WorldWideScience

Sample records for progerin expression underlying

  1. Differential temporal and spatial progerin expression during closure of the ductus arteriosus in neonates.

    Directory of Open Access Journals (Sweden)

    Regina Bökenkamp

    Full Text Available Closure of the ductus arteriosus (DA at birth is essential for the transition from fetal to postnatal life. Before birth the DA bypasses the uninflated lungs by shunting blood from the pulmonary trunk into the systemic circulation. The molecular mechanism underlying DA closure and degeneration has not been fully elucidated, but is associated with apoptosis and cytolytic necrosis in the inner media and intima. We detected features of histology during DA degeneration that are comparable to Hutchinson Gilford Progeria syndrome and ageing. Immunohistochemistry on human fetal and neonatal DA, and aorta showed that lamin A/C was expressed in all layers of the vessel wall. As a novel finding we report that progerin, a splicing variant of lamin A/C was expressed almost selectively in the normal closing neonatal DA, from which we hypothesized that progerin is involved in DA closure. Progerin was detected in 16.2%±7.2 cells of the DA. Progerin-expressing cells were predominantly located in intima and inner media where cytolytic necrosis accompanied by apoptosis will develop. Concomitantly we found loss of α-smooth muscle actin as well as reduced lamin A/C expression compared to the fetal and non-closing DA. In cells of the adjacent aorta, that remains patent, progerin expression was only sporadically detected in 2.5%±1.5 of the cells. Data were substantiated by the detection of mRNA of progerin in the neonatal DA but not in the aorta, by PCR and sequencing analysis. The fetal DA and the non-closing persistent DA did not present with progerin expressing cells. Our analysis revealed that the spatiotemporal expression of lamin A/C and progerin in the neonatal DA was mutually exclusive. We suggest that activation of LMNA alternative splicing is involved in vascular remodeling in the circulatory system during normal neonatal DA closure.

  2. Differential temporal and spatial progerin expression during closure of the ductus arteriosus in neonates.

    Science.gov (United States)

    Bökenkamp, Regina; Raz, Vered; Venema, Andrea; DeRuiter, Marco C; van Munsteren, Conny; Olive, Michelle; Nabel, Elizabeth G; Gittenberger-de Groot, Adriana C

    2011-01-01

    Closure of the ductus arteriosus (DA) at birth is essential for the transition from fetal to postnatal life. Before birth the DA bypasses the uninflated lungs by shunting blood from the pulmonary trunk into the systemic circulation. The molecular mechanism underlying DA closure and degeneration has not been fully elucidated, but is associated with apoptosis and cytolytic necrosis in the inner media and intima. We detected features of histology during DA degeneration that are comparable to Hutchinson Gilford Progeria syndrome and ageing. Immunohistochemistry on human fetal and neonatal DA, and aorta showed that lamin A/C was expressed in all layers of the vessel wall. As a novel finding we report that progerin, a splicing variant of lamin A/C was expressed almost selectively in the normal closing neonatal DA, from which we hypothesized that progerin is involved in DA closure. Progerin was detected in 16.2%±7.2 cells of the DA. Progerin-expressing cells were predominantly located in intima and inner media where cytolytic necrosis accompanied by apoptosis will develop. Concomitantly we found loss of α-smooth muscle actin as well as reduced lamin A/C expression compared to the fetal and non-closing DA. In cells of the adjacent aorta, that remains patent, progerin expression was only sporadically detected in 2.5%±1.5 of the cells. Data were substantiated by the detection of mRNA of progerin in the neonatal DA but not in the aorta, by PCR and sequencing analysis. The fetal DA and the non-closing persistent DA did not present with progerin expressing cells. Our analysis revealed that the spatiotemporal expression of lamin A/C and progerin in the neonatal DA was mutually exclusive. We suggest that activation of LMNA alternative splicing is involved in vascular remodeling in the circulatory system during normal neonatal DA closure.

  3. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza

    2015-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells...... also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation...... of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues...

  4. Promotion of tumor development in prostate cancer by progerin

    Directory of Open Access Journals (Sweden)

    Nie Daotai

    2010-11-01

    Full Text Available Abstract Progerin is a truncated form of lamin A. It is identified in patients with Hutchinson-Gilford progeria syndrome (HGPS, a disease characterized by accelerated aging. The contribution of progerin toward aging has been shown to be related to increased DNA damages. Since aging is one major risk factor for carcinogenesis, and genomic instability is a hallmark of malignant cancers, we investigated the expression of progerin in human cancer cells, and whether its expression contributes to carcinogenesis. Using RT-PCR and Western blotting, we detected the expression of progerin in prostate PC-3, DU145 and LNCaP cells at mRNA and protein levels. Ectopic progerin expression did not cause cellular senescence in PC-3 or MCF7 cells. PC-3 cells progerin transfectants were sensitized to DNA damage agent camptothecin (CPT; and persistent DNA damage responses were observed, which might be caused by progerin induced defective DNA damage repair. In addition, progerin transfectants were more tumorigenic in vivo than vector control cells. Our study for the first time describes the expression of progerin in a number of human cancer cell lines and its contributory role in tumorigenesis.

  5. Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo

    Directory of Open Access Journals (Sweden)

    Vera Wenzel

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare disorder characterized by segmental accelerated aging and early death from coronary artery disease or stroke. Nearly 90% of HGPS sufferers carry a G608G mutation within exon 11 of LMNA, producing a truncated form of prelamin A, referred to as “progerin”. Here, we report the isolation of naïve multipotent skin-derived precursor (SKP cells from dermal fibroblast cultures from HGPS donors. These cells form spheres and express the neural crest marker, nestin, in addition to the multipotent markers, OCT4, Sox2, Nanog and TG30; these cells can self-renew and differentiate into smooth muscle cells (SMCs and fibroblasts. The SMCs derived from the HGPS-SKPs accumulate nuclear progerin with increasing passages. A subset of the HGPS-naïve SKPs express progerin in vitro and in situ in HGPS skin sections. This is the first in vivo evidence that progerin is produced in adult stem cells, and implies that this protein could induce stem cells exhaustion as a mechanism contributing to aging. Our study provides a basis on which to explore therapeutic applications for HGPS stem cells and opens avenues for investigating the pathogenesis of other genetic diseases.

  6. Longwave UV light induces the aging-associated progerin.

    Science.gov (United States)

    Takeuchi, Hirotaka; Rünger, Thomas M

    2013-07-01

    Premature aging in Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation of the LMNA gene that activates a cryptic splice site. This results in expression of a truncated form of Lamin A, called progerin. Accumulation of progerin in the nuclei of HGPS cells impairs nuclear functions and causes abnormal nuclear morphology. Progerin accumulation has not only been described in HGPS, but also during normal intrinsic aging. We hypothesized that accumulation of progerin with abnormal nuclear shapes may also be accelerated by UV and with that contribute to photoaging of the skin. We exposed neonatal or aged cultured fibroblasts to single or repeated doses of longwave or shortwave UV (UVA or UVB) and found that UVA, but not UVB, induces progerin expression and HGPS-like abnormal nuclear shapes in all cells, but more in aged cells. The induction of progerin is mediated by UVA-induced oxidative damage and subsequent alternative splicing of the LMNA transcript, as progerin induction was suppressed by the singlet oxygen quencher sodium azide, and as mRNA expression of LMNA was not induced by UVA. These data suggest a previously unreported pathway of photoaging and support the concept that photoaging is at least in part a process of damage-accelerated intrinsic aging.

  7. Antisense oligonucleotide induction of progerin in human myogenic cells.

    Directory of Open Access Journals (Sweden)

    Yue-Bei Luo

    Full Text Available We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA transcript in human myogenic cells. The progerin transcript (LMNA Δ150 lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS. HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model

  8. Novel LMNA mutations cause an aggressive atypical neonatal progeria without progerin accumulation.

    Science.gov (United States)

    Soria-Valles, Clara; Carrero, Dido; Gabau, Elisabeth; Velasco, Gloria; Quesada, Víctor; Bárcena, Clea; Moens, Marleen; Fieggen, Karen; Möhrcken, Silvia; Owens, Martina; Puente, Diana A; Asensio, Óscar; Loeys, Bart; Pérez, Ana; Benoit, Valerie; Wuyts, Wim; Lévy, Nicolas; Hennekam, Raoul C; De Sandre-Giovannoli, Annachiara; López-Otín, Carlos

    2016-06-22

    Progeroid syndromes are genetic disorders that recapitulate some phenotypes of physiological ageing. Classical progerias, such as Hutchinson-Gilford progeria syndrome (HGPS), are generally caused by mutations in LMNA leading to accumulation of the toxic protein progerin and consequently, to nuclear envelope alterations. In this work, we describe a novel phenotypic feature of the progeria spectrum affecting three unrelated newborns and identify its genetic cause. Patients reported herein present an extremely homogeneous phenotype that somewhat recapitulates those of patients with HGPS and mandibuloacral dysplasia. However, pathological signs appear earlier, are more aggressive and present distinctive features including episodes of severe upper airway obstruction. Exome and Sanger sequencing allowed the identification of heterozygous de novo c.163G>A, p.E55K and c.164A>G, p.E55G mutations in LMNA as the alterations responsible for this disorder. Functional analyses demonstrated that fibroblasts from these patients suffer important dysfunctions in nuclear lamina, which generate profound nuclear envelope abnormalities but without progerin accumulation. These nuclear alterations found in patients' dermal fibroblasts were also induced by ectopic expression of the corresponding site-specific LMNA mutants in control human fibroblasts. Our results demonstrate the causal role of p.E55K and p.E55G lamin A mutations in a disorder which manifests novel phenotypic features of the progeria spectrum characterised by neonatal presentation and aggressive clinical evolution, despite being caused by lamin A/C missense mutations with effective prelamin A processing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. New look at the role of progerin in skin aging

    Directory of Open Access Journals (Sweden)

    Anna Skoczyńska

    2015-02-01

    Full Text Available Current literature data indicate that progerin, which is a mutant of lamin A, may be one of several previously known physiological biomarkers of the aging process which begins at the age of 30. Lamins belong to the family of intermediate filaments type V and are an important component of the nuclear envelope (NE. The physiological processes of an alternative splicing of LMNA (lamin A/C gene and posttranslational processing result in the formation of different variants of this gene. Prelamin A is generated in cytosol and modified by respective enzymes. In the final step, 15-aa peptide is released at the C-terminus, resulting in mature lamin A. Point mutation of cytosine to thymine at position 1824 in exon 11 of LMNA gene causes a truncated form of lamin A, which is defined as progerin. In the course of time, progerin is mainly found in skin fibroblasts and reticular layers of terminally differentiated keratinocytes. Changes take place in the nucleus and they are similar to those observed in patients with Hutchinson-Gilford progeria syndrome and refer mainly to an increase in the amount of reactive oxygen species which reduce the level of antioxidant enzymes, DNA damage and histone modification. There are still pending studies on working out new anti-aging strategies and the skin is the main area of research. Biomimetic peptides (analogues of elafin are used in cosmetics to reduce the formation of progerin.

  10. New look at the role of progerin in skin aging

    Science.gov (United States)

    Budzisz, Elżbieta; Dana, Agnieszka; Rotsztejn, Helena

    2015-01-01

    Current literature data indicate that progerin, which is a mutant of lamin A, may be one of several previously known physiological biomarkers of the aging process which begins at the age of 30. Lamins belong to the family of intermediate filaments type V and are an important component of the nuclear envelope (NE). The physiological processes of an alternative splicing of LMNA (lamin A/C) gene and posttranslational processing result in the formation of different variants of this gene. Prelamin A is generated in cytosol and modified by respective enzymes. In the final step, 15-aa peptide is released at the C-terminus, resulting in mature lamin A. Point mutation of cytosine to thymine at position 1824 in exon 11 of LMNA gene causes a truncated form of lamin A, which is defined as progerin. In the course of time, progerin is mainly found in skin fibroblasts and reticular layers of terminally differentiated keratinocytes. Changes take place in the nucleus and they are similar to those observed in patients with Hutchinson-Gilford progeria syndrome and refer mainly to an increase in the amount of reactive oxygen species which reduce the level of antioxidant enzymes, DNA damage and histone modification. There are still pending studies on working out new anti-aging strategies and the skin is the main area of research. Biomimetic peptides (analogues of elafin) are used in cosmetics to reduce the formation of progerin. PMID:26327889

  11. Novel LMNA mutations cause an aggressive atypical neonatal progeria without progerin accumulation

    NARCIS (Netherlands)

    Soria-Valles, Clara; Carrero, Dido; Gabau, Elisabeth; Velasco, Gloria; Quesada, Víctor; Bárcena, Clea; Moens, Marleen; Fieggen, Karen; Möhrcken, Silvia; Owens, Martina; Puente, Diana A.; Asensio, Óscar; Loeys, Bart; Pérez, Ana; Benoit, Valerie; Wuyts, Wim; Lévy, Nicolas; Hennekam, Raoul C.; de Sandre-Giovannoli, Annachiara; López-Otín, Carlos

    2016-01-01

    Background Progeroid syndromes are genetic disorders that recapitulate some phenotypes of physiological ageing. Classical progerias, such as Hutchinson-Gilford progeria syndrome (HGPS), are generally caused by mutations in LMNA leading to accumulation of the toxic protein progerin and consequently,

  12. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome

    OpenAIRE

    Wang, Yuexia; Östlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphologi...

  13. Antisense-Based Progerin Downregulation in HGPS-Like Patients’ Cells

    Directory of Open Access Journals (Sweden)

    Karim Harhouri

    2016-07-01

    Full Text Available Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670, are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation activates a cryptic splice site leading to the deletion of 50 amino acids at its carboxy-terminal domain, resulting in a truncated and permanently farnesylated Prelamin A called Prelamin A Δ50 or Progerin. Some patients carry other LMNA mutations affecting exon 11 splicing and are named “HGPS-like” patients. They also produce Progerin and/or other truncated Prelamin A isoforms (Δ35 and Δ90 at the transcriptional and/or protein level. The results we present show that morpholino antisense oligonucleotides (AON prevent pathogenic LMNA splicing, markedly reducing the accumulation of Progerin and/or other truncated Prelamin A isoforms (Prelamin A Δ35, Prelamin A Δ90 in HGPS-like patients’ cells. Finally, a patient affected with Mandibuloacral Dysplasia type B (MAD-B, carrying a homozygous mutation in ZMPSTE24, encoding an enzyme involved in Prelamin A maturation, leading to accumulation of wild type farnesylated Prelamin A, was also included in this study. These results provide preclinical proof of principle for the use of a personalized antisense approach in HGPS-like and MAD-B patients, who may therefore be eligible for inclusion in a therapeutic trial based on this approach, together with classical HGPS patients.

  14. Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn.

    Science.gov (United States)

    Reunert, Janine; Wentzell, Rüdiger; Walter, Michael; Jakubiczka, Sibylle; Zenker, Martin; Brune, Thomas; Rust, Stephan; Marquardt, Thorsten

    2012-09-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an important model disease for premature ageing. Affected children appear healthy at birth, but develop the first symptoms during their first year of life. They die at an average age of 13 years, mostly because of myocardial infarction or stroke. Classical progeria is caused by the heterozygous point mutation c.1824C>T in the LMNA gene, which activates a cryptic splice site. The affected protein cannot be processed correctly to mature lamin A, but is modified into a farnesylated protein truncated by 50 amino acids (progerin). Three more variations in LMNA result in the same mutant protein, but different grades of disease severity. We describe a patient with the heterozygous LMNA mutation c.1821G>A, leading to neonatal progeria with death in the first year of life. Intracellular lamin A was downregulated in the patient's fibroblasts and the ratio of progerin to lamin A was increased when compared with HGPS. It is suggestive that the ratio of farnesylated protein to mature lamin A determines the disease severity in progeria.

  15. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. COX-2 expression in striated muscle under physiological conditions.

    Science.gov (United States)

    Sudbø, J; Reith, A; Flørenes, V A; Nesland, J M; Ristimäki, A; Bryne, M

    2003-11-01

    The role of cyclooxygenase-2 (COX-2) in disease has been extensively studied, (Annu Rev Med (2002) 53:35; N Engl J Med (2001) 345:433) but less information is available with respect to possible physiological functions of COX-2. Information on how and where COX-2 is expressed under physiological conditions may increase our understanding of its physiological role. Previous studies have revealed a COX-2 dependent production of prostanoids under physiological conditions, without entirely determining the source of this production. To assess COX-2 expression under normal conditions, we analyzed tissue specimens that were removed from 30 healthy study subjects in conjunction with surgical procedure related to insertion of dental implants and from three patients which had muscle tissue from Quadriceps femoris muscle removed as part of surgical treatment of soft tissue sarcomas not directly affecting the muscle tissue. Immunohistochemistry and immunoblotting (Western blotting) was used to assess the presence of COX-2 protein. In 25 of 30 patients (83%), COX-2 protein was expressed in striated muscle, as assessed by immunohistochemistry. All cases had COX-2 expression verified by Western blotting. In none of the 25 subjects with COX-2 expression did we notice concomitant inflammation of the adjacent submucosal tissue. It is a novel finding that COX-2 is expressed in striated muscle under physiological conditions. COX-2 activity in striated muscle is a possible explanation for the hitherto unknown localization of prostanoids synthesis under physiological conditions.

  17. Rubisco activity and gene expression of tropical tree species under ...

    African Journals Online (AJOL)

    Young

    2013-05-15

    May 15, 2013 ... Tropical rain forests contain an ecologically and physiologically diverse range of vegetation and ... and gene expression under different light intensities. STATUS AND DISTRIBUTION OF TROPICAL RAIN. FORESTS. Tropical rain forests contain an ecologically and ..... The origin of the savanna biome. Glob.

  18. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.

    Science.gov (United States)

    Otoupal, Peter B; Erickson, Keesha E; Escalas-Bordoy, Antoni; Chatterjee, Anushree

    2017-01-20

    The evolution of antibiotic resistance has engendered an impending global health crisis that necessitates a greater understanding of how resistance emerges. The impact of nongenetic factors and how they influence the evolution of resistance is a largely unexplored area of research. Here we present a novel application of CRISPR-Cas9 technology for investigating how gene expression governs the adaptive pathways available to bacteria during the evolution of resistance. We examine the impact of gene expression changes on bacterial adaptation by constructing a library of deactivated CRISPR-Cas9 synthetic devices to tune the expression of a set of stress-response genes in Escherichia coli. We show that artificially inducing perturbations in gene expression imparts significant synthetic control over fitness and growth during stress exposure. We present evidence that these impacts are reversible; strains with synthetically perturbed gene expression regained wild-type growth phenotypes upon stress removal, while maintaining divergent growth characteristics under stress. Furthermore, we demonstrate a prevailing trend toward negative epistatic interactions when multiple gene perturbations are combined simultaneously, thereby posing an intrinsic constraint on gene expression underlying adaptive trajectories. Together, these results emphasize how CRISPR-Cas9 can be employed to engineer gene expression changes that shape bacterial adaptation, and present a novel approach to synthetically control the evolution of antimicrobial resistance.

  19. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    Science.gov (United States)

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes.

  20. Computational gene expression profiling under salt stress reveals patterns of co-expression

    Directory of Open Access Journals (Sweden)

    Sanchita

    2016-03-01

    Full Text Available Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes.

  1. Transcription factors expressed in soybean roots under drought stress.

    Science.gov (United States)

    Pereira, S S; Guimarães, F C M; Carvalho, J F C; Stolf-Moreira, R; Oliveira, M C N; Rolla, A A P; Farias, J R B; Neumaier, N; Nepomuceno, A L

    2011-10-21

    To gain insight into stress-responsive gene regulation in soybean plants, we identified consensus sequences that could categorize the transcription factors MYBJ7, BZIP50, C2H2, and NAC2 as members of the gene families myb, bzip, c2h2, and nac, respectively. We also investigated the evolutionary relationship of these transcription factors and analyzed their expression levels under drought stress. The NCBI software was used to find the predicted amino acid sequences of the transcription factors, and the Clustal X software was used to align soybean and other plant species sequences. Phylogenetic trees were built using the Mega 4.1 software by neighbor joining and the degree of confidence test by Bootstrap. Expression level studies were carried out using hydroponic culture; the experiments were designed in completely randomized blocks with three repetitions. The blocks consisted of two genotypes, MG/BR46 Conquista (drought-tolerant) and BR16 (drought-sensitive) and the treatments consisted of increasingly long dehydration periods (0, 25, 50, 75, and 100 min). The transcription factors presented domains and/or conserved regions that characterized them as belonging to the bzip, c2h2, myb, and nac families. Based on the phylogenetic trees, it was found that the myb, bzip and nac genes are closely related to myb78, bzip48 and nac2 of soybean and that c2h2 is closely related to c2h2 of Brassica napus. Expression of all genes was in general increased under drought stress in both genotypes. Major differences between genotypes were due to the lowering of the expression of the mybj7 and c2h2 genes in the drought-tolerant variety at some times. Over-expression or silencing of some of these genes has the potential to increase stress tolerance.

  2. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    Science.gov (United States)

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  3. Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress.

    OpenAIRE

    Nevitt, Tracy; Pereira, Jorge; Azevedo, Dulce; Guerreiro, Paulo; Rodrigues-Pousada, Claudina

    2004-01-01

    YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only...

  4. Expression Analysis of Sugarcane Aquaporin Genes under Water Deficit

    Directory of Open Access Journals (Sweden)

    Manassés Daniel da Silva

    2013-01-01

    Full Text Available The present work is a pioneer study specifically addressing the aquaporin transcripts in sugarcane transcriptomes. Representatives of the four aquaporin subfamilies (PIP, TIP, SIP, and NIP, already described for higher plants, were identified. Forty-two distinct aquaporin isoforms were expressed in four HT-SuperSAGE libraries from sugarcane roots of drought-tolerant and -sensitive genotypes, respectively. At least 10 different potential aquaporin isoform targets and their respective unitags were considered to be promising for future studies and especially for the development of molecular markers for plant breeding. From those 10 isoforms, four (SoPIP2-4, SoPIP2-6, OsPIP2-4, and SsPIP1-1 showed distinct responses towards drought, with divergent expressions between the bulks from tolerant and sensitive genotypes, when they were compared under normal and stress conditions. Two targets (SsPIP1-1 and SoPIP1-3/PIP1-4 were selected for validation via RT-qPCR and their expression patterns as detected by HT-SuperSAGE were confirmed. The employed validation strategy revealed that different genotypes share the same tolerant or sensitive phenotype, respectively, but may use different routes for stress acclimation, indicating the aquaporin transcription in sugarcane to be potentially genotype-specific.

  5. Under-expression of α8 integrin aggravates experimental atherosclerosis.

    Science.gov (United States)

    Menendez-Castro, Carlos; Cordasic, Nada; Neureiter, Daniel; Amann, Kerstin; Marek, Ines; Volkert, Gudrun; Stintzing, Sebastian; Jahn, Angelika; Rascher, Wolfgang; Hilgers, Karl F; Hartner, Andrea

    2015-05-01

    Integrins play an important role in vascular biology. The α8 integrin chain attenuates smooth muscle cell migration but its functional role in the development of atherosclerosis is unclear. Therefore, we studied the contribution of α8 integrin to atherosclerosis and vascular remodelling. We hypothesized that α8 integrin expression is reduced in atherosclerotic lesions, and that its under-expression leads to a more severe course of atherosclerosis. α8 Integrin was detected by immunohistochemistry and qPCR and α8 integrin-deficient mice were used to induce two models of atherosclerotic lesions. First, ligation of the carotid artery led to medial thickening and neointima formation, which was quantified in carotid cross-sections. Second, after crossing into ApoE-deficient mice, the formation of advanced vascular lesions with atherosclerotic plaques was quantified in aortic en face preparations stained with Sudan IV. Parameters of renal physiology and histopathology were assessed: α8 integrin was detected in the media of human and murine vascular tissue and was down-regulated in arteries with advanced atherosclerotic lesions. In α8 integrin-deficient mice (α8(-/-) ) as well as α8(+/-) and α8(+/+) littermates, carotid artery ligation increased media:lumen ratios in all genotypes, with higher values in ligated α8(-/-) and α8(+/-) compared to ligated α8(+/+) animals. Carotid artery ligation increased smooth muscle cell number in the media of α8(+/+) mice and, more prominently, of α8(-/-) or α8(+/-) mice. On an ApoE(-/-) background, α8(+/-) and α8(-/-) mice developed more atherosclerotic plaques than α8(+/+) mice. α8 Integrin expression was reduced in α8(+/-) animals. Renal damage with increased serum creatinine and glomerulosclerosis was detected in α8(-/-) mice only. Thus, under-expression of α8 integrin aggravates vascular lesions, while a complete loss of α8 integrin results in reduced renal mass and additional renal disease in the presence of

  6. Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress.

    Science.gov (United States)

    Nevitt, Tracy; Pereira, Jorge; Azevedo, Dulce; Guerreiro, Paulo; Rodrigues-Pousada, Claudina

    2004-01-01

    YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response. PMID:14680476

  7. Learning expressive percussion performance under different visual feedback conditions

    NARCIS (Netherlands)

    Brandmeyer, A.; Timmers, R.; Sadakata, M.; Desain, P.W.M.

    2011-01-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their

  8. 3D Facial Landmarking under Expression, Pose, and Occlusion Variations

    NARCIS (Netherlands)

    H. Dibeklioğ lu; A.A. Salah (Albert Ali); L. Akarun

    2008-01-01

    htmlabstractAutomatic localization of 3D facial features is important for face recognition, tracking, modeling and expression analysis. Methods developed for 2D images were shown to have problems working across databases acquired with different illumination conditions. Expression variations, pose

  9. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  10. Learning expressive percussion performance under different visual feedback conditions

    OpenAIRE

    Brandmeyer, A.; Timmers, R.; Sadakata, M.; Desain, P.

    2010-01-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their performances, low-level feedback on the timing and dynamics of the performed notes, or no feedback. The high-level feedback was based on a Bayesian analysis of the performances, while the low-level feedb...

  11. Learning expressive percussion performance under different visual feedback conditions.

    Science.gov (United States)

    Brandmeyer, Alex; Timmers, Renee; Sadakata, Makiko; Desain, Peter

    2011-03-01

    A study was conducted to test the effect of two different forms of real-time visual feedback on expressive percussion performance. Conservatory percussion students performed imitations of recorded teacher performances while receiving either high-level feedback on the expressive style of their performances, low-level feedback on the timing and dynamics of the performed notes, or no feedback. The high-level feedback was based on a Bayesian analysis of the performances, while the low-level feedback was based on the raw participant timing and dynamics data. Results indicated that neither form of feedback led to significantly smaller timing and dynamics errors. However, high-level feedback did lead to a higher proficiency in imitating the expressive style of the target performances, as indicated by a probabilistic measure of expressive style. We conclude that, while potentially disruptive to timing processes involved in music performance due to extraneous cognitive load, high-level visual feedback can improve participant imitations of expressive performance features.

  12. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    Science.gov (United States)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  13. Expression profiles of hot pepper (Capsicum annuum) genes under ...

    Indian Academy of Sciences (India)

    Unknown

    increase when the plant is subjected to water stress, and. ABA has been established to play an important role in the tolerance of plants to such stresses. The results of many studies have indicated that these protective mechanisms are regulated by alterations in the expression levels of stress genes. Many of these stress ...

  14. Is expressive timing relational invariant under tempo transformation?

    NARCIS (Netherlands)

    Honing, H.

    2007-01-01

    This empirical study is concerned with examining the relation between tempo and expressive timing in music performance. This was investigated by asking listeners (N = 307) to distinguish between an original recording and a tempo-transformed version in a musical genre of their preference (jazz or

  15. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  16. Expression profiles of hot pepper (Capsicum annuum) genes under ...

    Indian Academy of Sciences (India)

    In an attempt to determine a cold defense mechanism in plants, we have attempted to characterize changes occurring in the expression of cold-regulated transcript levels in the hot pepper (Capsicum annuum), using cDNA microarray analysis, combined with Northern blot analysis. After analysing a 3.1 K hot pepper cDNA ...

  17. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    Jane

    2011-07-13

    Jul 13, 2011 ... This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye. (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results.

  18. Human MSC gene expression under simulated microgravity (RPM)

    Science.gov (United States)

    Buravkova, Ludmila; Gershovich, Pavel; Grigoriev, Anatoly

    It is generally supposed that microgravity cell response is mediated by some structures of actin cytoskeleton that can be implicated in cell mechanosensitivity. Cytoskeletal reorganization in the microgravity environment can affect gene expression, which results in alterations of cell function. However the direct impact of microgravity on expression of some cytoskeletal genes and encoded proteins remains unknown. Multipotential adult mesechymal stromal cells (MSCs) are the early precursors of bone marrow that can be induced to differentiate into bone-like cells as well as to the other mesenchymal tissues. In our previous experiments we revealed cytoskele-ton alterations and reduced human MSCs growth and osteogenesis in simulated microgravity by Random Positioning Machine. The purpose of this study was to determine the impact of low gravity on F-actin organization and gene expression level of α-, β-, γ-actin, vinculin, cofilin, small GTPase RhoA, Rho kinase (ROCK) and protein expression of some adhesion molecules in cultured hMSCs. Fluorescent microscopy have shown that even 30 min of SMG results in rearrangement of F-actin and the lack of stress fibers in cultured hMSCs. Cell number with abnormal F-actin organization was increased after 6 h, 24 h and 48 h of SMG. On the other hand, after 120 hours of SMG cells displayed partial restoration of F-actin fibers in comparison with 24 h and 48 h. Similarly, near the same restoration was seen in F-actin after readaptation for 24 h in 1g environment after 24 h of SMG. However, the observed alterations in F-actin dimensional organization were accompanied by changes in related proteins gene expression. Real-time PCR revealed slight up-regulation of α-actin expression that became more signifi-cant after 48 h of SMG. Down-regulation of γ-actin was observed after 48 hours of exposure in RPM. Moreover the up-regulation of β-tubulin, cofilin and small GTPase RhoA gene expres-sion was also detected after 48 h of SMG. On the

  19. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    Science.gov (United States)

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  20. Freedom of expression in Azerbaijan under test : challenges and prospects

    OpenAIRE

    Madatli, Leyla

    2010-01-01

    This article discusses the ground-breaking judgment in Fatullayev v Azerbaijan in which the European Court ordered the immediate release of imprisoned journalist Eynulla Fatullayev, but who at the time of going to press nevertheless remained in custody. Fatullayev was the founder and chief editor of two newspapers in Azerbaijan well known for their harsh criticism of the Azerbaijani Government. This judgment is of great importance for Azerbaijan as it addresses topical issues under Art.10 ECH...

  1. Regulation and expression of human Fabs under the control of the Escherichia coli arabinose promoter, PBAD.

    Science.gov (United States)

    Clark, M A; Hammond, F R; Papaioannou, A; Hawkins, N J; Ward, R L

    1997-10-01

    The L-arabinose operon from E. coli contains an inducible promoter PBAD which has been extensively studied for the control of gene expression. PBAD has a number of potential advantages over Plac, and has been used successfully to promote high level expression of recombinant proteins. The aim of this study was to investigate PBAD as an alternative system to Plac for the bacterial expression of recombinant Fabs. The promoter PBAD from the E. coli arabinose operon araBAD and the gene encoding the regulator of this promoter, were cloned into the phagemid expression vector MCO1. Expression of human recombinant tetanus toxoid (TT) and c-erbB2 Fabs under the control of PBAD was compared at two induction temperatures with the same Fabs produced under the control of Plac. Expression of TT and c-erbB2 Fabs under the control of PBAD was comparable to Fab expression from Plac. However, highly expressed TT Fab under the control of PBAD was localised to the soluble periplasmic fraction whereas under the control of Plac, there was greater leakage of Fab into the culture supernatant. In addition, Fab expression from PBAD could be more tightly repressed than from Plac. PBAD is a useful and cheaply inducible alternative to the more commonly used Plac for the rapid expression of soluble recombinant human antibody fragments.

  2. RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress.

    Science.gov (United States)

    Marraccini, Pierre; Freire, Luciana P; Alves, Gabriel S C; Vieira, Natalia G; Vinecky, Felipe; Elbelt, Sonia; Ramos, Humberto J O; Montagnon, Christophe; Vieira, Luiz G E; Leroy, Thierry; Pot, David; Silva, Vânia A; Rodrigues, Gustavo C; Andrade, Alan C

    2011-05-16

    In higher plants, the inhibition of photosynthetic capacity under drought is attributable to stomatal and non-stomatal (i.e., photochemical and biochemical) effects. In particular, a disruption of photosynthetic metabolism and Rubisco regulation can be observed. Several studies reported reduced expression of the RBCS genes, which encode the Rubisco small subunit, under water stress. Expression of the RBCS1 gene was analysed in the allopolyploid context of C. arabica, which originates from a natural cross between the C. canephora and C. eugenioides species. Our study revealed the existence of two homeologous RBCS1 genes in C. arabica: one carried by the C. canephora sub-genome (called CaCc) and the other carried by the C. eugenioides sub-genome (called CaCe). Using specific primer pairs for each homeolog, expression studies revealed that CaCe was expressed in C. eugenioides and C. arabica but was undetectable in C. canephora. On the other hand, CaCc was expressed in C. canephora but almost completely silenced in non-introgressed ("pure") genotypes of C. arabica. However, enhanced CaCc expression was observed in most C. arabica cultivars with introgressed C. canephora genome. In addition, total RBCS1 expression was higher for C. arabica cultivars that had recently introgressed C. canephora genome than for "pure" cultivars. For both species, water stress led to an important decrease in the abundance of RBCS1 transcripts. This was observed for plants grown in either greenhouse or field conditions under severe or moderate drought. However, this reduction of RBCS1 gene expression was not accompanied by a decrease in the corresponding protein in the leaves of C. canephora subjected to water withdrawal. In that case, the amount of RBCS1 was even higher under drought than under unstressed (irrigated) conditions, which suggests great stability of RBCS1 under adverse water conditions. On the other hand, for C. arabica, high nocturnal expression of RBCS1 could also explain the

  3. Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA

    Directory of Open Access Journals (Sweden)

    Xavier Nissan

    2012-07-01

    Full Text Available One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS, who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.

  4. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  5. The δ-cyclin expression at early stages of embryogenesis of Brassica rapa L. under clinorotation

    Science.gov (United States)

    Artemenko, O. A.; Popova, A. F.

    We present some results of comparison studying of Brassica embryo development and the δ-cyclin genes expression under slow horizontal clinorotation and in the laboratory control. Some backlog of the δ1-cyclin genes expression at early stages of embryogenesis under clinorotation was revealed in comparison with the laboratory control. The similar level of the δ3-cyclin expression at all stages of embryo formation (from one to nine days) in both variants is shown. Some delays in the rate of Brassica rapa embryo development under clinorotation in comparison with the laboratory control can be a result of decrease of a level and some backlog of the δ1-cyclin expression at early stages of embryogenesis.

  6. GSTF1 Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments

    OpenAIRE

    Ali Niazi; Amin Ramezani; Ali Dinari

    2014-01-01

    Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that...

