poorly with blood Pb levels highlights a need to better resolve the precise distribution of molecularly-speciated metal-bearing phases in the complex particle mixtures. Species distribution controls bioaccessibility, thereby directly impacting health risk. This study seeks to correlate Pb-containing particle size and mineral composition with lability and bioaccessibility in mine tailings subjected to weathering in a semi-arid environment. We employed X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF), coupled with sequential chemical extractions, to study Pb speciation in tailings from the semi-arid Arizona Klondyke State Superfund Site. Representative samples ranging in pH from 2.6 to 5.4 were selected for in-depth study of Pb solid-phase speciation. The principle lead-bearing phase was plumbojarosite (PbFe6(SO4)4(OH)12), but anglesite (PbSO4) and iron oxide-sorbed Pb were also observed. Anglesite, the most bioavailable mineral species of lead identified in this study, was enriched in surficial tailings samples, where Pb concentrations in the clay size fraction were 2–3 times higher by mass relative to bulk. A mobile and bioaccessible Pb phase accumulates in surficial tailings, with a corresponding increase in risk of human exposure to atmospheric particles. PMID:22553941

  20. Native-plant amendments and topsoil addition enhance soil function in post-mining arid grasslands.

    Science.gov (United States)

    Kneller, Tayla; Harris, Richard J; Bateman, Amber; Muñoz-Rojas, Miriam

    2018-04-15

    One of the most critical challenges faced in restoration of disturbed arid lands is the limited availability of topsoil. In post-mining restoration, alternative soil substrates such as mine waste could be an adequate growth media to alleviate the topsoil deficit, but these materials often lack appropriate soil characteristics to support the development and survival of seedlings. Thus, addition of exogenous organic matter may be essential to enhance plant survival and soil function. Here, we present a case study in the arid Pilbara region (north-west Western Australia), a resource-rich area subject to intensive mining activities. The main objective of our study was to assess the effects of different restoration techniques such as soil reconstruction by blending available soil materials, sowing different compositions of plant species, and addition of a locally abundant native soil organic amendment (Triodia pungens biomass) on: (i) seedling recruitment and growth of Triodia wiseana, a dominant grass in Australian arid ecosystems, and (ii) soil chemical, physical, and biological characteristics of reconstructed soils, including microbial activity, total organic C, total N, and C and N mineralisation. The study was conducted in a 12-month multifactorial microcosms setting in a controlled environment. Our results showed that the amendment increased C and N contents of re-made soils, but these values were still lower than those obtained in the topsoil. High microbial activity and C mineralisation rates were found in the amended waste that contrasted the low N mineralisation but this did not translate into improved emergence or survival of T. wiseana. These results suggest a short- or medium-term soil N immobilisation caused by negative priming effect of fresh un-composted amendment on microbial communities. We found similar growth and survival rates of T. wiseana in topsoil and a blend of topsoil and waste (50:50) which highlights the importance of topsoil, even in a

  1. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Science.gov (United States)

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  2. Asynchronous glaciations in arid continental climate

    Science.gov (United States)

    Batbaatar, Jigjidsurengiin; Gillespie, Alan R.; Fink, David; Matmon, Ari; Fujioka, Toshiyuki

    2018-02-01

    Mountain glaciers at ∼26-19 ka, during the global Last Glacial Maximum near the end of the last 105 yr glacial cycle, are commonly considered on the basis of dating and field mapping in several well-studied areas to have been the largest of the late Quaternary and to have advanced synchronously from region to region. However, a numerical sensitivity model (Rupper and Roe, 2008) predicts that the fraction of ablation due to melting varies across Central Asia in proportion to the annual precipitation. The equilibrium-line altitude of glaciers across this region likely varies accordingly: in high altitude, cold and arid regions sublimation can ablate most of the ice, whereas glaciers fed by high precipitation cannot ablate completely due to sublimation alone, but extend downhill until higher temperatures there cause them to melt. We have conducted field studies and 10Be dating at five glaciated sites along a precipitation gradient in Mongolia to test the Rupper/Roe model. The sites are located in nearby 1.875 × 1.875° cells of the Rupper/Roe model, each with a different melt fraction, in this little-studied region. The modern environment of the sites ranges from dry subhumid in the north (47.7° N) to arid in the south (45° N). Our findings show that the maximum local advances in the dry subhumid conditions predated the global Last Glacial Maximum and were likely from MIS 3. However, we also found that at ∼8-7 ka a cirque glacier in one mountain range of the arid Gobi desert grew to a magnitude comparable to that of the local maximum extent. This Holocene maximum occurred during a regional pluvial period thousands of years after the retreat of the Pleistocene glaciers globally. This asynchronous behavior is not predicted by the prevailing and generally correct presumption that glacier advances are dominantly driven by temperature, although precipitation also plays a role. Our findings are consistent with and support the Rupper/Roe model, which calls for

  3. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  4. Analysis list: ARID3A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID3A Blood,Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3A.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3A.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/hg19/target/ARID3A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3A.Blood.tsv,http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3A.Liver.tsv http://db...archive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  5. Contribution to the study of the zonal variation of the climate aridity in central northern Sahara (Algeria)

    Science.gov (United States)

    Benseghier-Hadjaidji, Fatiha; Talbi, Nadjib; Derridj, Arezki

    2018-05-01

    The environment degradation at the level of all its compartments which we notice at present, calls us to the risks that it would underestimate the climatic and consequently bioclimatic crisis there, in the North as in the South of the Mediterranean region. To protect the environment is not a luxury. In this respect, we wondered about the zonal variation of the climate aridity at the level of three bordering climatic stations: El-Oued, Touggourt and Ouargla. These are distant from 160 km on average some of the others. For that purpose, we based ourselves on the statistical tool the software "instat +" for the estimation of the ETP (PM) and afterward the determination of the pluvio-evapotranspiration "quotient P/ETP". For this analysis, the climatic data spread out over a period of 20 years. The results allowed to specify the aridity degree of the studied zone. So, they reveal a mitigation of the aridity of the climate in Touggourt and El-Oued while the hyper-aridity distinguishes well the Ouargla region. This approach contributes to a better knowledge of the dry ecosystems. This is important to indicate it to turn better in the eremologic search later.

  6. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  7. Reactive nitrogen impacts on ecosystem services

    Science.gov (United States)

    The Ecosystem Services Research Program (ESRP) is a new, multi-year research initiative under development by the Environmental Protection Agency (EPA). As one of its components, ESRP has chosen to focus on reactive Nitrogen (Nr) for stressor-specific ecosystem research through a...

  8. Arid-site remedial action technology development at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The program goal is to design and field test methods that could be used to correct actual or anticipated problems with a closed SLB site in an arid environment. These problems might include, but are not restricted to, contaminant uptake by plants and animals, surface water infiltration, surface erosion by wind or water, subsidence, and the upward migration of radionuclides due to moisture cycling. This paper describes the moisture cycling experiment and the work planned for FY 1982

  9. Use of environmental isotopes in arid zone hydrology

    International Nuclear Information System (INIS)

    Dincer, T.

    1980-01-01

    After aridity is defined some physical and hydrologic features common in arid lands are described. An attempt has been made to identify various groundwater recharge mechanisms in arid countries and to assess their relative importance. The influence of the arid climates on the isotopic composition of the precipitation is discussed. The use of environmental isotopes in run-off and precipitation infiltration and recharge is evaluated, and the importance of isotopic studies in investigating interrelations between aquifers is stressed. Finally, some examples of isotope applications in surface water and its relation to groundwater are given. (author)

  10. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    Science.gov (United States)

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.

    Science.gov (United States)

    Blanco-Gutiérrez, Irene; Varela-Ortega, Consuelo; Purkey, David R

    2013-10-15

    Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD's goal of restoring the 'good ecological status' of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute

  12. Predicting the future impact of droughts on ungulate populations in arid and semi-arid environments.

    Directory of Open Access Journals (Sweden)

    Clare Duncan

    Full Text Available Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21(st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change.

  13. Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona

    Science.gov (United States)

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modelers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrolo...

  14. Hazard Analysis of Arid and Semi-Arid (ASAL) Regions of Kenya ...

    African Journals Online (AJOL)

    Objectives: The overall objective of this study was to prioritize hazards in the ASAL region. ... Health, local Government, and Provincial Administration, Environment and NGO. ... and country level to inform interventions and other developmental activities. Women ... Keywords: hazard, natural disaster, disaster risk, arid, Kenya ...

  15. Hydropedological interpretation of arid soilscapes, South Africa

    Science.gov (United States)

    Tinnefeld, Martin; Van Tol, Jacobus; Le Roux, Pieter

    2017-04-01

    Hydropedological investigations in arid regions are scarce due to the low the low contribution of these areas to water resources. Infrequent rainfall and few flow events also complicates measurements hydrological studies. Hydropedological studies, relating soil morphological properties and their spatial distribution to hydrological response, have been studied in detail in semi-arid, temperate, and sub-humid regions. In this paper, we investigated the relation between soil morphological properties and selected hydrological properties of soils in an arid landscape. We also studied the spatial distribution of the morphological properties to conceptualise the hydrological behaviour of different soilscapes in the area. A total of 806 soil profiles, covering an area of 4836 ha in the Northern Cape Province of South Africa were described and classified. The geology is dominated by Dwyka tillite overlain by aeolian sands with scattered Dolerite buttes. Thirteen modal profiles, representing the dominant soils types were selected, sampled at horizon level, and analysed for pH, CEC, iron, manganese, carbonate content. In situ measurements of saturated and near saturated (tension) hydraulic conductivity (Ks) were conducted to determine the water conducting macroporosity (WCM). Undisturbed cores were collected on which water retention characteristics were determined under laboratory conditions. Results indicate that dry soil colour, degree of structure development and the presence, absence, and abundance of carbonates as well as the degree of precipitation, are important indicators of hydrological response. For example; grey soils typically have lower Ks with higher storage capacity than soils dominated by red colours, whereas abundant carbonate precipitations in the soil matrix have lower WCM due to clogging of macropores. The dominant soil distribution pattern indicates that rapid vertical flow, through and out of the pedon, might contribute to recharge of an accumulative

  16. Aridity of Central Asia through the Holocene

    Science.gov (United States)

    Aizen, E. M.; Aizen, V. B.; Mayewski, P. A.; Zhou, H.; Rodda, C.; Joswiak, D.; Takeuchi, N.; Fujita, K.; Kurbatov, A.; Grigholm, B. O.

    2017-12-01

    The dynamics of aridity in Central Asia for over the past 12,000 years has been analyzed using deep ice core records recovered from the Siberian Altai, Tien Shan and Pamir glaciers. An analysis of aridity in the 20-21 centuries based on the long-term meteorological observations complements the paleo- climate reconstruction. The goal of our research is to examine an aridity (at low and high temperatures) in Central Asia as a complex of characteristics including air temperature-precipitation relationship (Koppen, 1918, Geiger, 1961, Mezencev, 1973), intensity of dust loading and biomass burning. The stable isotope ratio, soluble ionic and insoluble particulate geochemical components and oxalate preserved in ice were considered in relation to climatic and environmental changes; and to determine the main aerosol sources using ground- and upper-level meteorological data. Multivariate statistical methods were employed for examination of the main geo-chemical components responsible for the preserved aridity variability. Insoluble particle concentrations preserved in the ice core were affected mainly by precipitation regimes and wind speed. Concentration of all size particles was found to be negatively correlated with monthly temperatures indicating low temperatures during the dry particle deposition. Two abrupt depletions in stable isotope records, i.e., Younger Dryas and Centurial Sever Drought (CSD), occurred during cold, dry, windy periods of intensified dust storms in large desert areas. When climate became colder and drier, the Central Asian deserts extended, wind speeds increased loading mineral dust to atmosphere, which formed inversion while the convection processes and precipitation occurrence were limited. Warmer and wetter conditions are associated with less dust loading that occurred during the Holocene climate optimum, medieval warm and modern warm periods. The sudden climate transitions are accompanied by the most intensifying mineral dust loading. From the

  17. Influence of Microclimate on Semi-Arid Montane Conifer Forest Sapflux Velocity in Complex Terrain

    Science.gov (United States)

    Thirouin, K. R.; Barnard, D. M.; Barnard, H. R.

    2016-12-01

    Microclimate variation in complex terrain is key to our understanding of large-scale climate change effects on montane ecosystems. Modern climate models forecast that semi-arid montane ecosystems in the western United States are to experience increases in temperature, number of extreme drought events, and decreases in annual snowpack, all of which will potentially influence ecosystem water, carbon, and energy balances. In this study, we developed response curves that describe the relationships between stem sapflux velocity, air temperature (Tair), incoming solar radiation (SWin), soil temperature (Tsoil), and soil moisture content (VWC) in sites of Pinus contorta and Pinus ponderosa distributed along an elevation and aspect gradient in the montane zone of the Central Rocky Mountains, Colorado, USA. Among sites we found sapflux velocity to be significantly correlated with all four environmental factors (p physiological differences, the highest elevation south-facing P. contorta site behaved similarly to the south-facing P. ponderosa, suggesting that environmental drivers may dominate the response. In response to Tair, peak sapflux velocity occurred at 12-13 degrees C at all sites except the mid-slope north-facing P. contorta site, which also had the lowest Tsoil. The responses of stem sapflux velocity to climate drivers indicate that forest transpiration is regulated by microclimate gradients across small spatial scales in complex terrain, which need to be characterized in order to understand broader ecosystem dynamics and the role that large-scale climate change will play in these systems.