  7. The Optimization of Passengers’ Travel Time under Express-Slow Mode Based on Suburban Line

    Directory of Open Access Journals (Sweden)

    Xiaobing Ding

    2016-01-01

    Full Text Available The suburban line connects the suburbs and the city centre; it is of huge advantage to attempt the express-slow mode. The passengers’ average travel time is the key factor to reflect the level of rail transport services, especially under the express-slow mode. So it is important to study the passengers’ average travel time under express-slow, which can get benefit on the optimization of operation scheme. First analyze the main factor that affects passengers’ travel time and then mine the dynamic interactive relationship among the factors. Second, a new passengers’ travel time evolution algorithm is proposed after studying the stop schedule and the proportion of express/slow train, and then membrane computing theory algorithm is introduced to solve the model. Finally, Shanghai Metro Line 22 is set as an example to apply the optimization model to calculate the total passengers’ travel time; the result shows that the total average travel time under the express-slow mode can save 1 minute and 38 seconds; the social influence and value of it are very huge. The proposed calculation model is of great help for the decision of stop schedule and provides theoretical and methodological support to determine the proportion of express/slow trains, improves the service level, and enriches and complements the rail transit operation scheme optimization theory system.

  8. Suppression of Idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression.

    Science.gov (United States)

    Dong, Bin; Wu, Minhao; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2011-01-01

    Recent studies have identified proprotein convertase subtilisin/kexin type 9 (PCSK9) and Idol as negative regulators of low density lipoprotein receptor (LDLR) protein stability. While the induction of PCSK9 transcription has been recognized as a limitation to the statin cholesterol-lowering efficacy at higher doses, it is unknown whether Idol is involved in the statin-mediated up-regulation of the hepatic LDLR. Here we report that statins exert opposite effects on PCSK9 and Idol gene expression in human hepatoma-derived cell lines and primary hepatocytes isolated from hamsters and rats. While PCSK9 expression was induced, the level of Idol mRNA rapidly declined in statin-treated cells in a dose-dependent manner. This differs from the effect of the liver X receptor ligand, GW3965, which increased the expression of both PCSK9 and Idol. We further show that cellular depletion of Idol by siRNA transfection did not change PCSK9 expression levels in control and statin-treated cells; however, the basal level of LDLR protein increased by 60% in Idol siRNA transfected HepG2 cells. More importantly, the increase in LDLR protein abundance by rosuvastatin and atorvastatin treatment was compromised by Idol siRNA transfection. Collectively, our present findings suggest that the suppression of Idol gene expression in liver cells is an additional mechanism underlying the statin-induced up-regulation of hepatic LDLR expression. This may contribute to the hypocholesterolemic effects of statins observed in clinical settings.

  9. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions.

    Science.gov (United States)

    Stærk, Kristian; Khandige, Surabhi; Kolmos, Hans Jørn; Møller-Jensen, Jakob; Andersen, Thomas Emil

    2016-02-01

    Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about its induction in vivo. A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results were correlated with the ability to adhere to and invade cultured human bladder cells. Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Calcium affecting protein expression in longan under simulated acid rain stress.

    Science.gov (United States)

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  11. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    Directory of Open Access Journals (Sweden)

    Engelmann Julia C

    2007-06-01

    Full Text Available Abstract Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at http

  12. [Expression of ZmPIP1 subgroup genes in maize roots under water shortage].

    Science.gov (United States)

    Wu, An-Hui; Zhang, Sui-Qi; Deng, Xi-Ping; Shan, Lun; Liu, Xiao-Fang

    2006-10-01

    To investigate the role of ZmPIP1-1 and ZmPIP1-2 in water uptake of roots and drought resistance of crops, semi-quantitative PCR was used to examine the expression of ZmPIP1-1 and ZmPIP1-2 in root systems of different maize genotypes under water deficit. These genotypes showed different resistance to water shortage under field conditions. The reference gene to target genes was tubulin. Maize seedlings were grown by hydroponics in a growth chamber. Water deficit was imposed on the seedlings with PEG-6000. The result showed that ZmPIP1-1 was up-regulated under water deficit in root systems of plants of the filial generation 'Hudan 4' and the mother line 'Tiansi', which were resistant to water shortage, but there was no noticeable up-regulation of ZmPIP1-1 in the root systems of the father line '803', which was sensitive to water deprivation. The result also showed that the extent of up-regulation was positively correlated with drought resistance of maize (Fig.3). On the other hand, the expression of ZmPIP1-1 showed different degrees of tendency after different duration of water stress in the root systems of the maize seedlings of different genotypes. The result showed that ZmPIP1-2 was identically expressed in three different species of maize and under different water conditions. The results support the theory that the intercellular water transport contributes to increased water uptake in root systems under water deficit by up-regulating the number of some kinds of aquaporins. The increases amount of transcripts of aquaporins is positively correlated to drought resistance of plant varieties. But not all kinds of number of aquaporins is up-regulated during water shortage, some kinds of aquaporins are identically expressed under water deficit conditions and well watered conditions.

  13. [Cloning and expression analysis of HSP70 gene from Dendrobium officinale under low temperature stress].

    Science.gov (United States)

    Li, Dong-Bin; Gao, Han-Hui; Si, Jin-Ping; Zhu, Yu-Qiu

    2013-10-01

    To investigate HSP70 gene expression from Dendrobium officinale under low temperature stress, which will provide the molecular biological foundation for breeding the low temperature resistant strain. HSP70 gene full length cDNA was cloned by rapid amplification of cDNA ends (RACE) on the basis of HSP70 gene fragment sequences, and the structure and function of HSP70 gene were deduced. The expression of HSP70 under low temperature stress was detected by RT-PCR. The full length of HSP70 gene cDNA was 2 296 bp containing a 1 944 bp open reading frame (ORF) that encoded a protein of 647 amino acids. Its amino acids sequence had typical HSP70 characteristics and high homology with other plant's HSP70. Cold stress expression analysis showed that expression of the HSP70 gene could be induced by low temperature. The HSP70 gene of D. officinale was successfully cloned and reported for the first time which proved that the expression could be induced by low temperature. The cloning of HSP70 gene provides a stable foundation for further study of D. officinale cultivation and the breeding of the cold resistance strains.

  14. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    Science.gov (United States)

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (PCellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. HLA-G expression is regulated by miR-365 in trophoblasts under hypoxic conditions.

    Science.gov (United States)

    Mori, Asako; Nishi, Hirotaka; Sasaki, Toru; Nagamitsu, Yuzo; Kawaguchi, Rie; Okamoto, Aikou; Kuroda, Masahiko; Isaka, Keiichi

    2016-09-01

    Hypoxia occurs in the first trimester of placental development and is implicated in the regulation of trophoblast differentiation. Prolonged hypoxic conditions in the placenta are related to the development of preeclampsia. MicroRNAs (miRNAs) are noncoding, single-stranded RNAs that modulate gene expression by targeting messenger RNA. We hypothesized that, under hypoxic conditions, trophoblasts may have a unique miRNA profile that may play a critical role in placental development. Total RNA was extracted from human trophoblast, HChEpC1b, exposed to normoxia (20% O2) or hypoxia (2% O2) for 24 h, and the miRNA expression profiles were investigated using a microRNA array. Several differential miRNAs were selected and validated using real-time reverse transcription PCR. We identified potential targets of these miRNAs using in silico analysis. We confirmed a potential target protein by western blot analysis and luciferase assays. The expression of miR-365 was significantly upregulated under hypoxic conditions. In silico analysis showed that miR-365 targeted human leukocyte antigen (HLA)-G. Both hypoxic conditions and overexpression of miR-365 inhibited the expression of HLA-G proteins. The overexpression of miR-365 also decreased the activity of the luciferase reporter containing the 3'-untranslated region (UTR) of HLA-G with the predicted miR-365-binding site. HLA-G is a non-classical HLA class-Ib molecule that is expressed mainly in extravillous trophoblasts and which plays a key role in maintaining immune tolerance at the maternal-fetal interface. Our results indicate that miR-365 targets the HLA-G 3' UTR to repress its expression. The expression of miR-365 may play an important role in human placental development and in immunoprotection of the semiallogenic embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Directory of Open Access Journals (Sweden)

    Cordeiro Raposo Fernando

    2011-09-01

    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  17. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  18. Gene expression profile analysis of rat cerebellum under acute alcohol intoxication.

    Science.gov (United States)

    Zhang, Yu; Wei, Guangkuan; Wang, Yuehong; Jing, Ling; Zhao, Qingjie

    2015-02-25

    Acute alcohol intoxication, a common disease causing damage to the central nervous system (CNS) has been primarily studied on the aspects of alcohol addiction and chronic alcohol exposure. The understanding of gene expression change in the CNS during acute alcohol intoxication is still lacking. We established a model for acute alcohol intoxication in SD rats by oral gavage. A rat cDNA microarray was used to profile mRNA expression in the cerebella of alcohol-intoxicated rats (experimental group) and saline-treated rats (control group). A total of 251 differentially expressed genes were identified in response to acute alcohol intoxication, in which 208 of them were up-regulated and 43 were down-regulated. Gene ontology (GO) term enrichment analysis and pathway analysis revealed that the genes involved in the biological processes of immune response and endothelial integrity are among the most severely affected in response to acute alcohol intoxication. We discovered five transcription factors whose consensus binding motifs are overrepresented in the promoter region of differentially expressed genes. Additionally, we identified 20 highly connected hub genes by co-expression analysis, and validated the differential expression of these genes by real-time quantitative PCR. By determining novel biological pathways and transcription factors that have functional implication to acute alcohol intoxication, our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of acute alcoholism. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gender Differences in Emotion Expression in Low-Income Adolescents Under Stress

    Science.gov (United States)

    Panjwani, Naaila; Chaplin, Tara M.; Sinha, Rajita; Mayes, Linda C.

    2015-01-01

    Gender roles in mainstream U.S. culture suggest that girls express more happiness, sadness, anxiety, and shame/embarrassment than boys, while boys express more anger and externalizing emotions, such as contempt. However, gender roles and emotion expression may be different in low-income and ethnically diverse families, as children and parents are often faced with greater environmental stressors and may have different gender expectations. This study examined gender differences in emotion expression in low-income adolescents, an understudied population. One hundred and seventy nine adolescents (aged 14-17) participated in the Trier Social Stress Test (TSST). Trained coders rated adolescents’ expressions of happiness, sadness, anxiety, shame/embarrassment, anger, and contempt during the TSST using a micro-analytic coding system. Analyses showed that, consistent with gender roles, girls expressed higher levels of happiness and shame than boys; however, contrary to traditional gender roles, girls showed higher levels of contempt than boys. Also, in contrast to cultural stereotypes, there were no differences in anger between boys and girls. Findings suggest gender-role inconsistent displays of externalizing emotions in low-income adolescents under acute stress, and may reflect different emotion socialization experiences in this group. PMID:29056804

  20. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters.

    Science.gov (United States)

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A; Mansoor, Shahid

    2016-10-06

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests.

  1. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  2. Multi-dimensional histone methylations for coordinated regulation of gene expression under hypoxia.

    Science.gov (United States)

    Lee, Seongyeol; Lee, Jieon; Chae, Sehyun; Moon, Yunwon; Lee, Ho-Youl; Park, Bongju; Yang, Eun Gyeong; Hwang, Daehee; Park, Hyunsung

    2017-11-16

    Hypoxia increases both active and repressive histone methylation levels via decreased activity of histone demethylases. However, how such increases coordinately regulate induction or repression of hypoxia-responsive genes is largely unknown. Here, we profiled active and repressive histone tri-methylations (H3K4me3, H3K9me3, and H3K27me3) and analyzed gene expression profiles in human adipocyte-derived stem cells under hypoxia. We identified differentially expressed genes (DEGs) and differentially methylated genes (DMGs) by hypoxia and clustered the DEGs and DMGs into four major groups. We found that each group of DEGs was predominantly associated with alterations in only one type among the three histone tri-methylations. Moreover, the four groups of DEGs were associated with different TFs and localization patterns of their predominant types of H3K4me3, H3K9me3 and H3K27me3. Our results suggest that the association of altered gene expression with prominent single-type histone tri-methylations characterized by different localization patterns and with different sets of TFs contributes to regulation of particular sets of genes, which can serve as a model for coordinated epigenetic regulation of gene expression under hypoxia. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Explicit expressions for European option pricing under a generalized skew normal distribution

    OpenAIRE

    Doostparast, Mahdi

    2017-01-01

    Under a generalized skew normal distribution we consider the problem of European option pricing. Existence of the martingale measure is proved. An explicit expression for a given European option price is presented in terms of the cumulative distribution function of the univariate skew normal and the bivariate standard normal distributions. Some special cases are investigated in a greater detail. To carry out the sensitivity of the option price to the skew parameters, numerical methods are app...

  4. Gene expression under thermal stress varies across a geographical range expansion front.

    Science.gov (United States)

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. © 2016 John Wiley & Sons Ltd.

  5. Profiling the expression domains of a rice-specific microRNA under stress

    Directory of Open Access Journals (Sweden)

    Neha eSharma

    2015-05-01

    Full Text Available Plant microRNAs (miRs have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 (PB1 and salt-tolerant Pokkali (PK varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed.This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response.

  6. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  7. Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit.

    Science.gov (United States)

    Rodrigues, Fabiana Aparecida; Marcolino-Gomes, Juliana; de Fátima Corrêa Carvalho, Josirlei; do Nascimento, Leandro Costa; Neumaier, Norman; Farias, José Renato Bouças; Carazzolle, Marcelo Falsarella; Marcelino, Francismar Corrêa; Nepomuceno, Alexandre Lima

    2012-06-01

    Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.

  8. GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth.

    Science.gov (United States)

    Riego, Lina; Avendaño, Amaranta; DeLuna, Alexander; Rodríguez, Ekaterina; González, Alicia

    2002-04-26

    In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenase isoenzymes encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. In this work we analyzed GDH1 transcriptional regulation, in order to deepen the studies in regard to its physiological role. Our results indicate that: (i) GDH1 expression is strictly controlled in ethanol-grown cultures, constituting a fine-tuning mechanism that modulates the abundance of Gdh1p monomers under this condition, (ii) GDH1 expression is controlled by transcriptional activators that have been considered as exclusive of either nitrogen (Gln3p and Gcn4p) or carbon metabolism (HAP complex), and (iii) chromatin remodeling complexes play a role in GDH1 expression; ADA2 and ADA3 up-regulated GDH1 expression on ethanol, while that on glucose was ADA3-dependent. SPT3 and SNF2 activated GDH1 expression on either carbon source whereas GCN5 played no role in any condition tested. The above described combinatorial control results in a refined mechanism that coordinates carbon and nitrogen utilization.

  9. Altered saccadic targets when processing facial expressions under different attentional and stimulus conditions.

    Science.gov (United States)

    Boutsen, Frank A; Dvorak, Justin D; Pulusu, Vinay K; Ross, Elliott D

    2017-04-01

    Depending on a subject's attentional bias, robust changes in emotional perception occur when facial blends (different emotions expressed on upper/lower face) are presented tachistoscopically. If no instructions are given, subjects overwhelmingly identify the lower facial expression when blends are presented to either visual field. If asked to attend to the upper face, subjects overwhelmingly identify the upper facial expression in the left visual field but remain slightly biased to the lower facial expression in the right visual field. The current investigation sought to determine whether differences in initial saccadic targets could help explain the perceptual biases described above. Ten subjects were presented with full and blend facial expressions under different attentional conditions. No saccadic differences were found for left versus right visual field presentations or for full facial versus blend stimuli. When asked to identify the presented emotion, saccades were directed to the lower face. When asked to attend to the upper face, saccades were directed to the upper face. When asked to attend to the upper face and try to identify the emotion, saccades were directed to the upper face but to a lesser degree. Thus, saccadic behavior supports the concept that there are cognitive-attentional pre-attunements when subjects visually process facial expressions. However, these pre-attunements do not fully explain the perceptual superiority of the left visual field for identifying the upper facial expression when facial blends are presented tachistoscopically. Hence other perceptual factors must be in play, such as the phenomenon of virtual scanning. Published by Elsevier Ltd.

  10. Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.

    Science.gov (United States)

    Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B

    2016-11-03

    Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.

  11. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    Science.gov (United States)

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  12. WSSV-responsive gene expression under the influence of PmVRP15 suppression.

    Science.gov (United States)

    Tummamunkong, Phawida; Jaree, Phattarunda; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2018-01-01

    The viral responsive protein 15 from black tiger shrimp Penaeus monodon (PmVRP15), is highly up-regulated and produced in the hemocytes of shrimp with white spot syndrome virus (WSSV) infection. To investigate the differential expression of genes from P. monodon hemocytes that are involved in WSSV infection under the influence of PmVRP15 expression, suppression subtractive hybridization (SSH) of PmVRP15-silenced shrimp infected with WSSV was performed. The 189 cDNA clones of the forward library were generated by subtracting the cDNAs from WSSV-infected and PmVRP15 knockdown shrimp with cDNAs from WSSV-infected and GFP knockdown shrimp. For the opposite subtraction, the 176 cDNA clones in the reverse library was an alternative set of genes in WSSV-infected shrimp hemocytes in the presence of PmVRP15 expression. The abundant genes in forward SSH library had a defense/homeostasis of 26%, energy/metabolism of 23% and in the reverse SSH library a hypothetical protein with unknown function was found (30%). The differential expressed immune-related genes from each library were selected for expression analysis using qRT-PCR. All selected genes from the forward library showed high up-regulation in the WSSV-challenged PmVRP15 knockdown group as expected. Interestingly, PmHHAP, a hemocyte homeostasis associated protein, and granulin-like protein, a conserved growth factor, are extremely up-regulated in the absence of PmVRP15 expression in WSSV-infected shrimp. Only transcript level of transglutaminase II, that functions in regulating hematopoietic tissue differentiation and inhibits mature hemocyte production in shrimp, was obviously down-regulated as observed from SSH results. Taken together, our results suggest that PmVRP15 might have a function relevant to hemocyte homeostasis during WSSV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  14. [Progress on nitrogen regulation gene expression of plant pathogenic fungi under nitrogen starvation].

    Science.gov (United States)

    Zhou, Xiao-Gang; Yao, Chun-Xin; Ding, Yu-Mei; Tao, Nan; Sun, Mao-Lin; Zhang, Shao-Song

    2012-07-01

    It has been confirmed that the occurrence of plant disease is caused by the effector molecules secreted by plant pathogens. The regulation effector gene expression is an important aspect in understanding of the infection process. The nutritional status of cells has been postulated to be a vital role for effector gene expression. Studies have indicated that the induction of the same effecter genes during growth in vitro as those during growth in planta under nitrogen-starved conditions. This showed that the nitrogen poor environment existed in the early time of plant evolution. This paper describes the system in the pathogenesis of several fungal pathogens and nitrogen in the process of gene expression effects from the results of several species by comparing and contrasting the function of nitrogen regulatory genes, as well as by studying plants in vivo and in vitro gene under nitrogen limitation inductive effect in order to reveal the effectiveness of nitrogen in the development process of host plant disease is an important factor.

  15. Maprotiline treatment differentially influences cardiac β-adrenoreceptors expression under normal and stress conditions

    Directory of Open Access Journals (Sweden)

    Natasa Spasojevic

    2012-12-01

    Full Text Available Alterations in cardiac function were observed in antidepressants treated patients and published in several clinical reports. These detected changes could be either a consequence of the treatment or of depression itself, which has already been proved to be a risk factor in heart diseases. In order to determine a possible influence of chronic treatment with norepinephrinergic reuptake inhibitor, maprotiline, on the heart, we investigated gene expression of cardiac β-adrenoceptors both in controls and in animals with signs of depression. The rats were divided into two groups, unstressed controls and those exposed to chronic unpredictable mild stress (CUMS. The groups were further divided into two subgroups, one receiving daily intraperitoneal injections of vehicle (sterile water and another one maprotiline (10 mg/kg for four weeks. Tissue samples were collected after the last application. Gene expression of cardiac β1- and β2-adrenoceptor was determined using Real-time RT-PCR analysis. Our results show that in control animals expression of both adrenoreceptors was decreased in the right atria after 4 weeks of maprotiline application. Contrary, the same treatment led to a significant increase in expression of cardiac β1-adrenoceptor in the stressed rats, with no change in the characteristics of β2-adrenoceptor. Our findings might reflect the that molecular mechanisms are underlying factors involved in the development of cardiovascular diseases linked with antidepressant treatment.

  16. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses.

    Science.gov (United States)

    Herrera-Rodríguez, María Begoña; Pérez-Vicente, Rafael; Maldonado, José-María

    2007-01-01

    In sunflower, asparagine synthetase (AS; EC 6.3.5.4) is encoded by a small family of three genes (HAS1, HAS1.1 and HAS2) that are differentially regulated by light, carbon and nitrogen availability. In this study, the response of each gene to various stress conditions was examined by Northern analysis with gene-specific probes in leaves and roots. The expression of HAS1 and HAS1.1 genes was induced by osmotic stress (300 mM mannitol), salt stress (150 mM NaCl), and heavy-metal stress (20 microM CuSO(4)), more in roots than in leaves. The expression of HAS2 was not significantly altered by stress treatments. The positive response of HAS1 and HAS1.1 genes to osmotic and salt stresses occurred in the light, in contrast to that previously found in unstressed plants. Measurements of sucrose and total free amino acid contents in leaves and roots indicate that the expression of root HAS1 and HAS1.1 genes in stressed plants is not under metabolic control by the intracellular C/N ratio, suggesting the involvement of some specific stress factor(s). Growth of plants at 40 degrees C for 12h negatively affected the expression of HAS1 and HAS1.1 but not that of HAS2.

  17. Study of possible changes in genes expression of mitotic cyclin under clinorotation.

    Science.gov (United States)

    Artemenko, Olga

    Cell cycle is regulated by cyclins, destruction and accumulation of which is the main process in cell cycle progress. In previous studies we have shown that slow horizontal clinorotation (2rpm) affects proliferative activity and cell cycle stages in inducted to grow 2-4 day old Pisum sativum seedlings. In the first cell cycle, delay in cell transition to S stage and delay in mitosis occur due to the prolongation of pre-synthetic stage. This observation is supported by accumulation of 2c DNA cells and transcripts of 3 cyclin in meristem cells. 3 cyclins are "plant" version of cyclin D, they regulate pre-synthetic stage of cell cycle. Cyclins A and B, regulated by cyclin-dependent kinases, control the beginning of S-stage and are necessary for prevention of certain delay in cell cycle progression. We suggest that delay in mitosis, observed under clinorotation, may take place not only due to prolongation of pre-synthetic stage but also due to change of cyclin genes expression under above condition. Further investigations will be aimed on establishing the level of cyclin genes expression under clinorotation.

  18. De novo characterization of the alligator weed (Alternanthera philoxeroides) transcriptome illuminates gene expression under potassium deprivation.

    Science.gov (United States)

    Li, Liqin; Xu, Li; Wang, Xiyao; Pan, Gang; Lu, Liming

    2015-03-01

    As one of the three macronutrients, potassium participates in many physiological processes in plant life cycle. Recently, potassium-dependent transcriptome analysis has been reported in Arabidopsis, rice and soybean. Alligator weed is well known, particularly for its strong ability to accumulate potassium. However, the molecular mechanism that underlies potassium starvation responses has not yet been described. In this study, we used Illumina (Solexa) sequencing technology to analyse the root transcriptome information of alligator weed under low potassium stress. Further analysis suggested that 9253 differentially expressed genes (DEGs) were upregulated, and 2138 DEGs were downregulated after seven days of potassium deficiency. These factors included 121 transcription factors, 108 kinases, 136 transporters and 178 genes that were related to stress. Twelve transcription factors were randomly selected for further analysis. The expression level of each transcription factor was confirmed by quantitative RT-PCR, and the results of this secondary analysis were consistent with the results of Solexa sequencing. Enrichment analysis indicated that 10,993 DEGs were assigned to 54 gene ontology terms and 123 KEGG pathways. Approximately 24% of DEGs belong to the metabolic, ribosome and biosynthesis of secondary metabolite KEGG pathways. Our results provide a comprehensive analysis of the gene regulatory network of alligator weed under low potassium stress, and afford a valuable resource for genetic and genomic research on plant potassium deficiency.

  19. Enhanced platelet MRP4 expression and correlation with platelet function in patients under chronic aspirin treatment.

    Science.gov (United States)

    Massimi, Isabella; Lotti, Lavinia Vittoria; Temperilli, Flavia; Mancone, Massimo; Sardella, Gennaro; Calcagno, Simone; Turriziani, Ombretta; Frati, Luigi; Pulcinelli, Fabio M

    2016-11-30

    Platelet multidrug resistance protein4 (MRP4)-overexpression has a role in reducing aspirin action. Aspirin in vivo treatment enhances platelet MRP4 expression and MRP4 mediated transport inhibition reduces platelet function and delays thrombus formation. The aim of our work was to verify whether MRP4 expression is enhanced in platelets obtained from patients under chronic aspirin treatment and whether it correlates with residual platelet reactivity. We evaluated changes on mRNA and protein-MRP4 expression and platelet aggregation in four populations: healthy volunteers (HV), aspirin-free control population (CTR), patients who started the treatment less than one month ago (ASAaspirinated patients who started the treatment more than two months ago (ASA>2 months patients). In platelets obtained from ASA>2 months patients, it was found a statistically significant MRP4 enhancement of both mRNA and protein expression compared to HV, CTR and ASA2 months patients that present high levels of platelet MRP4, have higher serum TxB2 levels and collagen-induced platelet aggregation compared to patient with low levels of MRP4 in platelets. In addition collagen induced platelet aggregation is higher in in vitro aspirinated platelets obtained from patients with high levels of MRP4 patients compared to those obtained from patients with low MRP4 levels. We can assert that, in patients under chronic aspirin treatment, platelets that present high MRP4 levels have an increase of residual platelet reactivity, which is due in part to incomplete COX-1 inhibition, and in part to COX-1-independent mechanism.

  20. Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress.

    Science.gov (United States)

    Qu, Tao; Liu, Rongfang; Wang, Wei; An, Lizhe; Chen, Tuo; Liu, Guangxiu; Zhao, Zhiguang

    2011-10-01

    Pectin methylesterases (PMEs) are important cell wall enzymes that may play important roles in plant chilling/freezing tolerance. We investigated the possible roles of brassinosteroids (BRs) in regulation of PMEs under chilling stress. Chilling stress or 24-epibrassinolide (eBL) treatments induced significant increases in PME activity in wild type (Col-0) seedlings of Arabidopsis. The chilling-stress-induced increases in PME activity were also found in bzr1-D mutant, a BZR1 stabilized mutant with a constitutively active BR signaling pathway, but not in bri1-116, a BR insensitive null allele of the BR receptor BRI1. The results suggest that the regulation of PME activity in Arabidopsis under chilling stress depends on the BR signaling pathway. Furthermore, we showed that the effect of chilling stress on PME activity was impaired in pme41, a knockout mutant of AtPME41. Semi-quantitative RT-PCR results showed that expression of AtPME41 was induced by chilling stress in wild type plants but not in the bri1-116 mutant. The expression of AtPME41 increased in bzr1-D and eBL treated wild type seedlings, but decreased in bri1-116 seedlings. Furthermore, ion leakage induced by low temperature were dramatically increased in both bri1-116 and pme41, while lipid peroxidation was increased in bri1-116 only. The results suggest that BRs may modulate total PME activity in Arabidopsis under chilling stress by regulating AtPME41 expression. Regulation of PME activity may serve as one of the mechanisms that BR participates in chilling tolerance of plants. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Differential Protein Expression in Honeybee (Apis mellifera L.) Larvae: Underlying Caste Differentiation

    Science.gov (United States)

    Li, Jianke; Wu, Jing; Begna Rundassa, Desalegn; Song, Feifei; Zheng, Aijuan; Fang, Yu

    2010-01-01

    Honeybee (Apis mellifera) exhibits divisions in both morphology and reproduction. The queen is larger in size and fully developed sexually, while the worker bees are smaller in size and nearly infertile. To better understand the specific time and underlying molecular mechanisms of caste differentiation, the proteomic profiles of larvae intended to grow into queen and worker castes were compared at 72 and 120 hours using two dimensional electrophoresis (2-DE), network, enrichment and quantitative PCR analysis. There were significant differences in protein expression between the two larvae castes at 72 and 120 hours, suggesting the queen and the worker larvae have already decided their fate before 72 hours. Specifically, at 72 hours, queen intended larvae over-expressed transketolase, aldehyde reductase, and enolase proteins which are involved in carbohydrate metabolism and energy production, imaginal disc growth factor 4 which is a developmental related protein, long-chain-fatty-acid CoA ligase and proteasome subunit alpha type 5 which metabolize fatty and amino acids, while worker intended larvae over-expressed ATP synthase beta subunit, aldehyde dehydrogenase, thioredoxin peroxidase 1 and peroxiredoxin 2540, lethal (2) 37 and 14-3-3 protein epsilon, fatty acid binding protein, and translational controlled tumor protein. This differential protein expression between the two caste intended larvae was more pronounced at 120 hours, with particular significant differences in proteins associated with carbohydrate metabolism and energy production. Functional enrichment analysis suggests that carbohydrate metabolism and energy production and anti-oxidation proteins play major roles in the formation of caste divergence. The constructed network and validated gene expression identified target proteins for further functional study. This new finding is in contrast to the existing notion that 72 hour old larvae has bipotential and can develop into either queen or worker based on

  2. The molecular mechanism underlying the induction of hepatic MRP3 expression and function by omeprazole.

    Science.gov (United States)

    Pan, Yu-Qin; Mi, Qiong-Yu; He, Bang-Shun; Zhao, Shu-Li; Tai, Ting; Xie, Hong-Guang

    2015-05-01

    Previous work has indicated that there is increased protein expression of multidrug resistance-associated protein 3 (MRP3) in the liver samples of patients treated with omeprazole compared with those who were not. However, evidence is still lacking to show the mechanisms underlying that induction. This study aimed to assess changes in the fold-induction of MRP3 mRNA and protein expression over controls in omeprazole-treated HepG2 cells after transient transfection of human MRP3 siRNA, or after pretreatment with actinomycin D (Act-D). Furthermore, MRP3 siRNA knock-down or MRP-specific inhibition (indomethacin) was used to determine whether the MRP3 protein induced by omeprazole possessed an enhanced efflux transport. The results demonstrated that omeprazole induced MRP3 mRNA and protein expression in a concentration- and time-dependent manner. Moreover, that induction was almost completely abolished by the addition of human MRP3 siRNA and also by pretreatment with Act-D, respectively. In addition, the decay rate of MRP3 mRNA in vehicle- and omeprazole-treated cells was similar in the presence of Act-D, suggesting transcriptional up-regulation of MRP3 mRNA expression by omeprazole. Most importantly, omeprazole induced MRP3 efflux transport activity, as measured by the 5-carboxyfluorescein assay in the absence and presence of human MRP3 siRNA or indomethacin. It is concluded that omeprazole can induce MRP3 mRNA and protein expression and enhance MRP3 efflux transport activity through transcriptional up-regulation, and that omeprazole can also induce other MRP transporters. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  4. Identification and expression profiling of Oryza sativa nucleotidyl transferase protein (NTP) genes under various stress conditions.

    Science.gov (United States)

    Yang, Haiqi; Song, Jianbo; Yue, Luming; Mo, Xiaowei; Song, Jun; Mo, Beixin

    2017-09-10

    Nucleotidyl transferase proteins (NTPs) modify the 3' ends of mature small RNAs, leading to their stabilization or degradation. The first two plant NTPs, HESO1 and URT1, were identified in Arabidopsis. These two NTPs act cooperatively to uridylate the 3' terminal nucleotide of specific miRNAs, leading to their degradation and thereby affecting the expression of genes regulated by these miRNAs. Little is known about NTPs in other plants. Here, we performed a comprehensive analysis of 13 putative NTP genes in Oryza sativa, a major crop in global food production. Phylogenetic analysis showed homology among the NTPs from diverse plant species. Analysis of cis-acting promoter elements at OsNTP loci identified several stress response elements, indicating the potential involvement of NTPs in plant stress responses. The promoter analysis results were validated by expression of the OsNTP genes under abiotic stress treatments, with some OsNTPs clearly induced by salt, drought or cold stress. Moreover, the RT-PCR data showed that the OsNTP genes were differentially expressed in different developmental stages and tissues. These findings suggest that NTPs, which are involved in small RNA metabolic pathways, might play roles in plant stress resistance. Copyright © 2017. Published by Elsevier B.V.

  5. Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K+ Deprivation.

    Science.gov (United States)

    Garcia, Kevin; Chasman, Deborah; Roy, Sushmita; Ané, Jean-Michel

    2017-03-01

    Arbuscular mycorrhizal (AM) associations enhance the phosphorous and nitrogen nutrition of host plants, but little is known about their role in potassium (K+) nutrition. Medicago truncatula plants were cocultured with the AM fungus Rhizophagus irregularis under high and low K+ regimes for 6 weeks. We determined how K+ deprivation affects plant development and mineral acquisition and how these negative effects are tempered by the AM colonization. The transcriptional response of AM roots under K+ deficiency was analyzed by whole-genome RNA sequencing. K+ deprivation decreased root biomass and external K+ uptake and modulated oxidative stress gene expression in M. truncatula roots. AM colonization induced specific transcriptional responses to K+ deprivation that seem to temper these negative effects. A gene network analysis revealed putative key regulators of these responses. This study confirmed that AM associations provide some tolerance to K+ deprivation to host plants, revealed that AM symbiosis modulates the expression of specific root genes to cope with this nutrient stress, and identified putative regulators participating in these tolerance mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. The Freedom of the Judge to Express his Personal Opinions and Convictions under the ECHR

    Directory of Open Access Journals (Sweden)

    Sietske Dijkstra

    2017-01-01

    Full Text Available The freedom of the judge to express his personal opinions and convictions is limited by his special position. The question arises where these limits lie: what are the possibilities for judges to express their personal views on religious, political or other subjects, whether it is through speech, writing, wearing religious symbols or membership of an association or church? In this article the limits of the freedom of the judge will be studied as they appear from the case law of the ECtHR. Two types of cases from this case law are relevant for this subject: cases based on complaints from judges about a violation of their rights under Article 9-11 ECHR and cases based on complaints from litigants and suspects about a violation of their right to a fair trial under Article 6(1 ECHR. The question is asked how the limits of judicial freedom are defined in the case law of the ECtHR and where these limits lie.

  7. Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes.

    Science.gov (United States)

    Guan, Zhiyong; Feng, Yitong; Song, Aiping; Shi, Xiaomeng; Mao, Yachao; Chen, Sumei; Jiang, Jiafu; Ding, Lian; Chen, Fadi

    2017-01-01

    Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing.

  8. Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

    Directory of Open Access Journals (Sweden)

    Ettore Tiraboschi

    2013-01-01

    Full Text Available The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.

  9. Expression of stress/defense-related genes in barley grown under space environment

    Science.gov (United States)

    Sugimoto, Manabu; Shagimardanova, Elena; Gusev, Oleg; Bingham, Gail; Levinskikh, Margarita; Sychev, Vladimir

    Plants are exposed to the extreme environment in space, especially space radiation is suspected to induce oxidative stress by generating high-energy free radicals and microgravity would enhance the effect of space radiation, however, current understandings of plant growth and responses on this synergistic effect of radiation and microgravity is limited to a few experiments. In this study, expression of stress/defense-related genes in barley grown under space environment was analyzed by RT-PCR and DNA microarray experiments to understand plant responses and adaptation to space environment and to develop the space stress-tolerant plants. The seeds of barley, Hordeum vulgare L. cv. Haruna nijo, kept in the international space station (ISS) over 4 months, were germinated after 3 days of irrigation in LADA plant growth chamber onboard Russian segment of ISS and the final germination ratio was over 90 %. The height of plants was about 50 to 60 cm and flag leaf has been opened after 26 days of irrigation under 24 hr lighting, showing the similar growth to ground-grown barley. Expression levels of stress/defense-related genes in space-grown barley were compared to those in ground-grown barley by semi-quantitative RT-PCR. In 17 stress/defense-related genes that are up-regulated by oxidative stress or other abiotic stress, only catalase, pathogenesis-related protein 13, chalcone synthase, and phenylalanine ammonia-lyase genes were increased in space-grown barley. DNA microarrya analysis with the GeneChip Barley Genome Array showed the similar expression profiles of the stress/defense-related genes to those by RT-PCR experiment, suggesting that the barley germinated and grown in LADA onboard ISS is not damaged by space environment, especially oxidative stress induced by space radiation and microgravity.

  10. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    Directory of Open Access Journals (Sweden)

    da Silva Neto José F

    2010-08-01

    Full Text Available Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase, was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.

  11. Production of pigs expressing a transgene under the control of a tetracycline-inducible system.

    Directory of Open Access Journals (Sweden)

    Yong-Xun Jin

    Full Text Available Pigs are anatomically and physiologically closer to humans than other laboratory animals. Transgenic (TG pigs are widely used as models of human diseases. The aim of this study was to produce pigs expressing a tetracycline (Tet-inducible transgene. The Tet-on system was first tested in infected donor cells. Porcine fetal fibroblasts were infected with a universal doxycycline-inducible vector containing the target gene enhanced green fluorescent protein (eGFP. At 1 day after treatment with 1 µg/ml doxycycline, the fluorescence intensity of these cells was increased. Somatic cell nuclear transfer (SCNT was then performed using these donor cells. The Tet-on system was then tested in the generated porcine SCNT-TG embryos. Of 4,951 porcine SCNT-TG embryos generated, 850 were cultured in the presence of 1 µg/ml doxycycline in vitro. All of these embryos expressed eGFP and 15 embryos developed to blastocyst stage. The remaining 4,101 embryos were transferred to thirty three surrogate pigs from which thirty eight cloned TG piglets were obtained. PCR analysis showed that the transgene was inserted into the genome of each of these piglets. Two TG fibroblast cell lines were established from these TG piglets, and these cells were used as donor cells for re-cloning. The re-cloned SCNT embryos expressed the eGFP transgene under the control of doxycycline. These data show that the expression of transgenes in cloned TG pigs can be regulated by the Tet-on/off systems.

  12. Effects of psychological training on the serum protein expression in soldiers under mental stress

    Directory of Open Access Journals (Sweden)

    Rong ZHANG

    2011-09-01

    Full Text Available Objective To investigate the changes of serum protein expression in soldiers under mental stress,who have undergone different psychological trainings,and to evaluate the effect of the psychological training.Methods Ninety-six male commando soldiers were randomly assigned into the common psychological training group,the circulation psychological training group,and the control group(each group comprising 32 soldiers.After four weeks of training,the soldiers in the three groups attended a high-intensity simulated anti-riot exercise.The changes in their serum protein expression were then determined using surface-enhanced laser desorption/ionization time of flight mass spectrometry(SELDI-TOF-MS combined with ProteinChip technology.Results The variance analysis showed that significant differences existed among the three groups(P < 0.05 in the relative contents of proteins,with M/Z values of 6417.8,9134.2,15171.9,and 14972.7 Da.The expression of proteins with M/Z values 9134.2 and 15171.9 Da increased in the common psychological training group compared with the control group(P < 0.05.The expression of all four proteins increased in the circulation psychological training group compared with the control group(P < 0.05.The expression of proteins with M/Z values 6417.8 and 14972.7 Da increased in the circulation psychological training group compared with the common psychological training group(P < 0.05.The classification tree formed by proteins with M/Z values 6417.8 and 14972.7 Da classified the 96 soldiers correctly,both in the learning mode and in the test mode.Conclusion Psychological training may upregulate the expression of proteins that are downregulated after stress and may improve the adaptability of soldiers to psychological stress.The effect of circulation psychological training is better than that of common psychological training.

  13. Homeostatic response under carcinogen withdrawal, heme oxygenase 1 expression and cell cycle association

    Directory of Open Access Journals (Sweden)

    Batlle Alcira

    2006-12-01

    Full Text Available Abstract Background Chronic injury deregulates cellular homeostasis and induces a number of alterations leading to disruption of cellular processes such as cell cycle checkpoints and apoptosis, driving to carcinogenesis. The stress protein heme oxygenase-1 (HO-1 catalyzes heme degradation producing biliverdin, iron and CO. Induction of HO-1 has been suggested to be essential for a controlled cell growth. The aim of this work was to analyze the in vivo homeostatic response (HR triggered by the withdrawal of a potent carcinogen, p-dimethylaminoazobenzene (DAB, after preneoplastic lesions were observed. We analyzed HO-1 cellular localization and the expression of HO-1, Bcl-2 and cell cycle related proteins under these conditions comparing them to hepatocellular carcinoma (HC. Methods The intoxication protocol was designed based on previous studies demonstrating that preneoplastic lesions were evident after 89 days of chemical carcinogen administration. Male CF1 mice (n = 18 were used. HR group received DAB (0.5 % w/w in the diet for 78 days followed by 11 days of carcinogen deprivation. The HC group received the carcinogen and control animals the standard diet during 89 days. The expression of cell cycle related proteins, of Bcl-2 and of HO-1 were analyzed by western blot. The cellular localization and expression of HO-1 were detected by immnunohistochemistry. Results Increased expression of cyclin E/CDK2 was observed in HR, thus implicating cyclin E/CDK2 in the liver regenerative process. p21cip1/waf1 and Bcl-2 induction in HC was restituted to basal levels in HR. A similar response profile was found for HO-1 expression levels, showing a lower oxidative status in the carcinogen-deprived liver. The immunohistochemical studies revealed the presence of macrophages surrounding foci of necrosis and nodular lesions in HR indicative of an inflammatory response. Furthermore, regenerative cells displayed changes in type, size and intensity of HO-1

  14. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis.

    Directory of Open Access Journals (Sweden)

    Axelle Marchant

    2016-10-01

    Full Text Available In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (recolonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes.In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs, 17 chemosensory proteins (CSPs, 3 odorant receptors (ORs, 5 transient receptor potential channel (TRPs, 1 sensory neuron membrane protein (SNMPs, 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system.Chemosensory genes could be good candidates for genes that contribute to adaptation or

  15. Detection of gene expression signatures related to underlying disease and treatment in rheumatoid arthritis patients

    DEFF Research Database (Denmark)

    Serikawa, Kyle A; Jacobsen, Søren; Lundsgaard, Dorthe

    2013-01-01

    OBJECTIVES: Gene expression signatures can provide an unbiased view into the molecular changes underlying biologically and medically interesting phenotypes. We therefore initiated this study to identify signatures that would be of utility in studying rheumatoid arthritis (RA). METHODS: We used...... in a subset of clinically active RA patients without C-reactive protein elevation. Furthermore, biologics-specific gene signatures in patients with RA indicate that looking for a biologic-specific response pattern may be a potential future tool for predicting individual patient response....... microarray profiling of peripheral blood mononuclear cells (PBMCs) in 30 RA patients to assess the effect of different biologic agent (biologics) treatments and to quantify the degree of a type-I interferon (IFN) signature in these patients. A numeric score was derived for the quantification step and applied...

  16. Expression of human interferon-α8 synthetic gene under P(BAD) promoter.

    Science.gov (United States)

    Mohammed, Y; El-Baky, N A; Redwan, N A; Redwan, E M

    2012-10-01

    Recombinant human interferon-α8 (rhIFN-α8) was obtained by synthesizing a codon-optimized gene in a two-step polymerase chain reaction (PCR) and expressing it in Escherichia coli. The gene encoding human IFN-α8 shows a high content of rare codons. These were replaced based on E. coli codon usage and balancing TA-GC ratio contents of the entire gene. The two-step PCR was performed using long (45-60 nucleotides) overlapped primers and two Taq polymerases (pfu clone and GC-rich system) and resulted in a DNA band of 504 base pairs (bp) corresponding to the calculated size of the IFN-α8 coding sequence; the pfu clone failed to amplify the gene in the correct size without unspecific bands. The full gene was cloned into the pBAD-TOPO expression vector. After cloning, the gene was reoriented by NcoI restriction digestion and religation. The ligated pBAD-TOPO-IFN-α8 (pBAD-IFNα8) plasmid carried the IFN-α8 gene under transcriptional control of the L-arabinose-inducible P(BAD) promoter. IFN-α8 expression was optimized with respect to L-arabinose concentration, temperature, and time of induction in shake flask cultures to maximize the yield of soluble IFN-α8. The produced IFN-α8 was characterized by polyacrylamide gel electrophoresis and immunoassays. After purification on DEAE-Sepharose, the yield was 100 mg/liter. The antiviral and anticancer activities of the IFN-α8 were evaluated in comparison with IFN-α2a, and the results are discussed.

  17. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development.

    Science.gov (United States)

    Lago, Denyse Cavalcante; Humann, Fernanda Carvalho; Barchuk, Angel Roberto; Abraham, Kuruvilla Joseph; Hartfelder, Klaus

    2016-12-01

    Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays. Copyright © 2016. Published by Elsevier Ltd.

  18. Look before you regulate: differential perceptual strategies underlying expressive suppression and cognitive reappraisal.

    Science.gov (United States)

    Bebko, Genna M; Franconeri, Steven L; Ochsner, Kevin N; Chiao, Joan Y

    2011-08-01

    Successful emotion regulation is important for maintaining psychological well-being. Although it is known that emotion regulation strategies, such as cognitive reappraisal and expressive suppression, may have divergent consequences for emotional responses, the cognitive processes underlying these differences remain unclear. Here we used eye-tracking to investigate the role of attentional deployment in emotion regulation success. We hypothesized that differences in the deployment of attention to emotional areas of complex visual scenes may be a contributing factor to the differential effects of these two strategies on emotional experience. Eye-movements, pupil size, and self-reported negative emotional experience were measured while healthy young adult participants viewed negative IAPS images and regulated their emotional responses using either cognitive reappraisal or expressive suppression. Consistent with prior work, reappraisers reported feeling significantly less negative than suppressers when regulating emotion as compared to a baseline condition. Across both groups, participants looked away from emotional areas during emotion regulation, an effect that was more pronounced for suppressers. Critically, irrespective of emotion regulation strategy, participants who looked toward emotional areas of a complex visual scene were more likely to experience emotion regulation success. Taken together, these results demonstrate that attentional deployment varies across emotion regulation strategies and that successful emotion regulation depends on the extent to which people look toward emotional content in complex visual scenes. 2011 APA, all rights reserved

  19. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    Directory of Open Access Journals (Sweden)

    Lei Anping

    2012-03-01

    Full Text Available Abstract Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP, 3-ketoacyl-ACP-synthase (KAS, and acyl-ACP thioesterase (FATA gene expression had significant correlations with monounsaturated FA (MUFA synthesis and polyunsaturated FA (PUFA synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  20. Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution.

    Science.gov (United States)

    Li, Chung-I; Su, Pei-Fang; Guo, Yan; Shyr, Yu

    2013-01-01

    Sample size determination is an important issue in the experimental design of biomedical research. Because of the complexity of RNA-seq experiments, however, the field currently lacks a sample size method widely applicable to differential expression studies utilising RNA-seq technology. In this report, we propose several methods for sample size calculation for single-gene differential expression analysis of RNA-seq data under Poisson distribution. These methods are then extended to multiple genes, with consideration for addressing the multiple testing problem by controlling false discovery rate. Moreover, most of the proposed methods allow for closed-form sample size formulas with specification of the desired minimum fold change and minimum average read count, and thus are not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size formulas are presented; the results indicate that our methods work well, with achievement of desired power. Finally, our sample size calculation methods are applied to three real RNA-seq data sets.

  1. Recombinant E. coli expressing Vitreoscilla haemoglobin prefers aerobic metabolism under microaerobic conditions: a proteome-level study.

    Science.gov (United States)

    Ramachandran, Bini; Dikshit, Kanak Lata; Dharmalingam, Kuppamuthu

    2012-09-01

    Vitreoscilla haemoglobin (VHb) expression in heterologous host was shown to enhance growth and oxygen utilization capabilities under oxygen-limited conditions. The exact mechanism by which VHb enhances the oxygen utilization under oxygen-limiting conditions is still unknown. In order to understand the role of VHb in promoting oxygen utilization, changes in the total protein profile of E. coli expressing the vgb gene under its native promoter was analysed. Two-dimensional difference gel electrophoresis (2D DIGE) was employed to quantify the differentially expressed proteins under oxygen-limiting conditions. Overexpression of proteins involved in aerobic metabolic pathways and suppression of proteins involved in non-oxidative metabolic pathways shown in this study indicates that the cells expressing VHb prefer aerobic metabolic pathways even under oxygen limitation. Under these conditions, the expression levels of proteins involved in central metabolic pathways, cellular adaptation and cell division were also found to be altered. These results imply that Vitreoscilla haemoglobin expression alters aerobic metabolism specifically, in addition to altering proteins involved in other pathways, the significance of which is not clear as of now.

  2. Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions.

    Science.gov (United States)

    Erdei, Anna; Isaák, Andrea; Török, Katalin; Sándor, Noémi; Kremlitzka, Mariann; Prechl, József; Bajtay, Zsuzsa

    2009-09-01

    The involvement of complement in the development and regulation of antibody responses under both healthy and pathological conditions is known for long. Unravelling the molecular mechanisms underlying the events however is still in progress. This review focuses on the role of complement receptors CR1 (CD35) and CR2 (CD21) expressed on T and B cells. Alteration in the expression and function of these receptors may contribute to the initiation and maintenance of immune complex mediated autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Recent data regarding complement receptor expression on T lymphocytes and on memory B cells are also discussed.

  3. Gene expression and regulation of higher plants under soil water stress.

    Science.gov (United States)

    Ni, Fu-Tai; Chu, Li-Ye; Shao, Hong-Bo; Liu, Zeng-Hui

    2009-06-01

    Higher plants not only provide human beings renewable food, building materials and energy, but also play the most important role in keeping a stable environment on earth. Plants differ from animals in many aspects, but the important is that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. The machinery related to molecular biology is the most important basis. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least includes drought signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimension network system and contains many levels of gene expression and regulation. We will focus on the physiological and molecular adaptive machinery of plants under soil water stress and draw a possible blueprint for it. Meanwhile, the issues and perspectives are also discussed. We conclude that biological measures is the basic solution to solving various types of issues in relation to sustainable development and the plant measures is the eventual way.

  4. Expression of Staphylococcal Enterotoxins under Stress Encountered during Food Production and Preservation.

    Science.gov (United States)

    Schelin, Jenny; Susilo, Yusak Budi; Johler, Sophia

    2017-12-15

    Staphylococcal food poisoning (SFP) is the most prevalent cause of food-borne intoxications worldwide. Consumption of enterotoxins preformed in food causes violent vomiting and can be fatal in children and the elderly. While being repressed by competing bacteria in most matrices, Staphylococcus aureus benefits from crucial competitive advantages in foods with high osmolarity or low pH. During recent years, the long-standing belief in the feasibility of assessing SFP risk based on colony-forming units of S. aureus present in food products has been disproven. Instead, researchers and food business operators are acutely aware of the imminent threat arising from unforeseeable enterotoxin production under stress conditions. This paradigm shift led to a variety of new publications enabling an improved understanding of enterotoxin expression under stress conditions encountered in food. The wealth of data provided by these studies is extremely diverse, as it is based on different methodological approaches, staphylococcal strains, stressors, and enterotoxins. Therefore, in this review, we aggregated and critically evaluated the complex findings of these studies, to provide readers with a current overview of the state of research in the field.

  5. An Individual-Based Diploid Model Predicts Limited Conditions Under Which Stochastic Gene Expression Becomes Advantageous

    KAUST Repository

    Matsumoto, Tomotaka

    2015-11-24

    Recent studies suggest the existence of a stochasticity in gene expression (SGE) in many organisms, and its non-negligible effect on their phenotype and fitness. To date, however, how SGE affects the key parameters of population genetics are not well understood. SGE can increase the phenotypic variation and act as a load for individuals, if they are at the adaptive optimum in a stable environment. On the other hand, part of the phenotypic variation caused by SGE might become advantageous if individuals at the adaptive optimum become genetically less-adaptive, for example due to an environmental change. Furthermore, SGE of unimportant genes might have little or no fitness consequences. Thus, SGE can be advantageous, disadvantageous, or selectively neutral depending on its context. In addition, there might be a genetic basis that regulates magnitude of SGE, which is often referred to as “modifier genes,” but little is known about the conditions under which such an SGE-modifier gene evolves. In the present study, we conducted individual-based computer simulations to examine these conditions in a diploid model. In the simulations, we considered a single locus that determines organismal fitness for simplicity, and that SGE on the locus creates fitness variation in a stochastic manner. We also considered another locus that modifies the magnitude of SGE. Our results suggested that SGE was always deleterious in stable environments and increased the fixation probability of deleterious mutations in this model. Even under frequently changing environmental conditions, only very strong natural selection made SGE adaptive. These results suggest that the evolution of SGE-modifier genes requires strict balance among the strength of natural selection, magnitude of SGE, and frequency of environmental changes. However, the degree of dominance affected the condition under which SGE becomes advantageous, indicating a better opportunity for the evolution of SGE in different genetic

  6. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  7. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    Science.gov (United States)

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production. To study differential gene expression under three types of oxidative stress, a Giardia genomic DNA array was constructed and hybridized with labeled cDNA of cells with or without stress. The transcriptomic data has been analyzed and further validated using real time PCR. We identified that out of 9216 genes represented on the array, more than 200 genes encoded proteins with functions in metabolism, oxidative stress management, signaling, reproduction and cell division, programmed cell death and cytoskeleton. We recognized genes modulated by at least ≥ 2 fold at a significant time point in response to oxidative stress. The study has highlighted the genes that are differentially expressed during the three experimental conditions which regulate the stress management pathway differently to achieve redox homeostasis. Identification of some unique genes in oxidative stress regulation may help in new drug designing for this common enteric parasite prone to

  8. An expression database for roots of the model legume Medicago truncatula under salt stress

    Directory of Open Access Journals (Sweden)

    Dong Jiangli

    2009-11-01

    Full Text Available Abstract Background Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. Description The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. Conclusion MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  9. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    Science.gov (United States)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  10. Characterization and expression patterns of nitrate reductase from Dunaliella bardawil under osmotic stress and dilution shock.

    Science.gov (United States)

    Lao, Yong-Min; Jiang, Jian-Guo; Luo, Li-Xin

    2014-07-01

    A complementary DNA (cDNA) of nitrate reductase (NR) from Dunaliella bardawil was isolated using RT-PCR and RACEs techniques. The full-length D. bardawil NR (DbNR) cDNA is 3,107 bp containing a putative open reading frame of 2,670 bp in length which encodes 889 amino acids with a calculated molecular weight (MW) of 98.37 kDa, a 34-bp 5'-untranslated region, and a 3'-untranslated region of 403 bp with a poly (A) tail. BLAST search showed that the nucleotide and putative protein sequence exhibit sequence identities of 92 and 79% with the corresponding gene from Dunaliella tertiolecta, respectively. Protein structural analysis showed a typical NR structure of DbNR with five structural distinctive domains which form three common subparts of eukaryotic NR (Euk-NR). Phylogenetic analysis based on the holo-DbNR and sulfite oxidase (SO) and cytochrome b reductase (CbR) subparts manifested that (1) DbNR has a closer relationship with those counterparts from algae and higher plants than from other species and (2) DbNR might have evolved from ancient SO and CbR in a "domain shuffling" pattern. The glycerol contents and transcriptional expression patterns of DbNR under salt stress and dilution shock treatments were also traced. The results implied an indirect role of NaCl on the induction of DbNR through an osmoregulation pathway.

  11. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

    Science.gov (United States)

    Perozeni, Federico; Stella, Giulio Rocco; Ballottari, Matteo

    2018-01-05

    Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ). In the model organism for green algae Chlamydomonas reinhardtii, NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs), which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70/RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3, causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  12. Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta under natural hydration and desiccation conditions

    Directory of Open Access Journals (Sweden)

    Loretto Contreras-Porcia

    2013-11-01

    Full Text Available In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and cytochrome c oxidase proteins, 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity, chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450. Both libraries highlight the presence of genes/proteins never described before in algae. This information provides the first molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the classical patterns of ecological distribution described for algae across the intertidal zone.

  13. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  14. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Mellon Mogensen, Anne

    2008-01-01

    AIM: To measure, by a quantitative approach, the gene expression underlying the results of somatostatin receptor (sst) scintigraphy ((111)In-DTPA-octreotide) and noradrenaline transporter (NAT) scintigraphy ((123)I-MIBG) in patients with neuroendocrine (NE) tumors. METHODS: The gene expression of...... to achieve a better understanding of the link between them, which in turn could aid in planning and development of noninvasive molecular imaging of key molecular processes....

  15. Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions.

    Science.gov (United States)

    Sinha, Pallavi; Singh, Vikas K; Suryanarayana, V; Krishnamurthy, L; Saxena, Rachit K; Varshney, Rajeev K

    2015-01-01

    Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.

  16. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress.

    Science.gov (United States)

    Xu, Yanjie; Gao, Shan; Yang, Yingjie; Huang, Mingyun; Cheng, Lina; Wei, Qian; Fei, Zhangjun; Gao, Junping; Hong, Bo

    2013-09-28

    Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars.

  17. [Study on gene expression of Tamarix under NaHCO3 stress using SSH technology].

    Science.gov (United States)

    Yang, Chuan-Ping; Wang, Yu-Cheng; Liu, Gui-Feng; Jiang, Jing

    2004-09-01

    The gene expression of Tamarix androssowii under NaHCO3 stresses is studied by using SSH technique, in which the cDNA from the materials treated with NaHCO3 solution is as tester and the cDNA from the materials in normal growth is as driver. Total 36 genes related to NaHCO3 stress were obtained through Northern hybridization. Blastx analysis showed that the proteins encoded by these genes were homologous to the following proteins: the antioxidant enzymes catalase and peroxiredoxin; trehalose phosphatase, which was related to trehalose synthesis; a few regulation proteins such as bZIP transcription factor, MADS-box protein, glycine-rich RNA-binding proteins, CCCH-type zinc finger protein and F-box protein etc; early light-induced protein, which could protect and/or repair the photosynthetic apparatus damage induced by stress; cysteine proteinase and vacuolar processing enzyme that can make function in plant cell death, and lipid transfer protein precursor, polyubiquitin, chalcone synthase, NADP-dependent isocitrate dehydrogenase, salt-induced S12 protein, and oxygen-evolving enhancer protein 1 etc. Among 36 genes obtained, the proteins encoded three genes were homologous to 3 putative proteins: HAK2, calcium-binding protein and RNA-binding protein, respectively. In addition, 6 new salt stress response squences were found. The result indicated that the salt-tolerant mechanism of Tamarix androssowii may be a complicated, interactive system involving multiple approaches and multiple genes, but not only a single salt gland-depended approach.

  18. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress

    Science.gov (United States)

    2013-01-01

    Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars. PMID:24074255

  19. Effects of Bevacizumab on Bcl-2 Expression and Apoptosis in Retinal Pigment Epithelial Cells under Oxidative Stress.

    Science.gov (United States)

    Kim, Sukjin; Kim, Young Jun; Kim, Na Rae; Chin, Hee Seung

    2015-12-01

    To evaluate the effects of bevacizumab on expression of B-cell leukemia/lymphoma (Bcl)-2 and apoptosis in retinal pigment epithelial (RPE) cells under oxidative stress conditions. RPE cells were treated with H(2)O(2) (0, 100, 200, 300, and 400 µM) and bevacizumab at or above the doses normally used in clinical practice (0, 0.33, 0.67, 1.33, and 2.67 mg/mL). Cell apoptosis was measured using flow cytometry with annexin V-fluorescein isothiocyanate. The expression of Bcl-2 mRNA was determined using reverse transcription polymerase chain reaction. Under low oxidative stress conditions (H(2)O(2) 100 µM), cell apoptosis was not significantly different at any concentration of bevacizumab, but Bcl-2 mRNA expression decreased with increasing concentration of bevacizumab (0.33, 0.67, 1.33, and 2.67 mg/mL). Under moderate oxidative stress conditions (H(2)O(2) 200 µM), Bcl-2 mRNA expression decreased with increasing concentration of bevacizumab (0.33, 0.67, 1.33, and 2.67 mg/mL), but cell apoptosis increased only at 2.67 mg/mL of bevacizumab. Under high oxidative stress (300 µM) conditions, cell apoptosis increased at high concentrations of bevacizumab (1.33 and 2.67 mg/mL), but it did not correlate with Bcl-2 expression. Withdrawal of vascular endothelial growth factor can lead to RPE cell apoptosis and influences the expression of anti-apoptotic genes such as Bcl-2 under oxidative stress conditions. Since oxidative stress levels of each patient are unknown, repeated injections of intravitreal bevacizumab, as in eyes with age-related macular degeneration, might influence RPE cell survival.

  20. Oxidative Stress Promotes Doxorubicin-Induced Pgp and BCRP Expression in Colon Cancer Cells Under Hypoxic Conditions.

    Science.gov (United States)

    Pinzón-Daza, Martha L; Cuellar-Saenz, Yenith; Nualart, Francisco; Ondo-Mendez, Alejandro; Del Riesgo, Lilia; Castillo-Rivera, Fabio; Garzón, Ruth

    2017-07-01

    P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are ATP binding cassette (ABC) transporters that are overexpressed in different drug-resistant cancer cell lines. In this study, we investigated whether doxorubicin promotes Pgp and/or BCRP expression to induce drug resistance in colon cancer cells under hypoxic conditions. We analyzed HIF-1α activity via ELISA, Pgp, and BCRP expression by qRT-PCR and the relationship between doxorubicin uptake and ABC transporter expression via confocal microscopy in HT-29WT and HT-29 doxorubicin-resistant colon cancer cells (HT-29DxR). These cells were treated with doxorubicin and/or CoCl2 (chemical hypoxia), and reactive oxygen species inductors. We found that the combination of chemically induced hypoxia and doxorubicin promoted Pgp mRNA expression within 24 h in HT-29WT and HT-29DxR cells. Both doxorubicin and CoCl2 alone or in combination induced Pgp and BCRP expression, as demonstrated via confocal microscopy in each of the above two cell lines. Thus, we surmised that Pgp and BCRP expression may result from synergistic effects exerted by the combination of doxorubicin-induced ROS production and HIF-1α activity under hypoxic conditions. However, HIF-1α activity disruption via the administration of E3330, an APE-1 inhibitor, downregulated Pgp expression and increased doxorubicin delivery to HT-29 cells, where it served as a substrate for Pgp, indicating the existence of an indirect relationship between Pgp expression and doxorubicin accumulation. Thus, we concluded that Pgp and BCRP expression can be regulated via cross-talk between doxorubicin and hypoxia, promoting drug resistance in HT-29 WT, and HT-29DxR cells and that this process may be ROS dependent. J. Cell. Biochem. 118: 1868-1878, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. The expression of GFP under the control of fibroin promotor in ...

    Indian Academy of Sciences (India)

    The fibroin promoter can stably express foreign gene in lepidopteran cells. Total RNA was extracted from the gland of silkworm, Antheraea pernyi and the transcription initiation site of fibroin gene of A. pernyi was identified by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). The expression vector ...

  2. The expression of GFP under the control of fibroin promotor in ...

    Indian Academy of Sciences (India)

    Unknown

    Jarvis D L 1993 Effects of baculovirus infection on IE1- mediated foreign gene expression in stably transformed in- sect cells; J. Virol. 67 2583–2591. Jarvis D L, Fleming J G W, Kovacs G R, Summers M D and. Gua-rino L A 1990 Use of early baculovirus promoters for continuous expression and efficient processing of foreign.

  3. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    Science.gov (United States)

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  4. TREM-1 expression on neutrophils and monocytes of septic patients: relation to the underlying infection and the implicated pathogen

    Directory of Open Access Journals (Sweden)

    Poukoulidou Thekla

    2011-11-01

    Full Text Available Abstract Background Current knowledge on the exact ligand causing expression of TREM-1 on neutrophils and monocytes is limited. The present study aimed at the role of underlying infection and of the causative pathogen in the expression of TREM-1 in sepsis. Methods Peripheral venous blood was sampled from 125 patients with sepsis and 88 with severe sepsis/septic shock. The causative pathogen was isolated in 91 patients. Patients were suffering from acute pyelonephritis, community-acquired pneumonia (CAP, intra-abdominal infections (IAIs, primary bacteremia and ventilator-associated pneumonia or hospital-acquired pneumonia (VAP/HAP. Blood monocytes and neutrophils were isolated. Flow cytometry was used to estimate the TREM-1 expression from septic patients. Results Within patients bearing intrabdominal infections, expression of TREM-1 was significantly lower on neutrophils and on monocytes at severe sepsis/shock than at sepsis. That was also the case for severe sepsis/shock developed in the field of VAP/HAP. Among patients who suffered infections by Gram-negative community-acquired pathogens or among patients who suffered polymicrobial infections, expression of TREM-1 on monocytes was significantly lower at the stage of severe sepsis/shock than at the stage of sepsis. Conclusions Decrease of the expression of TREM-1 on the membrane of monocytes and neutrophils upon transition from sepsis to severe sepsis/septic shock depends on the underlying type of infection and the causative pathogen.

  5. Specific expression and function of the A-type cytochrome c oxidase under starvation conditions in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Tatsuya Osamura

    Full Text Available Pseudomonas aeruginosa has one A-type (caa3 and multiple C-type (cbb3 cytochrome c oxidases as well as two quinol oxidases for aerobic respiration. The caa3 oxidase is highly efficient in creating a proton gradient across the cell membrane, but it is not expressed under normal growth conditions and its physiological role has not been investigated. In the present study, a mutant strain deficient in the coxBA-PA0107-coxC genes encoding caa3 exhibited normal growth under any test conditions, but it had low relative fitness under carbon starvation conditions, indicating that the expression of caa3 is advantageous under starvation conditions. A mutant that lacked four terminal oxidase gene clusters except for the cox genes was unable to grow aerobically because of low expression level of caa3. However, suppressor mutants that grew aerobically using caa3 as the only terminal oxidase emerged after aerobic subculturing. Analyses of the suppressor mutants revealed that a mutation of roxS encoding a sensor kinase of a two-component regulator RoxSR was necessary for the aerobic growth in synthetic medium. Two additional mutations in the 5'-flanking region of coxB were necessary for the aerobic growth in LB medium. Although the expression level of caa3 was higher in the suppressor mutants, their growth rates were lower than when the other terminal oxidases were utilized, suggesting that caa3 was not suited for utilization as the only terminal oxidase. Overexpression of the cox genes also inhibited the aerobic growth of the wild-type strain. These results indicate that caa3 is tightly regulated to be expressed only under starvation conditions at low level and it functions in cooperation with other terminal oxidases to facilitate survival in nutrient starvation conditions.

  6. Gene expression changes under cyclic mechanical stretching in rat retinal glial (Müller) cells

    National Research Council Canada - National Science Library

    Wang, Xin; Fan, Jiawen; Zhang, Meng; Sun, Zhongcui; Xu, Gezhi

    2013-01-01

    ..., Müller cells are active players in all forms of retinal injury and disease. In this study, we aim to identify patterns of gene expression changes induced by cyclic mechanical stretching in Müller cells. Rat...

  7. Bpifcl modulates kiss2 expression under the influence of 11-ketotestosterone in female zebrafish

    OpenAIRE

    Moriya, Shogo; Tahsin, Nabila; Parhar, Ishwar S.

    2017-01-01

    The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in ...

  8. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    Science.gov (United States)

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential

  9. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    Directory of Open Access Journals (Sweden)

    Belén Chanclón

    Full Text Available Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT and receptors (GHS-Rs] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT, a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/- are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+ under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous

  10. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade

    2015-01-01

    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  11. Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation.

    Science.gov (United States)

    Sun, Y; Lv, M; Zhou, L; Tam, V; Lv, F; Chan, D; Wang, H; Zheng, Z; Cheung, K M C; Leung, V Y L

    2015-07-01

    Intervertebral disc (IVD) degeneration is associated with a malfunction of the nucleus pulposus (NP). Alginate culturing provides a favorable microenvironment for the phenotypic maintenance of chondrocyte-like NP cells. However, NP cells are recently evidenced to present heterogeneous populations, including progenitors, fibroblastic cells and primitive NP cells. The aim of this study is to profile the phenotypic changes of distinct human NP cells populations and describe the dynamic expression of chondroitin sulfate glycosaminoglycans (CS-GAGs) in extended alginate encapsulation. Non-degenerated (ND-NPC) and degenerated (D-NPC) NP cells were expanded in monolayers, and subject to 28-day culture in alginate after serial passaging. CS-GAG compositional expression in monolayer-/alginate-cultured NP cells was evaluated by carbohydrate electrophoresis. Cellular phenotypic changes were assessed by immunologic detection and gene expression analysis. Relative to D-NPC, ND-NPC displayed remarkably higher expression levels of chondroitin-4-sulfate GAGs over the 28-day culture. Compared with monolayer culture, ND-NPC showed increased NP marker expression of KRT18, KRT19, and CDH2, as well as chondrocyte markers SOX9 and MIA in alginate culture. In contrast, expression of fibroblastic marker COL1A1, COL3A1, and FN1 were reduced. Interestingly, ND-NPC showed a loss of Tie2+ but gain in KRT19+/CD24+ population during alginate culture. In contrast, D-NPC showed more consistent expression levels of NP surface markers during culture. We demonstrate for the first time that extended alginate culture selectively enriches the committed NP cells and favors chondroitin-4-sulfate proteoglycan production. These findings suggest its validity as a model to investigate IVD cell function. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis.

    Science.gov (United States)

    Xiao, Yong; Zhou, Lixia; Lei, Xintao; Cao, Hongxing; Wang, Yong; Dou, Yajing; Tang, Wenqi; Xia, Wei

    2017-01-01

    African oil palm (Elaeis guineensis) is an important oil crop grown in tropical region and sensitive to low temperature along with high tolerance to salt and drought stresses. Since the WRKY transcription factor family plays central roles in the regulation of plant stress tolerance, 95 genes belonging to the WRKY family were identified and characterized in oil palm genome. Gene structure analysis showed that EgWRKY genes have considerable variation in intron number (0 to 12) and gene length (477bp to 89,167 bp). Duplicated genes identification indicated 32 EgWRKY genes originated from segmental duplication and two from tandem duplication. Based on transcriptome data, most EgWRKY genes showed tissue-specific expression patterns and their expression could be induced under cold stress. Furthermore, six EgWRKY genes with more than two-folded increased expression level under cold stress were validated by RT-qPCR, which has higher expression level in cold, drought and high salinity treatment. The identification and characterization of WRKY gene family showed that EgWRKY were associated with a wide range of abiotic stress responses in Elaeis guineensis and some EgWRKY members with high expression levels could be selected for further research in analyzing their functions in the stress response in African oil palm.

  13. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    Science.gov (United States)

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  14. Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis.

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    Full Text Available African oil palm (Elaeis guineensis is an important oil crop grown in tropical region and sensitive to low temperature along with high tolerance to salt and drought stresses. Since the WRKY transcription factor family plays central roles in the regulation of plant stress tolerance, 95 genes belonging to the WRKY family were identified and characterized in oil palm genome. Gene structure analysis showed that EgWRKY genes have considerable variation in intron number (0 to 12 and gene length (477bp to 89,167 bp. Duplicated genes identification indicated 32 EgWRKY genes originated from segmental duplication and two from tandem duplication. Based on transcriptome data, most EgWRKY genes showed tissue-specific expression patterns and their expression could be induced under cold stress. Furthermore, six EgWRKY genes with more than two-folded increased expression level under cold stress were validated by RT-qPCR, which has higher expression level in cold, drought and high salinity treatment. The identification and characterization of WRKY gene family showed that EgWRKY were associated with a wide range of abiotic stress responses in Elaeis guineensis and some EgWRKY members with high expression levels could be selected for further research in analyzing their functions in the stress response in African oil palm.