  18. Future aridity under conditions of global climate change

    Science.gov (United States)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Malekinezhad, Hossein; Sharma, Ashish

    2017-11-01

    Global climate change is anticipated to cause some major changes in hydroclimatic conditions around the world. As aridity is a reliable indicator of potential available water, assessment of its changes under future climatic conditions is important for proper management of water. This study employs the UNESCO aridity/humidity index, which is a derivative of precipitation (P) and potential evapotranspiration (PET), for assessment of aridity. Historical (1901-2005) simulations and future (2006-2100) projections of 22 global climate models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are studied. The Nested Bias Correction (NBC) approach is used to correct possible biases of precipitation (simulated directly by the GCMs) and PET (estimated by applying FAO56-Penman-Monteith model on simulated parameters of the GCMs). To detect future aridity changes, the areal extents of the aridity zones in the past and future periods as well as through four sub-periods (2006-2025, 2026-2050, 2051-2075, and 2076-2100) of the future are compared. The results indicate that changes in climate will alter the areal extents of aridity zones in the future. In general, from the first sub-period towards the last one, the area covered by hyper-arid, arid, semi-arid, and sub-humid zones will increase (by 7.46%, 7.01%, 5.80%, and 2.78%, respectively), while the area of the humid regions will decrease (by 4.76%), suggesting that there will be less water over the global land area in the future. To understand the cause of these changes, precipitation and PET are also separately assumed to be stationary throughout the four future sub-periods and the resulting aridity changes are then analyzed. The results reveal that the aridity changes are mostly caused by the positive PET trends, even though the slight precipitation increase lessens the magnitude of the changes.

  19. Measuring Entrepreneurial Ecosystems

    OpenAIRE

    Stam, F.C.

    2017-01-01

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial ecosystem elements and use these to compose an entrepreneurial ecosystem index. Next, we measure the output of entrepreneurial ecosystems with different indicators of high-growth firms. We use the 12 provi...

  20. Mapping Ecosystem Services

    OpenAIRE

    Georgiev,Teodor; Burkhard,Benjamin; Maes,Joachim

    2017-01-01

    Ecosystem services are the contributions of ecosystem structure and function (in combination with other inputs) to human well-being. That means, humankind is strongly dependent on well-functioning ecosystems and natural capital that are the base for a constant flow of ecosystem services from nature to society. Therefore ecosystem services have the potential to become a major tool for policy and decision making on global, national, regional and local scales. Possible applications are manifold:...

  1. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass.

    Science.gov (United States)

    Quiroga, R Emiliano; Golluscio, Rodolfo A; Blanco, Lisandro J; Fernández, Roberto J

    2010-10-01

    It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure

  2. Twenty Years of Interdisciplinary Studies: the "MEZA" Program's Contributions to Society, Ecology, and the Education of Postgraduate Students

    Directory of Open Access Journals (Sweden)

    César Vázquez

    2011-12-01

    Full Text Available Management of arid ecosystems (MEZA by its Spanish acronym is a Master of Science program that started in 1990 when very few interdisciplinary programs in environmental management existed in the world. Graduates and current students recognize the importance of a group of pioneers in multidisciplinary practice who have translated the scientific findings and insights of a diverse scholarly community into practical applications within the city in which the University of Baja California, El Sauzal campus, is located and its surrounding arid and coastal rural areas. Students and teachers have produced 20 ecosystem management plans, which have trained the students in practical teamwork. Most of these plans addressed an inquiry by a local community or government decision maker, which is considered to be the key origin of a project. In this paper, the MEZA program that the teachers designed is briefly described, and a series of projects are given as examples of their work. Two projects are more thoroughly explained because all of the coauthors (2009 and 2010 students participated in these projects and believe that it is a valuable experience to share with others.

  3. Arid Green Infrastructure for Water Control and Conservation ...

    Science.gov (United States)

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  4. Performance evaluation of constructed wetlands: A review of arid ...

    African Journals Online (AJOL)

    Aiming at environmental pollution control through the use of constructed wetlands systems (CWs) in arid and semi arid climatic region, a detailed review of CWs was undertaken. Given the practical application and simplicity of the technology, principles for building phytotechnology-ecohydrology environment used for ...

  5. Emerging crops in the USDA arid lands germplasm collection

    Science.gov (United States)

    The USDA National Plant Germplasm System maintains collections of several emerging crops for arid lands at the National Arid Land Plant Genetic Resources Unit in Parlier, CA (NALPGRU). The guayule, jojoba, and prickly pear collections are most active in terms of current research and crop development...

  6. Watershed Management in Arid Zones: A Prototype Short Course.

    Science.gov (United States)

    Thames, John L., Ed.; Fischer, John N., Ed.

    Presented is information recommended for inclusion in a short course to help extend knowledge of water resource development and research techniques in arid and semi-arid regions. Information is particularly intended for applicability in developing nations. Included are considerations of livestock grazing, use of hydrologic data, vegetation…

  7. Pathways to Resilience in Semi-Arid Economies (PRISE)

    International Development Research Centre (IDRC) Digital Library (Canada)

    rlarbey

    PRISE Goal. This research will support the emergence of equitable, climate resilient economic development in semi-arid lands through research excellence and ... change in semi-arid areas, and how is the private sector adapting? 4. How do ... Role. Individual. Contact email. Lead Principal Investigator. Dr Tom Mitchell.

  8. Uses of tree legumes in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  9. Optimizing cooling systems in Egyptian arid urbans

    International Nuclear Information System (INIS)

    Medhat, Ahmed A.; Khalil, Essam E.

    2006-01-01

    Present study is devoted to climatic and site oriented investigations that were carried out in a new rural development in the Upper-Egypt. Bioclimatic classifications considered Upper Egypt region, near Sudan border, as a Hot and Dry climatic region. [1]. that is affected by solar heat intensities that can reach 900 W/m2 for a period ranged from 5-to-7 hours per day with the presence of study storms. Cooling season extends up to eight months per year having Upper-day-bulb temperature ranged from 400 degree centigrade - to - 470 degree centigrade while Lower-dry-bulb-temperature ranged from 280 degree centigrade - to - 320 degree centigrade with the relative humidity ranged from 10%-to-37% RH. [2]. Site surveys and field experimental and analyses of the commonly used cooling systems were investigated, evaluated and optimized for optimum indoor comfort conditions at efficient energy efficiency. [3]. Extensive analyses were performed based on Psychrometric formulae to evaluate the impact of energy consumptions related to different cooling systems such as direct expansion, chilled water, and evaporative systems. the present study enables the critical investigations of the influence of arid outdoor conditions and the required indoor thermal parameters on the energy efficiencies of HVAC-system. This work; focuses on the suggestion of suitable system that should be implemented by local energy codes in these arid urban.(Author)

  10. Water repellency and infiltration of biological soil crusts on an arid and a temperate dunes

    Science.gov (United States)

    Fischer, Thomas; Yair, Aaron; Geppert, Helmut; Veste, Maik

    2014-05-01

    Biological soil crusts (BSCs) play an important role in many ecosystems and in all climates. We studies hydrological properties of BSCs under arid and temperate climates. The arid study site was located near Nizzana, in the northwestern Negev, Israel and the temperate site was near Lieberose, Brandenburg, Germany. BSCs were sampled at each site near the dune crest, at the center of the dune slope and at the dune base. Using principal component analysis (PCA), we studied the relationships between hydraulic properties and the molecular structure of organic matter using repellency indices, microinfiltrometry, and 13C-CP/MAS-NMR. The soil texture was finer and water holding capacities (WHCs) were higher in Nizzana, whereas surface wettability was reduced in Lieberose. At both sites, BSCs caused extra WHC compared to the mineral substrate. Infiltration after wetting along both catenas generally reached a maximum after 10 min and decreased after 30 min. Carbohydrates were the dominating components in all of the BSCs studied, where the relative peak areas of carbohydrate-derived structures (60-110 ppm) amounted to 28-46% and to 10-14% of total C-peak areas, respectively. PCA revealed that the WHC of the substrate was closely related to the amount of silt and clay, whereas the BSC induced extra WHC was closely related to carbohydrates. It was further found that water repellency was positively related to carbohydrate C, but negatively related to alkyl C. Infiltration kinetics was attributed to polysaccharide hydration and swelling. Our findings support the hypothesis that hydraulic properties of BSCs are determined by extracellular polymeric substances (EPS) and soil texture. Hydraulic properties in BSCs result from the combination of chemical properties related to C compounds mainly dominated by carbohydrates and physical surface properties related to texture, porosity and water holding capacity. References Fischer, T., Yair, A., Veste, M., Geppert, H. (2013) Hydraulic

  11. Review on the Application of Ecosystem Models in Biodiversity ...

    African Journals Online (AJOL)

    This paper is an exposition with the sole aim of highlighting the relevance of ecosystem models in the analyses of biodiversity. The structure of ecosystem models enables researchers to design and consequently formulate monitoring programs that will be useful to the conservation of biodiversity. Ecosystem theoretical ...

  12. Increased water use efficiency does not prevent growth decline of Pinus canariensis in a semi-arid treeline ecotone in Tenerife, Canary Islands (Spain).

    Science.gov (United States)

    Brito, Patricia; Grams, Thorsten E E; Matysssek, Rainer; Jimenez, Maria S; Gonzalez-Rodríguez, Agueda M; Oberhuber, Walter; Wieser, Gerhard

    2016-09-01

    Intrinsic water-use efficiency of Pinus canariensis (Sweet ex Spreng.) growing at a semi-arid treeline has increased during the past 37 years. Tree-ring width by contrast has declined, likely caused by reduced stomatal conductance due to increasing aridity. Rising atmospheric CO 2 concentration ( C a ) has been related to tree growth enhancement accompanied by increasing intrinsic water-use-efficiency (iWUE). Nevertheless, the extent of rising C a on long-term changes in iWUE and growth has remained poorly understood to date in Mediterranean treeline ecosystems. This study aimed to examine radial growth and physiological responses of P. canariensis in relation to rising C a and increasing aridity at treeline in Tenerife, Canary Islands, Spain. We evaluated temporal changes in secondary growth (tree-ring width; TRW) and tree ring stable C isotope signature for assessing iWUE from 1975 through 2011. Precipitation was the main factor controlling secondary growth. Over the last 36 years P. canariensis showed a decline in TRW at enhanced iWUE, likely caused by reduced stomatal conductance due to increasing aridity. Our results indicate that increasing aridity has overridden the potential CO 2 fertilization on tree growth of P. canariensis at its upper distribution limit.

  13. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  14. Findings Brief External Review of the Ecosystem Approaches to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    External Review of the Ecosystem Approaches to Human. Health Program ... Improved understanding of social, political, economic, and ecological interactions and .... global learning, communication among partners and others stakeholders.

  15. Transformation of Digital Ecosystems

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hedman, Jonas

    2014-01-01

    the Digital Ecosystem Technology Transformation (DETT) framework for explaining technology-based transformation of digital ecosystems by integrating theories of business and technology ecosystems. The framework depicts ecosystem transformation as distributed and emergent from micro-, meso-, and macro- level......In digital ecosystems, the fusion relation between business and technology means that the decision of technical compatibility of the offering is also the decision of how to position the firm relative to the coopetive relations that characterize business ecosystems. In this article we develop...... coopetition. The DETT framework consists an alternative to the existing explanations of digital ecosystem transformation as the rational management of one central actor balancing ecosystem tensions. We illustrate the use of the framework by a case study of transformation in the digital payment ecosystem...

  16. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  17. The current bioenergy production potential of semi-arid and arid regions in sub-Saharan Africa

    NARCIS (Netherlands)

    Wicke, B.; Smeets, E.M.W.; Watson, H.; Faaij, A.P.C.

    2011-01-01

    This article assesses the current technical and economic potential of three bioenergy production systems (cassava ethanol, jatropha oil and fuelwood) in semi-arid and arid regions of eight sub-Saharan African countries. The results indicate that the availability of land for energy production ranges

  18. Valuation of rangeland ecosystem services

    Science.gov (United States)

    Gascoigne, W.R.

    2011-01-01

    into analyzing the costs and benefits associated with policies being proposed, or possibly already implemented. For example, with monetized values acting as a common metric, one could compare the 'benefits' of converting a rangeland ecosystem for commercial development (perhaps estimated at the market value of the developed land) with the foregone ecosystem service values (in addition to any land income lost) resulting from that land conversion. Similarly, ecosystem service values can be used to determine the level of return on an investment. rhis is a primary objective for private land conservation organizations who typically have very limited resources. Ecosystem service valuation can also have a role in damage assessments from incidents that require compensation such as oil spills. Additionally, valuation can be very informative when investigating regulatory programs that trade ecological assets such as wetland mitigation programs. Typically these programs are based simply on an 'acre for acre' criterion, and do not take into consideration varying welfare values associated with that ecosystem. Lastly, and most fundamental, ecosystem service valuation serves as a recognition tool for people of all backgrounds. Identifying and valuing ecosystem goods and services on rangelands brings to light the value these natural assets have to human welfare that often remain hidden do to their public and non-market attributes. This type of recognition is vital to the preservation of rangeland ecosystems in the future and the many ecological benefits they provide.

  19. Using Goal-Programming to Model the Effect of Stakeholder Determined Policy and Industry Changes on the Future Management of and Ecosystem Services Provision by Ireland’s Western Peatland Forests

    Directory of Open Access Journals (Sweden)

    Edwin Corrigan

    2016-12-01

    Full Text Available Recent studies have highlighted land-use conflicts between stakeholder groups in Ireland. Some of these conflicts can be attributed to European directives, designed with sustainable forest management principles in mind, but imposing incoherencies for land-owners and stakeholders at the local level. This study, using Ireland’s Western Peatland forests as a case study area, focused on the development and implementation of a goal programming model capable of analysing the long term impact of policy and industry changes at the landscape level. The model captures the essential aspects of the changes identified by local level stakeholders as influencing forest management in Ireland and determines the future impact of these changes on ecosystem services provisions. Initially, a business as usual potential future is generated. This is used as a baseline against which to compare the impact of industry and policy changes. The model output indicated that the current forest composition is only really suited to satisfy a single, financial objective for forest management. The goal programming model analysed multiple objectives simultaneously and the results indicated that the stakeholders’ desired ecosystem service provisions in the future will be more closely met by diversifying the forest estate and/or by changing to an alternative, non-forest land-use on less productive areas.