  15. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  16. DNA methylation of the ABO promoter underlies loss of ABO allelic expression in a significant proportion of leukemic patients.

    Directory of Open Access Journals (Sweden)

    Tina Bianco-Miotto

    Full Text Available BACKGROUND: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. METHODOLOGY/PRINCIPAL FINDINGS: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50% patients with ABH antigen loss detected by flow cytometry and 5/7 (71% of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH at the ABO locus was observed in these patients. However in 8/11 (73% patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20% of patients with no ABO allelic expression loss (P = 0.03. CONCLUSIONS/SIGNIFICANCE: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.

  17. Androgen receptor expression in the human vagina under different physiological and treatment conditions.

    Science.gov (United States)

    Baldassarre, M; Perrone, A M; Giannone, F A; Armillotta, F; Battaglia, C; Costantino, A; Venturoli, S; Meriggiola, M C

    2013-01-01

    Recent data report an important role of testosterone (T) in modulating female sexual responses, but little is known about the expression and distribution of androgen receptor (AR) in the human vagina. Therefore, the aims of our study were to evaluate the expression of AR in the human vagina in premenopausal (PrM) and menopausal (M) women and in T-treated women. Vaginal biopsies were obtained from PrM and postmenopausal women and from women with gender identity disorder (female to male (FtM)) receiving exogenous T. AR gene and protein expression levels in vaginal tissues were determined by real-time PCR and western blot analysis, respectively, whereas the localization of AR in vaginal mucosa and stroma was performed by immunohistochemistry. ARs were detected by immunostaining both in the mucosa and stroma. In vaginal mucosa, AR density score decreases with age but does not change with T administration. In stromal tissue, AR density score does not change with age but significantly increases with T administration (Pvagina in all groups of women. A negative correlation exists between age and AR expression in the vaginal mucosa. T administration increases AR expression in both the mucosa and stroma.

  18. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation

    Directory of Open Access Journals (Sweden)

    Marion Schiengold

    2006-01-01

    Full Text Available The multidrug resistance (MDR phenotype is associated with the expression of P-glycoprotein (Pgp, coded by the multigenic mdr family. Mice present the isoforms mdr1 and mdr3, which are responsible for multidrug resistance, and mdr2, that is involved in the transport of phospholipids. mdr1 expression has more recently been associated also with the secretion of steroid hormones. This work presents an RT-PCR analysis of the expression of mdr isoforms, in several organs of mice during different phases of the estrous cycle. Additionally, females were ovariectomized, submitted to different hormone treatments, and their uterus was analyzed for the expression of mdr isoforms. The results show that in the adrenal gland and ovaries mdr1 is the main isoform during proestrus, and that progesterone or a combination of progesterone and estrogen induce the expression of all mdr isoforms in the uterus of ovariectomized females. We suggest that the functions of mdr1 and mdr3 are overlapping, that mdr3 may be the more efficient isoform in the detoxification function, and that mdr1 may be more closely related to the secretion of steroid hormones.

  19. Adaptive changes in geranylgeranyl pyrophosphate synthase gene expression level under ethanol stress conditions in Oenococcus oeni.

    Science.gov (United States)

    Cafaro, C; Bonomo, M G; Salzano, G

    2014-01-01

    The aim of this study was to investigate the effect of ethanol exposure on the expression level of geranylgeranyl pyrophosphate synthase gene involved in the metabolism of Oenococcus oeni to probe the mechanisms of ethanol tolerance correlated with adaptive changes. The evaluation of ten potential internal control genes and the comparative study of their stability were performed to select the most stable internal controls for the normalization of expression data. The expression level analysis by qPCR and changes after exposure to ethanol stresses highlighted a significant increase in the presence of higher ethanol concentrations. The analysis of results suggest that O. oeni adjusts the expression of genes to adapt to stress conditions and the high expression level of ggpps would allow a flow of isoprenoid precursors towards the carotenoids and related pathways to stabilize bacterial cell membranes, improving the cell membrane disturbances and preventing cell death induced by ethanol. The involvement of ggpps gene in physiological changes of bacterial behaviour confirmed the exposure to stress requires the activation of defence mechanism to be more tolerant to adverse conditions. Improving the knowledge of stress tolerance and adaptation mechanisms of O. oeni is essential to enhance the efficiency of the malolactic starter in wine and to obtain the development of starters able to survive to direct inoculation with a large benefit for wine technology. © 2013 The Society for Applied Microbiology.

  20. Evaluation of differential protein expression in Haliclona aquarius and sponge-associated microorganisms under cadmium stress.

    Science.gov (United States)

    Wanick, Rodrigo Cunha; de Sousa Barbosa, Herbert; Frazão, Leonardo Revoredo; Santelli, Ricardo Erthal; Arruda, Marco Aurélio Zezzi; Coutinho, Cristiano Carvalho

    2013-09-01

    A comparative proteomic approach was used to assess differentially expressed proteins in marine sponges after 36 h of exposure to cadmium (Cd). After separation performed by 2-D polyacrylamide gel electrophoresis, 46 protein spots indicated differential expression, and 17 of these proteins were identified by electrospray ionization quadrupole time-of-flight mass spectrometry. From the proteins identified, 76% were attributed to sponge-associated microorganisms (fungi and bacteria), and 24% were attributed to Haliclona aquarius. Some of the proteins that were identified may be related to cell proliferation and differentiation or processes of oxidative stress repair and energy procurement. An integrated evaluation based on spot expression levels and the postulated functions of these proteins allowed a more accurate evaluation of the stress caused to the sponge holobiont system by cadmium exposure. This study could provide new insights into the use of a proteomic approach in the marine sponge to assess the effects of Cd pollution in a marine environment.

  1. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  2. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  3. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation.

    Directory of Open Access Journals (Sweden)

    Puja Verma

    Full Text Available Malpighian tubules (MT of Drosophila melanogaster are osmoregulatory organs that maintain the ionic balance and remove toxic substances from the body. Additionally they act as autonomous immune sensing organs, which secrete antimicrobial peptides in response to invading microbial pathogens. We show that the antimicrobial peptides (AMP diptericin, cecropinA, drosocin and attacinA are constitutively expressed and are regulated in developmental stage specific manner. Their developmental expression begins from 3(rd instar larval stage and an immune challenge increases the expression several folds. Spatial variations in the level of expression along the MT tissue are observed. The mortality of 3(rd instar larvae fed on bacterial food is much less than that of the earlier larval stages, coinciding with the onset of innate immunity response in MT. Ectopic expression of AMP imparts better resistance to infection while, loss of function of one of the AMP through directed RNAi reduces host survival after immune challenge. The AMP secreted from the MT exhibit bactericidal activity. Expression of the NF-κB transcription factor, Relish, also coincides with activation of immune responsive genes in MT, demonstrating that immune regulation in MT is under developmental control and is governed by the Imd pathway.

  4. Homeobox gene expression in acute myeloid leukemia is linked to typical underlying molecular aberrations

    NARCIS (Netherlands)

    K.S. Kramarzova (Karolina Skvarova); K. Fiser (Karel); E. Mejstříková (Ester); K. Rejlova (Katerina); M. Zaliova (Marketa); M.W.J. Fornerod (Maarten); H.A. Drabkin (Harry); M.M. van den Heuvel-Eibrink (Marry); J. Stary (Jan); J. Trka (Jan); J. Starkova (Julia)

    2014-01-01

    markdownabstract__Background:__ Although distinct patterns of homeobox (HOX) gene expression have been described in defined cytogenetic and molecular subsets of patients with acute myeloid leukemia (AML), it is unknown whether these patterns are the direct result of transcriptional alterations or

  5. Gene expression of indoor fungal communities under damp building conditions: implications for human health.

    Science.gov (United States)

    Hegarty, Bridget; Dannemiller, Karen; Peccia, Jordan

    2018-03-03

    Dampness and visible mold growth in homes is associated with negative human health outcomes but causal relationships between fungal exposure and health are not well established. The purpose of this study was to determine if dampness in buildings impacts fungal community gene expression and how, in turn, gene expression may modulate human health impacts. A metatranscriptomic study was performed on house dust fungal communities to investigate the expression of genes and metabolic processes in chamber experiments at water activity levels of 0.5, 0.85 and 1.0. Fungi at water activities as low as 0.5 were metabolically active, focusing their transcriptional resources on primary processes essential for cell maintenance. Metabolic complexity increased with water activity where communities at 1.0 displayed more diverse secondary metabolic processes. Greater gene expression at increasing water activity has important implications for human health: fungal communities at 1.0 a w up-regulated a greater number of allergen, mycotoxin, and pathogenicity encoding genes versus communities at 0.85 and 0.5 a w . In damp buildings, fungi may display increases in secondary metabolic processes with the potential for greater per cell production of allergens, toxins, and pathogenicity. Assessments in wet versus dry buildings that do not account for this elevated health impact may not accurately reflect exposure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Analysis of sequence variation underlying tissue-specific transcription factor binding and gene expression.

    Science.gov (United States)

    Lower, Karen M; De Gobbi, Marco; Hughes, Jim R; Derry, Christopher J; Ayyub, Helena; Sloane-Stanley, Jacqueline A; Vernimmen, Douglas; Garrick, David; Gibbons, Richard J; Higgs, Douglas R

    2013-08-01

    Although mutations causing monogenic disorders most frequently lie within the affected gene, sequence variation in complex disorders is more commonly found in noncoding regions. Furthermore, recent genome- wide studies have shown that common DNA sequence variants in noncoding regions are associated with "normal" variation in gene expression resulting in cell-specific and/or allele-specific differences. The mechanism by which such sequence variation causes changes in gene expression is largely unknown. We have addressed this by studying natural variation in the binding of key transcription factors (TFs) in the well-defined, purified cell system of erythropoiesis. We have shown that common polymorphisms frequently directly perturb the binding sites of key TFs, and detailed analysis shows how this causes considerable (~10-fold) changes in expression from a single allele in a tissue-specific manner. We also show how a SNP, located at some distance from the recognized TF binding site, may affect the recruitment of a large multiprotein complex and alter the associated chromatin modification of the variant regulatory element. This study illustrates the principles by which common sequence variation may cause changes in tissue-specific gene expression, and suggests that such variation may underlie an individual's propensity to develop complex human genetic diseases. © 2013 WILEY PERIODICALS, INC.

  7. Expressive Writing for Gay-Related Stress: Psychosocial Benefits and Mechanisms Underlying Improvement

    Science.gov (United States)

    Pachankis, John E.; Goldfried, Marvin R.

    2010-01-01

    Objective: This study tested the effectiveness of an expressive writing intervention for gay men on outcomes related to psychosocial functioning. Method: Seventy-seven gay male college students (mean age = 20.19 years, SD = 1.99) were randomly assigned to write for 20 min a day for 3 consecutive days about either (a) the most stressful or…

  8. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  9. Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress.

    Science.gov (United States)

    Long, Ling-Li; Han, Ying-Li; Sheng, Zhang; Du, Chen; Wang, You-Fa; Zhu, Jun-Quan

    2015-09-01

    The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different time points post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress.

    Science.gov (United States)

    Kısa, Dursun; Öztürk, Lokman; Doker, Serhat; Gökçe, İsa

    2017-04-01

    Heavy metals are considered to be the most important pollutants in the contamination of soils; they adversely affect plant growth and development and cause some physiological and molecular changes. The contamination of agricultural soils by heavy metals has changed the mineral element content of vegetables. Plant metallothioneins (MTs) are thought to have the functional role in heavy metal homeostasis, and they are used as the biomarkers for evaluating environmental pollution. We aimed to evaluate the expression of MT isoforms (MT1, 2, 3 and 4) and some mineral element composition of tomato roots, leaves and fruits exposed to copper and lead. Heavy metal applications increased MT1 and MT2 gene expressions compared to the control in the tissues of tomato. The highest level of MT1 and MT2 transcripts was found in roots and leaves, respectively. The expression of MT3 is induced in roots, leaves and fruits except for Pb treatment in roots. MT4 expression increased in fruits; however, other tissues did not show a clear change. Our results indicated that Cu content was higher than Pb in all tissues of tomato. The lower doses of Cu (10 ppm) increased the content of Mg, Fe, Ca and Mn in roots. Pb generally increased the level of minerals in leaves and fruits, but it decreased Mg, Mn and Fe contents in roots. Both heavy metals not only moved to aerial parts but also caused alterations to mineral element levels. These results show that MT transcripts are regulated by Cu and Pb, and expression pattern changes to MT isoforms and tissue types. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Expression pattern of drought stress marker genes in soybean roots under two water deficit systems

    Directory of Open Access Journals (Sweden)

    Anna Cristina Neves-Borges

    2012-01-01

    Full Text Available The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively, submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems.

  12. Expressive writing for gay-related stress: psychosocial benefits and mechanisms underlying improvement.

    Science.gov (United States)

    Pachankis, John E; Goldfried, Marvin R

    2010-02-01

    This study tested the effectiveness of an expressive writing intervention for gay men on outcomes related to psychosocial functioning. Seventy-seven gay male college students (mean age = 20.19 years, SD = 1.99) were randomly assigned to write for 20 min a day for 3 consecutive days about either (a) the most stressful or traumatic gay-related event in their lives or (b) a neutral topic. We tested an exposure-based hypothesis of written emotional expression by asking half of the participants who were assigned to write about gay-related stress to read their previous day's narrative before writing, whereas the other half did not. Posttest and 3-month follow-up outcomes were assessed with common measures of overall psychological distress, depression, physical health symptoms, and positive and negative affect. Gay-specific social functioning was assessed with measures of gay-related rejection sensitivity, gay-specific self-esteem, and items regarding openness and comfort with one's sexual orientation. Participants who wrote about gay-related stress, regardless of whether they read their previous day's writing, reported significantly greater openness with their sexual orientation 3 months following writing than participants who wrote about a neutral topic, F(1, 74) = 6.66, p writing, severity of the expressed topic, previous disclosure of writing topic, tendency to conceal, and level of perceived social support on mental health outcomes. The findings suggest that an expressive writing task targeting gay-related stress can improve gay men's psychosocial functioning, especially openness with sexual orientation. The intervention seems to be particularly beneficial for those men who write about more severe topics and for those with lower levels of social support. The findings suggest future tests of expressive writing tasks for different aspects of stigma-related stress.

  13. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  14. Differential expression of TLP, ERF1, and R2R3MYB in annual Medicago species under salinity conditions.

    Science.gov (United States)

    Gharaghani, F; Rafiei, F; Mirakhorli, N; Ebrahimie, E

    2015-08-21

    The present study was conducted to evaluate the responses of three annual Medicago species (M. truncatula, M. laciniata, and M. polymorpha) to salinity. We analyzed publicly available microarray data in NCBI pertaining to salinity-response genes in M. truncatula. Our data search identified Tubby C2 (TLP) and ethylene responsive transcription factor 1 (ERF1) as genes that potentially respond to salinity. We evaluated morpho-physiological traits and the expression of the genes in three Medicago species that had been maintained under control and saline conditions. The analysis of morpho-physiological traits showed that M. polymorpha and M. laciniata were more tolerant to salinity than M. truncatula, as they had lower reductions in biomass and dry root weight and lower increases in anthocyanin concentration. The saline conditions caused a significant increase (P Medicago species, but caused a significant decrease in the expression of ERF1. Considerable variation in anthocyanin concentrations was found among the three Medicago species. To investigate the cause of this variation, we examined the expression of R2R3MYB, a gene involved in the biosynthesis of anthocyanins. Our analysis showed that saline conditions induced high over-expression of R2R3MYB in all three Medicago spp. The high efficiency of the primer pairs used in qRT-PCR enabled us to compare the expression levels of each gene in the three species. We concluded that the more salt tolerant species showed higher expression of TLP and R2R3MYB under both control and salinity conditions.

  15. Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila.

    Science.gov (United States)

    Li, Jianbo; Jia, Huixia; Han, Xiaojiao; Zhang, Jin; Sun, Pei; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila.

  16. Differential analysis of protein expression in RNA-binding-protein transgenic and parental rice seeds cultivated under salt stress.

    Science.gov (United States)

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-02-07

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds.

  17. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    Science.gov (United States)

    2015-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds. PMID:24410502

  18. Development of Molecular Markers for Iron Metabolism Related Genes in Lentil and Their Expression Analysis under Excess Iron Stress.

    Science.gov (United States)

    Sen Gupta, Debjyoti; McPhee, Kevin; Kumar, Shiv

    2017-01-01

    Multiple genes and transcription factors are involved in the uptake and translocation of iron in plants from soil. The sequence information about iron uptake and translocation related genes is largely unknown in lentil (Lens culinaris Medik.). This study was designed to develop iron metabolism related molecular markers for Ferritin-1, BHLH-1 (Basic helix loop helix), or FER-like transcription factor protein and IRT-1 (Iron related transporter) genes using genome synteny with barrel medic (Medicago truncatula). The second objective of this study was to analyze differential gene expression under excess iron over time (2 h, 8 h, 24 h). Specific molecular markers were developed for iron metabolism related genes (Ferritin-1, BHLH-1, IRT-1) and validated in lentil. Gene specific markers for Ferritin-1 and IRT-1 were used for quantitative PCR (qPCR) studies based on their amplification efficiency. Significant differential expression of Ferritin-1 and IRT-1 was observed under excess iron conditions through qPCR based gene expression analysis. Regulation of iron uptake and translocation in lentil needs further characterization. Greater emphasis should be given to development of conditions simulating field conditions under external iron supply and considering adult plant physiology.

  19. Differential expression of microRNAs in hemocytes from white shrimp Litopenaeus vannamei under copper stress.

    Science.gov (United States)

    Guo, Hui; Lu, Zhi-Cheng; Zhu, Xiao-Wen; Zhu, Chun-Hua; Wang, Cheng-Gui; Shen, Yu-Chun; Wang, Wei

    2018-01-02

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate diverse cellular processes, including organismal stress response, through posttranscriptional repression of gene transcripts. They are known to have antiviral functions in aquatic crustacean species, but little is known about the role of miRNAs against environmental stress caused by Cu, a common chemical contaminant in aquatic environment. We performed small RNA sequencing to characterize the differentially expressed microRNAs in Cu exposed shrimp. A total of 4524 known miRNAs and 73 novel miRNAs were significantly (P vannamei miRNAs and some target genes expression in response to Cu stress, and the findings support the hypothesis that certain miRNAs along with their target genes might be essential in the intricate adaptive response regulation networks. Our current study will provide valuable information to take an insight into molecular mechanism of L. vannamei against environmental stress. Copyright © 2017. Published by Elsevier Ltd.

  20. Gene expression dynamics of pseudomonas putida KT2440 biofilms under water deprivation

    DEFF Research Database (Denmark)

    Gulez, Gamze; Dechesne, Arnaud; Workman, Christopher

    2010-01-01

    In soil, bacteria can form colonies that are exposed to changing hydration conditions, exerting a stress to which the bacteria should adjust. Some of the phenotypes associated with water deprivation, such as the production extracellular polymeric substance (EPS) and the limitation of motility, have...... stress flagellar and EPS genes would be significantly differentially expressed, the former being down- and the latter being up-regulated. The novel Pressurized Porous Surface Model (PPSM) was used to expose KT2440 colonies to -0.4 MPa water stress for 4, 24, and 72 hours. Agilent whole genome 1-color c......DNA-microarray was used for gene expression profiling. The genes with log2-fold change >=1.5 and adjusted P-value...

  1. Expression of Saccharomyces cerevisiae α-glucoside transporters under different growth conditions

    OpenAIRE

    S. L. Alves Jr.; J. M. Thevelein; B. U. Stambuk

    2014-01-01

    Important biotechnological processes depend on the efficient fermentation by Saccharomyces cerevisiae yeasts of starch hydrolysates rich in maltose and maltotriose. The rate-limiting step for fermentation of these α-glucosides is the transport across the plasma membrane of the cells. In order to contribute to a better understanding of maltose and maltotriose metabolism by S. cerevisiae, we analyzed the expression of the main α glucoside transporter genes in two different yeast strains grown o...

  2. Monitoring gene expression of potato under salinity using cDNA microarrays.

    Science.gov (United States)

    Legay, Sylvain; Lamoureux, Didier; Hausman, Jean-François; Hoffmann, Lucien; Evers, Danièle

    2009-12-01

    The molecular response to salt exposure was studied in the leaves of a Solanum tuberosum clone using cDNA microarray. Differentially expressed genes were classified according to their known or predicted function and their expression ratio as compared to the control. The major changes upon a 150 mM NaCl exposure in potato leaves occurred in the photosystem apparatus and Calvin cycle: many transcripts coding for proteins belonging to photosystems I and II and chlorophyll synthesis were repressed. On the other hand, we observed the induction of various kinds of transcription factors implicated in osmotic stress response via ABA-dependent or ABA-independent pathways but also in plant defense pathways. This revealed a crosstalk between abiotic and biotic stress responses during salt exposure, which activated several adaptation mechanisms including heat shock proteins, late embryogenesis abundant, dehydrins and PR proteins. Gene expression changes related to carbohydrate and amino acid metabolism were also observed, pointing at putative modifications at the metabolic level.

  3. Adipose-derived stem cells express higher levels of type VII collagen under specific culture conditions.

    Science.gov (United States)

    Maeda, Yuichiro; Hasegawa, Toshio; Wada, Akino; Fukai, Tatsuo; Iida, Hideo; Sakamoto, Atsushi; Ikeda, Shigaku

    2017-12-01

    Type VII collagen (Col7) is a major component of the anchoring fibrils at the dermoepidermal junction. Adipose-derived stem cells (ADSCs) are a cell population highly useful in regenerative medicine because of their ease of isolation and their potential for multilineage differentiation. Based on the observations that K14 was expressed in undifferentiated ADSCs and the expression was downregulated after differentiation into adipocytes, we speculated that ADSCs are keratinocyte stem/progenitor cells. ADSCs were co-cultured with fibroblasts on type IV collagen in a medium containing all-trans retinoic acid and bone morphogenetic protein 4. At day 14 of culture in keratinocyte serum-free medium, the cells were harvested and subjected to immunofluorescence, flow cytometry, real-time PCR, and western blotting. Approximately, 45% of ADSCs were immunostained positively for anti-human cytokeratin 10, and approximately 80% were stained positively for Col7. Flow cytometry, real-time PCR, and western blotting also confirmed that differentiated ADSCs expressed higher levels of Col7. These findings support the therapeutic potential of ADSCs, not only for wound healing, but also for the correction of Col7 deficiencies.

  4. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    Science.gov (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter.

    Science.gov (United States)

    Resina, David; Serrano, Alícia; Valero, Francisco; Ferrer, Pau

    2004-04-08

    A Rhizopus oryzae lipase gene has been expressed in Pichia pastoris as a reporter using the formaldehyde dehydrogenase 1 promoter (PFLD1) of this organism, which has been reported to be strongly and independently induced by either methanol as sole carbon source or methylamine as sole nitrogen source. Levels of lipase expressed and secreted under the control of the PFLD1 at different induction conditions have been compared to those obtained with the commonly used alcohol oxidase 1 promoter (PAOX1) in small (shake flask) and 1l bioreactor batch cultures. PFLD1-controlled heterologous gene expression was strongly repressed by excess of either glycerol or glucose-but not sorbitol-during growth using methylamine both as sole nitrogen source and inducing substrate. Co-induction of PFLD1 with methanol and methylamine resulted in a synergistic effect on extracellular lipase expression levels. In all tested conditions, the substitution of ammonium for methylamine as carbon source provoked a clear decrease in the specific growth rate and yield of biomass per gram of carbon source. Overall, this study demonstrates that the PFLD1 promoter is at least as efficient as the PAOX1 for extracellular expression of heterologous proteins in P. pastoris bioreactor cultures and provides a first basis for the further design of methanol-free high cell density fed-batch cultivation strategies for controlled overproduction of foreign proteins in P. pastoris.

  6. Expression of matrix metalloproteinase-11 is increased under conditions of insulin resistance.

    Science.gov (United States)

    Arcidiacono, Biagio; Chiefari, Eusebio; Laria, Anna Elisa; Messineo, Sebastiano; Bilotta, Francesco Luciano; Britti, Domenico; Foti, Daniela Patrizia; Foryst-Ludwig, Anna; Kintscher, Ulrich; Brunetti, Antonio

    2017-09-15

    To investigate matrix metalloproteinase-11 (MMP-11) expression in adipose tissue dysfunction, using in vitro and in vivo models of insulin resistance. Culture of mouse 3T3-L1 preadipocytes were induced to differentiation into mature 3T3-L1 adipocytes. Cellular insulin resistance was induced by treating differentiated cultured adipocytes with hypoxia and/or tumor necrosis factor (TNF)-α, and transcriptional changes were analyzed in each condition thereafter. For the in vivo studies, MMP-11 expression levels were measured in white adipose tissue (WAT) from C57BL/6J mice that underwent low fat diet or high-fat feeding in order to induce obesity and obesity-related insulin resistance. Statistical analysis was carried out with GraphPad Prism Software. MMP-11 mRNA expression levels were significantly higher in insulin resistant 3T3-L1 adipocytes compared to control cells (1.46 ± 0.49 vs 0.83 ± 0.21, respectively; P < 0.00036). The increase in MMP-11 expression was observed even in the presence of TNF-α alone (3.79 ± 1.11 vs 1 ± 0.17, P < 0.01) or hypoxia alone (1.79 ± 0.7 vs 0.88 ± 0.1, P < 0.00023). The results obtained in in vitro experiments were confirmed in the in vivo model of insulin resistance. In particular, MMP-11 mRNA was upregulated in WAT from obese mice compared to lean mice (5.5 ± 2.8 vs 1.1 ± 0.7, respectively; P < 3.72E-08). The increase in MMP-11 levels in obese mice was accompanied by the increase in typical markers of fibrosis, such as collagen type VI alpha 3 (Col6α3), and fibroblast-specific protein 1. Our results indicate that dysregulation of MMP-11 expression is an early process in the adipose tissue dysfunction, which leads to obesity and obesity-related insulin resistance.

  7. Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica

    Directory of Open Access Journals (Sweden)

    Takita Marco A

    2011-01-01

    Full Text Available Abstract Background Gummosis and root rot caused by Phytophthora are among the most economically important diseases in citrus. Four F1 resistant hybrids (Pool R, and four F1 susceptible hybrids (Pool S to P. parasitica, were selected from a cross between susceptible Citrus sunki and resistant Poncirus trifoliata cv. Rubidoux. We investigated gene expression in pools of four resistant and four susceptible hybrids in comparison with their parents 48 hours after P. parasitica inoculation. We proposed that genes differentially expressed between resistant and susceptible parents and between their resistant and susceptible hybrids provide promising candidates for identifying transcripts involved in disease resistance. A microarray containing 62,876 UniGene transcripts selected from the CitEST database and prepared by NimbleGen Systems was used for analyzing global gene expression 48 hours after infection with P. parasitica. Results Three pairs of data comparisons (P. trifoliata/C. sunki, Pool R/C. sunki and Pool R/Pool S were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 3.0, 21 UniGene transcripts common to the three pairwise comparative were found to be up-regulated, and 3 UniGene transcripts were down-regulated. Among them, our results indicated that the selected transcripts were probably involved in the whole process of plant defense responses to pathogen attack, including transcriptional regulation, signaling, activation of defense genes participating in HR, single dominant genes (R gene such as TIR-NBS-LRR and RPS4 and switch of defense-related metabolism pathway. Differentially expressed genes were validated by RT-qPCR in susceptible and resistant plants and between inoculated and uninoculated control plants Conclusions Twenty four UniGene transcripts were identified as candidate genes for Citrus response to P. parasitica. UniGene transcripts were likely to be involved in disease resistance, such

  8. Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light

    Directory of Open Access Journals (Sweden)

    Sandeep Bhupendra Gaudana

    2013-12-01

    Full Text Available Cyanobacteria, a group of photosynthetic prokaryotes, oscillate between day and night time metabolisms with concomitant oscillations in gene expression in response to light/dark cycles (LD. The oscillations in gene expression have been shown to sustain in constant light (LL with a free running period of 24 h in a model cyanobacterium Synechococcus elongatus PCC 7942. However, equivalent oscillations in metabolism are not reported under LL in this non-nitrogen fixing cyanobacterium. Here we focus on Cyanothece sp. ATCC 51142, a unicellular, nitrogen-fixing cyanobacterium known to temporally separate the processes of oxygenic photosynthesis and oxygen-sensitive nitrogen fixation. In a recent report, metabolism of Cyanothece 51142 has been shown to oscillate between photosynthetic and respiratory phases under LL with free running periods that are temperature dependent but significantly shorter than the circadian period. Further, the oscillations shift to circadian pattern at moderate cell densities that are concomitant with slower growth rates. Here we take this understanding forward and demonstrate that the utradian rhythm under LL sustains at much higher cell densities when grown under turbulent regimes that simulate flashing light effect. Our results suggest that the ultradian rhythm in metabolism may be needed to support higher carbon and nitrogen requirements of rapidly growing cells under LL. With a comprehensive Real time PCR based gene expression analysis we account for key regulatory interactions and demonstrate the interplay between clock genes and the genes of key metabolic pathways. Further, we observe that several genes that peak at dusk in Synechococcus peak at dawn in Cyanothece and vice versa. The circadian rhythm of this organism appears to be more robust with peaking of genes in anticipation of the ensuing photosynthetic and respiratory metabolic phases.

  9. Differential expression and elution behavior of basic 7S globulin among cultivars under hot water treatment of soybean seeds.

    Science.gov (United States)

    Fujiwara, Keigo; Cabanos, Cerrone; Toyota, Kenji; Kobayashi, Yasunori; Maruyama, Nobuyuki

    2014-06-01

    Basic 7S globulin (Bg7S), which accumulates in mature soybean (Glycine max) seeds, is an extracellular matrix protein. A large amount of Bg7S is synthesized de novo and is eluted from soybean seeds when immersed in 50-60°C water (hot water treatment, HWT). However, the Bg7S elution mechanism remains unclear. Under HWT, the seeds probably undergo heat stress and flooding stress. To obtain fundamental knowledge related to how Bg7S is eluted from hot-water-treated seeds, this study compared Bg7S elution among soybean cultivars having different flooding tolerance during pre-germination. The amounts of Bg7S eluted from seeds varied significantly among cultivars. Elution was suppressed by seed coats regarded as preventing the leakage of seed contents by rapid water imbibition. Furthermore, Bg7S expression levels differed among cultivars, although the difference did not result from any variation in Bg7S promoter sequences. However, the expression levels of Bg7S under HWT were not associated with the flooding tolerance level. Immunoelectron microscopy revealed that the Bg7S accumulated in the intercellular space of hot-water-treated seeds. Plasma membrane shrinkage was observed. The main proteins eluted from seeds under HWT were located in the extracellular space. This study clarified the mechanism of Bg7S elution from seeds under HWT. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tapsi eShukla

    2015-10-01

    Full Text Available Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant growth, development, and productivity. Genetic variations within and in between species are one of the important factors in establishing interactions and responses of plants with the environment. In the recent past, natural variations in Arabidopsis thaliana have been used to understand plant development and response towards different stresses at genetic level. Phosphorus (Pi deficiency negatively affects plant growth and metabolism and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V, a chemical analogue of Pi, is taken up by the plants via phosphate transport system. Studies suggest that during Pi deficiency, enhanced As(V uptake leads to increased toxicity in plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V stress response under limiting Pi condition. The primary root length was compared to identify differential response of three Arabidopsis accessions (Col-0, Sij-1 and Slavi-1 under limiting Pi and As(V stress. To study the molecular mechanisms responsible for the differential response, comprehensive expression profiling of the genes involved in uptake, detoxification and regulatory mechanisms was carried out. Analysis suggests genetic variation-dependent regulatory mechanisms may affect differential response of Arabidopsis natural variants towards As(V stress under limiting Pi condition. Therefore, it is hypothesized that detailed analysis of the natural variations under multiple stress conditions might help in the better understanding of the biological processes involved in stress tolerance and adaptation.

  11. Toxoplasma gondii gene expression is under the control of regulatory pathways acting through chromatin structure

    Directory of Open Access Journals (Sweden)

    Bougdour A.

    2008-09-01

    Full Text Available The activity state of a gene is determined by a complex regulatory network of co-acting factors affecting the structure of the chromatin into which the gene is embedded. While significant changes of the transcriptome occur during cell differentiation in apicomplexan parasites, basic mechanisms controlling gene expression are still unknown. Recent studies support and expand the concept of the chromatin environment being key factor for the control of transcriptional activity in these lower eukaryotes organisms. Here, we review recent advances in the field of epigenetic gene regulation in Toxoplasma gondii, the model apicomplexan.

  12. Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation.

    Science.gov (United States)

    Tsai, Chen-Hsun; Liao, Rick; Chou, Brendan; Contreras, Lydia M

    2015-03-01

    Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress

    Directory of Open Access Journals (Sweden)

    Angelika eMustroph

    2013-05-01

    Full Text Available Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the ATP-dependent phosphofructokinase (PFK and the pyrophosphate-(PPi dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP. During oxygen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that PPi is used as an alternative energy source for the phosphorylation of fructose-6-phosphate during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinase-encoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response to anoxic stress and compared our data with transcript profiles obtained from microarray analyses. Furthermore, the intracellular localization of rice PFK proteins was determined, and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three PFP genes were decreased. The total specific activity of both PFK and PFP changed only slightly during a 24 h anoxia treatment. It is assumed that expression of different isoforms and their catalytic properties differ during normoxic and anoxic conditions and contribute to balanced glycolytic activity during the low oxygen stress. These characterizations of phosphofructokinase genes and the comparison to other plant species allowed us to suggest candidate rice genes for adaptation to anoxic stress.

  14. Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress

    Directory of Open Access Journals (Sweden)

    Yukina Yamauchi

    2016-08-01

    Full Text Available Severe ethanol stress (>9% ethanol, v/v as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be intensively translated under glucose deprivation, suggesting that some mRNAs are preferentially translated even under severe ethanol stress. In the present study, we tried to identify the mRNA that can be preferentially translated under severe ethanol stress. BTN2 encodes a v-SNARE binding protein, and its null mutant shows hypersensitivity to ethanol. We found that BTN2 mRNA was efficiently translated under severe ethanol stress but not under mild ethanol stress. Moreover, the increased Btn2 protein levels caused by severe ethanol stress were smoothly decreased with the elimination of ethanol stress. These findings suggested that severe ethanol stress extensively induced BTN2 expression. Further, the BTN2 promoter induced protein synthesis of non-native genes such as CUR1, GIC2, and YUR1 in the presence of high ethanol concentrations, indicating that this promoter overcame severe ethanol stress-induced translation repression. Thus, our findings provide an important clue about yeast response to severe ethanol stress and suggest that the BTN2 promoter can be used to improve the efficiency of ethanol production and stress tolerance of yeast cells by modifying gene expression in the presence of high ethanol concentration.

  15. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions.

    Science.gov (United States)

    Udomchalothorn, Thanikarn; Plaimas, Kitiporn; Sripinyowanich, Siriporn; Boonchai, Chutamas; Kojonna, Thammaporn; Chutimanukul, Panita; Comai, Luca; Buaboocha, Teerapong; Chadchawan, Supachitra

    2017-04-01

    OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L. by Regulating Gene Expression

    Directory of Open Access Journals (Sweden)

    Ni Ma

    2017-09-01

    Full Text Available Rapeseed (Brassica napus L. is a very important edible oil crop in the world, and the production is inhibited by abiotic stresses, such as salinity. Plant hormones can alleviate the stress by regulating the physiological processes and gene expression. To study the plant responses to salinity in combination with GR24, a synthesized strigolactone, the oilseed rape variety (Zhongshuang 11 replications were grown in the pots in a controlled growth chamber under three levels of salinity (0, 100, and 200 mM NaCl and 0.18 μM GR24 treatments at the seedling stage for 7 days. The results showed that salinity depressed the shoots and roots growth, whereas GR24 improved the growth under salt stress. Leaf chlorophyll contents and gas exchange parameters (net photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and transpiration rate were also reduced significantly with increasing salinity, and these effects could be partially reversed by GR24 application. Additionally, GR24 treatment significantly increased and decreased the photosystem II quantum yield and non-photochemical quenching, respectively, under salinity stress conditions. The activities of peroxidase and superoxide dismutase increased, and lipid peroxidation measured by the level of malondialdehyde reduced due to GR24 application. The transcriptome analysis of root and shoot was conducted. Three hundred and forty-two common differentially expressed genes (DEGs after GR24 treatment and 166 special DEGs after GR24 treatment under salinity stress were identified in root and shoot. The DEGs in root were significantly more than that in shoot. Quantitative PCR validated that the stress alleviation was mainly related to the gene expression of tryptophan metabolism, plant hormone signal transduction, and photosynthesis.

  17. Genome-wide discovery of putative sRNAs in Paracoccus denitrificans expressed under nitrous oxide emitting conditions.

    Directory of Open Access Journals (Sweden)

    Hannah Gaimster

    2016-11-01

    Full Text Available Nitrous oxide (N2O is a stable, ozone depleting greenhouse gas. Emissions of N2O into the atmosphere continue to rise, primarily due to the use of nitrogen-containing fertilizers by soil denitrifying microbes. It is clear more effective mitigation strategies are required to reduce emissions. One way to help develop future mitigation strategies is to address the currently poor understanding of transcriptional regulation of the enzymes used to produce and consume N2O. With this ultimate aim in mind we performed RNA-seq on a model soil denitrifier, Paracoccus denitrificans, cultured anaerobically under high N2O and low N2O emitting conditions, and aerobically under zero N2O emitting conditions to identify small RNAs (sRNAs with potential regulatory functions transcribed under these conditions. sRNAs are short (∼40–500 nucleotides non-coding RNAs that regulate a wide range of activities in many bacteria. 167 sRNAs were identified throughout the P. denitrificans genome which are either present in intergenic regions or located antisense to ORFs. Furthermore, many of these sRNAs are differentially expressed under high N2O and low N2O emitting conditions respectively, suggesting they may play a role in production or reduction of N2O. Expression of 16 of these sRNAs have been confirmed by RT-PCR. 90% of the sRNAs are predicted to form secondary structures. Predicted targets include transporters and a number of transcriptional regulators. A number of sRNAs were conserved in other members of the α-proteobacteria. Better understanding of the sRNA factors which contribute to expression of the machinery required to reduce N2O will, in turn, help to inform strategies for mitigation of N2O emissions.

  18. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

    Directory of Open Access Journals (Sweden)

    Weibin eSong

    2016-01-01

    Full Text Available VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.

  19. Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tanabe

    Full Text Available BACKGROUND: Matricellular proteins, including periostin, modulate cell-matrix interactions and cell functions by acting outside of cells. METHODS AND FINDINGS: In this study, however, we reported that periostin physically associates with the Notch1 precursor at its EGF repeats in the inside of cells. Moreover, by using the periodontal ligament of molar from periostin-deficient adult mice (Pn-/- molar PDL, which is a constitutively mechanically stressed tissue, we found that periostin maintained the site-1 cleaved 120-kDa transmembrane domain of Notch1 (N1 level without regulating Notch1 mRNA expression. N1 maintenance in vitro was also observed under such a stress condition as heat and H(2O(2 treatment in periostin overexpressed cells. Furthermore, we found that the expression of a downstream effector of Notch signaling, Bcl-xL was decreased in the Pn-/- molar PDL, and in the molar movement, cell death was enhanced in the pressure side of Pn-/- molar PDL. CONCLUSION: These results suggest the possibility that periostin inhibits cell death through up-regulation of Bcl-xL expression by maintaining the Notch1 protein level under the stress condition, which is caused by its physical association with the Notch1 precursor.

  20. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Elifantz, H.; N' Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C.; Holmes, D.E.; Long, P.E.; Lovley, D.R.

    2010-03-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  1. Expression Patterns of ERF Genes Underlying Abiotic Stresses in Di-Haploid Populus simonii × P. nigra

    Directory of Open Access Journals (Sweden)

    Shengji Wang

    2014-01-01

    Full Text Available 176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment.

  2. Co-Regulated Pendrin and Aquaporin 5 Expression and Trafficking in Type-B Intercalated Cells under Potassium Depletion

    Directory of Open Access Journals (Sweden)

    Giuseppe Procino

    2013-12-01

    Full Text Available Background: We recently reported that aquaporin 5 (AQP5, a water channel never identified in the kidney before, co-localizes with pendrin at the apical membrane of type-B intercalated cells in the kidney cortex. Since co-expression of AQP5 and pendrin in the apical membrane domain is a common feature of several other epithelia such as cochlear and bronchial epithelial cells, we evaluated here whether this strict membrane association may reflect a co-regulation of the two proteins. To investigate this possibility, we analyzed AQP5 and pendrin expression and trafficking in mice under chronic K+ depletion, a condition that results in an increased ability of renal tubule to reabsorb bicarbonate, often leads to metabolic alkalosis and is known to strongly reduce pendrin expression. Methods: Mice were housed in metabolic cages and pair-fed with either a standard laboratory chow or a K+-deficient diet. AQP5 abundance was assessed by western blot in whole kidney homogenates and AQP5 and pendrin were localized by confocal microscopy in kidney sections from those mice. In addition, the short-term effect of changes in external pH on pendrin trafficking was evaluated by fluorescence resonance energy transfer (FRET in MDCK cells, and the functional activity of pendrin was tested in the presence and absence of AQP5 in HEK 293 Phoenix cells. Results: Chronic K+ depletion caused a strong reduction in pendrin and AQP5 expression. Moreover, both proteins shifted from the apical cell membrane to an intracellular compartment. An acute pH shift from 7.4 to 7.0 caused pendrin internalization from the plasma membrane. Conversely, a pH shift from 7.4 to 7.8 caused a significant increase in the cell surface expression of pendrin. Finally, pendrin ion transport activity was not affected by co-expression with AQP5. Conclusions: The co-regulation of pendrin and AQP5 membrane expression under chronic K+-deficiency indicates that these two molecules could cooperate as an

  3. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  4. Dimensions of assertiveness: factors underlying the college self-expression scale.

    Science.gov (United States)

    Kipper, D A; Jaffe, Y

    1978-02-01

    A total of 447 Israeli students, both males and females, from four educational institutions were administered the College Self-expression Scale, a measure of assertiveness. The obtained responses were factor analyzed using the principal axis solution and the varimax rotation method. The results showed four main factors which included 43 of the 50 items of the original scale. These factors were identified as the willingness to take risks in interpersonal interactions, the ability to communicate feelings, setting rules and rectifying injustices, and the presence or absence of a tendency to invoke a self-punitive attitude. The findings were interpreted as adding support to the validity of the scale as a measure of assertiveness.

  5. Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization.

    Science.gov (United States)

    Díaz, David; Murias, Azucena Rodrigo; Ávila-Zarza, Carmelo Antonio; Muñoz-Castañeda, Rodrigo; Aijón, José; Alonso, José Ramón; Weruaga, Eduardo

    2015-10-01

    Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  6. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.

    Science.gov (United States)

    Ma, Xiao; Wehland, Markus; Aleshcheva, Ganna; Hauslage, Jens; Waßer, Kai; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

  7. Changes in tonsil B cell phenotypes and EBV receptor expression in children under 5 years old.

    Science.gov (United States)

    Wohlford, Eric M; Baresel, Paul C; Wilmore, Joel R; Mortelliti, Anthony J; Coleman, Carrie B; Rochford, Rosemary

    2017-09-08

    Palatine tonsils are principally B cell organs that are the initial line of defense against many oral pathogens, as well as the site of infection for others. While the size of palatine tonsils changes greatly in the first five years of life, the cellular changes during this period are not well studied. Epstein Barr virus (EBV) is a common orally transmitted virus that infects tonsillar B cells. Naïve B cells are thought to be the target of primary infection with EBV in vivo, suggesting that they are targeted by the virus. EBV enters B cells through CD21, but studies of older children and adults have not shown differences in surface CD21 between naïve B cells and other tonsil B cell populations. In this study we used an 11-color flow cytometry panel to detail the changes in B cell subpopulations in human tonsils over the first five years of life from 33 healthy US children. We provide reference ranges for tonsil B cell subpopulations over this age range. We show that the frequency of naïve tonsil B cells decreases over the early years of life, and that naïve B cells expressed higher surface levels of CD21 relative to other tonsil B cell populations. We show that young children have a higher frequency of naïve tonsil B cells, and importantly that these cells express increased surface EBV receptor, suggesting that young children have a larger pool of cells that can be infected by the virus. This article is protected by copyright. All rights reserved. © 2017 International Clinical Cytometry Society.

  8. Identification and Characterization of Differentially Expressed Transcripts in the Gills of Freshwater Prawn (Macrobrachium rosenbergii under Salt Stress

    Directory of Open Access Journals (Sweden)

    Hirak Kumar Barman

    2012-01-01

    Full Text Available The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important species. It is a euryhaline shrimp, surviving in wide-range salinity conditions. A change in gene expression has been suggested as an important component for stress management. To better understand the osmoregulatory mechanisms mediated by the gill, a subtractive and suppressive hybridization (SSH tool was used to identify expressed transcripts linked to adaptations in saline water. A total of 117 transcripts represented potentially expressed under salinity conditions. BLAST analysis identified 22% as known genes, 9% as uncharacterized showing homologous to unannotated ESTs, and 69% as unknown sequences. All the identified known genes representing broad spectrum of biological pathways were particularly linked to stress tolerance including salinity tolerance. Expression analysis of 10 known genes and 7 unknown/uncharacterized genes suggested their upregulation in the gills of prawn exposed to saline water as compared to control indicating that these are likely to be associated with salinity acclimation. Rapid amplification of cDNA ends (RACE was used for obtaining full-length cDNA of MRSW-40 clone that was highly upregulated during salt exposure. The sequenced ESTs presented here will have potential implications for future understanding about salinity acclimation and/or tolerance of the prawn.

  9. Characterisation of immune-related gene expression in clam (Venerupis philippinarum) under exposure to di(2-ethylhexyl) phthalate.

    Science.gov (United States)

    Lu, Yali; Zhang, Peng; Li, Chenghua; Su, Xiurong; Jin, Chunhua; Li, Ye; Xu, Yongjian; Li, Taiwu

    2013-01-01

    Di(2-ethylhexyl) phthalate (DEHP) mediates the immune system mainly by triggering the production of reactive oxygen species (ROS) and nitric oxide (NO) in higher animals. In the present study, spatial variation in the expression of immune-related genes in clam (Venerupis philippinarum) under acute short-term DEHP treatment was assessed by qPCR. The expression of six genes including glutamine synthetase (GS), IkB (IK), transcription factor activator protein-1 (AP-1), cyclophilin A-1 (CypA-1), heat shock protein 90 (HSP90) and superoxide dismutase (SOD) was dose-dependent. A negative correlation between expression and DEHP treatment was observed for big defensin (BD), glutathione S-transferase (GST), and thioredoxin peroxidase (TP). Surprisingly, lysozyme (LYZ) exhibited two distinct expression patterns at two DEHP doses. Significant differences between the experimental and control groups were observed for all tested genes at the various time points. Overall, our results revealed that DEHP mediates immune responses in clams by various means, and certain genes are promising candidate for biomarkers in DEHP monitoring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  11. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions

    DEFF Research Database (Denmark)

    Stærk, Kristian; Kolmos, Hans Jørn; Khandige, Surabhi

    2016-01-01

    BACKGROUND:  Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about...... its induction in vivo. METHODS:  A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results...... were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS:  Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations...

  12. Expression of multi-functional cellulase gene mfc in Coprinus cinereus under control of different basidiomycete promoters.

    Science.gov (United States)

    Cheng, Shujie; Yang, Peizhou; Guo, Liqiong; Lin, Junfang; Lou, Nannan

    2009-10-01

    Multi-functional cellulase gene mfc was expressed in Coprinus cinereus under naturally non-inductive conditions using three heterologous promoters. Endo-beta-1,4-glucanase expression was achieved in solid and liquid media with promoter sequences from the Lentinula edodesgpd gene, the Flammulina velutipes gpd gene and the Volvariella volvaceagpd gene. As measured by enzyme activity in liquid cultures, a 613-bp gpd promoter fragment from L. edodes was most efficient, followed by a 752-bp gpd fragment from F. velutipes. The V. volvacea gpd promoter sequence was less active, in comparison. Irrespective of the promoter used, enzymatic activities increase 34-fold for highly active transformants and 29-fold for less active one by using cellulase-inducing medium. The highest activities of endo-beta-1,4-glucanase (34.234 U/ml) and endo-beta-1,4-xylanase (263.695 U/ml) were reached by using the L. edodesgpd promoter.

  13. HES1 promotes extracellular matrix protein expression and inhibits proliferation and migration in human trabecular meshwork cells under oxidative stress.

    Science.gov (United States)

    Xu, Linqi; Zhang, Yan; Guo, Ruru; Shen, Wencui; Qi, Yan; Wang, Qingsong; Guo, Zhenglong; Qi, Chen; Yin, Haifang; Wang, Jiantao

    2017-03-28

    Glaucoma is the leading cause of irreversible blindness. The most prevalent form of glaucoma is primary open-angle glaucoma (POAG). Oxidative stress is one of the major pathogenic factors of the POAG, and can elicit molecular and functional changes in trabecular meshwork cells, causing increased aqueous humor outflow resistance and elevated intraocular pressure. However, the regulatory mechanisms underlying oxidative stress-induced cell phenotypic changes remain elusive. Herein, we exposed primary human trabecular meshwork cells to the oxidative stress induced by 300 μM H2O2 for 2 h, and found significantly up-regulated expression of extracellular matrix proteins and a transcription factor, hairy and enhancer of split-1 (HES1). The cell functions, including migration and proliferation, were impaired by the oxidative stress. Furthermore, HES1 shRNA abrogated the extracellular matrix protein up-regulation and rescued the functional defects caused by the oxidative stress; conversely, HES1 overexpression resulted in the molecular and functional changes similar to those induced by H2O2. These results suggest that HES1 promotes extracellular matrix protein expression and inhibits proliferative and migratory functions in the trabecular meshwork cells under oxidative stress, thereby providing a novel pathogenic mechanism underlying and a potential therapeutic target to the POAG.

  14. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition.

    Science.gov (United States)

    Ning, Pan; Liu, Congcong; Kang, Jingquan; Lv, Jinyin

    2017-01-01

    WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.

  15. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  16. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress.

    Science.gov (United States)

    Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Xing-Hui; Huang, Ying; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-01-15

    In vascular plants, heat shock transcription factors (Hsfs) regulate heat stress response by regulating the expression of heat shock proteins. This study systematically and comprehensively analyzed the Hsf family in tea plant [Camellia sinensis (L.) O. Kuntze]. A total of 16 CsHsfs were identified from the transcriptome database of tea plant and analyzed for their phylogenetic relationships, motifs, and physicochemical characteristics. On the basis of the phylogenetic comparison of tea plant with Arabidopsis thaliana, Populus trichocarpa, Theobroma cacao, and Oryza sativa, the CsHsfs were classified into three classes, namely, A (56.25%), B (37.50%), and C (6.25%). Heat mapping showed that the expression profiles of CsHsf genes under non-stress conditions varied among four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. Six CsHsf genes (CsHsfA1a, CsHsfA1b, CsHsfA6, CsHsfB1, CsHsfB2b, and CsHsfC1) were selected from classes A, B, and C to analyze the expression profiles of CsHsf genes through quantitative real-time PCR in 'Yingshuang', 'Anjibaicha', and 'Yunnanshilixiang' under high (38 °C) or low (4 °C) temperature stress. Temperature stress positively or negatively regulated all of the selected CsHsf genes, and the expression levels evidently varied even among CsHsf genes belonging to the same class. This study provided a relatively detailed summary of Hsfs in tea plant and may serve as a reference for further studies on the mechanism of temperature stress regulation by CsHsfs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Directory of Open Access Journals (Sweden)

    V. Cenni

    2011-10-01

    Full Text Available Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.

  18. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli.

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-10-03

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error.

  19. Marine diatoms change their gene expression profile when exposed to microscale turbulence under nutrient replete conditions.

    Science.gov (United States)

    Amato, Alberto; Dell'Aquila, Gianluca; Musacchia, Francesco; Annunziata, Rossella; Ugarte, Ari; Maillet, Nicolas; Carbone, Alessandra; Ribera d'Alcalà, Maurizio; Sanges, Remo; Iudicone, Daniele; Ferrante, Maria I

    2017-06-19

    Diatoms are a fundamental microalgal phylum that thrives in turbulent environments. Despite several experimental and numerical studies, if and how diatoms may profit from turbulence is still an open question. One of the leading arguments is that turbulence favours nutrient uptake. Morphological features, such as the absence of flagella, the presence of a rigid exoskeleton and the micrometre size would support the possible passive but beneficial role of turbulence on diatoms. We demonstrate that in fact diatoms actively respond to turbulence in non-limiting nutrient conditions. TURBOGEN, a prototypic instrument to generate natural levels of microscale turbulence, was used to expose diatoms to the mechanical stimulus. Differential expression analyses, coupled with microscopy inspections, enabled us to study the morphological and transcriptional response of Chaetoceros decipiens to turbulence. Our target species responds to turbulence by activating energy storage pathways like fatty acid biosynthesis and by modifying its cell chain spectrum. Two other ecologically important species were examined and the occurrence of a morphological response was confirmed. These results challenge the view of phytoplankton as unsophisticated passive organisms.

  20. Theoretical principles underlying optical stimulation of myelinated axons expressing channelrhodopsin-2.

    Science.gov (United States)

    Arlow, R L; Foutz, T J; McIntyre, C C

    2013-09-17

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypothesized that the small-to-large diameter recruitment order primarily arises from the internodal spacing relationship of myelinated axons. Small diameter axons have shorter distances between their nodes of Ranvier, which increases the number of nodes of Ranvier directly illuminated relative to larger diameter axons. We constructed "light-axon" PONS models that included multi-compartment, double cable, myelinated axon models embedded with ChR2 membrane dynamics, coupled with a model of blue light dynamics in the tissue medium from a range of different light sources. The light-axon models enabled direct calculation of threshold irradiance for different diameter axons. Our simulations demonstrate that illumination of multiple nodal sections reduces the threshold irradiance and enhances the small-to-large diameter recruitment order. In addition to addressing biophysical questions, our light-axon model system could also be useful in guiding the engineering design of optical stimulation technology that could maximize the efficiency and selectivity of PONS. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Selection of reliable reference genes for gene expression analysis under abiotic stresses in the desert biomass willow, Salix psammophila

    Directory of Open Access Journals (Sweden)

    Jianbo Li

    2016-10-01

    Full Text Available Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs for quantitative real-time polymerase chain reaction (qRT-PCR constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal reference genes selected for gene expression analysis were EF1□□ (Elongation factor-1 alpha and OTU (OTU-like cysteine protease family protein for different tissue types, UBC (Ubiquitin-conjugating enzyme E2 and LTA4H (Leukotriene A-4 hydrolase homologue for heat treatment, HIS (Histone superfamily protein H3 and ARF2 (ADP-ribosylation factor 2 for cold treatment, OTU and ACT7 (Actin 7 for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2 and VHAC (V-type proton ATPase subunit C varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a, and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2, CBF3 (C-repeat binding factor 3, HKT1 (High-Affinity K+ Transporter 1 and GST (Glutathione S-transferase, were conducted to confirm the validity of the reference genes in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila.

  2. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L., no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress at various time points (e.g. 0, 24, 72 and 96 h. We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots, under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.

  3. Increased gastrin gene expression provides a physiological advantage to mice under hypoxic conditions.

    Science.gov (United States)

    Laval, Marie; Baldwin, Graham S; Shulkes, Arthur; Marshall, Kathryn M

    2015-01-15

    Hypoxia, or a low concentration of O2, is encountered in humans undertaking activities such as mountain climbing and scuba diving and is important pathophysiologically as a limiting factor in tumor growth. Although data on the interplay between hypoxia and gastrins are limited, gastrin expression is upregulated by hypoxia in gastrointestinal cancer cell lines, and gastrins counterbalance hypoxia by stimulating angiogenesis in vitro and in vivo. The aim of this study was to determine if higher concentrations of the gastrin precursor progastrin are protective against hypoxia in vivo. hGAS mice, which overexpress progastrin in the liver, and mice of the corresponding wild-type FVB/N strain were exposed to normoxia or hypoxia. Iron status was assessed by measurement of serum iron parameters, real-time PCR for mRNAs encoding critical iron regulatory proteins, and Perls' stain and atomic absorption spectrometry for tissue iron concentrations. FVB/N mice lost weight at a faster rate and had higher sickness scores than hGAS mice exposed to hypoxia. Serum iron levels were lower in hGAS than FVB/N mice and decreased further when the animals were exposed to hypoxia. The concentration of iron in the liver was strikingly lower in hGAS than FVB/N mice. We conclude that increased circulating concentrations of progastrin provide a physiological advantage against systemic hypoxia in mice, possibly by increasing the availability of iron stores. This is the first report of an association between progastrin overexpression, hypoxia, and iron homeostasis. Copyright © 2015 the American Physiological Society.

  4. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress.

    Science.gov (United States)

    Rossatto, Tatiana; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Vighi, Isabel Lopes; Braga, Eugenia Jacira Bolacel; de Magalhães Júnior, Ariano Martins; Maia, Mara Andrade Colares; da Silva Pinto, Luciano

    2017-10-01

    The rice cultivar ( Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3 - CU/Zn , OsSOD2 - Cu/Zn , OsSOD - Cu/Zn , OsSOD4 - Cu/Zn , OsSODCc1 - Cu/Zn , OsSOD - Fe , OsAPX1 , OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6 , which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

  5. Altered expression of circadian clock gene, mPer1, in mouse brain and kidney under morphine dependence and withdrawal

    Directory of Open Access Journals (Sweden)

    Wang Yuhui

    2006-08-01

    Full Text Available Abstract Every physiological function in the human body exhibits some form of circadian rhythmicity. Under pathological conditions, however, circadian rhythmicity may be dusrupted. Patients infected with HIV or addicted to drugs of abuse often suffer from sleep disorders and altered circadian rhythms. Early studies in Drosophila suggested that drug seeking behavior might be related to the expression of certain circadian clock genes. Our previous research showed that conditioned place preference with morphine treatment was altered in mice lacking the Period-1 (mPer1 circadian clock gene. Thus, we sought to investigate whether morphine treatment could alter the expression of mPer1, especially in brain regions outside the SCN and in peripheral tissues. Our results using Western blot analysis showed that the mPER1 immunoreactivity exhibited a strong circadian rhythm in the brains of the control (Con, morphine-dependent (MD, and morphine-withdrawal (MW mice. However, the phase of the circadian rhythm of mPER1 expression in the brains of MD mice significantly differed from that of the Con mice (p mPer1 may vary among different organs, resulting in desynchronization of circadian function between the SCN and peripheral organs.

  6. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.

    Science.gov (United States)

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.

  7. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.

    Directory of Open Access Journals (Sweden)

    Marina Cavaiuolo

    Full Text Available Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation and postharvest stresses (cold, dehydration, dark, wounding known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.

  8. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    Science.gov (United States)

    Bailey, Richard I; Innocenti, Paolo; Morrow, Edward H; Friberg, Urban; Qvarnström, Anna

    2011-02-28

    The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  9. Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress.

    Science.gov (United States)

    Gu, Lili; Xu, Dongsheng; You, Tianyu; Li, Xiuming; Yao, Shixiang; Chen, Shasha; Zhao, Juan; Lan, Haiyan; Zhang, Fuchun

    2011-11-01

    To identify genes expression in Chenopodium album exposed to NaCl stress and screen ESTs related to salt stress, a subtractive suppression hybridization (SSH) library of C. album under salt stress was constructed in the present study. Random EST sequencing produced 825 high-quality ESTs with GenBank ID GE746311-GE747007, which had 301 bp of average size and were clustered into 88 contigs and 550 singletons. They were classified into 12 categories according to their function annotations. 635 ESTs (76.97%) showed similarities to gene sequences in the non-redundancy database, while 190 ESTs (23.03%) showed low or no similarities. The transcriptional profiles of 56 ESTs randomly selected from 347 unknown or novel ESTs of SSH library under varying NaCl concentration and at different time points were analyzed. The results indicated that a high proportion of tested ESTs were activated by salt stress. Four in 56 ESTs responded to NaCl were also enhanced in expression level when exposed to ABA and PEG stresses. The above four ESTs were validated by northern blotting which was consistent with the results of RT-PCR. The results suggested that genes corresponded to these ESTs might be involved in stress response or regulation. The complete sequences and detailed function of these ESTs need to be further studied.

  10. Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues.

    Directory of Open Access Journals (Sweden)

    Yucheng Zhao

    Full Text Available Peucedanum praeruptorum Dunn is one of the main traditional Chinese medicines producing coumarins and plenty of literatures are focused on the biosynthesis of coumarins. Quantitative real-time reverse transcription PCR (qRT-PCR is a widely used method in studying the biosynthesis pathway and the selection of reference genes plays a crucial role in accurate normalization. To facilitate biosynthesis study of coumarins, twelve candidate reference genes were selected from the transcriptome database of P. praeruptorum according to previous studies. Then, BestKeeper, geNoFrm and NormFinder were used for selecting stably expressed reference genes in different tissues and under various stress treatments. The results indicated that, among the twelve candidate reference genes, the SAND family protein (SAND, actin 2 (ACT2, ubiquitin-conjugating enzyme 9 (UBC9, protein phosphatase 2A gene (PP2A and polypyrimidine tract-binding protein (PTBP1 were the most stable reference genes under different experimental treatments, while glyceraldehyde 3-phosphate dehydrogenase (GAPDH and tubulin beta-6 (TUB6 were the least stable genes. In addition, the suitability of SAND, TIP41-like protein (TIP41, UBC9, ACT2, TUB6 and their combination as reference genes were confirmed by normalizing the expression of 1-aminocyclopropane-1-carboxylate oxidase (ACO in different treatments. This work is the first survey of the stability of reference genes in P. praeruptorum and provides guidelines to obtain more accurate qRT-PCR results in P. praeruptorum and other plant species.

  11. Survey of ABC transporter and metallothionein genes expressions in tall fescue inoculated with Funneliformis intraradices under Nickel toxicity

    Directory of Open Access Journals (Sweden)

    Massomeh Rafiei-Demneh

    2016-09-01

    Full Text Available In plants, there are complex network of transport, chelation, and sequestration processes that functions in maintaining concentrations of essential metal ions in different cellular compartments, thus minimizing the damage caused by entry of non-essential metal ions into the cytosol. In the presence of toxic ones, arbuscular mycorrhizal (AM fungi are able to alleviate metal toxicity in the plant. In this study the effect of an arbuscular mycorrhizal fungi Funneliformis intraradices on growth, Nickel tolerance, and ABC transporter and metallothionein expression in leaves and roots of tall fescue (Festuca arundinacea plants cultivated in Ni polluted soil were evaluated. The fungi infected (M+ and uninfected (M- fescue plants were cultivated in soil under different Ni concentrations (0, 30, 90 and 180 ppm for 3 months. Results demonstrated the positive effect of fungi colonization on the increase in growth and reduction in Ni uptake (90 and 180 ppm and Ni translocation from roots to shoot of tall fescue under Ni stress. The results also demonstrated that the level of ABC transporterand metallothionein transcripts accumulation in roots was considerably higher for both M- and M+ plants compared to the control. Also, M+ plants showed less ABC and MET expression compared to the M- plants. These results demonstrated the importance of mycorrhizal colonization of F. intraradices in reduction of Ni transport from root to shoot of tall fescue which alleviates Ni-induced stress.

  12. Differential Gene Expression of Three Mastitis-Causing Escherichia coli Strains Grown under Planktonic, Swimming, and Swarming Culture Conditions.

    Science.gov (United States)

    Lippolis, John D; Brunelle, Brian W; Reinhardt, Timothy A; Sacco, Randy E; Thacker, Tyler C; Looft, Torey P; Casey, Thomas A

    2016-01-01

    Bacterial motility is thought to play an important role in virulence. We have previously shown that proficient bacterial swimming and swarming in vitro is correlated with the persistent intramammary infection phenotype observed in cattle. However, little is known about the gene regulation differences important for different motility phenotypes in Escherichia coli. In this work, three E. coli strains that cause persistent bovine mastitis infections were grown in three media that promote different types of motility (planktonic, swimming, and swarming). Using whole-transcriptome RNA sequencing, we identified a total of 935 genes (~21% of the total genome) that were differentially expressed in comparisons of the various motility-promoting conditions. We found that approximately 7% of the differentially expressed genes were associated with iron regulation. We show that motility assays using iron or iron chelators confirmed the importance of iron regulation to the observed motility phenotypes. Because of the observation that E. coli strains that cause persistent infections are more motile, we contend that better understanding of the genes that are differentially expressed due to the type of motility will yield important information about how bacteria can become established within a host. Elucidating the mechanisms that regulate bacterial motility may provide new approaches in the development of intervention strategies as well as facilitate the discovery of novel diagnostics and therapeutics. IMPORTANCE Bacteria can exhibit various types of motility. It is known that different types of motilities can be associated with virulence. In this work, we compare gene expression levels in bacteria that were grown under conditions that promoted three different types of E. coli motility. Better understanding of the mechanisms of how bacteria can cause an infection is an important first step to better diagnostics and therapeutics.

  13. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    Science.gov (United States)

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.

  14. Effect of ERK1/2 signal pathway on the expression of OPG/RANKL in cementoblasts under stress stimulation

    Directory of Open Access Journals (Sweden)

    Feng-xue YANG

    2015-01-01

    Full Text Available Objective To explore the effect of extracellular signal regulated kinase (ERK1/2 on the expression of osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL in cementoblasts under mechanical tensile stress stimulation. Methods Using Flexcell FX4000T tension loading system and the ERK1/2-specific inhibitor PD98059, cementoblasts OCCM30 were randomly divided into four groups: group A (without loading and inhibitor, group B (without loading but inhibitor, group C (loading but without inhibitor, and group D (with both loading and inhibitor. The phosphorylation level of ERK1/2 was measured by Western blotting after 5, 15, 30 and 60min loading. OPG and RANKL mRNA were analyzed with fluorescent quantitative RT-PCR after 12h loading. Results Mechanical tensile stress activated ERK1/2 signal pathway of group C rapidly, and the P-ERK1/2 levels were significantly higher in group C than in group A at 5, 15 and 30min (P<0.05, then the P-ERK1/2 level of group C resumed to similar level of group A at 60min. The P-ERK levels of group B and D were significantly reduced by inhibitor PD98059. Tension stress up-regulated the expression of RANKL mRNA, and down-regulated the expression of OPG mRNA in OCCM30, the RANKL/OPG ratio increased after tension loading. With PD98059, the expression of RANKL mRNA decreased, that of OPG mRNA increased, and the RANKL/OPG ratio decreased (P<0.05. Conclusion ERK1/2 may be a signal transduction pathway for the regulation of OPG and RANKL expression after tension stress loading, but it is not the only one of activation pathways, and there may be other common signal pathways involved in the regulation of OPG and RANKL expression. DOI: 10.11855/j.issn.0577-7402.2014.12.03

  15. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis).

    Science.gov (United States)

    Li, Na-Na; Qian, Wen-Jun; Wang, Lu; Cao, Hong-Li; Hao, Xin-Yuan; Yang, Ya-Jun; Wang, Xin-Chao

    2017-02-01

    Hexokinases (HXKs, EC 2.7.1.1) and fructokinases (FRKs, EC 2.7.1.4) play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes. All of the deduced proteins, except for CsFKR7, possessed putative ATP-binding motifs and a sugar recognition region. These genes exhibited tissue-specific expression patterns, which suggests that they play different roles in the metabolism and development of source and sink tissues in the tea plant. There were variations in CsHXKs and CsFRKs transcript abundance in response to four abiotic stresses: cold, salt, drought and exogenous abscisic acid (ABA). Remarkably, CsHXK3 and CsHXK4 were significantly induced in the leaves and roots under cold conditions, CsHXK1 was apparently up-regulated in the leaves and roots under salt and drought stresses, and CsHXK3 was obviously stimulated in the leaves and roots under short-term treatment with exogenous ABA. These findings demonstrate that CsHXKs play critical roles in response to abiotic stresses in the tea plant. Our research provides a fundamental understanding of the CsHXK and CsFRK genes of the tea plant and important information for the breeding of stress-tolerant tea cultivars. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L. and differential expression under water deficit condition

    Directory of Open Access Journals (Sweden)

    Pan Ning

    2017-05-01

    Full Text Available Background WRKY proteins, which comprise one of the largest transcription factor (TF families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L., functional annotation information about wheat WRKYs is limited. Results Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa–e, and III. Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7% genes were either tandem (5 or segmental duplication (80, which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. Conclusion Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.

  17. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  18. De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress.

    Science.gov (United States)

    Tian, Dan-Qing; Pan, Xiao-Yun; Yu, Yong-Ming; Wang, Wei-Yong; Zhang, Fei; Ge, Ya-Ying; Shen, Xiao-Lan; Shen, Fu-Quan; Liu, Xiao-Jing

    2013-11-25

    Anthurium andraeanum is one of the most popular tropical flowers. In temperate and cold zones, a much greater risk of cold stress occurs in the supply of Anthurium plants. Unlike the freeze-tolerant model plants, Anthurium plants are particularly sensitive to low temperatures. Improvement of chilling tolerance in Anthurium may significantly increase its production and extend its shelf-life. To date, no previous genomic information has been reported in Anthurium plants. Using Illumina sequencing technology, we generated over two billion base of high-quality sequence in Anthurium, and demonstrated de novo assembly and annotation of genes without prior genome information. These reads were assembled into 44,382 unigenes (mean length = 560 bp). Based on similarity search with known protein in the non-redundant (nr) protein database, 27396 unigenes (62%) were functionally annotated with a cut-off E-value of 10-5. Further, DGE tags were mapped to the assembled transcriptome for gene expression analysis under cold stress. In total, 4363 differentially expressed genes were identified. Among these genes, 292, 805 and 708 genes were up-regulated after 1-h, 5-h and 24-h cold treatment, respectively. Then we mapped these cold-induced genes to the KEGG database. Specific enrichment was observed in photosynthesis pathway, metabolic pathways and oxidative phosphorylation pathway in 1-h cold-treated plants. After a 5-h cold treatment, the metabolic pathways and oxidative phosphorylation pathway were significantly identified as the top two pathways. After 24-h cold treatment, mRNA surveillance pathway, RNA transport pathway and plant-pathogen interaction pathway were significantly enriched. Together, a total of 39 cold-inducible transcription factors were identified, including subsets of AP2/ERF, Zinc figure, NAC, MYB and bZIP family members. Our study is the first to provide the transcriptome sequence resource for Anthurium plants, and demonstrate its digital gene expression

  19. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  20. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  1. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  2. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia

    National Research Council Canada - National Science Library

    Camps, Carme; Saini, Harpreet K; Mole, David R; Choudhry, Hani; Reczko, Martin; Guerra-Assunção, José Afonso; Tian, Ya-Min; Buffa, Francesca M; Harris, Adrian L; Hatzigeorgiou, Artemis G; Enright, Anton J; Ragoussis, Jiannis

    2014-01-01

    .... Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites...