  20. Diversity of inulinase-producing fungi associated with two Asteraceous plants, Pulicaria crispa (Forssk.) and Pluchea dioscoridis (L.) growing in an extreme arid environment

    OpenAIRE

    Khalil, Doaa M. A.; Massoud, Mohamed S.; Abdelrahman, Mostafa; El-Zayat, Soad A.; El-Sayed, Magdi A.

    2018-01-01

    Inulinases are potentially valuable enzymes catalyze the hydrolysis of plant’s inulin into high fructose syrups as sweetening ingredients for food industry and ethanol production. The high demands for inulinase enzymes have promoted interest in microbial inulinases as the most suitable approach for biosynthesis of fructose syrups from inulin. Arid land ecosystem represents a valuable bioresource for soil microbial diversity with unique biochemical and physiological properties. In the present ...

  1. Efficiency of water and fertilizer use in semi-arid regions

    International Nuclear Information System (INIS)

    1976-01-01

    The proceedings contain 14 papers considering problems on soil and soil water, irrigation, and the use of fertilizers in semi-arid zones. Research projects in these fields are discussed and results obtained so far are reported (tables and diagrams on the behaviour of water and fertilizers in soils). The use of radioisotope techniques is mentioned briefly. Finally, some future ''first priority'' research areas are identified and recommendations for further research programs are given. These programs aim at reducing the hazards of crop failure and at increasing production under dry farming conditions

  2. Effects of disturbance on ecosystem dynamics of tundra and riparian vegetation: A project in the R4D program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.

    1995-12-31

    Models were proposed as research tools to test the basic understanding of the structure and function of arctic ecosystems, as a means for providing initial management assessments of potential response to energy-related development, and as a vehicle for extrapolation of research results to other arctic sites and landscapes. This final summary report reviews progress made on models at a variety of scales from nutrient uptake by individual roots to nutrient availability within arctic landscapes, and examines potentials and critical limitations of these models for providing insight on patch and landscape level function in tundra regions.

  3. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    Science.gov (United States)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  4. Determine the optimum spectral reflectance of juniper and pistachio in arid and semi-arid region

    Science.gov (United States)

    Fadaei, Hadi; Suzuki, Rikie

    2012-11-01

    Arid and semi-arid areas of northeast Iran cover about 3.4 million ha are populated by two main tree species, the broadleaf Pistacia vera. L (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but genetically essential as seed sources for pistachio production in orchards. In this study, we estimated the optimum spectral reflectance of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. In this research spectral reflectance are able to specify of multispectral from Advanced Land Observing Satellite (ALOS) that provided by JAXA. These data included PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, has one band with a wavelength of 0.52-0.77 μm and AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm). Total ratio vegetation index (TRVI) of optimum spectral reflectance of juniper and pistachio have been evaluated. The result of TRVI for Pistachio and juniper were (R2= 0.71 and 0.55). I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  5. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    Science.gov (United States)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use

  6. Measuring Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial

  7. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  8. Development of an arid site closure plan

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Barnes, F.J.

    1987-01-01

    This document describes the development of a prototype plan for the effective closure and stabilization of an arid low-level waste disposal site. This plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Precautions for determining parameter values for model input and for interpreting simulation results are discussed. A specific example is presented showing how the field-validated hydrologic models can be used to develop a final prototype closure plan. 15 refs., 13 figs., 3 tabs

  9. Use of composts in revegetating arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  10. Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China

    Science.gov (United States)

    Liu, Xingran; Shen, Yanjun

    2018-03-01

    Ecological deterioration in arid regions caused by agricultural development has become a global issue. Understanding water requirements of the oasis ecosystems and the influences of human agricultural activities and climate change is important for the sustainable development of oasis ecosystems and water resource management in arid regions. In this study, water requirements of the main oasis in Heihe River basin during 1986-2013 were analyzed and the amount showed a sharp increase from 10.8 × 108 m3 in 1986 to 19.0 × 108 m3 in 2013. Both human agricultural activities and climate change could lead to the increase in water requirement. To quantify the contributions of agricultural activities and climate change to the increase in water requirements, partial derivative and slope method were used. Results showed that climate change and human agricultural activities, such as oasis expansion and changes in land cropping structure, has contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively. Overall, human agricultural activities were the dominant forces driving the increase in water requirement. In addition, the contribution of oasis expanding to the increased water requirement was significantly greater than that of other concerned variables. This reveals that controlling the oasis scale is extremely important and effective for balancing water for agriculture and ecosystems and to achieving a sustainable oasis development in arid regions.

  11. A proposal to conserve black-footed ferrets and the prairie dog ecosystem

    Science.gov (United States)

    Miller, Brian; Wemmer, Christen; Biggins, Dean; Reading, Richard

    1990-11-01

    Prairie dogs ( Cynomys spp.) have been poisoned throughout this century because of grazing competition with livestock. Recent evidence showed these early claims were exaggerated, but animal control was already entrenched in government policy. As a result, ongoing government subsidized poisoning has reduced prairie dogs to about 2% of their former distribution. The reduction of prairie dogs diminished species diversity in the arid grasslands of North America, including the potential extinction of the black-footed ferret ( Mustela nigripes). Cost-benefit analysis revealed that poisoning costs more than any grazing benefits accrued. This analysis did not consider the long-term costs of reversing ecosystem degradation, the intangible value of biological diversity as a public benefit, or the depletion of biotic resources as a loss of actual or potential wealth. The government presently finances the poisoning policy and the preservation of endangered species like the black-footed ferret, two apparently conflicting programs. We, therefore, propose an integrated management plan that considers both interests. We propose that federal monies allocated to the poisoning program be converted into a rebate for ranchers who manage livestock while preserving the prairie dog community. This would redirect funds and personnel already allocated to prairie dog eradication to an incentive for ranchers who manage for livestock and wildlife. Livestock interests and grassland biotic diversity would both benefit.

  12. Ecosystem classification, Chapter 2

    Science.gov (United States)

    M.J. Robin-Abbott; L.H. Pardo

    2011-01-01

    The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...

  13. On Man and Ecosystems.

    Science.gov (United States)

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  14. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  15. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  16. Rights to ecosystem services

    NARCIS (Netherlands)

    Davidson, M.

    2014-01-01

    Ecosystem services are the benefits people obtain from ecosystems. Many of these services are provided outside the borders of the land where they are produced; this article investigates who is entitled to these non-excludable ecosystem services from two libertarian perspectives. Taking a

  17. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-01-01

    inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability

  18. Agroecological and Social Transformations for Coexistence with Semi-Aridity in Brazil

    Directory of Open Access Journals (Sweden)

    Aldrin M. Pérez-Marin

    2017-06-01

    Full Text Available This article explores whether a shift in development paradigm resulted in coexistence with semi-aridity for residents of the Semi-Arid region of Brazil (SAB. If so, which strategies contributed and which conditions facilitated it? We conducted a comparative analysis of the transformations that occurred in 10 territories of the SAB during two time periods: PI (1973–2001 when “development” policies almost exclusively aimed to “combat drought and its effects”; and PII (2002–2016 when a concept of coexistence with semi-aridity informed policy making. Our study from the 10 territories of the SAB show significant changes between PI and PII. On average, there was a substantial improvement in Access to Water Infrastructure (+33%∆, Diversification of Production Systems (Animals +36%∆; Crops +61%∆, Management of Common Pool Resources (+45%∆, Involvement in Spaces of Political Organizing (+24%∆, and Access to Public Programs (+29%∆. As such, “coexistence” went from concept to action as a consequence of structural, agroecological, social, and management transformations in combination with a strengthening of mechanisms for community reciprocity. These were characterized by (a the creation of resource reserves for use during times of drought; (b the efficient use of available natural resources; and (c enhanced articulation between diverse actors.

  19. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil

    Directory of Open Access Journals (Sweden)

    ESF Medeiros

    Full Text Available In most ecological field research, appropriate sampling is critical for the understanding of processes underlying fish populations and communities, and is even more important in heterogeneous environments such as the aquatic systems of the semi-arid region of Brazil. This study intends to make a contribution to the development of sampling programs and gear selection in aquatic systems of semi-arid Brazil by evaluating the effects of different fishing techniques on the assessment of richness and composition of the fish fauna in selected aquatic environments. Six sites were selected to represent typical artificial (reservoirs and natural (intermittent streams environments and four different types of sampling gear were applied to each site during four occasions. The present study shows that when selecting sampling techniques to be used in aquatic systems in semi-arid Brazil, one must consider the objectives of the study, e.g. ecological or taxonomic, in order to decide on inclusion of rare species in the sampling population. Also, the effect of the sampling gear on natural abundances of fish must be considered given that some sampling techniques are highly detrimental to fish population numbers.

  20. The simulation of naturally ventilated residential buildings in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Ghiabaklou, Z.; Ballinger, J.A.; Prasad, D.K. [New South Wales Univ., Kensington, NSW (Australia). Solar Architecture Research Unit

    1995-12-31

    The most important consideration in hot arid and semi-arid zones is to reduce the internal day temperature and to maintain the interior spaces of buildings in a comfortable condition. An important contributor to errors in the thermal analysis of naturally ventilated buildings is inaccurate airflow predictions. These predictions are important for designers in regions where most buildings are naturally ventilated. Passive cooling by day and night natural ventilation in a single story residential building in Wagga Wagga, a semi-arid location in New South Wales has been compared and analyzed theoretically. A modified version of the computer simulation program CHEETAH, has been used to consider a building with continuous natural ventilation to simulate indoor air temperature. The aim of the study was to investigate the thermal behaviour of the building with continuous ventilation (24 hour/day) and the same building with only night time ventilation. Using night time ventilation in high mass buildings in such a climate, leads to a considerable decrease in room air temperature. Simulation results showed that increasing the effective area of windows is effective only when the wind blows. Using a steady averaged air change per hour can also cause a reduction in room air temperatures which results in different temperatures than the actual air changes per hour. (author). 3 figs., 4 refs.

  1. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  2. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands

    Science.gov (United States)

    Brandt, Martin; Rasmussen, Kjeld; Hiernaux, Pierre; Herrmann, Stefanie; Tucker, Compton J.; Tong, Xiaoye; Tian, Feng; Mertz, Ole; Kergoat, Laurent; Mbow, Cheikh; David, John L.; Melocik, Katherine A.; Dendoncker, Morgane; Vincke, Caroline; Fensholt, Rasmus

    2018-05-01

    Woody vegetation in farmland acts as a carbon sink and provides ecosystem services for local people, but no macroscale assessments of the impact of management and climate on woody cover exist for drylands. Here we make use of very high spatial resolution satellite imagery to derive wall-to-wall woody cover patterns in tropical West African drylands. Our study reveals that mean woody cover in farmlands along all semi-arid and sub-humid rainfall zones is 16%, on average only 6% lower than in savannahs. In semi-arid Sahel, farmland management promotes woody cover around villages (11%), while neighbouring savannahs had on average less woody cover. However, farmlands in sub-humid zones have a greatly reduced woody cover (21%) as compared with savannahs (33%). In the region as a whole, rainfall, terrain and soil are the most important (80%) determinants of woody cover, while management factors play a smaller (20%) role. We conclude that agricultural expansion causes a considerable reduction of trees in woodlands, but observations in Sahel indicate that villagers safeguard trees on nearby farmlands which contradicts simplistic ideas of a high negative correlation between population density and woody cover.

  3. Effects of rainfall on bird reproduction in a semi-arid Neotropical region

    Directory of Open Access Journals (Sweden)

    Liana Monique Paiva Cavalcanti

    Full Text Available ABSTRACT In semi-arid ecosystems, birds commonly use rainfall as a reliable environmental cue to adjust the timing and strength of their reproductive activity. Here we evaluate this hypothesis for a community of birds in the Caatinga (the semi-arid region of northeastern Brazil, using brood patch information and nest abundance. Sampling occurred every 14 days between September 2012 and August 2013 (brood patch, and every three or four days during the reproductive period (nests. Abundance of brood patches and nests were correlated, and all brood patches were recorded between March and July (4.5 to 5.0 months. We recorded three peaks of brood patch abundance: the first 28 days after the first rains, the second 14 days after the second rainfall peak, and the third synchronously with the third rainy period. These results indicate that intra-annual variation in local rainfall has the potential to account for variations in the timing and intensity of reproduction in the studied birds.

  4. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments

    Directory of Open Access Journals (Sweden)

    Folkard Asch

    2012-12-01

    Full Text Available Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source for agriculture in the vicinity of cities. Water scarcity often occurs in arid and semiarid regions affected by droughts and large climate variability and where the choice of crop to be grown is limited by the environmental factors. Jatropha has been introduced as a potential renewable energy resource since it is claimed to be drought resistant and can be grown on marginal sites. Sewage effluents provide a source for water and nutrients for cultivating jatropha, a combined plant production/effluent treatment system. Nevertheless, use of sewage effluents for irrigation in arid climates carries the risk of salinization. Thus, potential irrigation with sewage effluents needs to consider both the water requirement of the crop and those needed for controlling salinity build-up in the top soil. Using data from a case study in Southern Morocco, irrigation requirements were calculated using CROPWAT 8.0. We present here crop evapotranspiration during the growing period, required irrigation, the resulting nutrient input and the related risk of salinization from the irrigation of jatropha with sewage effluent.

  5. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    International Nuclear Information System (INIS)

    Lykke, A M; Barfod, A S; Greve, M; Svenning, J-C; Svendsen, G Tinggaard

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  6. Ecosystem services in ECOCLIM

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Boegh, Eva; Bendtsen, J

    that actions initiated to reduce anthropogenic GHG emissions are sustainable and not destructive to existing ecosystem services. Therefore it is important to address i.e. land use change in relation to the regulating services of the ecosystems, such as carbon sequestration and climate regulation. At present...... a thorough understanding of the ecosystem processes controlling the uptake or emissions of GHG is fundamental. Here we present ECOCLIM in the context of ecosystem services and the experimental studies within ECOCLIM which will lead to an enhanced understanding of Danish ecosystems....

  7. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  8. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Smith, Robert W.; Fujita, Yoshiko

    2007-01-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  9. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  10. Salinity shapes food webs in shallow lakes: implications for increasing aridity with climate change

    DEFF Research Database (Denmark)

    Vidal, Nicolas; Yu, Jinlei; Gutierrez, Maria Florencia

    2015-01-01

    on community and food web structure in 24 lakes along a wide salinity gradient, from freshwater (0.5 g L-1) to hypersaline lakes (115 g L-1), in a semiarid region in North West China. Fish, zooplankton and macroinvertebrate communities were sampled during July 2014 for determination of taxonomy and size......A reduction in runoff and higher evaporation rates are expected to occur towards 2050 in arid and semiarid regions of the world, resulting in a reduction of water level and salinization of inland waters. Besides the natural process of catchment erosion, human activities such as irrigation of crops...... may also increase salinization. Reduced biodiversity in freshwater systems is the most commonly reported effect of salinization, which may have implications for food web structure and likely for ecosystem functioning as well. The objective of the study was to analyze the effects of salinity...

  11. Resilience to Changing Snow Depth in a Shrubland Ecosystem.

    Science.gov (United States)

    Loik, M. E.

    2008-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  12. Risk and markets for ecosystem services.

    Science.gov (United States)

    Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin

    2011-12-15

    Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.

  13. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    Science.gov (United States)

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  14. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient

    OpenAIRE

    Lina Xie; Hongyu Guo; Chengcang Ma

    2016-01-01

    Plant can alter reproductive strategies for adaptation to different environments. However, alterations in flowering strategies and sexual allocation for the same species growing in different environments still remain unclear. We examined the sexual reproduction parameters of Caragana stenophylla across four climatic zones from semi-arid, arid, very arid, to intensively arid zones in the Inner Mongolia Steppe, China. Under the relatively favorable climatic conditions of semi-arid zone, C. sten...

  15. Isolation of microalgae species from arid environments and ...

    African Journals Online (AJOL)

    Isolation of microalgae species from arid environments and evaluation of their potentials for biodiesel production. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives.

  16. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.; Safar, Zeinab; Loch, J.P. Gustav

    2014-01-01

    in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests

  17. Introducing Pathways to Resilience in Semi-Arid Economies (PRISE ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    rlarbey

    Equitable, climate resilient economic development in semi-arid .... manufacturing or services (apart from health, insurance and tourism). Further research ... evaluated, particularly economic impact assessments of adaptation both on existing.

  18. Patchiness in semi-arid dwarf shrublands: evidence from satellite ...

    African Journals Online (AJOL)

    ... Plants; Remote sensing; Rhigozum obovatum Burch; Satellite-derived vegetation indices; Woody species; patchiness; semi-arid; dwarf shrubland; shrublands; co2; assimilation; karoo; south africa; ndvi; satellite imagery; geochemical mound; rhigozum obovatum; eriocephalus ericoides; pentzia incana; vegetation; botany

  19. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  20. Groundtruthing Notes and Miscellaneous Biological Datasets from Coral Ecosystems Surveys from the Northwestern Hawaiian Islands Rapid Reef Assessment and Monitoring Program of 2000-2002 (NODC Accession 0001448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northwestern Hawaiian Islands Coral Reef Assessment and Monitoring Program (NOWRAMP) began in 2000 with the mission to rapidly evaluate and map the shallow water...

  1. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  2. Aridity changes in the Tibetan Plateau in a warming climate

    International Nuclear Information System (INIS)

    Gao, Yanhong; Li, Xia; Xu, Jianwei; Ruby Leung, L.; Chen, Deliang

    2015-01-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman–Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979–2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. (letter)

  3. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    Science.gov (United States)

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in

  4. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    Science.gov (United States)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.

  5. ARID1B alterations identify aggressive tumors in neuroblastoma.

    Science.gov (United States)

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  6. Spatiotemporal trends in mean temperatures and aridity index over Rwanda

    Science.gov (United States)

    Muhire, I.; Ahmed, F.

    2016-01-01

    This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961-1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

  7. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems

    Science.gov (United States)

    Our objective was to determine if long-term increases in precipitation can maintain grasslands susceptible to desertification, and initiate a reversal of historic regime shifts on desertified shrublands. Long-term trends in desertification were documented using vegetation maps beginning in 1858. The...

  8. Case study the Cs-137 Zea mays grown at a semi arid ecosystem the Mexico

    International Nuclear Information System (INIS)

    Cervantes, L.; Quintero, E.; Rojas, V.

    2006-01-01

    A study of 1 37Cs in soil and Maize plants, (Zea mays) has been performed at the confined Storage Centre for Radioactive Waste from Mexico. The site is located in a semiarid region with a vegetation characteristic of a temperature sub humid zone. Under field conditions the site was divided in four zones 20x30 m, with different soil contamination characteristics, the zones 1 to 4 in lines separated 50 cm between them. The maize plants in the lines were separated 40 cm between them. The plants were grown 'in situ' reproducing the local agricultural. The soil and plant (root, stem, leaves, and grains) samples were analysed for 1 37Cs . The specific activities were determined in a dry weight (d.w.) basis by low background gamma spectrometry with a 29.7% relative efficiency HPGe detector . The geometry used was a 500 ml Marinelli beaker and the measurement time was 60.000 s per sample, to achieve a detection limit of 1 Bq.kg - 1 for 1 37Cs. The counting errors for the measurements were usually lower than 10% The results indicate that one of the zones had a striking 1 37Cs contamination in the soil and the uptake by the grown plants showed the highest specific activities at the root. For The results from 1991 to 1994 of the yearly average values for 1 37Cs in soil samples from the four zones. A striking contamination is evident in zone 1.The transfer factors ranges for the different parts of the maize plants was from 0.001 in the grain to 0.6 in the root. Statistical analyses were based on the mean values of the determination performed from each sampling zone. Pe arson's correlation coefficients were calculated, principal components were obtained, based on the correlation matrix of the measured, or calculated from them

  9. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem.

    Science.gov (United States)

    Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar

    2011-10-01

    Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.

  10. A spatial assessment of riverine ecosystems and water supply in a semi-arid environment

    CSIR Research Space (South Africa)

    Smith-Adao, LB

    2011-12-01

    Full Text Available -impact management areas (groundwater-surface water interaction and recharge areas) and river rehabilitation areas. The proposed river selections would achieve the biodiversity targets of 33 (66%) of the 50 river types; feasible rehabilitation would increase...

  11. Pastoralists' Perception and Ecological Knowledge on Savanna Ecosystem Dynamics in Semi-arid Botswana

    Directory of Open Access Journals (Sweden)

    Olaotswe Kgosikoma

    2012-12-01

    Full Text Available We investigated vegetation dynamics in relation to livestock grazing as perceived by pastoral farmers in different regions of Botswana. A structured questionnaire was used to collect farmers' understanding of vegetation changes and causes within three different grazing lands. The pastoral farmers' description of dominant vegetation differed significantly both at the local and district level, which suggests that rangelands consist of patches dominated by different grasses and woody vegetation. Most pastoralists indicated that grass composition has undergone changes, and unpalatable grasses such as Aristida congesta and Megaloprotachne albescens are increasing. The different factors perceived by pastoral farmers to cause changes in vegetation composition included rainfall, overgrazing, and fire. Bush encroachment is considered to be more common in communal grazing land than in ranches. According to pastoral farmers, the ranching system is less degrading to the environment and more sustainable for livestock production than is communal grazing.

  12. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  13. Identification, Geographical Distribution and Hosts of Subterranean Termites in the United Arab Emirates Arid Ecosystem

    Directory of Open Access Journals (Sweden)

    W. Kaakeh

    2005-01-01

    Full Text Available Six termite species, belonging to five genera and three families (Hodotermitidae, Rhinotermitidae and Termitidae were identified in the United Arab Emirates (UAE. Termite species recorded were the harvester termites Anacanthotermes ochraceus (Burmeister and Anacanthotermes ubachi (Navas, the sand termite Psammotermes hypostoma (Desneux and the small waxy termites Microcerotermes diversus (Silvestri, Heterotermes aethiopicus (Sjostedt, and Microtermes najdensis (Harris. Except for a previous record of H. aethiopicus, the other five species were recorded for the first time in the UAE. All species were subterranean in habitat and reach wood sources through earthen gallery systems. Termites were available in areas with varied conditions of climate, vegetation and soil types. Termites showed host preference for dead, living, or decaying plant materials and non-cellulose materials. The dominant termite species recorded was A. ochraceus, followed by P. hypostoma and M. diversus. The distributions of the six termite species varied in each of the seven Emirates. All species were present in the two largest Emirates of Abu Dhabi and Dubai.

  14. Ecosystem-based management and the wealth of ecosystems

    OpenAIRE

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    Ecosystems store vast quantities of wealth, but difficulties measuring wealth held in ecosystems prevent its inclusion in accounting systems. Ecosystem-based management endeavors to manage ecosystems holistically. However, ecosystem-based management lacks headline indicators to evaluate performance. We unify the inclusive wealth and ecosystem-based management paradigms, allowing apples-to-apples comparisons between the wealth of the ecosystem and other forms of wealth, while providing a headl...

  15. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  16. Quality of urban runoff in wet and dry seasons: a case study in a semi-arid zone.

    Science.gov (United States)

    Ortiz-Hernández, Joyce; Lucho-Constantino, Carlos; Lizárraga-Mendiola, Liliana; Beltrán-Hernández, Rosa Icela; Coronel-Olivares, Claudia; Vázquez-Rodríguez, Gabriela

    2016-12-01

    Urban runoff (UR) is a promising new resource that may alleviate growing tensions in numerous arid and semi-arid regions of the world. However, it is precisely in these zones that the available UR quality characteristics are scarcer. This work aims to evaluate a wide set of parameters to establish a detailed approach to both the quality of UR in a midsized city in Central Mexico and the feasibility of using UR to recharge aquifers. UR from an institutional land use site was sampled during wet and dry seasons and assessed for suspended solids, organic matter, nutrients, microorganisms, metals, and persistent organic chemicals (i.e., polycyclic aromatic hydrocarbons, PAH). The results were analyzed using multivariate statistical methods to identify relationships among the variables, the sampling sites and the seasons. The soil erosion and the leaching of materials due to the water flow through vegetated areas were identified as the most influencing factor on the quality of the site runoff in both dry and wet seasons. Additionally, data were more heterogeneous during the dry season, and higher pollutant concentrations were found both during the dry season and in more pervious zones. We consider UR a promising water source for recharging aquifers in arid and semi-arid zones if a program is implemented that can integrate an adequate runoff treatment system, soil protection, and other non-structural measures.

  17. Nutrients, Toxins, and Water in Terrestrial and Aquatic Ecosystems Treated with Sewage Plant Effluents. Final Report of the Upland Recharge Program

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G. M.; Ballard, J. T.; Clinton, J.; Pecan, E. V.

    1976-01-01

    The objective of this work was to appraise the capacity of terrestrial and aquatic plant communities for absorbing and retaining nutrients and organic matter in sewage and for releasing ''clean'' water. Experimental systems included a sere representative of the Eastern Deciduous Forest, a timothy field, two Phalaris arundinacea meadows, a freshwater marsh, a pond, and a marsh-pond complex. Sewage of two qualities was applied at the rate of 5 cm per week; one treatment was equivalent to the release from a primary treatment sewage plant, the second to that from a secondary treatment plant. Under normal circumstances, without the addition of water or nutrients in sewage, the flux of nutrients into the groundwater was greatest under the agricultural communities and least under the late successional forest communities. All the terrestrial communities were net sources of most elements. Because the agricultural communities were fertilized and a substantial fraction of the fertilizer applied remained after the first year, the agricultural communities appeared to be net sinks during the first year of the experiment. The highest concentrations of nutrients in the percolate of the untreated communities commonly occurred in the earliest stages of succession. This relationship was especially conspicuous for nitrogen. Phosphorus and iron appeared to be held tightly within most ecosystems.

  18. Growth and Nutrient Status of Introduced Black Locust (Robinia pseudoacacia L.) Afforestation in Arid and Semi Arid Areas of Iran

    OpenAIRE

    Moshki, A.; Lamersdorf, N. P.

    2011-01-01

    Under global climate change it is expected that many arid regions in the world will experience enhanced desertification in the next decades. Black locust (Robinia pseudoacacia L.) is a one commonly used species for afforestation projects in arid regions of Iran due to its soil rehabilitation capabilities. This study aims to characterize how Robinia growth parameters and nutrient status interacted and were influenced soil properties. The experiment was conducted at three Robinia plantations in...

  19. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  20. Status of corrective measures technology for shallow land burial at arid sites

    International Nuclear Information System (INIS)

    Abeele, W.V.; Nyhan, J.W.; Drennon, B.J.; Lopez, E.A.; Herrera, W.J.; Langhorst, G.J.

    1985-01-01

    The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems. 11 refs., 10 figs

  1. Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran

    Science.gov (United States)

    Ahani, Hossien; Kherad, Mehrzad; Kousari, Mohammad Reza; van Roosmalen, Lieke; Aryanfar, Ramin; Hosseini, Seyyed Mashaallah

    2013-05-01

    Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955-2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann-Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.

  2. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    Science.gov (United States)

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  3. Going beyond the Millennium Ecosystem Assessment: an index system of human dependence on ecosystem services.

    Science.gov (United States)

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales.