  3. Germ cell apoptosis and expression of Bcl-2 and Bax in porcine testis under normal and heat stress conditions.

    Science.gov (United States)

    Fan, Xiaorui; Xi, Huaming; Zhang, Zhen; Liang, Yajun; Li, Qinghong; He, Junping

    2017-04-01

    The aim of this study was to examine whether an elevated ambient temperature (37-40°C) had an effect on the apoptosis of germ cells and the expression of Bcl-2 and Bax in porcine testis. Six boars were used. Three boars were subjected to an elevated ambient temperature (37-40°C, 7days, 3h per day) as a heat stress (HS) group. The other 3 boars were kept in a room temperature house (20-27°C) as a control group. All boars were castrated and the testes were harvested. TUNEL assay was used for the detection of apoptotic cells. Immunohistochemistry, Western blotting and quantitative real-time PCR were used to analyze protein and mRNA levels of Bcl-2 and Bax in response to heat treatment. The results showed that apoptotic signals increased under heat stress conditions compared with the control (Pheat treatment were spermatocytes and spermatids. In both the control and experimental groups, Bcl-2 was expressed in the cytoplasm and nucleus of spermatogonia, spermatocytes and differentiating spermatids and Bcl-2 preferentially localized close to the seminiferous tubule's luminal surface in late spermatocytes and spermatids. Compared with the control group, the expression levels of Bcl-2 protein and mRNA significantly increased in heat treatment group, while the expression levels of Bax protein and mRNA did not show significant changes between the control and experimental group. Low to moderate Bax immunoreactivity staining was observed in all kinds of germ cells in the control group. Strong staining was observed in spermatogonia, and low to moderate Bax staining was observed in spermatocytes and spermatids. A redistribution of Bax from a cytoplasmic to perinuclear or nuclear localization could be observed in the spermatogonia, spermatocytes and spermatids obtained in the heat treated group. These results showed that elevated ambient temperatures induced germ cell apoptosis. In response to heat stress, the expression of Bcl-2 increased and a redistribution of Bax from a

  4. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2017-11-10

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  5. De Novo Transcriptome Characterization, Gene Expression Profiling and Ionic Responses of Nitraria sibirica Pall. under Salt Stress

    Directory of Open Access Journals (Sweden)

    Huanyong Li

    2017-06-01

    Full Text Available Nitraria sibirica Pall., a typical halophyte of great ecological value, is widely distributed in desert, saline, and coastal saline-alkali environments. Consequently, researching the salt tolerance mechanism of N. sibirica Pall. has great significance to the cultivation and utilization of salt-tolerant plants. In this research, RNA-seq, digital gene expression (DGE, and high flux element analysis technologies were used to investigate the molecular and physiological mechanisms related to salt tolerance of N. sibirica Pall. Integrative analysis and de novo transcriptome assembly generated 137,421 unigenes. In total, 58,340 and 34,033 unigenes were annotated with gene ontology (GO terms and mapped in Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, respectively. Three differentially expressed genes (DEGs libraries were subsequently constructed from the leaves of N. sibirica Pall. seedlings under different treatments: control (CK, light short-term salt stress (CL2, and heavy long-term salt stress (CL6. Eight hundred and twenty-six, and 224 differentially expressed genes were identified in CL2 and CL6 compared to CK, respectively. Finally, ionomic analysis of N. sibirica Pall. seedlings treated with 0, 100, 200 or 300 mM concentrations of NaCl for one day showed that the uptake and distribution of Ca, Cu, Fe, Mg and K in different organs of N. sibirica Pall. were significantly affected by salt stress. Our findings have identified potential genes involved in salt tolerance and in the reference transcriptome and have revealed the salt tolerance mechanism in N. sibirica Pall. These findings will provide further insight into the molecular and physiological mechanisms related to salt stress in N. sibirica Pall. and in other halophytes.

  6. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Bone marrow expression of poly(ADP-ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion

    Science.gov (United States)

    Terashima, Tomoya; Kojima, Hideto; Chan, Lawrence

    2012-01-01

    Diabetic neuropathy is the most common diabetic complication. The pathogenetic pathways include oxidative stress, advanced glycation end product (AGE) formation, protein kinase C, and NF-κB activation, as well as increased polyol flux. These metabolic perturbations affect neurons, Schwann cells, and vasa nervorum, which are held to be the primary cell types involved. We hypothesize that diabetes induces the appearance of abnormal bone marrow-derived cells (BMDCs) that fuse with neurons in the dorsal root ganglia (DRG) of mice, leading to diabetic neuropathy. Neuronal poly(ADP-ribose) polymerase-1 (PARP-1) activation in diabetes is known to generate free radical and oxidant-induced injury and poly(ADP-ribose) polymer formation, resulting in neuronal death and dysfunction, culminating in neuropathy. We further hypothesize that BM-specific PARP expression plays a determining role in disease pathogenesis. Here we show that bone marrow transplantation (BMT) of PARP-knockout (PARPKO) cells to wild-type mice protects against, whereas BMT of wild-type cells to PARPKO mice, which are normally “neuropathy-resistant,” confers susceptibility to, diabetic neuropathy. The pathogenetic process involving hyperglycemia, BMDCs, and BMDC-neuron fusion can be recapitulated in vitro. Incubation in high, but not low, glucose confers fusogenicity to BMDCs, which are characterized by proinsulin (PI) and TNF-α coexpression; coincubation of isolated DRG neurons with PI-BMDCs in high glucose leads to spontaneous fusion between the 2 cell types, while the presence of a PARP inhibitor or use of PARPKO BMDCs in the incubation protects against BMDC-neuron fusion. These complementary in vivo and in vitro experiments indicate that BMDC-PARP expression promotes diabetic neuropathy via BMDC-neuron fusion.—Terashima, T., Kojima, H., Chan, L. Bone marrow expression of poly(ADP-ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion. PMID:21978940

  8. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress.

    Science.gov (United States)

    Dossa, Komivi; Wei, Xin; Li, Donghua; Fonceka, Daniel; Zhang, Yanxin; Wang, Linhai; Yu, Jingyin; Boshou, Liao; Diouf, Diaga; Cissé, Ndiaga; Zhang, Xiurong

    2016-07-30

    Sesame is an important oilseed crop mainly grown in inclement areas with high temperatures and frequent drought. Thus, drought constitutes one of the major constraints of its production. The AP2/ERF is a large family of transcription factors known to play significant roles in various plant processes including biotic and abiotic stress responses. Despite their importance, little is known about sesame AP2/ERF genes. This constitutes a limitation for drought-tolerance candidate genes discovery and breeding for tolerance to water deficit. One hundred thirty-two AP2/ERF genes were identified in the sesame genome. Based on the number of domains, conserved motifs, genes structure and phylogenetic analysis including 5 relatives species, they were classified into 24 AP2, 41 DREB, 61 ERF, 4 RAV and 2 Soloist. The number of sesame AP2/ERF genes was relatively few compared to that of other relatives, probably due to gene loss in ERF and DREB subfamilies during evolutionary process. In general, the AP2/ERF genes were expressed differently in different tissues but exhibited the highest expression levels in the root. Mostly all DREB genes were responsive to drought stress. Regulation by drought is not specific to one DREB group but depends on the genes and the group A6 and A1 appeared to be more actively expressed to cope with drought. This study provides insights into the classification, evolution and basic functional analysis of AP2/ERF genes in sesame which revealed their putative involvement in multiple tissue-/developmental stages. Out of 20 genes which were significantly up- /down-regulated under drought stress, the gene AP2si16 may be considered as potential candidate gene for further functional validation as well for utilization in sesame improvement programs for drought stress tolerance.

  9. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.

    Science.gov (United States)

    Deokar, Amit A; Kondawar, Vishwajith; Jain, Pradeep K; Karuppayil, S Mohan; Raju, N L; Vadez, Vincent; Varshney, Rajeev K; Srinivasan, R

    2011-04-22

    Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay. Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated) associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

  10. cDNA-AFLP analysis of salt-inducible genes expression in Chrysanthemum lavandulifolium under salt treatment.

    Science.gov (United States)

    He, Huang; Yajing, Niu; Huawen, Cao; Xingjiao, Tang; Xinli, Xia; Weilun, Yin; Silan, Dai

    2012-03-01

    Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino is a halophyte species that belongs to the Asteraceae family, and the genus Chrysanthemum. It is one of the ancestors of C.×morifolium Ramatella. Understanding the tolerance mechanism associated with salt stress in C. lavandulifolium could provide important information for explaining the salt tolerance of higher plants and could also help enhancing breeding programs of cultivated Chrysanthemum. In this study, cDNA amplified fragment length polymorphism (cDNA-AFLP) was used to detect differential gene expression in leaves of C. lavandulifolium in response to NaCl treatment. The determination of membrane permeablility, peroxidase activity (POD), malon-dialdehyde (MDA), as well as proline and leaf chlorophyll contents under different NaCl concentrations showed that a 200 mM NaCl treatment was an optimal condition for the cDNA-AFLP experiment. Using this concentration during different times (0, 3 h, 12 h, 24 h and 48 h), we obtained 1930 cDNA fragments using 64 primers. After sequencing 234 randomly chosen cDNA clones and BLASTx analyzing, we got 129 expressed sequence tags (ESTs) which had no significant homology with other sequences, 85 ESTs were homologous to genes with known functions, whereas the rest of ESTs showed homology to unclassified or putative proteins. 25 ESTs that were similar to known functional genes involved in several abiotic and biotic stresses were confirmed by semi-quantitative RT-PCR and qRT-PCR. The expression patterns of these salt-responsive genes not only responded to salt stress but also to plant hormones, such as abscisic acid (ABA), and to other abiotic stresses such as drought and cold. These results indicate an extensive cross-talk among several stresses. Our results provide interesting information for further understanding the molecular mechanisms of salt tolerance in C. lavandulifolium. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    Science.gov (United States)

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland. Copyright © 2014 the American Physiological Society.

  12. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress.

    Science.gov (United States)

    Qian, Wenjun; Yue, Chuan; Wang, Yuchun; Cao, Hongli; Li, Nana; Wang, Lu; Hao, Xinyuan; Wang, Xinchao; Xiao, Bin; Yang, Yajun

    2016-11-01

    Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.

  13. Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea

    Science.gov (United States)

    Srivastava, A. K.; Ramaswamy, N. K.; Mukopadhyaya, R.; Jincy, M. G. Chiramal; D'Souza, S. F.

    2009-01-01

    Background and Aims Large areas of the globe are becoming saline due to evapotranspiration and poor irrigation practices, and sustainability of agriculture is being seriously affected. Thiourea (TU) has been identified as an effective bioregulator imparting stress tolerance to crops. The molecular mechanisms involved in the TU-mediated response are considered in this study. Methods Differential display was performed in order to identify TU-modulated transcripts in Brassica juncea seeds exposed to various treatments (distilled water; 1 m NaCl; 1 m NaCl + 500 p.p.m. TU). The differential regulation of these transcripts was validated by quantitative real-time PCR. Key Results Thiourea treatment maintained the viability of seeds exposed to NaCl for 6 h. Expression analysis showed that the transcript level of alpha, beta, gamma, delta and epsilon subunits of mitochondrial ATPase (mtATPase) varied in seeds subjected to the different treatments for 1 h: expression level was significantly altered by 1 m NaCl relative to controls; however, in the NaCl + TU treatment it reverted back in an integrated manner. Similar results were obtained from time-kinetics studies of beta and delta subunits in roots of 8-d-old seedlings. These observations were also confirmed by the mtATPase activity from isolated mitochondria. The reversal in the expression and activity profile of mtATPase through the application of a bioregulator such as TU is a novel finding for any plant system. Conclusions The results suggest that TU treatment maintains the integrity and functioning of mitochondria in seeds as well as seedlings exposed to salinity. Thus, TU has the potential to be used as an effective bioregulator to impart salinity tolerance under field conditions, and might prove to be of high economic importance by opening new avenues for both basic and applied research. PMID:19033283

  14. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  15. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  16. Differential expression of specific cellular defense proteins in rat hypothalamus under simulated microgravity induced conditions: comparative proteomics.

    Science.gov (United States)

    Iqbal, Javed; Li, Wang; Hasan, Murtaza; Liu, Kefu; Awan, Umer; Saeed, Yasmeen; Zhang, Yongqian; Muhammad Khan, Arif; Shah, Amin; Qing, Hong; Deng, Yulin

    2014-06-01

    Microgravity severely halts the structural and functional cerebral capacity of astronauts especially affecting their brains due to the stress produced by cephalic fluid shift. We employed a rat tail suspension model to substantiate simulated microgravity (SM) in brain. In this study, comparative mass spectrometry was applied in order to demonstrate the differential expression of 17 specific cellular defense proteins. Gamma-enolase, peptidyl-prolyl cis-trans isomerase A, glial fibrillary acidic protein, heat shock protein HSP 90-alpha, 10 kDa heat shock protein, mitochondrial, heat shock cognate 71 kDa protein, superoxide dismutase 1 and dihydropyrimidinase-related protein 2 were found to be upregulated by HPLC/ESI-TOF. Furthermore, five differentially expressed proteins including 60 kDa heat shock protein, mitochondrial, heat shock protein HSP 90-beta, peroxiredoxin-2, stress-induced-phosphoprotein, and UCHL-1 were found to be upregulated by HPLC/ESI-Q-TOF MS. In addition, downregulated proteins include cytochrome C, superoxide dismutase 2, somatic, and excitatory amino acid transporter 1 and protein DJ-1. Validity of MS results was successfully performed by Western blot analysis of DJ-1 protein. This study will not only help to understand the neurochemical responses produced under microgravity but also will give future direction to cure the proteomic losses and their after effects in astronauts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes.

    Science.gov (United States)

    Srivastava, Ankita; Ko, So-Ra; Ahn, Chi-Yong; Oh, Hee-Mock; Ravi, Alok Kumar; Asthana, Ravi Kumar

    2016-01-01

    Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics.

  18. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes

    Directory of Open Access Journals (Sweden)

    Ankita Srivastava

    2016-01-01

    Full Text Available Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA expression in lab-grown strains of Microcystis NIES 843 (reference strain, KW (Wangsong Reservoir, South Korea, and Durgakund (Varanasi, India under different nutrient regimes (nitrogen, phosphorus, and boron. Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp., total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp., and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics.

  19. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    Science.gov (United States)

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress

    Science.gov (United States)

    2011-01-01

    Background Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. Results EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay. Conclusion Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide

  1. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  2. Identification of imperative enzymes by differential protein expression in Picrorhiza kurroa under metabolite accumulating and non-accumulating conditions.

    Science.gov (United States)

    Sud, Amit; Chauhan, Rajinder Singh; Tandon, Chanderdeep

    2013-07-01

    Picrorhiza kurroa, an endangered medicinal plant found in the North-Western Himalayan region has a number of medicinal properties due to the presence of metabolites picroside-I and picroside-II. It is used in various herbal formulations like Picroliv, Livokin, Picrolax, Livomap, Tefroliv etc. Review of literature revealed that no information is available as of today on the proteome analysis of Picrorhiza kurroa. Hence, we aim to analyse the difference in proteome of Picrorhiza kurroa in response to ~ 17 times higher content of picroside-I at 15°C as compared to its content at 25°C. Thus, differential protein expression was studied. Densitometry analysis of SDS-PAGE gels of samples under two differential conditions of temperature revealed the presence of distinct set of proteins under picroside-I accumulating (15°C) versus non-accumulating (25°C) conditions. Mass spectrometric analysis of these proteins using MALDI-TOF MS followed by protein identification using database search on MASCOT search engine gave interesting results. The significant proteins identified were NAD(P)H-quinone oxidoreductase subunit K, shikimate kinase, ribulose bisphosphate carboxylase small chain and fructokinase fragment. Hence, these findings throw light on the involvement of these enzymes in the crucial physiological processes of Picrorhiza kurroa and can provide an insight into the biosynthesis of picrosides and other secondary metabolites.

  3. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice.

    Science.gov (United States)

    Bai, Bo; Zhao, Jie; Li, Yaping; Zhang, Fang; Zhou, Jinjun; Chen, Fan; Xie, Xianzhi

    2016-06-01

    B-box (BBX) proteins are zinc finger proteins containing B-box domains, which have roles in Arabidopsis growth and development. However, little is known concerning rice BBXs. Herein, we identified a rice BBX protein, Oryza sativa BBX14 (OsBBX14). OsBBX14 is highly expressed in flag leaf blades. OsBBX14 expression shows a diurnal rhythm under photoperiodic conditions and subsequent continuous white light. OsBBX14 is located in the nucleus and has transcriptional activation potential. OsBBX14-overexpression (OsBBX14-OX) lines exhibited delayed heading date under long-day (LD) and short-day (SD) conditions, whereas RNAi lines of OsBBX14 lines had similar heading dates to the WT. The florigen genes, Hd3a and RFT1, were downregulated in the OsBBX14-OX lines under LD and SD conditions. Under LD conditions, Hd1 was expressed higher in the OsBBX14-OX lines than in the wild type (WT), and the rhythmic expression of circadian clock genes, OsLHY and OsPRR1, was changed in OsBBX14-OX lines. Thus, OsBBX14 acts as a floral repressor by promoting Hd1 expression under LD conditions, probably because of crosstalk with the circadian clock. Under SD conditions, Ehd1 expression was reduced in OsBBX14-OX lines, but Hd1 and circadian clock gene expressions were unaffected, indicating that OsBBX14 acts as a repressor of Ehd1. Our findings suggested that OsBBX14 regulates heading date differently under LD and SD conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns.

    Science.gov (United States)

    Morales, Andrea; Zurita-Silva, Andres; Maldonado, Jonathan; Silva, Herman

    2017-01-01

    HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (Fv/Fm) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.

  5. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses.

    Science.gov (United States)

    Jiang, Ling; Pan, Lin-jie

    2012-06-01

    C2H2 proteins belong to a group of transcription factors (TFs) existing as a superfamily that plays important roles in defense responses and various other physiological processes in plants. The present study aimed to screen for and identify C2H2 proteins associated with defense responses to abiotic and biotic stresses in Carica papaya L. Data were collected for 47,483 papaya-expressed sequence tags (ESTs). The full-length cDNA nucleotide sequences of 87 C2H2 proteins were predicated by BioEdit. All 91 C2H2 proteins were aligned, and a phylogenetic tree was constructed using DNAman. The expression levels of 42 C2H2 were analyzed under conditions of salt stress by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Methyl jasmonate treatment rapidly upregulated ZF(23.4) and ZF(30,912.1) by 18.6- and 21.7-fold, respectively. ZF(1.3), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were found to be downregulated after low temperature treatment at very significant levels (p papaya ringspot virus pathogen. ZF(30,912.1) was subcellularly localized in the nucleus by a transgenic fusion of pBS-ZF(30,912.1)-GFP into the protoplast of papaya. The results of the present study showed that ZF(30,912.1) could be an important TF that mediates responses to abiotic and biotic stresses in papaya.

  6. Comparative analysis of expressed sequence tags (ESTs between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress

    Directory of Open Access Journals (Sweden)

    Raju N L

    2011-04-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs by suppression subtraction hybridization (SSH to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. Results EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant and ICC 1882 (drought resistant exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs (10 each for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons, 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71% unigenes showed significant BLASTX similarity ( Conclusion Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

  7. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation.

    Directory of Open Access Journals (Sweden)

    Alexander R Mendenhall

    Full Text Available In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, "classical" multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to

  8. Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency.

    Science.gov (United States)

    Schikora, Adam; Schmidt, Wolfgang

    2002-06-01

    In roots of tomato ( Lycopersicon esculentum Mill.), extranumerary root hairs and transfer cell-like wall ingrowth depositions in the rhizodermis were developed in response to P and Fe deficiency. Immunocytolocalization of the plasma membrane H(+)-ATPase in roots of P-deficient plants revealed no appreciable increase in H(+)-ATPase density relative to control plants. In transfer cells, immunogold labeling was considerably higher than in ordinary rhizodermal cells. H(+)-ATPase sites were asymmetrically distributed in cells with and without wall ingrowths under P-deficient conditions. A split-root study revealed that the frequency of transfer cells was higher in the low-P half of the root system, but the density of H(+)-ATPase molecules was enhanced only in the high-P half of the split roots, suggesting that formation of transfer cells was controlled directly by the external Pi concentration, whereas ATPase expression was regulated indirectly by the internal nutrient status of the plant. The role of hormones in the induction of transfer cells was investigated by treating plants with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or various ethylene antagonists. Transfer cells were induced by ACC to an extent similar to that observed after P or Fe starvation, but inhibitors of either ethylene synthesis or action did not decrease their frequency. These results suggest that ethylene was not required for the induction of transfer cells but changes in ethylene levels appeared to modulate the number of cells forming wall ingrowths. In roots of ethylene-insensitive Never-ripe tomato plants the frequency of transfer cells was rather increased than decreased under most growth conditions relative to the wild type, indicating that ethylene responsiveness played no critical role in the differentiation of transfer cells and that the transduction of signals ultimately leading to their formation was independent of the ethylene signaling cascade.

  9. Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter.

    Science.gov (United States)

    Noseda, Diego Gabriel; Recúpero, Matías Nicolás; Blasco, Martín; Ortiz, Gastón Ezequiel; Galvagno, Miguel Angel

    2013-12-01

    The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-07-01

    Full Text Available Drought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling. A total of 2,724 and 3,498 differentially expressed genes (DEGs were identified under drought and flooding treatments, respectively. These genes comprise 289 Transcription Factors (TFs representing Basic Helix-loop Helix (bHLH, Ethylene Response Factors (ERFs, myeloblastosis (MYB, No apical meristem (NAC, and WRKY amino acid motif (WRKY type major families known to be involved in the mechanism of stress tolerance. The expression of photosynthesis and chlorophyll synthesis related genes were significantly reduced under both types of stresses, which limit the metabolic processes and thus help prolong survival under extreme conditions. However, cell wall synthesis related genes were up-regulated under drought stress and down-regulated under flooding stress. Transcript profiles involved in the starch and sugar metabolism pathways were also affected under both stress conditions. The changes in expression of genes involved in regulating the flux of cell wall precursors and starch/sugar content can serve as an adaptive mechanism for soybean survival under stress conditions. This study has revealed the involvement of TFs, transporters, and photosynthetic genes, and has also given a glimpse of hormonal cross talk under the extreme water regimes, which will aid as an important resource for soybean crop improvement.

  11. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions

    OpenAIRE

    Lee, Young Pyo; Baek, Kwang-Hyun; Lee, Haeng-Soon; Kwak, Sang-Soo; Bang, Jae-Woog; Kwon, Suk-Yoon

    2010-01-01

    Reactive oxygen species (ROS) are produced during seed desiccation, germination, and ageing, leading to cellular damage and seed deterioration and, therefore, decreased seed longevity. The effects of simultaneous over-expression of two antioxidant enzymes on seed longevity and seed germination under stressful conditions were investigated. Transgenic tobacco simultaneously over-expressing the Cu/Zn-superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes in plastids showed normal gr...

  12. Expression of Animal Anti-Apoptotic Gene Ced-9 Enhances Tolerance during Glycine max L.–Bradyrhizobium japonicum Interaction under Saline Stress but Reduces Nodule Formation

    Science.gov (United States)

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions. PMID:25050789

  13. Effect of intracellular expression of antimicrobial peptide LL-37 on growth of escherichia coli strain TOP10 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Liu, Wei; Dong, Shi Lei; Xu, Fei; Wang, Xue Qin; Withers, T Ryan; Yu, Hongwei D; Wang, Xin

    2013-10-01

    Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cell morphology to a filamentous phenotype. Further examination of the E. coli cell division protein FtsZ revealed that LL-37 did not interact with FtsZ. Moreover, intracellular expression of LL-37 results in the enhanced production of reactive oxygen species (ROS), causing lethal membrane depolarization under aerobic conditions. Additionally, the membrane permeability was increased after intracellular expression of LL37 under both aerobic and anaerobic conditions. Transcriptomic analysis revealed that intracellular LL-37 mainly affected the expression of genes related to energy production and carbohydrate metabolism. More specifically, genes related to oxidative phosphorylation under both aerobic and anaerobic growth conditions were affected. Collectively, our current study demonstrates that intracellular expression of LL-37 in E. coli can inhibit growth under aerobic and anaerobic conditions. While we confirmed that the generation of ROS is a bactericidal mechanism for LL-37 under aerobic growth conditions, we also found that the intracellular accumulation of cationic LL-37 influences the redox and ion status of the cells under both growth conditions. These data suggest that there is a new AMP-mediated bacterial killing mechanism that targets energy metabolism.

  14. Specific transgene expression in mouse pancreatic β-cells under the control of the porcine insulin promoter

    OpenAIRE

    Grzech, Marjeta; Dahlhoff, Maik; Herbach, Nadja; Habermann, Felix A.; Renner-Müller, Ingrid; Wanke, Rüdiger; Flaswinkel, Heinrich; Wolf, Eckhard; Schneider, Marlon R.

    2009-01-01

    Abstract The availability of regulatory sequences directing tissue-specific expression of transgenes in genetically modified mice and large animals is a prerequisite for the development of adequate models for human diseases. The rat insulin 2 gene (Ins2) promoter, widely used to achieve transgene expression in pancreatic ?-cells of mice, also directs expression to extrapancreatic tissues and performs poorly in isolated pancreatic islets of human, mouse, and pig. To evaluate whether...

  15. Distinct Motion of GFP-Tagged Histone Expressing Cells Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.

    Science.gov (United States)

    Yao, Jiafeng; Sugawara, Michiko; Obara, Hiromichi; Mizutani, Takeomi; Takei, Masahiro

    2017-08-14

    The distinct motion of GFP-tagged histone expressing cells (Histone-GFP type cells) has been investigated under ac electrokinetics in an electrode-multilayered microfluidic device as compared with Wild type cells and GFP type cells in terms of different intracellular components. The Histone-GFP type cells were modified by the transfection of green fluorescent protein-fused histone from the human lung fibroblast cell line. The velocity of the Histone-GFP type cells obtained by particle tracking velocimetry technique is faster than Wild type cells by 24.9% and GFP type cells by 57.1%. This phenomenon is caused by the more amount of proteins in the intracellular of single Histone-GFP type cell than that of the Wild type and GFP type cells. The more amount of proteins in the Histone-GFP type cells corresponds to a lower electric permittivity ϵ c of the cells, which generates a lower dielectrophoretic force exerting on the cells. The velocity of Histone-GFP type cells is well agreed with Eulerian-Lagrangian two-phase flow simulation by 4.2% mean error, which proves that the fluid motion driven by thermal buoyancy and electrothermal force dominates the direction of cells motion, while the distinct motion of Histone-GFP type cells is caused by dielectrophoretic force. The fluid motion does not generate a distinct drag motion for Histone-GFP type cells because the Histone-GFP type cells have the same size to the Wild type and GFP type cells. These results clarified the mechanism of cells motion in terms of intracellular components, which helps to improve the cell manipulation efficiency with electrokinetics.

  16. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Eva E R Philipp

    Full Text Available The bivalve Arctica islandica is extremely long lived (>400 years and can tolerate long periods of hypoxia and anoxia. European populations differ in maximum life spans (MLSP from 40 years in the Baltic to >400 years around Iceland. Characteristic behavior of A. islandica involves phases of metabolic rate depression (MRD during which the animals burry into the sediment for several days. During these phases the shell water oxygen concentrations reaches hypoxic to anoxic levels, which possibly support the long life span of some populations. We investigated gene regulation in A. islandica from a long-lived (MLSP 150 years German Bight population and the short-lived Baltic Sea population, experimentally exposed to different oxygen levels. A new A. islandica transcriptome enabled the identification of genes important during hypoxia/anoxia events and, more generally, gene mining for putative stress response and (anti- aging genes. Expression changes of a antioxidant defense: Catalase, Glutathione peroxidase, manganese and copper-zinc Superoxide dismutase; b oxygen sensing and general stress response: Hypoxia inducible factor alpha, Prolyl hydroxylase and Heat-shock protein 70; and c anaerobic capacity: Malate dehydrogenase and Octopine dehydrogenase, related transcripts were investigated. Exposed to low oxygen, German Bight individuals suppressed transcription of all investigated genes, whereas Baltic Sea bivalves enhanced gene transcription under anoxic incubation (0 kPa and, further, decreased these transcription levels again during 6 h of re-oxygenation. Hypoxic and anoxic exposure and subsequent re-oxygenation in Baltic Sea animals did not lead to increased protein oxidation or induction of apoptosis, emphasizing considerable hypoxia/re-oxygenation tolerance in this species. The data suggest that the energy saving effect of MRD may not be an attribute of Baltic Sea A. islandica chronically exposed to high environmental variability (oxygenation

  17. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton.

    Science.gov (United States)

    Guo, Xinlei; Wang, Yuanyuan; Lu, Hejun; Cai, Xiaoyan; Wang, Xingxing; Zhou, Zhongli; Wang, Chunying; Wang, Yuhong; Zhang, Zhenmei; Wang, Kunbo; Liu, Fang

    2017-09-10

    In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton. Copyright © 2017. Published by Elsevier B.V.

  18. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease.

    Science.gov (United States)

    Bürki, Remy; Mohebbi, Nilufar; Bettoni, Carla; Wang, Xueqi; Serra, Andreas L; Wagner, Carsten A

    2015-05-01

    Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  20. Expression Stabilities of Candidate Reference Genes for RT-qPCR in Chinese Jujube (Ziziphus jujuba Mill. under a Variety of Conditions.

    Directory of Open Access Journals (Sweden)

    Jiaodi Bu

    Full Text Available Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for evaluating patterns of gene expression. Jujube whole-genome sequencing has been completed, and analysis of gene function, an important part of any follow-up study, requires the appropriate selection of reference genes. Indeed, suitable reference gene selection for RT-qPCR is critical for accurate normalization of target gene expression. In this study, the software packages geNorm and NormFinder were employed to examine the expression stabilities of nine candidate reference genes under a variety of conditions. Actin-depolymerizing factor 1 (ACT1, Histone-H3 (His3, and Polyadenylate-binding protein-interacting protein (PAIP were determined to be the most stably expressed genes during five stages of fruit development and ACT1, SiR-Fd, BTF3, and Tubulin alpha chain (TUA across different tissues/organs. Whereas ACT1, Basic Transcription factor 3 (BTF3, Glyceraldehyde-3-phosphate dehydrogenase (GADPH, and PAIP were the most stable under dark conditions. ACT1, PAIP, BTF3, and Elongation factor 1- gamma (EF1γ were the most stably expressed genes under phytoplasma infection. Among these genes, SiR-Fd and PAIP are here first reported as stable reference genes. When normalized using these most stable reference genes, the expression patterns of four target genes were found to be in accordance with physiological data, indicating that the reference genes selected in our study are suitable for use in such analyses. This study provides appropriate reference genes and corresponding primers for further RT-qPCR studies in Chinese jujube and emphasizes the importance of validating reference genes for gene expression analysis under variable experimental conditions.

  1. Expression Stabilities of Candidate Reference Genes for RT-qPCR in Chinese Jujube (Ziziphus jujuba Mill.) under a Variety of Conditions.

    Science.gov (United States)

    Bu, Jiaodi; Zhao, Jin; Liu, Mengjun

    2016-01-01

    Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for evaluating patterns of gene expression. Jujube whole-genome sequencing has been completed, and analysis of gene function, an important part of any follow-up study, requires the appropriate selection of reference genes. Indeed, suitable reference gene selection for RT-qPCR is critical for accurate normalization of target gene expression. In this study, the software packages geNorm and NormFinder were employed to examine the expression stabilities of nine candidate reference genes under a variety of conditions. Actin-depolymerizing factor 1 (ACT1), Histone-H3 (His3), and Polyadenylate-binding protein-interacting protein (PAIP) were determined to be the most stably expressed genes during five stages of fruit development and ACT1, SiR-Fd, BTF3, and Tubulin alpha chain (TUA) across different tissues/organs. Whereas ACT1, Basic Transcription factor 3 (BTF3), Glyceraldehyde-3-phosphate dehydrogenase (GADPH), and PAIP were the most stable under dark conditions. ACT1, PAIP, BTF3, and Elongation factor 1- gamma (EF1γ) were the most stably expressed genes under phytoplasma infection. Among these genes, SiR-Fd and PAIP are here first reported as stable reference genes. When normalized using these most stable reference genes, the expression patterns of four target genes were found to be in accordance with physiological data, indicating that the reference genes selected in our study are suitable for use in such analyses. This study provides appropriate reference genes and corresponding primers for further RT-qPCR studies in Chinese jujube and emphasizes the importance of validating reference genes for gene expression analysis under variable experimental conditions.

  2. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice.

    Science.gov (United States)

    Tkatchenko, Andrei V; Luo, Xiaoyan; Tkatchenko, Tatiana V; Vaz, Candida; Tanavde, Vivek M; Maurer-Stroh, Sebastian; Zauscher, Stefan; Gonzalez, Pedro; Young, Terri L

    2016-01-01

    Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.

  3. Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    2014-11-01

    Conclusions: This study demonstrated that overexpression of MaASR1 in Arabidopsis confers salt stress tolerance by reducing the expression of ABA/stress-responsive genes, but does not affect the expression of the ABA-independent pathway and biosynthesis pathway genes.

  4. Thioredoxin-Interacting Protein (TXNIP) Suppresses Expression of Glutamine Synthetase by Inducing Oxidative Stress in Retinal Muller Glia Under Diabetic Conditions.

    Science.gov (United States)

    Zhou, Jia; Shen, Xi; Lu, Qiong; Zhang, Min

    2016-05-01

    BACKGROUND Diabetic retinopathy (DR) is a progressive neurodegenerative disease with early-stage symptoms such as dysfunction of Muller cells, which leads to ganglion cell death. Its pathogenesis is probably associated with oxidative stress and a recently discovered protein, thioredoxin-interacting protein (TXNIP). MATERIAL AND METHODS To explore the role of TXNIP in DR, we cultured Muller cells under diabetic conditions, and then used immunohistochemistry, Western blot, and RT-PCR to detect the expression level of TXNIP under diabetic conditions. We demonstrated the expression level of glutamine synthetase (GS) when TXNIP was inhibited. To explore the potential pathway of TXNIP-induced cell damage in DR, we confirmed the role of IL-1β under diabetic conditions. RESULTS Diabetes induces TXNIP expressions at mRNA levels, but shows the opposite effect on GS. IL-1β plays an important role in this pathway. Azaserine effectively increased the expression of GS via attenuating the expression of TXNIP. CONCLUSIONS This study demonstrates the role of TXNIP and its mechanism in DR, provides a possible treatment for DR, and lays a new theoretical foundation for the clinical treatment of DR and other diabetic microvascular changes.

  5. Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions

    DEFF Research Database (Denmark)

    Nielsen, K. K.; Boye, Mette

    2005-01-01

    F, and rhoAP genes involved in basic housekeeping, was evaluated on the basis of the mean pairwise variation. All the housekeeping genes included were stably expressed under the conditions investigated and consequently were included in the normalization procedure. Next, the geometric mean of the internal...

  6. Peroxide responsive regulator PerR of group A Streptococcus is required for the expression of phage-associated DNase Sda1 under oxidative stress.