  4. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Nicholas W. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); Conrads, Kelly A.; Stroop, Kevin D. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); Hamilton, Chad A. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, MD, Bethesda, 20889 (United States); Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda 20814, MD (United States); Darcy, Kathleen M. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Maxwell, George L. [Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA 22042 (United States); Risinger, John I. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); and others

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartite nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.

  5. BUSINESS ECOSYSTEMS VS BUSINESS DIGITAL ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Marinela Lazarica

    2006-05-01

    Full Text Available E-business is often described as the small organisations’ gateway to global business and markets. The adoption of Internet-based technologies for e-business is a continuous process, with sequential steps of evolution. The latter step in the adoption of Internet-based technologies for business, where the business services and the software components are supported by a pervasive software environment, which shows an evolutionary and self-organising behaviour are named digital business ecosystems. The digital business ecosystems are characterized by intelligent software components and services, knowledge transfer, interactive training frameworks and integration of business processes and e-government models.

  6. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    Science.gov (United States)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  7. A comparison of nutrient dynamics in forest ecosystems along with the Warmth Index Gradient

    International Nuclear Information System (INIS)

    Iwatsubo, Goro; Li Changhua; Katagiri, Shigeo.

    1993-01-01

    Nutrient elements contained in litter fall flux, that of uptake flux and turnover rate had generally tended to increase with the increase in the Warmth Index, while the amount of nutrient in the A 0 horizon and nutrient use efficiency did not. However, it is suggested that topographic and climatic aridity, and the amount of available and exchangeable phosphorus, calcium and magnesium greatly affect the nutrient dynamics in a each forest ecosystem as the Warmth Index increases. (J.P.N.)

  8. Seedbed preparation influence on morphometric characteristics of perennial grasses of a semi-arid rangeland in Kenya

    OpenAIRE

    Opiyo, Francis EO; Ekaya, Wellington N; Nyariki, Dickson M; Mureithi, Stephen Mwangi

    2011-01-01

    Semi-arid rangelands in Kenya are an important source of forage for both domestic and wild animals. However, indigenous perennial grasses notably Cenchrus ciliaris (African foxtail grass), Eragrostis superba (Maasai love grass) and Enteropogon macrostachyus (Bush rye grass) are disappearing at an alarming rate. Efforts to re-introduce them through restoration programs have often yielded little success. This can partly be attributed to failure of topsoil to capture and store scarce water to me...

  9. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management

  10. The economic impact of global climate change on Mediterranean rangeland ecosystems. A Space-for-Time approach

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Sternberg, Marcelo

    2006-01-01

    Global Climate Change (GCC) can bring about changes in ecosystems and consequently in their services value. Here we show that the urban population in Israel values the green landscape of rangelands in the mesic Mediterranean climate region and is willing to pay for preserving it in light of the expected increasing aridity conditions in this region. Their valuation of the landscape is higher than that of the grazing services these rangelands provide for livestock growers. These results stem from a Time-for-Space approach with which we were able to measure changes in biomass production and rainfall at four experimental sites along an aridity gradient. (author)

  11. Belowground ecosystems [chapter 9

    Science.gov (United States)

    Carole Coe Klopatek

    1995-01-01

    The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...

  12. Ecosystem Management and Sustainability

    Science.gov (United States)

    J.D. Peine; B.L. Jacobs; K.E. Franzreb; M.R. Stevens

    2011-01-01

    Ecosystem management (EM) promotes an integrated approach to environmental issues; its central goal is the protection of entire ecosystems. By focusing on an interdisciplinary solution to environmental challenges, EM can help to synthesize societal, economic scientific, and governmental goals. Furthermore, as EM becomes part of the foundation of environmental...

  13. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  14. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  15. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    Science.gov (United States)

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response

  16. Mapping cultural ecosystem services:

    DEFF Research Database (Denmark)

    Paracchini, Maria Luisa; Zulian, Grazia; Kopperoinen, Leena

    2014-01-01

    Research on ecosystem services mapping and valuing has increased significantly in recent years. However, compared to provisioning and regulating services, cultural ecosystem services have not yet been fully integrated into operational frameworks. One reason for this is that transdisciplinarity...... surveys are a main source of information. Among cultural ecosystem services, assessment of outdoor recreation can be based on a large pool of literature developed mostly in social and medical science, and landscape and ecology studies. This paper presents a methodology to include recreation...... in the conceptual framework for EU wide ecosystem assessments (Maes et al., 2013), which couples existing approaches for recreation management at country level with behavioural data derived from surveys, and population distribution data. The proposed framework is based on three components: the ecosystem function...

  17. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    Science.gov (United States)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  18. Voluntary cooperation in the provision of a semi-public good : Community-based soil and water conservation in semi-arid India

    NARCIS (Netherlands)

    Bouma, J.A.

    2008-01-01

    This dissertation analyses the question whether households in India’s semi-arid tropics can be expected to voluntarily maintain semi-public investments in soil and water conservation. Increasingly, public investment programs decentralise project planning, implementation and management to local

  19. New Technologies to Reclaim Arid Lands User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler

    2002-10-01

    establishing project objectives, scheduling, budgeting, and selecting cost-effective techniques. Reclamation techniques include sections describing: (1) erosion control (physical, chemical, and biological), (2) site preparation, (3) soil amendments, (4) seeding, (5) planting, (6) grazing and weed control, (7) mulching, (8) irrigation, and (9) site protection. Each section states the objectives of the technique, the principles, an in-depth look at the techniques, and any special considerations as it relates to DoD or DOE lands. The need for monitoring and remediation is described to guide users in monitoring reclamation efforts to evaluate their cost-effectiveness. Costs are provided for the proposed techniques for the major deserts of the southwestern U.S. showing the average and range of costs. A set of decision tools are provided in the form of a flow diagram and table to guide users in selecting effective reclamation techniques to achieve mitigation objectives. Recommendations are provided to help summarize key reclamation principles and to assist users in developing a successful program that contributes to sustainable uses of DoD and DOE lands. The users manual is helpful to managers in communicating to installation management the needs and consequences of training decisions and the costs required to achieve successful levels of sustainable use. This users manual focuses on the development of new reclamation techniques that have been implemented at the National Training Center at Fort Irwin, California, and are applicable to most arid land reclamation efforts.

  20. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria

  1. Incorporating Ecosystem Services into Community-level ...

    Science.gov (United States)

    EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a series of coordinated community studies, which also include Mobile Bay, AL, Great Lakes Areas of Concern, and the Pacific Northwest. Common elements across the community studies include a focus on watershed management and national estuary programs (National Estuary Program, National Estuarine Research Reserve System). San Juan, Puerto Rico, is unique from the other community studies in that it is located in a highly urbanized watershed integrated with a number of freshwater and coastal ecosystems. The San Juan Community Study will explore linkages between watershed management decisions (e.g., dredging canals, restoration of mangrove buffers, sewage discharge interventions, climate adaptive strategies) targeting priority stressors (e.g., nutrients, contaminants, and pathogens; aquatic debris; habitat loss; modified hydrology and water circulation; sea level rise; storm intensity and frequency) effecting the condition of ecosystems (e.g., estuarine habitats and fish, as well as the connected terrestrial and coastal ecosystems), associated ecosystem goods and services (e.g., tourism and recreation, fishing, nutrient & sediment retention, contaminant processing, carbon sequestration, flood protection),

  2. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    Science.gov (United States)

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  3. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    Science.gov (United States)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  4. Achieve a Better Understanding of Cloud and Precipitation Processes for the Promotion of Water Security in Arid and Semi-Arid Regions

    Science.gov (United States)

    Farrah, S.; Al Yazidi, O.

    2016-12-01

    The UAE Research Program for Rain Enhancement Science (UAEREP) is an international research initiative designed to advance the science and technology of rain enhancement. It comes from an understanding of the needs of countries suffering from scarcity of fresh water, and its will to support innovation globally. The Program focuses on the following topics: Climate change, Climate modelling, Climatology, Atmospheric physics, Atmospheric dynamics, Weather modification, Cloud physics, Cloud dynamics, Cloud seeding, Weather radars, Dust modelling, Aerosol physics , Aerosol chemistry, Aerosol/cloud interactions, Water resources, Physics, Numerical modelling, Material science, Nanotechnology, Meteorology, Hydrology, Hydrogeology, Rocket technology, Laser technology, Water sustainability, Remote sensing, Environmental sciences... In 2015, three research teams from Japan, Germany and the UAE led by Prof. Masataka Murakami, Volker Wulfmeyer and Linda Zou have been respectively awarded. Together, they are addressing the issue of water security through innovative ideas: algorithms and sensors, land cover modification, and nanotechnologies to accelerate condensation. These three projects are undergoing now with extensive research and progresses. This session will be an opportunity to present their latest results as well as to detail the evolution of research in rain enhancement. In 2016 indeed, the Program saw a remarkable increase in participation, with 91 pre-proposals from 398 scientists, researchers and technologists affiliated to 180 institutes from 45 countries. The projects submitted are now focusing on modelling to predict weather, autonomous vehicles, rocket technology, lasers or new seeding materials… The science of rain enhancement offers considerable potential in terms of research, development and innovation. Though cloud seeding has been pursued since the late 1940s, it has been viewed as a relatively marginal field of interest for scientists. This benign neglect

  5. Groundwater-dependent ecosystems: recent insights, new techniques and an ecosystem-scale threshold response

    Science.gov (United States)

    Eamus, D.; Zolfaghar, S.; Villalobos-Vega, R.; Cleverly, J.; Huete, A.

    2015-05-01

    Groundwater-dependent ecosystems (GDEs) are at risk globally due to unsustainable levels of groundwater extraction, especially in arid and semi-arid regions. In this review, we examine recent developments in the ecohydrology of GDEs with a focus on three knowledge gaps: (1) how do we locate GDEs, (2) how much water is transpired from shallow aquifers by GDEs; and (3) what are the responses of GDEs to excessive groundwater extraction? The answers to these questions will determine water allocations that are required to sustain functioning of GDEs and to guide regulations on groundwater extraction to avoid negative impacts on GDEs. We discuss three methods for identifying GDEs: (1) fluctuations in depth-to-groundwater that are associated with diurnal variations in transpiration, (2) stable isotope analysis of water sources in the transpiration stream; and (3) remote sensing methods. We then discuss several methods for estimating rates of GW use, including direct measurement using sapflux or eddy covariance technologies, estimation of a climate wetness index within a Budyko framework, spatial distribution of ET using remote sensing, groundwater modelling and stable isotopes. Remote sensing methods often rely on direct measurements to calibrate the relationship between vegetation indices and ET. ET from GDEs is also determined using hydrologic models of varying complexity, from the "White method" to fully coupled, variable saturation models. Combinations of methods are typically employed to obtain clearer insight into the components of groundwater discharge in GDEs, such as the proportional importance of transpiration vs. evaporation (e.g., using stable isotopes) or from groundwater vs. rainwater sources. Groundwater extraction can have severe consequences on structure and function of GDEs. In the most extreme cases, phreatophytes experience crown dieback and death following groundwater drawdown. We provide a brief review of two case studies of the impacts of GW

  6. Ecosystem approach in education

    Science.gov (United States)

    Nabiullin, Iskander

    2017-04-01

    Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to

  7. Interpretation of environmental isotopic groundwater data. Arid and semi-arid zones

    International Nuclear Information System (INIS)

    Geyh, M.A.

    1980-01-01

    Various hydrodynamic aspects are discussed in order to show their implication for the hydrogeological interpretation of environmental isotope and hydrochemical groundwater data. Special attention is drawn to radiocarbon and tritium studies carried out in arid and semi-arid zones. An exponential model has been utilized to determine the mean residence time of the long-term water from springs in karst and crystalline regions. Hydrogeological parameters such as the porosity can be checked by this result. In addition, the exponential model offers the possibility of determining the initial 14 C content of spring water, which is sensitively dependent on the soil of the recharge area. A base-flow model has been introduced to interpret the 14 C and 3 H data of groundwater samples from older karst regions. Differences between pumped and drawn samples exist with respect to the groundwater budget. Owing to pumping, the old base flow is accelerated and becomes enriched in pumped groundwater in comparison to the short-term water. Radiocarbon ages of groundwater in alluvium may be dubious because of isotope exchange with the CO 2 in the root zone along the river bank. Under confined conditions 14 C groundwater ages are diminished if the hydraulic head of the confined aquifer is lower than that of the shallow one. This is due to the radiocarbon downwards transport by convection of shallow groundwater. The same effect occurs, though much faster, if the groundwater table is depleted by groundwater withdrawal. The decrease of the radiocarbon groundwater ages in time can be used to determine the hydraulic transmissibility coefficient of the aquitarde. According to the practical and theoretic results obtained the hydrodynamic aspects require at least the same attention for the interpretation of environmental isotope and hydrochemical data of groundwater as do hydrochemical and isotope fractionation processes. (author)

  8. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data.