    Directory of Open Access Journals (Sweden)

    Chih-Hung Wang

    Full Text Available The peroxide regulator (PerR is a ferric uptake repressor-like protein, which is involved in adaptation to oxidative stress and iron homeostasis in group A streptococcus. A perR mutant is attenuated in surviving in human blood, colonization of the pharynx, and resistance to phagocytic clearance, indicating that the PerR regulon affects both host environment adaptation and immune escape. Sda1 is a phage-associated DNase which promotes M1T1 group A streptococcus escaping from phagocytic cells by degrading DNA-based neutrophil extracellular traps. In the present study, we found that the expression of sda1 is up-regulated under oxidative conditions in the wild-type strain but not in the perR mutant. A gel mobility shift assay showed that the recombinant PerR protein binds the sda1 promoter. In addition, mutation of the conserved histidine residue in the metal binding site of PerR abolished sda1 expression under hydrogen peroxide treatment conditions, suggesting that PerR is directly responsible for the sda1 expression under oxidative stress. Our results reveal PerR-dependent sda1 expression under oxidative stress, which may aid innate immune escape of group A streptococcus.

  7. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought

    Science.gov (United States)

    Do, Phuc T.; Drechsel, Oliver; Heyer, Arnd G.; Hincha, Dirk K.; Zuther, Ellen

    2014-01-01

    Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put) content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd) content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm) content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease) or salt (unchanged) conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3), one generally stress-repressed gene (ADC1), constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1), specifically drought-induced genes (SAMDC2, AIH), one specifically drought-repressed gene (CPA3) and one specifically salt-stress repressed gene (SAMDC4), revealing both overlapping and specific stress responses under these conditions

  8. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean.

    Science.gov (United States)

    Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.

  9. Expression of Leaf Proteins in Two Cultivars of Bread Wheat under Cadmium and Mercury Stress Using Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    S. Y. Raeesi Sadati

    2016-02-01

    Full Text Available Wheat is an important source of human food. Cadmium and mercury bind to sulfhydryl groups of structural proteins and enzymes and cause inhibition in activity and decrease in protein production or interfere with the regulation of the enzymes. To study the effect of protein expression under different levels of cadmium and mercury, the experiment was conducted in a completely randomized design with three replications in Mohaghegh Ardabili University, Ardabil, Iran. Experimental factors consisted of two Gonbad and Tajan bread what cultivars, heavy metals in seven levels (four concentrations of mercuric chloride in 5, 10, 15 and 20 µM and cadmium chloride at two concentrations of 0.25 and 0.5 mM and sampling time after 8 and 16 hours of treatment. The Bradford method was used for quantitative analysis of proteins and 12% SDS-PAGE and two dimensional electrophorese techniques were hired for analysis of their expression. The results showed that under cadmium and mercury stresses, the total protein content increased compared to the control. Two-dimensional electrophoresis of proteins under cadmium stress showed differential expression of the protein spots on the plant leaves, than the control. In general, changes in the expression of proteins under the effect of cadmium stress were divided into two main categories: Spots 9, 10, 13, 14 and 16 belonged to proteins with reduced expression and the spots 1, 2, 8, 19 and 20 belonged to proteins with increased expression, in comparison to non-stressed control. These spots of up regulated proteins were directly related to the defense system against the heavy metal stress.

  10. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    Science.gov (United States)

    Cusick, Kathleen D; Fitzgerald, Lisa A; Pirlo, Russell K; Cockrell, Allison L; Petersen, Emily R; Biffinger, Justin C

    2014-01-01

    Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene

  11. Differential expression of A-type and B-type lamins during hair cycling.

    Directory of Open Access Journals (Sweden)

    Mubashir Hanif

    Full Text Available Multiple genetic disorders caused by mutations that affect the proteins lamin A and C show strong skin phenotypes. These disorders include the premature aging disorders Hutchinson-Gilford progeria syndrome and mandibuloacral dysplasia, as well as restrictive dermopathy. Prior studies have shown that the lamin A/C and B proteins are expressed in skin, but little is known about their normal expression in the different skin cell-types and during the hair cycle. Our immunohistochemical staining for lamins A/C and B in wild-type mice revealed strong expression in the basal cell layer of the epidermis, the outer root sheath, and the dermal papilla during all stages of the hair cycle. Lower expression of both lamins A/C and B was seen in suprabasal cells of the epidermis, in the hypodermis, and in the bulb of catagen follicles. In addition, we have utilized a previously described mouse model of Hutchinson-Gilford progeria syndrome and show here that the expression of progerin does not result in pronounced effects on hair cycling or the expression of lamin B.

  12. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights.

    Directory of Open Access Journals (Sweden)

    Ahmet Can Timucin

    Full Text Available SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR, first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed.

  13. AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development

    Directory of Open Access Journals (Sweden)

    Liliane B. de A. Gerhardt

    2004-01-01

    Full Text Available The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.

  14. Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia

    OpenAIRE

    Olsson, Mattias; Bruhns, Pierre; Frazier, William A.; Ravetch, Jeffrey V.; Oldenborg, Per-Arne

    2005-01-01

    Interaction between target cell CD47 and the inhibitory macrophage receptor signal regulatory protein α (SIRPα) counteracts macrophage phagocytosis of CD47-expressing host cells. As platelets also express CD47, we asked whether inhibitory CD47/SIRPα signaling regulates normal platelet turnover and clearance of platelets in immune thrombocytopenic purpura (ITP). CD47-/- mice had a mild spontaneous thrombocytopenia, which was not due to a decreased platelet half-life as a result of increased ex...

  15. Modeling Wnt/β-Catenin Target Gene Expression in APC and Wnt Gradients Under Wild Type and Mutant Conditions.

    Science.gov (United States)

    Benary, Uwe; Kofahl, Bente; Hecht, Andreas; Wolf, Jana

    2013-01-01

    The Wnt/β-catenin pathway is involved in the regulation of a multitude of physiological processes by controlling the differential expression of target genes. In certain tissues such as the adult liver, the Wnt/β-catenin pathway can attain different levels of activity due to gradients of Wnt ligands and/or intracellular pathway components like APC. How graded pathway activity is converted into regionally distinct patterns of Wnt/β-catenin target gene expression is largely unknown. Here, we apply a mathematical modeling approach to investigate the impact of different regulatory mechanisms on target gene expression within Wnt or APC concentration gradients. We develop a minimal model of Wnt/β-catenin signal transduction and combine it with various mechanisms of target gene regulation. In particular, the effects of activation, inhibition, and an incoherent feedforward loop (iFFL) are compared. To specify activation kinetics, we analyze experimental data that quantify the response of β-catenin/TCF reporter constructs to different Wnt concentrations, and demonstrate that the induction of these constructs occurs in a cooperative manner with Hill coefficients between 2 and 5. In summary, our study shows that the combination of specific gene regulatory mechanisms with a time-independent gradient of Wnt or APC is sufficient to generate distinct target gene expression patterns as have been experimentally observed in liver. We find that cooperative gene activation in combination with a TCF feedback can establish sharp borders of target gene expression in Wnt or APC gradients. In contrast, the iFFL renders gene expression independent of gradients of the upstream signaling components. Our subsequent analysis of carcinogenic pathway mutations reveals that their impact on gene expression is determined by the gene regulatory mechanism and the APC concentration of the cell in which the mutation occurs.

  16. Over-expression of AQUA1 in Populus alba Villafranca clone increases relative growth rate and water use efficiency, under Zn excess condition.

    Science.gov (United States)

    Ariani, Andrea; Francini, Alessandra; Andreucci, Andrea; Sebastiani, Luca

    2016-02-01

    Transgenic Populus alba over-expressing a TIP aquaporin ( aqua1) showed a higher growth rate under Zn excess, suggesting that aqua1 could be involved in water homeostasis, rather than in Zn homeostasis. Populus is the internationally accepted model for physiological and developmental studies of tree traits under stress. In plants, aquaporins facilitate and regulate the diffusion of water, however, few poplar aquaporins have been characterized to date. In this study, we reported for the first time an in vivo characterization of Populus alba clone Villafranca transgenic plants over-expressing a TIP aquaporin (aqua1) of P. x euramericana clone I-214. An AQUA1:GFP chimeric construct, over-expressed in P. alba Villafranca clones, shows a cytoplasmic localization in roots, and it localizes in guard cells in leaves. When over-expressed in transgenic plants, aqua1 confers a higher growth rate compared to wild-type (wt) plants, without affecting chlorophyll accumulation, relative water content (RWC), and fluorescence performances, but increasing the intrinsic Transpiration Efficiency. In response to Zn (1 mM), transgenic lines did not show a significant increase in Zn accumulation as compared to wt plants, even though the over-expression of this gene confers higher tolerance in root tissues. These results suggest that, in poplar plants, this gene could be principally involved in regulation of water homeostasis and biomass production, rather than in Zn homeostasis.

  17. The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice.

    Science.gov (United States)

    Itoh, Hironori; Izawa, Takeshi

    2013-05-01

    The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive but were supposedly synthesized in leaves and then transmitted to shoot apices to induce floral transitions, has greatly advanced our understanding of the photoperiodic regulation of flowering. Studies on the photoperiodism of Arabidopsis, a model long-day plant, revealed the molecular mechanisms regulating the expression of the Arabidopsis florigen gene FT, which is gradually induced in response to increase in day length. By contrast, in rice, a model short-day plant, the expression of the florigen gene Hd3a (an FT ortholog in rice) is regulated in an on/off fashion, with strong induction under short-day conditions and repression under long-day conditions. This critical day length dependence of Hd3a expression enables rice to recognize a slight change in the photoperiod as a trigger to initiate floral induction. Rice possesses a second florigen gene, RFT1, which can be expressed to induce floral transition under non-inductive long-day conditions. The complex transcriptional regulation of florigen genes and the resulting precise control over flowering time provides rice with the adaptability required for a crop species of increasing global importance.

  18. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions.

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdous

    Full Text Available For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR, the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAswould be stably expressed in different barley varieties and under different experimental treatments,in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAsand mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection,boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT, alpha-Tubulin (α-TUB, Glycolytic glyceraldehyde-3-phosphate dehydrogenase(GAPDH, ADP-ribosylation factor 1-like protein (ADP, four snoRNAs; (U18,U61, snoR14 and snoR23 and two microRNAs (miR168, miR159 as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes form iRNA and mRNA qPCR data normalization under different stress treatments [corrected].

  19. Enzyme expression in indica and japonica rice cultivars under saline stress=Expressão de enzimas em cultivares de arroz indica e japonica sob estresse salino

    Directory of Open Access Journals (Sweden)

    Cristina Rodrigues Mendes

    2012-10-01

    Full Text Available The southern State of Rio Grande do Sul (RS is the main rice producer in Brazil with a 60% participation of the national production and 86% participation of the region. Rice culture irrigation system is done by flooding, which leads to soil salinization, a major environmental constraint to production since it alters the plants’ metabolism exposed to this type of stress. The indica cultivar, widely used in RS, has a higher sensitivity to salinity when compared to that of the japonica cultivar in other physiological aspects. Current research analyzes enzymes expression involved in salt-subjected indica and japonica rice cultivars’ respiration. Oryza sativa L. spp. japonica S.Kato (BRS Bojuru, IAS 12-9 Formosa and Goyakuman and Oryza sativa L. spp. indica S. Kato (BRS Taim-7, BRS Atalanta and BRS Querencia were the cultivars employed. Seedlings were transferred to 15 L basins containing 50% Hoagland nutrient solution increased by 0, 25, 50, 75 and 100 mM NaCl, and collected at 14, 28 and 42 days after transfer (DAT. Plant tissues were macerated and placed in eppendorf tubes with Scandálios extractor solution. Electrophoresis was performed in 7% of the polyacrylamide gels in vertical vats. Bands were revealed for the following enzymes systems: esterase, alcohol dehydrogenase, phosphoglucoisomerase, malate dehydrogenase, malic enzyme and alpha amylase. The enzymes expression was greater in subspecies japonica, with more intense bands in proportion to salinity increase. Results show that enzyme systems are involved in the salinity defense mechanisms in O. sativa spp. japonica cultivar.O Estado do Rio Grande do Sul (RS destaca-se como principal produtor de arroz, participando com 60% da produção nacional e 86% da regional. O sistema de irrigação da cultura é por inundação, que induz o solo à salinização, um dos maiores limitadores ambientais à produção, alterando o metabolismo da plantas expostas a este tipo de estresse. As cultivares

  20. Differential expression of acid invertase genes in roots of metallicolous and non-metallicolous populations of Rumex japonicus under copper stress.

    Science.gov (United States)

    Huang, Wu-Xing; Cao, Yi; Huang, Li-Juan; Ren, Cong; Xiong, Zhi-Ting

    2011-09-01

    Recent evidence indicates that during copper (Cu) stress, the roots of metallicolous plants manifest a higher activity of acid invertase enzymes, which are rate-limiting in sucrose catabolism, than non-metallicolous plants. To test whether the higher activity of acid invertases is the result of higher expression of acid invertase genes, we isolated partial cDNAs for acid invertases from two populations of Rumex japonicus (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, and designed primers to measure changes in transcript levels during Cu stress. We also determined the growth of the plants' roots, Cu accumulation, and acid invertase activities. The seedlings of R. japonicus were exposed to control or 20 μM Cu(2+) for 6d under hydroponic conditions. The transcript level and enzyme activity of acid invertases in metallicolous plants were both significantly higher than those in non-metallicolous plants when treated with 20 μM. Under Cu stress, the root length and root biomass of metallicolous plants were also significantly higher than those of non-metallicolous plants. The results suggested that under Cu stress, the expression of acid invertase genes in metallicolous plants of R. japonicus differed from those in non-metallicolous plants. Furthermore, the higher acid invertase activities of metallicolous plants under Cu stress could be due in part to elevated expression of acid invertase genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Immunogenicity of Salmonella vector vaccines expressing SBR of Streptococcus mutans under the control of a T7-nirB (dual) promoter system.

    Science.gov (United States)

    Salam, Mohammad Abdus; Katz, Jannet; Zhang, Ping; Hajishengallis, George; Michalek, Suzanne M

    2006-06-05

    The purpose of the present study was to determine if a Salmonella vector expressing the cloned saliva-binding region (SBR) of Streptococcus mutans or SBR linked to the A2 and B subunits of cholera toxin (CTA2/B) under the control of both the T7 and nirB promoters (T7-nirB dual promoter) was more effective in inducing mucosal and systemic anti-SBR antibody responses than Salmonella clones expressing the same antigens but under the control of either the nirB or T7 promoter. Mice were immunized by the intranasal route on days 0, 18 and 320 with Salmonella enterica serovar Typhimurium strain BRD 509 containing one of six plasmids encoding SBR or SBR-CTA2/B under the control of the T7-nirB, T7, or nirB promoter. Serum, saliva and vaginal wash samples were collected throughout the experiment and assessed for antibody activity by ELISA. Evidence is provided that Salmonella clones expressing SBR or SBR-CAT2/B under the control of either the T7 or T7-nirB promoter induced a high and persistent mucosal and systemic anti-SBR antibody response. All Salmonella clones induced good anti-SBR responses following the boost on day 320.

  3. Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress

    Directory of Open Access Journals (Sweden)

    Justin P. Smith

    2014-04-01

    Full Text Available In a newly developed conceptual model of stressful social decision making, the Stress-Alternatives Model (SAM; used for the 1st time in mice elicits two types of response: escape or remain submissively. Daily (4d aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS. Although escape holes (only large enough for smaller test animals are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala, gene expression of BDNF was diminished, but NPS expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala, which coincided with decreased BDNF expression. Reduced expression of BDNF is only in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship, linked by social context, between amygdalar BDNF, NPS and plasma

  4. MicroRNAs Expression Profile in Common Bean (Phaseolus vulgaris) under Nutrient Deficiency Stresses and Manganese Toxicity

    Science.gov (United States)

    MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. The information on miRNAs in legumes is scarce. This work analyzes miRNAs in the agronomically important legume common bean (Phaseolus vulgaris. A hybridization approach of miRNAs-macroarrays prin...

  5. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Fuxi Shi

    2014-01-01

    Full Text Available The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures (293

  6. Mitochondrial expression and activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier.

    Science.gov (United States)

    Zhang, Yue-Hong; Li, Juan; Yang, Wei-Zhong; Xian, Zhuan-Hua; Feng, Qi-Ting; Ruan, Xiang-Cai

    2017-01-01

    To investigate the role of oxidative stress in regulating the functional expression of P-glycoprotein (P-gp) in mitochondria of D407 cells. D407 cells were exposed to different ranges of concentrations of H2O2. The mitochondrial location of P-gp in the cells subjected to oxidative stress was detected by confocal analysis. Expression of P-gp in isolated mitochondria was assessed by Western blot. The pump activity of P-gp was evaluated by performing the efflux study on isolated mitochondria with Rhodamine 123 (Rho-123) alone and in the presence of P-gp inhibitor (Tariquidar) using flow cytometry analysis. The cells were pretreated with 10 mmol/L N-acetylcysteine (NAC) for 30min before exposing to H2O2, and analyzed the mitochondrial extracts by Western blot and flow cytometry. P-gp was co-localized in the mitochondria by confocal laser scanning microscopy, and it was also detected in the mitochondria of D407 cells using Western blot. Exposure to increasing concentrations of H2O2 led to gradually increased expression and location of P-gp in the mitochondria of cells. Rho-123 efflux assay showed higher uptake of Rho-123 on isolated mitochondria in the presence of Tariquidar both in normal and oxidative stress state. H2O2 up-regulated P-gp in D407 cells, which could be reversed by NAC treatment. H2O2 could up-regulate the functional expression of P-gp in mitochondria of D407 cells, while antioxidants might suppress oxidative-stress-induced over-expression of functional P-gp. It is indicative that limiting the mitochondrial P-gp transport in retinal pigment epithelium cells would be to improve the effect of mitochondria-targeted antioxidant therapy in age-related macular degeneration-like retinopathy.

  7. The expression and underlying angiogenesis effect of DPC4 and VEGF on the progression of cervical carcinoma.

    Science.gov (United States)

    A, Yanni; Li, Ying; Zhao, Shuping

    2018-02-01

    The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (-)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (-), VEGF (+) and TSP-1 (-) groups was significantly increased compared with that of the DPC4 (+), VEGF (-), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4.

  8. Mitochondrial expression and activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier

    Directory of Open Access Journals (Sweden)

    Yue-Hong Zhang

    2017-07-01

    Full Text Available AIM: To investigate the role of oxidative stress in regulating the functional expression of P-glycoprotein (P-gp in mitochondria of D407 cells. METHODS: D407 cells were exposed to different ranges of concentrations of H2O2. The mitochondrial location of P-gp in the cells subjected to oxidative stress was detected by confocal analysis. Expression of P-gp in isolated mitochondria was assessed by Western blot. The pump activity of P-gp was evaluated by performing the efflux study on isolated mitochondria with Rhodamine 123 (Rho-123 alone and in the presence of P-gp inhibitor (Tariquidar using flow cytometry analysis. The cells were pretreated with 10 mmol/L N-acetylcysteine (NAC for 30min before exposing to H2O2, and analyzed the mitochondrial extracts by Western blot and flow cytometry. RESULTS: P-gp was co-localized in the mitochondria by confocal laser scanning microscopy, and it was also detected in the mitochondria of D407 cells using Western blot. Exposure to increasing concentrations of H2O2 led to gradually increased expression and location of P-gp in the mitochondria of cells. Rho-123 efflux assay showed higher uptake of Rho-123 on isolated mitochondria in the presence of Tariquidar both in normal and oxidative stress state. H2O2 up-regulated P-gp in D407 cells, which could be reversed by NAC treatment. CONCLUSION: H2O2 could up-regulate the functional expression of P-gp in mitochondria of D407 cells, while antioxidants might suppress oxidative-stress-induced over-expression of functional P-gp. It is indicative that limiting the mitochondrial P-gp transport in retinal pigment epithelium cells would be to improve the effect of mitochondria-targeted antioxidant therapy in age-related macular degeneration-like retinopathy.

  9. Transcript profiling and gene expression analysis under drought stress in Ziziphus nummularia (Burm.f.) Wright & Arn.

    Science.gov (United States)

    Yadav, Radha; Verma, Om Prakash; Padaria, Jasdeep Chatrath

    2018-02-07

    Drought is one of the prime abiotic stresses responsible for limiting agricultural productivity. A number of drought responsive genes have been isolated and functionally characterized but these studies have been restricted to a few model plant systems. Very few drought responsive genes have been reported till date from non model drought tolerant plants. The present study aimed at identifying differentially expressed genes from a drought tolerant, non-model plant, Ziziphus nummularia (Burm.f.) Wight & Arn. One month old seedlings of Z. nummularia were subjected to drought stress by 30% Polyethylene glycol (PEG 6000) treatment for 6, 12, 24, 48 and 72 h. A significant reduction in RWC and increase in proline was observed at 24 h and 48 h of treatment. Suppression subtractive hybridization (SSH) library was constructed with drought stressed seedlings after 24 h and 48 h of PEG 6000 treatment. A total of 142 and 530 unigenes from 24 h and 48 h library were identified respectively. Gene ontology studies revealed that about 9.78% and 15.07% unigenes from 24 h and 48 h SSH libraries were expressed in "response to stress". Fifteen putative drought responsive genes identified in SSH library were validated for drought responsive differential expression by RT-qPCR. Significant changes in fold expressions were observed with time in the treated samples compared to the control. A heat map revealing the expression profile of genes was constructed by hierarchical clustering. Various genes identified in SSH libraries can serve as a resource for marker discovery and selection of candidate genes to improve drought tolerance in other susceptible crops.

  10. Improved production of enzymes, which are expressed under the Pho regulon promoter, in the rmf gene (encoding ribosome modulation factor) disruptant of Escherichia coli.

    Science.gov (United States)

    Imaizumi, Akira; Koseki, Chie; Matsui, Kazuhiko; Kojima, Hiroyuki

    2006-04-01

    Using a DNA macroarray, we investigated the effects of rmf gene (encoding ribosome modulation factor) disruption on gene expression profiles in Escherichia coli. This strain showed a phosphate-starvation-like response in gene expression even under phosphate sufficient conditions; significant upregulation of the Pho regulon genes was observed. Further, the production of alkaline phosphatase, a product of the Pho regulon gene, phoA, increased in the rmf disruptant under a Pi sufficient condition. Furthermore, production of PhoC acid phosphatase/nucleoside pyrophosphate phosphotransferase derived from Morganella morganii also increased significantly in the rmf disruptant. We concluded that host modification by the rmf gene disruption has potential benefit in industrial enzyme production using Escherichia coli.

  11. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    Science.gov (United States)

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Short-term selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions.

    Science.gov (United States)

    Shimo, Naoki; Matsuoka, Taka-aki; Miyatsuka, Takeshi; Takebe, Satomi; Tochino, Yoshihiro; Takahara, Mitsuyoshi; Kaneto, Hideaki; Shimomura, Iichiro

    2015-11-27

    Alleviation of hyperglycaemia and hyperlipidemia improves pancreatic β-cell function in type 2 diabetes. However, the underlying molecular mechanisms are still not well clarified. In this study, we aimed to elucidate how the expression alterations of key β-cell factors are altered by the short-term selective alleviation of glucotoxicity or lipotoxicity. We treated db/db mice for one week with empagliflozin and/or bezafibrate to alleviate glucotoxicity and/or liptotoxicity, respectively. The gene expression levels of Pdx1 and Mafa, and their potential targets, insulin 1, Slc2a2, and Glp1r, were higher in the islets of empagliflozin-treated mice, and levels of insulin 2 were higher in mice treated with both reagents, than in untreated mice. Moreover, compared to the pretreatment levels, Mafa and insulin 1 expression increased in empagliflozin-treated mice, and Slc2a2 increased in combination-treated mice. In addition, empagliflozin treatment enhanced β-cell proliferation assessed by Ki-67 immunostaining. Our date clearly demonstrated that the one-week selective alleviation of glucotoxicity led to the better expression levels of the key β-cell factors critical for β-cell function over pretreatment levels, and that the alleviation of lipotoxicity along with glucotoxicity augmented the favorable effects under diabetic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [GFP reporter gene under the direction of chicken ovalbumin gene promoter expressed in the CHO cell and in the primary cell cultures of chicken oviduct].

    Science.gov (United States)

    Pang, Yue; Li, Qing-Wei

    2005-01-01

    To reseach GFP reporter gene under the control of chick ovalbumin gene regulatory elements express in the CHO cell and in the primary cell cultures of chicken oviduct. 1.5kb fragment and 2.9kb fragment were amplicated by PCR method, two fragments were subeloned to manmalian expression vector pGFP-N2 by recombinant DNA technology, the CMV promoter was cut off from pGFP-N2, so two expression vectors were constructed, one is the P2.9koval-GFP including promoter, first exon, first intron of chicken ovalbumin gene, the other is the P1.5koval-GFP including first intron of chicken ovalbumin gene. Restriction enzyme digestion and DNA sequence analysis revealed that 5'upstream regions of ovalbumin gene were not only identical to those of the published chicken ovalbumin gene, but also were contained in the recombinant vector. They were transfected into the CHO cell and the primary cell cultures of chicken oviduct by Lipofectin, they were used for fluorescence detection. GFP protein existed in GFP transfected the CHO cell and the primary cell cultures of chicken oviduct. It is demonstrated that GFP reporter gene under the direction of chick ovalbumin gene promoter could be expressed in the CHO cell and in the primary cell cultures of chicken oviduct.

  14. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress.

    Science.gov (United States)

    Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen

    2014-06-01

    The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Effect of Intracellular Expression of Antimicrobial Peptide LL-37 on Growth of Escherichia coli Strain TOP10 under Aerobic and Anaerobic Conditions

    OpenAIRE

    Liu, Wei; Dong, Shi Lei; Xu, Fei; Wang, Xue Qin; Withers, T. Ryan; Yu, Hongwei D.; Wang, Xin

    2013-01-01

    Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cel...

  16. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions.

    Science.gov (United States)

    Díaz-Barrera, Alvaro; Maturana, Nataly; Pacheco-Leyva, Ivette; Martínez, Irene; Altamirano, Claudia

    2017-07-01

    Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g -1  h -1 by changes in the dilution rate (D) from 0.06 to 0.10 h -1 , whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.

  17. Enhancement of SOX-2 expression and ROS accumulation by culture of A172 glioblastoma cells under non-adherent culture conditions.

    Science.gov (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Yoo, Hyung Jae; Park, Myung-Jin; Lee, Jeong-Hwa

    2015-08-01

    More efficient isolation and identification of cancer stem cells (CSCs) would help in determining their fundamental roles in tumor biology. The classical tool for this purpose is anchorage-independent tumorsphere culture. We compared the effects of differently textured culture plates and serum deprivation on the acquisition of CSC properties of A172 glioblastoma cells. Cells were cultured on standard polystyrene-treated plates, ultra-low attachment, poly (2-hydroxyethyl methacrylate)-coated plates, and 1% agar-coated plates with 10% serum or in serum-free glioblastoma sphere medium (GBM). Based on mitochondrial reductase activity and subG1 proportions, non-adherent conditions had a greater impact on A172 cell viability than serum deprivation. Among the stemness-related genes, SOX-2 expression was significantly upregulated by serum deprivation under non-adherent conditions, while several epithelial-to-mesenchymal transition (EMT)-related genes were less dependent on serum. In addition, reactive oxygen species (ROS) accumulation in A172 cells was significantly increased in GBM under non-adherent conditions. Despite the correlation between SOX-2 induction and ROS accumulation, treatment with the ROS scavenger N-acetyl-l-cysteine did not prevent SOX-2 expression, suggesting that ROS accumulation is not an essential requirement for induction of SOX-2. Our results suggested that cultivation of cancer cells under conditions of serum deprivation in an anchorage-independent manner may enrich SOX-2-expressing CSC-like cells in vitro.

  18. Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production.

    Science.gov (United States)

    Jin, Weiyue; Xu, Xian; Jiang, Ling; Zhang, Zhidong; Li, Shuang; Huang, He

    2015-11-01

    Putative genes crtE, crtB, and crtI from Deinococcus wulumiqiensis R12, a novel species, were identified by genome mining and were co-expressed using the optimized Shine-Dalgarno (SD) regions to improve lycopene yield. A lycopene biosynthesis pathway was constructed by co-expressing these three genes in Escherichia coli. After optimizing the upstream SD regions and the culture medium, the recombinant strain EDW11 produced 88 mg lycopene g(-1) dry cell wt (780 mg lycopene l(-1)) after 40 h fermentation without IPTG induction, while the strain EDW without optimized SD regions only produced 49 mg lycopene g(-1) dry cell wt (417 mg lycopene l(-1)). Based on the optimization of the upstream SD regions and culture medium, the yield of the strain EDW11 reached a high level during microbial lycopene production until now.

  19. Combined Inactivation and Expression Strategy To Study Gene Function under Physiological Conditions: Application to Identification of New Escherichia coli Adhesins

    OpenAIRE

    Roux, Agnès; Beloin, Christophe; Ghigo, Jean-Marc

    2005-01-01

    In bacteria, whereas disruption methods have been improved recently, the use of plasmid complementation strategies are still subject to limitations, such as cloning difficulties, nonphysiological levels of gene expression, or a requirement for antibiotics as plasmid selection pressure. Moreover, because of the pleiotropic modifications of cell physiology often induced by plasmid-based complementation, these strategies may introduce biases when biological process such as adhesion or biofilm fo...

  20. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    OpenAIRE

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in pr...

  1. Expression analysis in intestinal mucosa reveals complex relations among genes under the association peaks in celiac disease

    Science.gov (United States)

    Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Jauregi-Miguel, Amaia; Romero-Garmendia, Irati; Vitoria, Juan Carlos; Bilbao, Jose Ramon

    2015-01-01

    Celiac disease is a chronic immune-mediated disorder with an important genetic component. To date, there are 57 independent association signals from 39 non-HLA loci, and a total of 66 candidate genes have been proposed. We aimed to scrutinize the functional implication of 45 of those genes by analyzing their expression in the disease tissue of celiac patients (at diagnosis/treatment) compared with non-celiac controls. Moreover, we investigated the SNP genotype effect in gene expression and performed coexpression analyses. Several genes showed differential expression among disease groups, most of them related to immune response. Multiple trans-eQTLs but only four cis-eQTLs were found, and surprisingly the genotype effect seems to be stimulus dependent as it differs among groups. Coexpression levels vary from higher to lower levels in active patients at diagnosis, treated patients and non-celiac controls respectively. A subset of 18 genes tightly correlated in both groups of patients but not in controls was identified. Interestingly, this subset of genes was influenced by the genotype of three SNPs. One of the SNPs, rs1018326 on chromosome two is on top of a known lincRNA whose function is not yet described, and whose expression seems to be upregulated in active disease when comparing biopsy pairs from the same individuals. Our results strongly suggest that the effects of disease-associated SNPs go far beyond the oversimplistic idea of transcriptional control at a nearby locus. Further investigations are needed to determine how each variant disrupts fine-tuning mechanisms in the genome that eventually lead to disease. PMID:25388004

  2. Characterization and expression patterns of key C4 photosynthetic pathway genes in bread wheat (Triticum aestivum L.) under field conditions.

    Science.gov (United States)

    Bachir, Daoura Goudia; Saeed, Iqbal; Song, Quanhao; Linn, Tay Zar; Chen, Liang; Hu, Yin-Gang

    2017-06-01

    Wheat is a C3 plant with relatively low photosynthetic efficiency and is a potential target for C4 photosynthetic pathway engineering. Here we reported the characterization of four key C4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C4-like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C4-like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress.

    Science.gov (United States)

    Zhu, Dan; Bai, Xi; Luo, Xiao; Chen, Qin; Cai, Hua; Ji, Wei; Zhu, Yanming

    2013-02-01

    Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.

  4. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Alice Chaplin

    Full Text Available The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat or a high-fat (HF, 43% kJ content as fat diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  5. Effects of exogenous salicylic acid on physiological traits and CBF gene expression in peach floral organs under freezing stress

    Directory of Open Access Journals (Sweden)

    Zhang Binbin

    2017-01-01

    Full Text Available To elucidate the effects of exogenous salicylic acid (SA treatment on the cold resistance of peach flower, the floral organs of two peach cultivars were treated with 20 mg/L SA and stored at 0°C for observation and sample collection. Water application was the control. After a treatment period, the anther relative water content of the control and SA-treated flowers decreased. The extent of the reduction was greater in the control, suggesting that the SA treatment significantly helped to maintain the anther water content of peach. Analysis of the stigma relative electric conductivity revealed that the SA treatment prevented membrane injury during the low temperature treatment. Additionally, we measured CBF gene expression at low temperature in the petal, stigma and ovary. The expression was markedly upregulated in the cold-treated floral organs. CBF gene expression after SA treatment was higher than in the control when cold conditions continued. These results suggest that the effects of SA on ameliorating the freezing injury to peach floral organs and on enhancing cold tolerance may be associated with the induction of CBF gene.

  6. Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter

    Directory of Open Access Journals (Sweden)

    Ana R. Rama

    2015-06-01

    Full Text Available Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA to direct E gene expression (pCEA-E towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.

  7. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Science.gov (United States)

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  8. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  9. Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene.

    Science.gov (United States)

    Guo, Yinghua; Xing, Yonghua

    2016-04-15

    Occupational exposure to chloroprene via inhalation may lead to acute toxicity and chronic pulmonary diseases, including lung cancer. Currently, most research is focused on epidemiological studies of chloroprene production workers. The specific molecular mechanism of carcinogenesis by chloroprene in lung tissues still remains obscure, and specific candidate therapeutic targets for lung cancer are lacking. The present study identifies specific gene modules and valuable hubs associated with lung cancer. We downloaded the dataset GSE40795 from the Gene Expression Omnibus (GEO) and divided the dataset into the non-carcinogenic dose chloroprene exposed mice group and the carcinogenic dose chloroprene exposed mice group. With a systemic biological view, we discovered significantly altered gene modules between the two groups and identified hub genes in the carcinogenic dose exposed group using weighted co-expression network analysis (WGCNA). A total of 2434 differentially expressed genes were identified. Twelve gene modules with multiple biological activities were related to the carcinogenesis of chloroprene in lung tissue. Seven hub genes that were critical for the carcinogenesis of chloroprene in lung tissue were ultimately identified, including Cftr, Hip1, Tbl1x, Ephx1, Cbr3, Antxr2 and Ccnd2. They were implicated in inflammatory response, cell transformation, gene transcription regulation, phase II detoxification, angiogenesis, cell adhesion, motility and the cell cycle. The seven hub genes may become valuable candidates for risk assessment biomarkers and therapeutic targets in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing.

    Science.gov (United States)

    Liang, Chunbo; Wang, Wenjun; Wang, Jing; Ma, Jun; Li, Cen; Zhou, Fei; Zhang, Shuquan; Yu, Ying; Zhang, Liguo; Li, Weizhong; Huang, Xutang

    2017-10-25

    Sunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference. 805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought. The results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.

  11. The expression of Arabidopsis glutamate dehydrogenase gene gdh2 is induced under the influence of tetrapyrrole synthesis inhibitor norflurazon

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2013-11-01

    Full Text Available The gdh2 gene encoding beta-subunit of glutamate dehydrogenase in Arabidopsis belongs to diurnal-regulated genes. Its expression is highly increased in the dark and reduced to minimal rates at the day light. Some sugar-responsive regulatory pathways are known to be involved in the gdh2 light repression, but the specific mechanisms of this regulation are unknown. In our experiments expression of gdh2 gene increased 6-11 fold in Arabidopsis seedlings grown in presence of the tetrapyrrole synthesis inhibitor norflurazon. The increasing rate depended on the light intensity and did not correlate with the induction of ROS marker genes. This observation can be explained by both a low glucose level in the cells treated with norflurazon and absence of repression by the chloroplast-to-nucleus retrograde pathways because of chloroplast dysfunction. We assume that the diurnal regulation of gdh2 gene expression involves not only sugar-dependent, but also chloroplast-to-nucleus regulatory signals.