    Science.gov (United States)

    Huang, Ling; He, Bin; Han, Le; Liu, Junjie; Wang, Haiyan; Chen, Ziyue

    2017-12-01

    Ecosystem water-use efficiency (WUE) plays an important role in carbon and water cycles. Currently, the response of WUE to drought disturbance remains controversial. Based on the global ecosystem gross primary productivity (GPP) product and the evapotranspiration product (ET), both of which were retrieved from the moderate resolution imaging spectroradiometer (MODIS), as well as the drought index, this study comprehensively examined the relationship between ecosystem WUE (WUE=GPP/ET) and drought at the global scale. The response of WUE to drought showed large differences in various regions and biomes. WUE for arid ecosystems typically showed a negative response to drought, whereas WUE for humid ecosystems showed both positive and negative response to drought. Legacy effects of drought on ecosystem WUE were observed. Furthermore, ecosystems showed a sensitive response to abrupt changes in hydrological climatic conditions. The transition from wet to dry years should increase ecosystem WUE, and the opposite change in WUE should occur when an ecosystem experiences a transition from dry to wet years. This indicates the resilience of ecosystems to drought disturbance. Knowledge from this study should provide an in-depth understanding of ecosystem strategies for coping with drought. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    KAUST Repository

    Yadav, Brijesh Kumar; Hassanizadeh, S Majid

    2011-01-01

    environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific

  10. Potential of arid zone vegetation as a source of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.

    1977-11-01

    Three aspects of the potential of vegetation in arid zones as a source of substrates are discussed. The first includes the limitations on efficiency of conversion of solar energy to the stored chemical energy of biomass in green plants, and the subsequent biochemical pathways of carbon dioxide fixation and biosynthesis. Second is the potential of plants endogenous to arid zones. Finally, the use of covered agriculture or controlled environmental agriculture (CEA) is considered both in its present form and in terms of possible extenion to the large scale production of stable crops. (JGB)

  11. Impact of treated wastewater reuse and floods on water quality and fish health within a water reservoir in an arid climate.

    Science.gov (United States)

    Zaibel, Inbal; Zilberg, Dina; Groisman, Ludmila; Arnon, Shai

    2016-07-15

    Treated wastewater (TWW) reuse for agricultural irrigation is a well-established approach to coping with water shortages in semi-arid and arid environments. Recently, additional uses of TWW have emerged, including streamflow augmentation and aquatic ecosystem restoration. The purpose of the current study was to evaluate the water quality and fish health, in an artificial reservoir located in an arid climate (the Yeruham Reservoir, Israel), which regularly receives TWW and sporadic winter floods. The temporal distribution of water levels, nutrients and organic micropollutants (OMPs) were measured during the years 2013-2014. OMPs were also measured in sediment and fish tissues. Finally, the status of fish health was evaluated by histopathology. Water levels and quality were mainly influenced by seasonal processes such as floods and evaporation, and not by the discharge of TWW. Out of 16 tested OMPs, estrone, carbamazepine, diclofenac and bezafibrate were found in the reservoir water, but mostly at concentrations below the predicted no-effect concentration (PNEC) for fish. Concentrations of PCBs and dioxins in fish muscle and liver were much lower than the EU maximal permitted concentrations, and similar to concentrations that were found in food fish in Israel and Europe. In the histopathological analysis, there were no evident tissue abnormalities, and low to moderate infection levels of fish parasites were recorded. The results from the Yeruham Reservoir demonstrated a unique model for the mixture effect between TWW reuse and natural floods to support a unique stable and thriving ecosystem in a water reservoir located in an arid region. This type of reservoir can be widely used for recreation, education, and the social and economic development of a rural environment, such as has occurred in the Yeruham region. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development and implementation of a monitoring and information system to increase water use efficiency in arid and semi-arid areas in Limarí, Central Chile (WEIN

    Directory of Open Access Journals (Sweden)

    E. Berger

    2016-10-01

    Full Text Available The project WEIN was funded by the Federal Ministry of Education and Research (BMBF | Berlin, Germany in the framework of the high-tech strategy of Germany's program "KMU-Innovativ". The project started in 2012 and was completed in 2014. In the scope of the project, an integrated system for analysis, monitoring and information at river basin level was developed, which provides relevant information for all stakeholders that are concerned with water resource issues. The main objective of the project was to improve water use efficiency and hence ensure the agricultural production in the region. The pilot region, in which this system was implemented, is the semi-arid Limarí basin in Northern Central Chile. One of the main parts of the project was the development and implementation of a web- and app-based irrigation water ordering and accounting system for local farmers.

  13. Environmental gradients across wetland vegetation groups in the arid slopes of Western Alborz Mountains, N. Iran

    Directory of Open Access Journals (Sweden)

    Asghar Kamrani

    2011-01-01

    Full Text Available Mountain wetlands are unique ecosystems in the arid southern slopes of Alborz range, the second largest range in Iran. The spatial distribution characteristics of wetland vegetation in the arid region of the Alborz and the main factors affecting their distributional patterns were studied. A classification of vegetation and ecological characteristics were carried out using data extracted from 430 relevés in 90 wetland sites. The data were analyzed using Two Way Indicator Species Analysis (TWINSPAN and detrended correspondence analysis (DCA. The wetland vegetation of Alborz Mountain was classified into four large groups. The first vegetation group was calcareous rich vegetation, mainly distributed in the river banks and characterized by helophytes such as Bolboschoenus affinis as indicator species. The second group was saline transitional vegetation, distributed in the ecotone areas and dominated by Phragmites australis. The third vegetation group is wet meadow vegetation which mainly consists of geophytes, endemic and Irano-Turanian species, distributed in the higher altitudes. This vegetation is mainly characterized by indicator species such as Carex orbicularis, high level concentration of Fe2+ and percentage of organic matter in the soil. The fourth vegetation group is aquatic vegetation, distributed in the lakeshores. The aquatic group species are mainly hydrophytic such as Batrachium trichophyllum. The TWINSPAN vegetation groups could be also recognized in the DCA graphs and ecologically differentiated by ANOVA of studied variables. Four vegetation groups can be differentiated on two first axes of indirect ordination. There is a gradient of pH, EC and organic matter associated with altitude on the DCA diagram. Correlation analysis between the axes of DCA and environmental factors shows that altitude, soil texture and other dependant environmental variables (e.g. pH are the main environmental factors affecting the distribution of wetland

  14. Determining the resilience of carbon dynamics in semi-arid biomes of the Southwestern US to severe drought and altered rainfall patterns

    Science.gov (United States)

    Litvak, M. E.; Krofcheck, D. J.; Hilton, T. W.; Fox, A. M.; Osuna, J. L.

    2011-12-01

    Water is critically important for biotic processes in semi-arid ecosystems and 2011 is developing as one of the most severe drought years on record for many parts of the Southwestern US. To quantify the impact of this severe drought on regional carbon and energy balance, we need a more detailed understanding of how water limitation alters ecosystem processes across a range of semi-arid biomes. We quantified the impact of severe drought and changes in both the quantity and distribution of precipitation on ecosystem biotic structure and function across the range of biomes represented in the NM elevation gradient network (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine forest and subalpine mixed conifer forest). We compared how daily, seasonal and annual carbon and energy balance and their components in each of these biomes respond to changes in rainfall patterns using continuous measurements of carbon, water and energy exchange and associated measurements in each of these biomes during a 5 year period (2006-2011) that included a severe drought, and large variability in both winter precipitation and the timing and intensity of the monsoon. To understand the underlying mechanisms, we used time series of radiation absorbed by vegetation, surface albedo, soil moisture storage, phenology, gross primary productivity (GPP), ecosystem respiration (Re), and WorldView-2 images acquired pre- and post-monsoon in each of these biomes. In all of the biomes except the desert grassland site, the strength and timing of both winter and monsoon precipitation are important controls over carbon and energy dynamics in this region, though we see site-specific sensitivities across the elevation gradient. Over the past 5 years, carbon dynamics in the desert grassland site appears to be decoupled from winter precipitation. In addition, carbon dynamics in disturbed grassland and pinon-juniper ecosystems were more sensitive to severe drought than

  15. An ecosystem approach to management: a context for wilderness protection

    Science.gov (United States)

    Paul A. Gray; Robert J. Davidson

    2000-01-01

    Sustainable development, ecosystem management and ecosystem health are three prominent catch phrases that now permeate the scientific and popular media, and form the basis of a growing number of private sector, government and academic programs. This discussion paper briefly explores the definition and application of these concepts as a context for wilderness protection...

  16. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all

  17. Forest Ecosystem services and development pressures

    Science.gov (United States)

    David N. Wear

    2006-01-01

    Ecosystem services from forests on private lands are often under-produced because landowners bear the cost of restoring, preserving, and managing their lands to produce ecological services that benefit all members of the community or larger society. Over the last two decades, a variety of federal and state programs have applied a combination of regulations, extension,...

  18. Ecosystem quality in LCIA

    DEFF Research Database (Denmark)

    Woods, John S.; Damiani, Mattia; Fantke, Peter

    2017-01-01

    Purpose: Life cycle impact assessment (LCIA) results are used to assess potential environmental impacts of different products and services. As part of the UNEP-SETAC life cycle initiative flagship project that aims to harmonize indicators of potential environmental impacts, we provide a consensus...... viewpoint and recommendations for future developments in LCIA related to the ecosystem quality area of protection (AoP). Through our recommendations, we aim to encourage LCIA developments that improve the usefulness and global acceptability of LCIA results. Methods: We analyze current ecosystem quality...... metrics and provide recommendations to the LCIA research community for achieving further developments towards comparable and more ecologically relevant metrics addressing ecosystem quality. Results and discussion: We recommend that LCIA development for ecosystem quality should tend towards species...

  19. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  20. Formation of Service Ecosystems

    DEFF Research Database (Denmark)

    Jonas, Julia M.; Sörhammar, David; Satzger, Gerhard

    – i.e. the “birth phase” (Moore, 2009) of a service ecosystem. This paper, therefore, aims to explore how the somewhat “magic” processes of service ecosystem formation that are being taken for granted actually occur. Methodology/Approach: Building on a review of core elements in the definitions...... for Harvard students) or value proposition (share messages, photos, videos, etc. with friends). Processes of configuring actors, resources, and value propositions are influenced by the structural embeddedness of the service ecosystem (e.g., regional infrastructure, existing networks of actors, or resource...... availability) as well as guided by the actors’ own and shared institutions (e.g., rules, norms,and beliefs).We contextualize each starting point with illustrative cases and analyze the service ecosystem configuration process: “Axoon/Trumpf” (initiated by resources), “JOSEPHS – the service manufactory...

  1. Revisiting software ecosystems research

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    2016-01-01

    ‘Software ecosystems’ is argued to first appear as a concept more than 10 years ago and software ecosystem research started to take off in 2010. We conduct a systematic literature study, based on the most extensive literature review in the field up to date, with two primarily aims: (a) to provide...... an updated overview of the field and (b) to document evolution in the field. In total, we analyze 231 papers from 2007 until 2014 and provide an overview of the research in software ecosystems. Our analysis reveals a field that is rapidly growing both in volume and empirical focus while becoming more mature...... from evolving. We propose means for future research and the community to address them. Finally, our analysis shapes the view of the field having evolved outside the existing definitions of software ecosystems and thus propose the update of the definition of software ecosystems....

  2. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    Science.gov (United States)

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  3. Stakeholder Values and Ecosystems

    OpenAIRE

    Sveinsdottir, Thordis; Wessels, Bridgette; Smallwood, Rod; Linde, Peter; Kalla, Vasso; Tsoukala, Victoria; Sondervan, Jeroen

    2013-01-01

    This report is the deliverable for Work Package 1 (WP1), Stakeholder Values and Ecosystems, of the EU FP7 funded project RECODE (Grant Agreement No: 321463), which focuses on developing Policy Recommendations for Open Access to Research Data in Europe. WP1 focuses on understanding stakeholder values and ecosystems in Open Access, dissemination and preservation in the area of scientific and scholarly data (thus not government data). The objectives of this WP are as follows: • Identify and map ...

  4. Terrestrial ecosystems and biodiversity

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  5. Privacy driven internet ecosystem

    OpenAIRE

    Trinh, Tuan Anh; Gyarmati, Laszlo

    2012-01-01

    The dominant business model of today's Internet is built upon advertisements; users can access Internet services while the providers show ads to them. Although significant efforts have been made to model and analyze the economic aspects of this ecosystem, the heart of the current status quo, namely privacy, has not received the attention of the research community yet. Accordingly, we propose an economic model of the privacy driven Internet ecosystem where privacy is handled as an asset that c...

  6. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with

  7. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park.

    Science.gov (United States)

    Shadwell, Eleanor; February, Edmund

    2017-01-01

    In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ 13 C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional draw down of the water table adding

  8. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park

    Directory of Open Access Journals (Sweden)

    Eleanor Shadwell

    2017-01-01

    Full Text Available Background In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. Methods We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ13C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Results Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. Discussion An increase in abstraction of groundwater particularly at the Nossob borehole may

  9. Impact and consequences of evapotranspiration changes on water resources availability in the arid Zhangye Basin, China

    NARCIS (Netherlands)

    Jin, X.; Schaepman, M.E.; Clevers, J.G.P.W.; Su, Z.

    2009-01-01

    Evapotranspiration (ET) plays an important role in the hydrological cycle and it is essential to estimate ET accurately for the evaluation of available water resources. This is most important in arid and semi-arid regions. In this paper, the long-term changes in daily ET in the semi-arid Zhangye

  10. Effects of environmental conditions on soil salinity and arid region in Tunisia

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    The shortage of water resources of good water quality is becoming an issue in the arid and semi arid regions. for this reason, the use of water resources of marginal quality such as treated wastewater and saline groundwater has become and important consideration, particularly in arid region in Tunisia, where large quantities of saline water are used for irrigation. (Author)

  11. International Arid Lands Consortium: Better land stewardship in water and watershed management

    Science.gov (United States)

    Peter F. Ffolliott; James T. Fisher; Menachem Sachs; Darrell W. DeBoer; Jeffrey O. Dawson; Timothy E. Fulbright; John Tracy

    2000-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training for the development, management, and restoration of arid and semi-arid lands throughout the world. One activity of IALC members and cooperators is to support research and development and demonstration projects that enhance management of these fragile...

  12. [Assessment on the changing conditions of ecosystems in key ecological function zones in China].

    Science.gov (United States)

    Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song

    2015-09-01

    In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.

  13. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    Science.gov (United States)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  14. [Ecosystem services valuation of Qinghai Lake].

    Science.gov (United States)

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  15. Improved climate risk simulations for rice in arid environments

    NARCIS (Netherlands)

    Oort, van P.A.J.; Vries, de M.; Yoshida, H.; Saito, K.

    2015-01-01

    We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed

  16. Hypogeous fungi from Southern Spanish semi-arid lands

    NARCIS (Netherlands)

    Honrubia, M.; Cano, A.; Molina-Niñirola, C.

    1992-01-01

    Six hypogeous fungi of Ascomycotina and Basidiomycotina have been studied from semiarid zones in Southern Spain. Melanogaster variegatus (Vitt.) Tul. is recorded for the first time from Spain. Picoa juniperi Vitt. and Terfezia claveryi Chat. are revealed as the most frequent species in semi-arid

  17. Determining Dry Matter Degradability of Some Semi-Arid Browse ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: The in vitro gas production of some semi-arid browse species were evaluated. The relationship between in ... between in vitro gas measured on incubation of browse leaves and that calculated from SCFA allows the prediction of SCFA from ... with concentrate feed (40% corn, 10% wheat offal, 10% palm kernel ...

  18. Evaporation as the transport mechanism of metals in arid regions

    NARCIS (Netherlands)

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high

  19. Determining termite diversity in arid Namibian rangelands – a ...

    African Journals Online (AJOL)

    Three methods of sampling termite diversity in arid rangelands were tested in Namibia during the wet (March) and dry (October) seasons of 1998. Six sites were chosen: one pair on each of three farms representing a gradient of land use intensity. At each site, two adjacent plots of 1 ha each were sampled: one plot by a ...

  20. Adaptation at Scale in Semi-Arid Regions | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    People living in Africa and South Asia's semi-arid regions face challenges that hinder their economic growth and development. This project seeks to find proactive, longer-term approaches to climate change adaptation in these vulnerable regions, while helping locals manage existing risks. Short-term focus must shift. So far ...

  1. THE SURFACE WATER STORAGE PROBLEM IN ARID REGIONS:

    African Journals Online (AJOL)

    H. Benfetta

    2017-09-01

    Sep 1, 2017 ... This dam is located in an arid zone where water resources are becoming increasingly scarce. It is situated 5 km ... Leakage leads to considerable losses of valuable, scarce water. ...... Detection of water leaks in the restraints ...

  2. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  3. Characterization of lactic acid bacteria isolated from Algerian arid ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria isolated from Algerian raw goats\\' milk in arid zones were studied by determination of morphological, cultural, physiological and biochemical characteristics. 206 lactic acid bacterial strains were isolated, with 115 of them belonging to lactic acid cocci and others to the genus, ...

  4. Simulation of water use and herbage growth in arid regions

    NARCIS (Netherlands)

    Keulen, van H.

    1975-01-01

    The and and semi-arid regions of the world, totalling about 30% of the land surface of the earth, are predominantly used for extensive grazing, as low and erratic rainfall presents too high a risk for arable farming. The population that can be sustained by the animal products -meat, milk or

  5. Paclobutrazol biodegradation in unsaturated soil in the Semi-Arid ...

    African Journals Online (AJOL)

    Paclobutrazol (PBZ) is a plant growth regulator, increasing flowe ring and yield that is widely used in mango cultivation in the semi-arid northeastern Brazil. PBZ remains active in the soil for several years. However, it can severely affect the growth and development of subsequent crops, mainly by reducing vegetative vigor.

  6. Rates of wood and dung disintegration in arid South African ...

    African Journals Online (AJOL)

    Dead shrubs lying on the soil surface in an arid shrubland in the southern Karoo have half-lives of 9 to 18 years depending on wood density which varies among species. Dung pellets of sheep and springbok can remain intact on the soil surface in Karoo shrubland and desert grassland for five years or more. Highlights the ...

  7. Monetary accounting of ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Edens, Bram; Schröter, Matthias; Hein, Lars

    2015-01-01

    Ecosystem accounting aims to provide a better understanding of ecosystem contributions to the economy in a spatially explicit way. Ecosystem accounting monitors ecosystem services and measures their monetary value using exchange values consistent with the System of National Accounts (SNA). We

  8. Ecosystem Approaches to Human Health Graduate Training Awards ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC's Ecosystem Approaches to Human Health (Ecohealth) program initiative ... Each grant will consist of CA $15 000 for field research and up to CA $4 000 for ... Nutrition, health policy, and ethics in the age of public-private partnerships.

  9. Hurricanes Katrina and Rita and the Coastal Louisiana Ecosystem Restoration

    National Research Council Canada - National Science Library

    Zinn, Jeffrey

    2005-01-01

    ... for a $1.1 billion multiyear program to construct five projects that would help to restore portions of the coastal Louisiana ecosystem by slowing the rate of wetland loss and restoring some wetlands...

  10. EnviroAtlas - Rare Ecosystems in the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset identifies rare ecosystems using base landcover data from the USGS GAP Analysis Program (Version 2, 2011) combined with landscape ecology...

  11. Causes of early Holocene desertification in arid central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Liya [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); University of Kiel, Institute of Geosciences, Kiel (Germany); Chen, Fahu [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); Morrill, Carrie [University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); NOAA' s National Climatic Data Center, Paleoclimatology Branch, Boulder, CO (United States); Otto-Bliesner, Bette L.; Rosenbloom, Nan [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States)

    2012-04-15

    Paleoclimate records of effective moisture (precipitation minus evaporation, or P-E) show a dry (low effective moisture) period in mid-latitude arid/semi-arid central Asia during the early Holocene (11,000-8,000 years ago) relative to the middle and late Holocene, in contrast to evidence for greater-than-present precipitation at the same time in the south and east Asian monsoonal areas. To investigate the spatial differences in climate response over mid-latitude central Asia and monsoonal Asia we conducted a series of simulations with the Community Climate System Model version 3 coupled climate model for the early, middle and late Holocene. The simulations test the climatic impact of all important forcings for the early Holocene, including changes in orbital parameters, the presence of the remnant Laurentide ice sheet and deglacial freshening of the North Atlantic. Model results clearly show the early Holocene patterns indicated by proxy records, including both the decreased effective moisture in arid central Asia, which occurs in the model primarily during the winter months, and the increase in summer monsoon precipitation in south and east Asia. The model results suggest that dry conditions in the early Holocene in central Asia are closely related to decreased water vapor advection due to reduced westerly wind speed and less evaporation upstream from the Mediterranean, Black, and Caspian Seas in boreal winter. As an extra forcing to the early Holocene climate system, the Laurentide ice sheet and meltwater fluxes have a substantial cooling effect over high latitudes, especially just over and downstream of the ice sheets, but contribute only to a small degree to the early Holocene aridity in central Asia. Instead, most of the effective moisture signal can be explained by orbital forcing decreasing the early Holocene latitudinal temperature gradient and wintertime surface temperature. We find little evidence for regional subsidence related to a stronger summer Asian

  12. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  13. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  14. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Nascimento da Rocha Junior

    2018-04-01

    Full Text Available Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB is dry and the Piancó River basin (SB is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS is a good predictor for total phosphorus (TP, total nitrogen (TN and chlorophyll-a (CHLA. In addition, a two factorial analysis of variance (two-way ANOVA was performed to test for period (dry, very dry and extremely dry, basin (SB and PB and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity

  15. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  16. Programming

    International Nuclear Information System (INIS)

    Jackson, M.A.

    1982-01-01

    The programmer's task is often taken to be the construction of algorithms, expressed in hierarchical structures of procedures: this view underlies the majority of traditional programming languages, such as Fortran. A different view is appropriate to a wide class of problem, perhaps including some problems in High Energy Physics. The programmer's task is regarded as having three main stages: first, an explicit model is constructed of the reality with which the program is concerned; second, this model is elaborated to produce the required program outputs; third, the resulting program is transformed to run efficiently in the execution environment. The first two stages deal in network structures of sequential processes; only the third is concerned with procedure hierarchies. (orig.)

  17. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China

    Directory of Open Access Journals (Sweden)

    He Zhao

    2017-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China. Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05. The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities.

  18. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Science.gov (United States)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  19. Insert Maranhao in O cial Semi-Arid Geography: A Requirement of Social Justice in the Brazilian Northeast

    Directory of Open Access Journals (Sweden)

    José de Jesus Sousa Lemos

    2016-07-01

    Full Text Available The study attempts to show that the Brazilian semi-arid region is a region too needy. Even the Interior Ministry considering that there are municipalities only in the semiarid in eight of the Northeastern States excluding Maranhão, but incorporating municipalities in the state of Minas Gerais, the study also seeks to show that at least fteen municipalities of Maranhão has semiarid features and these municipalities have some of the largest pockets of poverty in this Brazilian ecosystem. In order to achieve its objectives the study uses data collected by the State University of Maranhão, the Demographic Census of IBGE 2010 and the GDP of the municipalities published by the IBGE in 2012. They use the estimated drought indices in a previous study of the State University of Maranhão to the Maranhão municipalities supposed to possess technical characteristics of semiarid region. Social indicators are estimated suchas education exclusion, income, running water, sanitation and garbage collection to all municipalities. The results showed that the average GDP of the semi-arid districts are much smaller than that of other municipalities in the Northeast. The ratio between the highest and the lowest GDP per capita in the semiarid region is 38.4. The iliteracy rates are high in all of them. Very high is also deprivation of access to piped water, sanitation and garbage collection also. e evidence of this study allow us to conclude that, in general, municipalities with technical characteristics of semi-arid in Maranhao State has economic, social and environmental indicators worse than the average of other municipalities already recognized in the Brazilian semiarid region.

  20. Soil bacterial and fungal community responses to nitrogen addition across soil depths and microhabitat in an arid shrubland

    Directory of Open Access Journals (Sweden)

    Rebecca C Mueller

    2015-09-01

    Full Text Available Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0-0.5 cm or 0-10 cm across the N-amendment gradient (0, 7 and 15 kg ha-1 yr-1. We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  1. Temporal and Spatial Distribution of Ecological Security in Arid Region Based on GIS: A Case Study in Xinjiang

    Science.gov (United States)

    Zhang, Q.; Song, W.; Yang, J.

    2017-12-01

    Ecological security is close related to the people's survival and development. In the context of the global warming, with the increasingly frequent human activities, ecological and environmental problems have become increasingly prominent. Ecological security has aroused widespread concern, especially in the arid region. It has an important role in national security as well as political security, military security, economic security, social security. Taken Xinjiang as the research area, which is a typical arid region in China, this study establishes an ecological safety assessment indicator system from perspective of the generic process and the formation mechanism of the ecosystem. The framework is based on natural resources dimensions, natural environment dimensions and human disturbance dimensions. Water is the restrictive factor for the development of arid region, so the water resources carrying capacity is the main natural resource of the study area. The natural environment includes SPI(standardized precipitation index), dryness index, landscape vulnerability, NDVI. Human disturbance includes urbanization rate, population density, afforestation area, per capita GDP, water-saving irrigation area, fertilizer and pesticide application, agriculture Mechanical power, energy consumption. The expert scoring method and the coefficient of variation method are used to determine the weight of each indicator, and finally a comprehensive index is constructed to evaluate the ecological security of Xinjiang, that is, the ecological security index. The results indicate that the ecological security of Xinjiang is 0.43, which is in the critical area. The ecological security of Hami, Turpan and Karamay is the lowest, and the ecological security of the Arabian and Yili is the highest. The ecological security of the south in the Xinjiang is higher than that in the north. In short, ecological environment of Xinjiang is in a sensitive period. Effective ecological protection policy

  2. Potential of native shrubs Haloxylon salicornicum and Calligonum Polygonoides for restoration of degraded lands in Arid Western Rajasthan, India.

    Science.gov (United States)

    Rathore, V S; Singh, J P; Bhardwaj, S; Nathawat, N S; Kumar, Mahesh; Roy, M M

    2015-01-01

    Shrub-induced soil property spatial heterogeneity is common in arid and semi-arid ecosystems and aids desertified land restoration. However, the effectiveness of this technique may rely on the plant species used and the habitat conditions present. To assess the degree to which planting two native species, Haloxylon salicornicum and Calligonum polygonoides, facilitates degraded land restoration, soil and herbaceous plant community properties were measured 7 years after planting. Soil samples were extracted at two depths (0-5 and 5-20 cm) from three sub-habitats, i.e., under the shrub canopy, from alleys between shrubs and from the open area. Shrub planting increased the quantity of silt + clay content (30-39 %); enhanced water holding capacities (24-30 %); increased the levels of organic carbon (48-69 %), available nitrogen (31-47 %), available phosphorus (32-41 %), and electrical conductivity (21-33 %); and decreased the pH (7-12 %) and bulk density levels (5-6 %) in the surface layer of soils beneath the canopy. Soil property changes were more significant at the surface (0-5 cm) than in the deeper layer (5-20 cm), and were more pronounced under H. salicornicum than under C. polygonoides. Furthermore, the density and biomass levels of herbaceous plants were 1.1 to 1.2 and 1.4 to 1.6 times greater, respectively, in the shrub alleys than in open area. H. salicornicum induced more robust soil amelioration and herbaceous plant facilitative properties than did C. polygonoides. Artificially planting these shrubs may thus be employed to restore degraded areas of arid regions.

  3. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  4. Management of nutrients and water in rainfed arid and semi-arid areas. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    1998-07-01

    Sustainable food security is needed for the arid and semi-arid regions of the tropical, subtropical and warm-temperate climatic zones. In these regions the supply of locally grown food is unreliable because much of it is produced in conditions of highly variable rainfall. Even in favourable seasons, these regions re becoming increasingly dependent on imported food. The IAEA's involvement in field studies on soil-water use dates back several years. A five year Co-ordinated Research Project on ''The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects''. That project, completed in 1995, laid a solid foundation for future research. Because of a scarcity of water in many developing countries and increasing needs for sustainable food security in the face of increasing populations and lack of funds for irrigation schemes of significant dimension, research must focus on improved management of (i) the modest quantities of fertilizers that are available to farmers, (ii) the natural resources that are available to farmers for increasing soil organic matter content, and (iii) rain water. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture held a Consultants Meeting on Management of Nutrients and Water in Rainfed Arid and Semi-Arid Areas for Increasing Crop Production, 26-29 May 1997

  5. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  6. Programming

    OpenAIRE

    Jackson, M A

    1982-01-01

    The programmer's task is often taken to be the construction of algorithms, expressed in hierarchical structures of procedures: this view underlies the majority of traditional programming languages, such as Fortran. A different view is appropriate to a wide class of problem, perhaps including some problems in High Energy Physics. The programmer's task is regarded as having three main stages: first, an explicit model is constructed of the reality with which the program is concerned; second, thi...

  7. Dimensions of ecosystem theory

    International Nuclear Information System (INIS)

    O'Neill, R.V.; Reichle, D.E.

    1979-01-01

    Various dimensions of ecosystem structure and behavior that seem to develop from the ubiquitous phenomena of system growth and persistence were studied. While growth and persistence attributes of ecosystems may appear to be simplistic phenomena upon which to base a comprehensive ecosystem theory, these same attributes have been fundamental to the theoretical development of other biological disciplines. These attributes were explored at a hierarchical level in a self-organizing system, and adaptive system strategies that result were analyzed. Previously developed causative relations (Reichle et al., 1975c) were examined, their theoretical implications expounded upon, and the assumptions tested with data from a variety of forest types. The conclusions are not a theory in themselves, but a state of organization of concepts contributing towards a unifying theory, along the lines promulgated by Bray (1958). The inferences drawn rely heavily upon data from forested ecosystems of the world, and have yet to be validated against data from a much more diverse range of ecosystem types. Not all of the interpretations are logically tight - there is room for other explanations, which it is hoped will provide fruitful grounds for further speculation

  8. EnviroAtlas - Ecosystem Service Market and Project Enabling Conditions, U.S., 2016, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting conditions enabling market-based programs, referred to herein as markets, and projects addressing ecosystem...

  9. EnviroAtlas - Ecosystem Service Market and Project Areas, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem...

  10. EnviroAtlas - Ecosystem Service Market and Project Locations, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services...

  11. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    Science.gov (United States)

    Jackson, W Andrew; Böhlke, John Karl; Andraski, Brian J.; Fahlquist, Lynne S.; Bexfield, Laura M.; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil C.; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta J.; Betancourt, Julio L.; Stonestrom, David A.; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-01-01

    Natural perchlorate (ClO4−) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4− compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4− in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4− to the more well-studied atmospherically deposited anions NO3−and Cl− as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4− is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10−1to 106 μg/kg. Generally, the ClO4− concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3− and ClO4− co-occur at molar ratios (NO3−/ClO4−) that vary between ∼104and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4− reduction, as indicated in part by NO3− isotope data. In contrast, much larger ranges of Cl−/ClO4− and Cl−/NO3−ratios indicate Cl− varies independently from both ClO4− and NO3−. The general lack of correlation between Cl− and ClO4− or NO3− implies that Cl− is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a

  12. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    Science.gov (United States)

    Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-09-01

    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative

  13. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors.

    Science.gov (United States)

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A . In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A . Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

  14. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    Science.gov (United States)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  15. Trajectories of grassland ecosystem change in response to experimental manipulations of precipitation

    Science.gov (United States)

    Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John

    2010-05-01

    Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was

  16. Working group 7: Ecosystems

    International Nuclear Information System (INIS)

    Verheyen, R.

    1976-01-01

    The purpose of this article is to evaluate the environmental impact of nuclear power plants. The effects of ionizing radiations, of the thermal and chemical pollution on aquatic ecosystems as well as on terrestrial ecosystems have been estimated. After a general survey of such effects and their interaction, practical conclusions in regard to determined areas such as Meuse-Escaut marine and the coast have been drawn. The contamination effects of food chains have been evaluted under deliberately pessimistic conditions with regard to the choice of the radionuclide as well as of concentration factors. Following the biodegradation conditions of the surface waters, criteria for the quality of the aquatic ecosystems have been established. Finally, attention has been paid on certain factors affecting the site selection especially within the frame of the nature conservation. The effects of cooling towers have been also considered. (G.C.)

  17. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  18. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    Science.gov (United States)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  19. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    Science.gov (United States)

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  20. Assessing Dryland Ecosystem Services in Xinjiang, Northwest China

    Science.gov (United States)

    Siew, T. F.; Brauman, K. A.; Zuo, L.; Doll, P. M.

    2014-12-01

    Dryland ecosystems, including grassland, forest, and irrigated cropland, cover about 41% of earth's land area and are inhabited by over two billion people. In drylands, particularly arid and semiarid areas, the production of ecosystem services is primarily constrained by freshwater availability. Often, water allocated to production by one ecosystem or of one ecosystem service negatively impacts other ecosystems or ecosystem services (ESS). The challenge is to determine how much water should be allocated to which ecosystems (natural and manmade) such that multiple ESS are maximized, thus improving overall well-being. This strategic management decision must be supported by knowledge about spatial and temporal availability of water and its relationship to production (location and scale) of ESS that people receive. We assess the spatial and temporal relationships between water availability and ESS production in Xinjiang, Northwest China. We address four questions: (1) What services are produced by which ecosystems with water available? (2) Where are these services produced? (3) Who uses the services produced? (4) How the production of services changes with variability of water available? Using existing global, national, and regional spatial and statistical data, we assess food, fiber, livestock, and wood production as well as unique forest landscapes (as a proxy for aesthetic appreciation and habitats for unique animals and plants) and protection from dust storms. Irrigation is necessary for crop production in Xinjiang. The production of about 4.2 million tons of wheat and 500,000 tons of cotton requires more than 2 km3 of water each year. This is an important source of food and income for local residents, but the diverted water has negative and potentially costly impacts on downstream forests that potentially provide aesthetic services and protection from dust. Our analyses also show that cropland had increased by about 1.6 million ha from 1987 to 2010, while

  1. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  2. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Jonathan Bennie

    2015-03-01

    Full Text Available The rapid growth in electric light usage across the globe has led to increasing presence of artificial light in natural and semi-natural ecosystems at night. This occurs both due to direct illumination and skyglow - scattered light in the atmosphere. There is increasing concern about the effects of artificial light on biological processes, biodiversity and the functioning of ecosystems. We combine intercalibrated Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS images of stable night-time lights for the period 1992 to 2012 with a remotely sensed landcover product (GLC2000 to assess recent changes in exposure to artificial light at night in 43 global ecosystem types. We find that Mediterranean-climate ecosystems have experienced the greatest increases in exposure, followed by temperate ecosystems. Boreal, Arctic and montane systems experienced the lowest increases. In tropical and subtropical regions, the greatest increases are in mangroves and subtropical needleleaf and mixed forests, and in arid regions increases are mainly in forest and agricultural areas. The global ecosystems experiencing the greatest increase in exposure to artificial light are already localized and fragmented, and often of particular conservation importance due to high levels of diversity, endemism and rarity. Night time remote sensing can play a key role in identifying the extent to which natural ecosystems are exposed to light pollution.

  3. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  4. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    Science.gov (United States)

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  5. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain)

    International Nuclear Information System (INIS)

    Moro, M. J.; Were, A.; Morillas, L.; Villagarcia, L.; Canton, Y.; Lazaro, R.; Serrano-Ortiz, P.; Kowalski, A. S.; Domingo, F.

    2009-01-01

    Dewfall deposition can be a significant source of moisture in arid and semiarid ecosystems, thus contribution to improve daily and annual water balances. Occurrence, frequency and amount of dewfall were measured in the Balsa Blanca site (Cabo de Gata, Almeria, Spain) from January 2007 to May 2008. this area has a sparse vegetation cover dominated by Stipa tenacissima combined with bare soil and biological soil crusts. (Author) 3 refs.

  6. Improving human-wildlife co-existence: Landscape level strategies to enhance wildlife movement in Amboseli-Tsavo Ecosystem, Kenya

    OpenAIRE

    Schnepf, Marit

    2017-01-01

    Amboseli-Tsavo Ecosystem is a unique landscape in Kenya’s semi-arid rangelands to the border of Tanzania. It is characterized by high abundances of wildlife which frequently disperses between three National Parks, namely Amboseli, Tsavo West and Chyulu Hills. Due to an increased population and a land-use change from prior nomadic pastoralism to sedentary farming activities, the land became highly fragmented and transformed into a human-dominated area. Increasingly wildlife migration routes ar...

  7. Organic amendments as restoration techniques in degraded arid and semiarid systems: A review

    Science.gov (United States)

    Hueso-González, Paloma; Muñoz-Rojas, Miriam

    2017-04-01

    There is an increasing concern at the global scale about interrelated environmental problems such as soil degradation, desertification, erosion, and climate change impacts (Hueso-Gonzalez et al., 2014). Indiscriminate use of agro-chemicals, excessive and deep tillage, excessive irrigation, among many others factors, have largely contributed to soil degradation, particularly in arid and semi-arid areas (Lal, 2008). Soil is an essential non-renewable resource with extremely slow formation and regeneration potential (Muñoz-Rojas et al., 2016a and c, Martínez-Murillo et al., 2016). The decline in organic matter content of many soils is becoming a major cause of soil degradation, particularly in dryland regions (Muñoz-Rojas et al., 2016b) where low soil fertility cannot maintain sustainable production in many cases (Hueso-González et al., 2015). The use of soil organic amendments is a common practice in agricultural management and land restoration that can help to improve physical and chemical soil properties, soil structure, temperature and humidity conditions, as well as nutrient contents which are essential for plant growth (Guerrero et al., 2001). Under degraded conditions, several studies have shown their benefits for improving soil physical, chemical and biological properties (Jordan et al., 2010 and 2011). However, there are many research gaps in the knowledge of the effects of climatic conditions on their application, as well as the adequate types of amendment and doses and decomposition rates, (Hueso-Gonzalez,2016). All these factors are crucial for the success in their application. Here, we review long-term experiments worldwide studying the benefits associated with the application of organic materials, particularly, in restoration of arid and semiarid ecosystems together with the possible threats and risks that can result from their use. We will specifically adress: (1) type of amended and benefits arising from their use, (2) application methods and more

  8. Legal and Institutional Regime for the Management of Arid and Semi-arid Ecosystems in the IGAD Member Countries, with Special Reference to Kenya

    International Nuclear Information System (INIS)

    Ojwang', J.B

    2001-01-01

    Drought and desertification constitute the most severe limitations to effective utilisation of natural resources and thus socio-economic development in the countries of Eastern Africa. Ojwang' says that, the criteria for combating desertification may derived from international law, and in particular from the Conventional to Combat Desertification (1994). This can be made at the levels of policy, law and institutions, to maintain an optimal interaction of the various elements of ecology which ensures the requisite balances. This can be achieved by promotion of regional co-operation through organizations such as International Authority on Development (IGAD). IGAD member countries have adopted approaches to the physical and social problems occasioned by conditions of drought though limited in maintaining balanced ecological cycles

  9. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    Science.gov (United States)

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. The dry season (represented by Julian day 35-46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266-273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 mumol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 mumol m-2s-1 and then levels off. Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season

  10. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Directory of Open Access Journals (Sweden)

    El-Tahir Bashir

    2008-12-01

    Full Text Available Abstract Background Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD. Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. Results The dry season (represented by Julian day 35–46, February 2005 was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1 was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere. The water use efficiency (WUE was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005 was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off. Conclusion Based on data collected during two short periods, the studied ecosystem

  11. Too Much or Too Little? Eco-hydrology in Arid and Semi-arid Regions

    Science.gov (United States)

    Toch, S. L.

    2009-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic ecosystems. Too much or too little rainfall is often deemed the culprit in these water crises, focusing on water "lacks and needs" instead of exploring the diverse mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach focuses on the connections between our human and ecological qualities, with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthiest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulnerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. The interactions of watersheds within our diverse communities can link our resource practices with our human needs, serving as a basis for our ecological health and human well-being. Hydrologic ecosystems provide links to geographic and cultural information traversing physical and social boundaries. This international, community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is used that specifically explores the connections between ecological integrity and the preservation of potable supplies. A monitoring strategy is developed that assesses risk to human health from resource use practices, and explores the similarities and interactions between our human needs and those of the ecosystems in which we all must live together. This work is geared as a reference for groups, individuals and agencies concerned with land use and watershed management, a supplement for interdisciplinary high school through University curriculum, for professional

  12. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  13. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna.

    Science.gov (United States)

    Davidson, Zeke; Valeix, Marion; Van Kesteren, Freya; Loveridge, Andrew J; Hunt, Jane E; Murindagomo, Felix; Macdonald, David W

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs' index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group "medium Bovidae" are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs' index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.

  14. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna.

    Directory of Open Access Journals (Sweden)

    Zeke Davidson

    Full Text Available Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56% and female (33% lions, contributing the most to lion dietary biomass. Jacobs' index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group "medium Bovidae" are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs' index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.

  15. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  16. Governance of Ecosystem Services

    NARCIS (Netherlands)

    Primmer, Eeva; Jokinen, Pekka; Blicharska, Malgorzata; Barton, David N.; Bugter, Rob; Potschin, Marion

    2015-01-01

    Biodiversity conservation policies justified with science and intrinsic value arguments have produced disappointing outcomes, and the need for conservation is now being additionally justified with the concept of ecosystem services. However, little, if any empirical attention is paid to ways in

  17. Shelf-sea ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  18. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  19. Payment for ecosystem services

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Oddershede, Jakob Stoktoft; Pedersen, Anders Branth

    Research question: Northern Europe experiences an increasingly wet climate, leading to more frequent and severe fluvial flood events. Ecosystem-based Adaptation (EbA) is becoming recognised as a valuable yet under-utilised means to alleviating negative effects of a changing climate. This however,...

  20. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.