  12. The Freedom of Expression of Members of the Armed Forces Under the European Convention on Human Rights In Jokšas V. Lithuania

    Directory of Open Access Journals (Sweden)

    Kirchner Stefan

    2014-06-01

    Full Text Available Freedom of expression is one of the most fundamental rights in a democratic society. In fact, the freedom to express one’s opinion and to impart, as well as to receive, information, is essential for the participation in the democratic process. The ability to make decisions as a citizen requires access to information; the participation in the life of the society requires the ability to express one’s opinions. It is imperative that in a democratic society, as it is envisaged by the European Convention on Human Rights (ECHR, everybody is able to express their views, regardless as to whether these views correspond to the views of those who are in power. This ability is one of the key differences between democracy anddictatorship. In particular in the nation-states of Eastern Europe, which have only known freedom for a bit less than a quarter of a century, the growth of democratic structures is inextricably linked to the ability to exercise this right. But while human rights in principle pit the citizen against the State, the citizen who serves the State in a professional function might also wish to express opinions that go against the view of those who are entrusted with leading the State. This is particularly the case when it comes to members of the armed forces. The jurisprudence of the Convention organs with regard to the right of public officials and other State agents to express their opinion freely is not as coherent as it is with regard to other questions concerning the ECHR. In a case decided in late 2013, the European Court of Human Rights dealt with this question with regard to Lithuania. In this article, the authors look at the question of how far the State can restrict the freedom of expression of members of the armed forces under the European Convention on Human Rights.

  13. Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model

    Directory of Open Access Journals (Sweden)

    Mitchell Murray D

    2010-05-01

    Full Text Available Abstract The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3, in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P myostatin precursor and dimer expression than females, which was especially apparent (P in both chow and HF trans-generationally undernourished (UNAD groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P FSTL-3 expression compared to all other female groups. In summary, myostatin may prove

  14. Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation.

    Science.gov (United States)

    Sou, Si N; Lee, Ken; Nayyar, Kalpana; Polizzi, Karen M; Sellick, Christopher; Kontoravdi, Cleo

    2018-02-01

    Transient gene expression (TGE) is a methodology employed in bioprocessing for the fast provision of recombinant protein material. Mild hypothermia is often introduced to overcome the low yield typically achieved with TGE and improve specific protein productivity. It is therefore of interest to examine the impact of mild hypothermic temperatures on both the yield and quality of transiently expressed proteins and the relationship to changes in cellular processes and metabolism. In this study, we focus on the ability of a Chinese hamster ovary cell line to galactosylate a recombinant monoclonal antibody (mAb) product. Through experimentation and flux balance analysis, our results show that TGE in mild hypothermic conditions led to a 76% increase in qP compared to TGE at 36.5°C in our system. This increase is accompanied by increased consumption of nutrients and amino acids, together with increased production of intracellular nucleotide sugar species, and higher rates of mAb galactosylation, despite a reduced rate of cell growth. The reduction in biomass accumulation allowed cells to redistribute their energy and resources toward mAb synthesis and Fc-glycosylation. Interestingly, the higher capacity of cells to galactosylate the recombinant product in TGE at 32°C appears not to have been assisted by the upregulation of galactosyltransferases (GalTs), but by the increased expression of N-acetylglucosaminyltransferase II (GnTII) in this cell line, which facilitated the production of bi-antennary glycan structures for further processing. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  15. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ingmer, Hanne; Thomsen, Line E.

    2016-01-01

    The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained...... to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S...

  16. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  17. Short-term selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shimo, Naoki [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Matsuoka, Taka-aki, E-mail: matsuoka@endmet.med.osaka-u.ac.jp [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Miyatsuka, Takeshi [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunky-ku, Tokyo, 113-8421 (Japan); Takebe, Satomi; Tochino, Yoshihiro; Takahara, Mitsuyoshi [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kaneto, Hideaki [Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama, 701-0192 (Japan); Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2015-11-27

    Alleviation of hyperglycaemia and hyperlipidemia improves pancreatic β-cell function in type 2 diabetes. However, the underlying molecular mechanisms are still not well clarified. In this study, we aimed to elucidate how the expression alterations of key β-cell factors are altered by the short-term selective alleviation of glucotoxicity or lipotoxicity. We treated db/db mice for one week with empagliflozin and/or bezafibrate to alleviate glucotoxicity and/or liptotoxicity, respectively. The gene expression levels of Pdx1 and Mafa, and their potential targets, insulin 1, Slc2a2, and Glp1r, were higher in the islets of empagliflozin-treated mice, and levels of insulin 2 were higher in mice treated with both reagents, than in untreated mice. Moreover, compared to the pretreatment levels, Mafa and insulin 1 expression increased in empagliflozin-treated mice, and Slc2a2 increased in combination-treated mice. In addition, empagliflozin treatment enhanced β-cell proliferation assessed by Ki-67 immunostaining. Our date clearly demonstrated that the one-week selective alleviation of glucotoxicity led to the better expression levels of the key β-cell factors critical for β-cell function over pretreatment levels, and that the alleviation of lipotoxicity along with glucotoxicity augmented the favorable effects under diabetic conditions. - Highlights: • One-week selective reduction of gluco- and lipo-toxicity in db/db mice was performed. • Selective glucotoxicity reduction increases key pancreatic β-cell factors expression. • Selective glucotoxicity reduction improves β-cell factors over pretreatment levels. • Selective glucotoxicity reduction turns β-cell mass toward increase. • Lipotoxicity reduction has additive effects on glucotoxicity reduction.

  18. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Science.gov (United States)

    Kyoko, Oh-oka; Kono, Hiroshi; Ishimaru, Kayoko; Miyake, Kunio; Kubota, Takeo; Ogawa, Hideoki; Okumura, Ko; Shibata, Shigenobu; Nakao, Atsuhito

    2014-01-01

    The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ) that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m). In addition, the susceptibility to dextran sodium sulfate (DSS)-induced colitis was compared between wild-type mice and mPer2(m/m) mice. The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m) mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m) mice. mPer2(m/m) mice were more resistant to the colonic injury induced by DSS than wild-type mice. Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  19. Genotypic Variation under Fe Deficiency Results in Rapid Changes in Protein Expressions and Genes Involved in Fe Metabolism and Antioxidant Mechanisms in Tomato Seedlings (Solanum lycopersicum L.)

    Science.gov (United States)

    Muneer, Sowbiya; Jeong, Byoung Ryong

    2015-01-01

    To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in “Roggusanmaru” and “Super Doterang”. Fe deficiency (Moderate, low and –Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of “Roggusanmaru”, while a slight variation was observed in “Super Doterang” cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in “Roggusanmaru” than “Super Doterang” cultivar. The total protein profile in leaves and roots determines that “Super Doterang” exhibited an optimal tolerance to Fe deficiency compared to “Roggusanmaru” cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in “Roggusanmaru” than “Super Doterang” cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in “Super Doterang” than “Roggusanmaru” cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in “Roggusanmaru”, while increased in “Super Doterang” cultivar under Fe deficient conditions. The H+-ATPase relative gene expression (SlAHA1) in roots were maintained in “Super Doterang” compared to “Roggusanmaru”. Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in “Super Doterang”, whereas decreased in “Roggusanmaru” cultivar under Fe deficiency. The present study suggested that “Super Doterang” is better tomato cultivar than “Roggusanmaru” for calcareous soils. PMID:26602920

  20. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  1. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions.

    Science.gov (United States)

    Bao, Ai-Ke; Du, Bao-Qiang; Touil, Leila; Kang, Peng; Wang, Qiang-Long; Wang, Suo-Min

    2016-03-01

    Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H(+)-PPase genes, ZxNHX and ZxVP1-1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens-mediated transformation. Compared with wild-type (WT) plants, transgenic alfalfa plants co-expressing ZxNHX and ZxVP1-1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water-deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na(+), K(+) and Ca(2+) accumulation in leaves and roots, as a result of co-expression of ZxNHX and ZxVP1-1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water-deficit stress. Furthermore, the transgenic alfalfa co-expressing ZxNHX and ZxVP1-1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water-use efficiency than WT plants. Our results indicate that co-expression of tonoplast NHX and H(+)-PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. The effect of Silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L. under high-zinc stress.

    Directory of Open Access Journals (Sweden)

    Alin Song

    Full Text Available The main objectives of this study were to elucidate the roles of silicon (Si in alleviating the effects of 2 mM zinc (high Zn stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L. grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY, Os05g48630 (PsaH, Os07g37030 (PetC, Os03g57120 (PetH, Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis.

  3. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

    Science.gov (United States)

    Song, Alin; Li, Ping; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis. PMID:25426937

  4. Transcription factor CgMTF-1 regulates CgZnT1 and CgMT expression in Pacific oyster (Crassostrea gigas) under zinc stress

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jie; Zhang, Linlin [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Li, E-mail: lili@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Chunyan; Wang, Ting [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Guofan, E-mail: gfzhang@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China)

    2015-08-15

    Highlights: • CgMTF-1 and CgZnT1 were first identified in oysters. • CgMTF-1 localized in cell nucleus under unstressed conditions. • CgMTF-1 proteins could bind with the typical MRE motif. • CgMTF-1 activated CgZnT1, CgMT1 and CgMT4 promoters and regulated their expressions under zinc exposure. - Abstract: Oysters accumulate zinc at high tissue concentrations, and the metal response element (MRE)-binding transcription factor (MTF) functions as the cellular zinc sensor that coordinates the expression of genes involved in zinc efflux and storage, as well as those that protect against metal toxicity. In this study, we cloned MTF-1 in oysters and examined its regulation mechanism for its classic target genes, including MTs and ZnT1 under zinc exposure conditions. We cloned CgMTF-1 and determined the subcellular locations of its protein product in HEK293 cells. CgMTF-1 has a 2826 bp open reading frame that encodes a predicted polypeptide with 707 amino acid residues, showing six well-conserved zinc finger domains that are required for metal binding. In HEK293 cell lines, CgMTF-1 primarily localizes in the cell nucleus under unstressed conditions and nuclear translocation was not critical for the activation of this gene. We searched for CgMTF-1-regulated genes in oysters using RNA interference. Decreased expression levels of CgMT1, CgMT4, and CgZnT1 were observed after CgMTF-1 interference (>70% inhibition) under zinc exposure, indicating the critical role of CgMTF-1 in the regulation of these genes. We searched for a direct regulation mechanism involving CgMTF-1 for CgMT1, CgMT4, and CgZnT1 in vitro. EMSA experiments indicated that CgMTF-1 can bind with the MREs found in the CgZnT1, CgMT1 and CgMT4 promoter regions. Additionally, luciferase reporter gene experiments indicated that CgMTF-1 could activate the CgMT1, CgMT4, and CgZnT1 promoters. Overall, our results suggest that CgMTF-1 directly coordinates the regulation of CgMTs and CgZnT1 expression and plays

  5. Immunohistochemical Evaluation of p63, E-Cadherin, Collagen I and III Expression in Lower Limb Wound Healing under Honey

    Directory of Open Access Journals (Sweden)

    Ananya Barui

    2011-01-01

    Full Text Available Honey is recognized traditionally for its medicinal properties and also appreciated as a topical healing agent for infected and noninfected wounds. This study evaluates impact of honey-based occlusive dressing on nonhealing (nonresponding to conventional antibiotics traumatic lower limb wounds (n=34 through clinicopathological and immunohistochemical (e.g., expression of p63, E-cadherin, and Collagen I and III evaluations to enrich the scientific validation. Clinical findings noted the nonadherence of honey dressing with remarkable chemical debridement and healing progression within 11–15 days of postintervention. Histopathologically, in comparison to preintervention biopsies, the postintervention tissues of wound peripheries demonstrated gradual normalization of epithelial and connective tissue features with significant changes in p63+ epithelial cell population, reappearance of membranous E-cadherin (P<.0001, and optimum deposition of collagen I and III (P<.0001. Thus, the present study for the first time reports the impact of honey on vital protein expressions in epithelial and connective tissues during repair of nonhealing lower limb wounds.

  6. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress.

    Science.gov (United States)

    Yan, Jun; Yu, Li; Xuan, Jiping; Lu, Ying; Lu, Shijun; Zhu, Weimin

    2016-02-09

    Spinach (Spinacia oleracea) has cold tolerant but heat sensitive characteristics. The spinach variety 'Island,' is suitable for summer periods. There is lack molecular information available for spinach in response to heat stress. In this study, high throughput de novo transcriptome sequencing and gene expression analyses were carried out at different spinach variety 'Island' leaves (grown at 24 °C (control), exposed to 35 °C for 30 min (S1), and 5 h (S2)). A total of 133,200,898 clean reads were assembled into 59,413 unigenes (average size 1259.55 bp). 33,573 unigenes could match to public databases. The DEG of controls vs S1 was 986, the DEG of control vs S2 was 1741 and the DEG of S1 vs S2 was 1587. Gene Ontology (GO) and pathway enrichment analysis indicated that a great deal of heat-responsive genes and other stress-responsive genes were identified in these DEGs, suggesting that the heat stress may have induced an extensive abiotic stress effect. Comparative transcriptome analysis found 896 unique genes in spinach heat response transcript. The expression patterns of 13 selected genes were verified by RT-qPCR (quantitative real-time PCR). Our study found a series of candidate genes and pathways that may be related to heat resistance in spinach.

  7. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging.

    Science.gov (United States)

    Yin, Dongmei; Ni, Dian; Song, Lili; Zhang, Zhiguo

    2013-11-01

    A PCR strategy was used to isolate a full-length CgADH (alcohol dehydrogenase) cDNA from chrysanthemum. The gene putatively encodes a 378 residue polypeptides, which shares 95% homology with tomato alcohol dehydrogenase class III. Endogenous ethylene generated in waterlogged Chrysanthemum zawadskii was enhanced by exogenous ethylene but decreased by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action. In waterlogged roots, the transcription of the gene encoding alcohol dehydrogenase (ADH, EC 1.1.1.1) increased rapidly but transiently, peaking at 7.5 fold the non-waterlogged level after 2h of stress. Waterlogging elevated ADH activity after a prolonged episode of stress. The exogenous supply of 40μLL(-1) ethylene suppressed the production of ethanol, while that of 4μLL(-1) 1-MCP enhanced it. Ethylene appeared to suppress an acceleration of both CgADH expression and fermentation, and alleviates ethanolic fermentation probably through by as a signal to acceleration of waterlogging-induced aerenchyma formation. This supports the previously observed phenomenon that the expression level of ADH gene is regulated by the local level of physiologically active ethylene. The relevance of the CgADH gene in relation to chrysanthemum waterlogging was discussed as well. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro.

    Science.gov (United States)

    Kolachevskaya, Oksana O; Alekseeva, Valeriya V; Sergeeva, Lidiya I; Rukavtsova, Elena B; Getman, Irina A; Vreugdenhil, Dick; Buryanov, Yaroslav I; Romanov, Georgy A

    2015-09-01

    Phytohormones, auxins in particular, play an important role in plant development and productivity. Earlier data showed positive impact of exogenous auxin on potato (Solanum tuberosum L.) tuberization. The aim of this study was to generate potato plants with increased auxin level predominantly in tubers. To this end, a pBinB33-tms1 vector was constructed harboring the Agrobacterium auxin biosynthesis gene tms1 fused to tuber-specific promoter of the class I patatin gene (B33-promoter) of potato. Among numerous independently generated B33:tms1 lines, those without visible differences from control were selected for detailed studies. In the majority of transgenic lines, tms1 gene transcription was detected, mostly in tubers rather than in shoots. Indoleacetic acid (IAA) content in tubers and the auxin tuber-to-shoot ratio were increased in tms1-expressing transformants. The organ-specific increase in auxin synthesis in B33:tms1-transformants accelerated and intensified the process of tuber formation, reduced the dose of carbohydrate supply required for in vitro tuberization, and decreased the photoperiodic dependence of tuber initiation. Overall, a positive correlation was observed between tms1 expression, IAA content in tubers, and stimulation of tuber formation. The revealed properties of B33:tms1 transformants imply an important role for auxin in potato tuberization and offer prospects to magnify potato productivity by a moderate organ-specific enhancement of auxin content. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments

    Directory of Open Access Journals (Sweden)

    Chenliang Yu

    2017-12-01

    Full Text Available Auxin response factors (ARFs play important roles in regulating plant growth and development and response to environmental stress. An exhaustive analysis of the CaARF family was performed using the latest publicly available genome for pepper (Capsicum annuum L.. In total, 22 non-redundant CaARF gene family members in six classes were analyzed, including chromosome locations, gene structures, conserved motifs of proteins, phylogenetic relationships and Subcellular localization. Phylogenetic analysis of the ARFs from pepper (Capsicum annuum L., tomato (Solanum lycopersicum L., Arabidopsis and rice (Oryza sativa L. revealed both similarity and divergence between the four ARF families, and aided in predicting biological functions of the CaARFs. Furthermore, expression profiling of CaARFs was obtained in various organs and tissues using quantitative real-time RT-PCR (qRT-PCR. Expression analysis of these genes was also conducted with various hormones and abiotic treatments using qRT-PCR. Most CaARF genes were regulated by exogenous hormone treatments at the transcriptional level, and many CaARF genes were altered by abiotic stress. Systematic analysis of CaARF genes is imperative to elucidate the roles of CaARF family members in mediating auxin signaling in the adaptation of pepper to a challenging environment.

  10. Increased C-C Chemokine Receptor 2 Gene Expression in Monocytes of Severe Obstructive Sleep Apnea Patients and under Intermittent Hypoxia

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Shih-Wei; Chang, Ying-Ling; Liao, Hsiang-Ruei; Lin, Yu-Sheng; Chao, I-Ju; Lin, Yuling; Pang, Jong-Hwei S.

    2014-01-01

    Background Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes. Methods Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes. Results Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia. Conclusions This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes. PMID:25411969

  11. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza.

    Science.gov (United States)

    Garcia, Kevin; Haider, Muhammad Zulqurnain; Delteil, Amandine; Corratgé-Faillie, Claire; Conéjero, Geneviève; Tatry, Marie-Violaine; Becquer, Adeline; Amenc, Laurie; Sentenac, Hervé; Plassard, Claude; Zimmermann, Sabine

    2013-01-01

    Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Heparin-binding epidermal growth factor expression in KATO-III cells after Helicobacter pylori stimulation under the influence of strychnos Nux vomica and Calendula officinalis.

    Science.gov (United States)

    Hofbauer, Roland; Pasching, Eva; Moser, Doris; Frass, Michael

    2010-07-01

    Previous studies have shown the stimulating effect of Helicobacter pylori on the gene expression of heparin-binding epidermal growth factor (HB-EGF) using the gastric epithelial cell line KATO-III. Strychnos Nux vomica (Nux vomica) and Calendula officinalis are used in highly diluted form in homeopathic medicine to treat patients suffering from gastritis and gastric ulcers. To investigate the influence of Nux vomica and Calendula officinalis on HB-EGF-like growth factor gene expression in KATO-III cells under the stimulation of H. pylori strain N6 using real-time PCR with and without addition of Nux vomica and Calendula officinalis as a 10c or 12c potency. Baseline expression and stimulation were similar to previous experiments, addition of Nux vomica 10c and Calendula officinalis 10c in a 43% ethanolic solution led to a significant reduction of H. pylori induced increase in gene expression of HB-EGF (reduced to 53.12+/-0.95% and 75.32+/-1.16% vs. control; p<0.05), respectively. Nux vomica 12c reduced HB-EGF gene expression even in dilutions beyond Avogadro's number (55.77+/-1.09%; p<0.05). Nux vomica 12c in a 21.5% ethanol showed a smaller effect (71.80+/-3.91%, p<0.05). This effect was only be observed when the drugs were primarily prepared in ethanol, not in aqueous solutions. The data suggest that both drugs prepared in ethanolic solution are potent inhibitors of H. pylori induced gene expression. 2010 Elsevier Ltd. All rights reserved.

  13. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance.

    Science.gov (United States)

    Zhang, Xiaojing; Liu, Xuyang; Zhang, Dengfeng; Tang, Huaijun; Sun, Baocheng; Li, Chunhui; Hao, Luyang; Liu, Cheng; Li, Yongxiang; Shi, Yunsu; Xie, Xiaoqing; Song, Yanchun; Wang, Tianyu; Li, Yu

    2017-01-01

    Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement.

  14. Differential protein expression using proteomics from a crustacean brine shrimp (Artemia sinica) under CO2-driven seawater acidification.

    Science.gov (United States)

    Chang, Xue-Jiao; Zheng, Chao-Qun; Wang, Yu-Wei; Meng, Chuang; Xie, Xiao-Lu; Liu, Hai-Peng

    2016-11-01

    Gradually increasing atmospheric CO2 partial pressure (pCO2) has caused an imbalance in carbonate chemistry and resulted in decreased seawater pH in marine ecosystems, termed seawater acidification. Anthropogenic seawater acidification is postulated to affect the physiology of many marine calcifying organisms. To understand the possible effects of seawater acidification on the proteomic responses of a marine crustacean brine shrimp (Artemia sinica) three groups of cysts were hatched and further raised in seawater at different pH levels (8.2 as control and 7.8 and 7.6 as acidification stress levels according to the predicted levels at the end of this century and next century, respectively) for 1, 7 and 14 days followed by examination of the protein expression changes via two-dimensional gel electrophoresis. Searches of protein databases revealed that 67 differential protein spots were altered due to lower pH level (7.6 and 7.8) stress in comparison to control groups (pH 8.2) by mass spectrometry. Generally, these differentially expressed proteins included the following: 1) metabolic process-related proteins involved in glycolysis and glucogenesis, nucleotide/amino acid/fatty acid metabolism, protein biosynthesis, DNA replication and apoptosis; 2) stress response-related proteins, such as peroxiredoxin, thioredoxin peroxidase, 70-kDa heat shock protein, Na/K ATPase, and ubiquinol-cytochrome c reductase; 3) immune defence-related proteins, such as prophenoloxidase and ferritin; 4) cytoskeletal-related proteins, such as myosin light chain, TCP1 subunit 2, tropomyosin and tubulin alpha chain; and 5) signal transduction-related proteins, such as phospholipase C-like protein, 14-3-3 zeta, translationally controlled tumour protein and RNA binding motif protein. Taken together, these data support the idea that CO2-driven seawater acidification may affect protein expression in the crustacean A. sinica and possibly also in other species that feed on brine shrimp in the

  15. Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress.

    Science.gov (United States)

    Sadeesh, E M; Sikka, P; Balhara, A K; Balhara, S

    2016-12-01

    The study examined the effects of different environmental stress on developmental competence and the relative abundance (RA) of various gene transcripts in oocytes and embryos of buffalo. Oocytes collected during cold period (CP) and hot period (HP) were matured, fertilized and cultured in vitro to blastocyst hatching stage. The mRNA expression patterns of genes implicated in developmental competence (OCT-4, IGF-2R and GDF-9), heat shock (HSP-70.1), oxidative stress (MnSOD), metabolism (GLUT-1), pro-apoptosis (BAX) and anti-apoptosis (BCL-2) were evaluated in immature and matured oocytes as well as in pre-implantation stage embryos. Oocytes reaching MII stage, cleavage rates, blastocyst yield and hatching rates increased (P < 0.05) during the CP. In MII oocytes and 2-cell embryos, the RA of OCT-4, IGF-2R, GDF-9, MnSOD and GLUT-1 decreased (P < 0.05) during the HP. In 4-cell embryos, the RA of OCT-4, IGF-2R and BCL-2 decreased (P < 0.05) in the HP, whereas GDF-9 increased (P < 0.05). In 8-to 16-cell embryos, the RA of OCT-4 and BCL-2 decreased (P < 0. 05) in the HP, whereas HSP-70.1 and BAX expression increased (P < 0.05). In morula and blastocyst, the RA of OCT-4, IGF-2R and MnSOD decreased (P < 0.05) during the HP, whereas HSP-70.1 was increased (P < 0.05). In conclusion, deleterious seasonal effects induced at the GV-stage carry-over to subsequent embryonic developmental stages and compromise oocyte developmental competence and quality of developed blastocysts.

  16. Validation of reference genes for RT-qPCR studies of gene expression in preharvest and postharvest longan fruits under different experimental conditions

    Directory of Open Access Journals (Sweden)

    Jianyang eWu

    2016-06-01

    Full Text Available Reverse transcription quantitative PCR (RT-qPCR, a sensitive technique for quantifying gene expression, relies on stable reference gene(s for data normalization. Although a few studies have been conducted on reference gene validation in fruit trees, none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3 and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D and ethephon and abiotic stresses (bagging and girdling with defoliation. Postharvest samples consisted of different temperature treatments (4 and 22 °C and varieties. Our findings indicate that appropriate reference gene(s should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits.

  17. Efficient expression of mono- and diacylglycerol lipase gene from Penicillium camembertii U-150 in Aspergillus oryzae under the control of its own promoter.

    Science.gov (United States)

    Yamaguchi, S; Takeuchi, K; Mase, T; Matsuura, A

    1997-05-01

    The gene, mdlA, coding for mono- and diacylglycerol lipase from Penicillium camembertii U-150 was expressed efficiently in Aspergillus oryzae under the control of its own promoter. The gene product was secreted into the culture medium with a highest productivity of 1 g/liter and correctly processed at both N- and C-termini. KEX2-like processing was suggested to occur at the C-terminus in both A. oryzae and P. camembertii. Specific activity and substrate specificity of the purified recombinant protein were also almost the same to that of native protein but the extent of N-glycosylation in the recombinant protein was about half of that of the native protein. The presence of introns did not seem to affect the gene expression. The mdlA expression was induced by lipids and regulated transcriptionally in A. oryzae as well as P. camembertii. Promoter deletion analysis showed that the region between the positions at -382 and -554 bp from the translation initiation point was important to the higher expression of mdlA. The promoter sequence of mdlA was compared to that of the Geotrichum candidum lipase gene, which is also reported to be inducible by lipids, with three commonly observed oligonucleotide sequences.

  18. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  19. Evaluating Wharton’s Jelly-Derived Mesenchymal Stem Cell’s Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress

    Directory of Open Access Journals (Sweden)

    Iris Himal

    2017-01-01

    Full Text Available The efficacy of mesenchymal stem cell (MSC therapy is currently limited by low retention and poor survival of transplanted cells as demonstrated by clinical studies. This is mainly due to the harsh microenvironment created by oxygen and nutrient deprivation and inflammation at the injured sites. The choice of MSC source could be critical in determining fate and cellular function of MSCs under stress. Our objective here was to investigate the influence of ischemia-like stress on Wharton’s jelly MSCs (WJ-MSCs from human umbilical cord to assess their therapeutic relevance in ischemic diseases. We simulated conditions of ischemia in vitro by culturing WJ-MSCs in 2% oxygen in serum deprived and low glucose medium. Under these conditions, WJ-MSCs retained viable population of greater than 80%. They expressed the characteristic MSC surface antigens at levels comparable to the control WJ-MSCs and were negative for the expression of costimulatory molecules. An upregulation of many ECM and adhesion molecules and growth and angiogenic factors contributing to wound healing and regeneration was noted in the ischemic WJ-MSC population by a PCR array. Their migration ability, however, got impaired. Our findings provide evidence that WJ-MSCs might be therapeutically beneficial and potent in healing wounds under ischemic conditions.

  20. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice.

    Science.gov (United States)

    Hu, Wenhuo; Hu, Guocheng; Han, Bin

    2009-04-01

    Heat shock proteins (Hsps) are molecular chaperons, which function in protein folding and assembly, protein intracellular localization and secretion, and degradation of misfolded and truncated proteins. Heat shock factors (Hsfs) are the transcriptional activators of Hsps. It has been reported that Hsps and Hsfs are widely involved in response to various abiotic stresses such as heat, drought, salinity and cold. To elucidate the function and regulation of rice Hsp and Hsf genes, we examined a global expression profiling with heat stressed rice seedling, and then compared our results with the previous rice data under cold, drought and salt stresses. The comparison revealed that, while most Hsfs and Hsps had highly similar and overlapped response and regulation patterns under different stresses, some of those genes showed significantly specific response to distinct stress. We also found that heat-responsive gene profiling differed largely from those under cold/drought/salt stresses, and that drought treatment was more effective to up-regulate Hsf expression in rice than in Arabidopsis. Overall, our data suggests that Hsps and Hsfs might be important elements in cross-talk of different stress signal transduction networks. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Suitable reference gene for quantitative real-time PCR analysis of gene expression in gonadal tissues of minnow Puntius sophore under high-temperature stress.

    Science.gov (United States)

    Mahanty, Arabinda; Purohit, Gopal Krishna; Mohanty, Sasmita; Nayak, Nihar Ranjan; Mohanty, Bimal Prasanna

    2017-08-15

    High ambient temperature is known to affect fish gonadal development and physiology in a variety of ways depending on the severity and duration of exposure; however, the underlying molecular mechanisms are poorly understood. Gonadal gene expression influence the gonadal development, physiology and the quality of egg/sperm produced in teleosts and the mechanistic understanding of spatio-temporal changes in the gonadal gene expression could be instrumental in controlling the fate of egg/sperm and the quality of seed produced. Real time-quantititative polymerase chain reaction (RT-qCR), is a high throughput, sensitive and reproducible methodology used for understanding gene expression patterns by measuring the relative abundance of mRNA transcripts. However, its accuracy relies upon a suitable reference gene whose expression levels remain stable across various experimental conditions. In the present study, we evaluated the suitability of ten potential reference genes to be used as internal controls in RT-qPCR analysis in gonadal tissues (ovary and testis) of minnow Puntius sophore exposed to high temperature stress for different time periods (7 days, 60 days). Expression analysis of ten different constitutively expressed genes viz. 18S ribosomal RNA (18S rRNA), beta actin (βactin), β-2 microglobulin (b2mg), eukaryotic elongation factor-1 (eef1), glyceraldehyde-3phosphate dehydrogenase (gapdh), glucose-6-phosphate dehydrogenase (g6pd), ribosomal binding protein L13 (rpl13), tubulin (tub), tata box binding protein (tbp), ubiquitin (ubi) was carried out by using RT-qPCR and the stability in their expressions were evaluated by using four different algorithms; namely, delta Ct, BestKeeper, geNorm and NormFinder. In ovary, eef1 was found to be the most suitable reference gene in all the algorithms used. In testis, b2mg was found to be the most suitable reference gene in delta Ct, BestKeeper, NormFinder analysis while tbp and eef1 were found to be the most suitable

  2. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

    Science.gov (United States)

    Renau-Morata, Begoña; Molina, Rosa V.; Carrillo, Laura; Cebolla-Cornejo, Jaime; Sánchez-Perales, Manuel; Pollmann, Stephan; Domínguez-Figueroa, José; Corrales, Alba R.; Flexas, Jaume; Vicente-Carbajosa, Jesús; Medina, Joaquín; Nebauer, Sergio G.

    2017-01-01

    Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. PMID:28515731

  3. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    Science.gov (United States)

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  4. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses.

    Science.gov (United States)

    Xu, Yan-Xia; Mao, Juan; Chen, Wei; Qian, Ting-Ting; Liu, Sheng-Chuan; Hao, Wan-Jun; Li, Chun-Fang; Chen, Liang

    2016-01-01

    Auxin response factor (ARF) proteins are a multigene family of regulators involved in various physiological and developmental processes in plants. However, their modes of action in the tea plant (Camellia sinensis) remain largely unknown. In this study, we identified 15 members of the tea ARF gene family, using the public information about C. sinensis, both in our laboratory, as well as in other laboratories, and analyzed their phylogenetic relationships, conserved domains and the compositions of the amino acids in the middle region. A comprehensive expression analysis in different tissues and organs revealed that many ARF genes were expressed in a tissue-specific manner, suggesting they have different functions in the growth and development processes of the tea plant. The expression analysis under three forms of auxin (indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, naphthylacetic acid) treatment showed that the majority of the ARF genes were down-regulated in the shoots and up-regulated in the roots, suggesting opposite action mechanisms of the ARF genes in the shoots and roots. The expression levels of most ARF genes were changed under various phytohormone and abiotic stresses, indicating the ARF gene family plays important roles in various phytohormone and abiotic stress signals and may mediate the crosstalk between phytohormones and abiotic stresses. The current study provides basic information for the ARF genes of the tea plant and will pave the way for deciphering the precise role of ARFs in tea developmental processes and breeding stress-tolerant tea varieties. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Calcium-mediated responses and glutamine synthetase expression in greater duckweed (Spirodela polyrhiza L.) under diethyl phthalate-induced stress.

    Science.gov (United States)

    Cheng, Lee-Ju; Hung, Meng-Ju; Cheng, Yen-I; Cheng, Tai-Sheng

    2013-11-15

    This study was carried out to assess the influence of diethyl phthalate (DEP) alone or associated with calcium chloride (CaCl2) on greater duckweed plants, emphasizing the implications of calcium in amelioration of DEP-induced stress on plant growth. Greater duckweed were treated with DEP in variable concentrations, as 0, 0.25, 0.5, 1.0 and 2.0mM for 7 days, or treated with the same concentration either 2mM DEP or 2mM DEP plus 10mM CaCl2·2H2O in different duration 0-7 days. Treatment with 2mM DEP resulted in increasing proline content, protease activity, and ammonia accumulation in duckweed tissues. NADH-glutamate dehydrogenase (NADH-GDH; EC 1.4.1.2) and Δ(1)-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2), two key enzymes in the glutamate pathway of proline synthesis, showed increase in activity with DEP treatment and positively correlated with proline accumulation. No further increase in proline accumulation was observed with addition of calcium chloride to the DEP-treated cultures. However, supplementation of Ca(2+) can mitigate the adverse effect of DEP, at least in part to decrease the DEP-induced superoxide accumulation and increase in GDH activity for ammonia assimilation in duckweed fronds. In addition, effects of calcium on mitigation of DEP injury were also observed in glutamine synthetase (GS; EC 6.3.1.2) expression. Both GS1 and GS2 polypeptide accumulation and the level of total GS activity were nearly equivalent to the control. Exogenous proline protects GS2 from DEP-modulated redox damage in the chloroplast lysates but there is no remarkable protection effects on D1 (the 32kDa protein in photosystem II reaction center) degradation. In conclusion, the glutamate pathway of proline synthesis might be involved in mitigation of DEP-induced injury, and calcium plays an important role in increasing GDH, P5CR, and GS expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    Science.gov (United States)

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts. 2012 Elsevier Inc. All rights reserved

  8. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Animal embryonic stem cells (ESCs provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs, have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.

  9. Cell Morphological Change and Caspase-3 Protein Expression on Epithelial Cells under Stimulation of Oral Bacterium Streptococcus sanguinis

    Directory of Open Access Journals (Sweden)

    Suryani Hutomo

    2015-07-01

    Full Text Available Oral commensal bacterium Streptococcus sanguinis may find in periodontal lesions, deep seated infection, and infective endocarditis that are usually dominated by anaerobes. This bacterium caused cell death on some cells but host responses to this species remained unclear. Objective: This study was aimed to detect cell morphologica change and role of caspase-3 in cell death mechanism induced by S. sanguinis. Methods: HeLa cells as representative model for oral epithelial cells were exposed to 107 cells/ml bacteria for 48 h. Morphological change was observed microscopically after hematoxyline-eosin staining. Expression of active caspase-3 was examined by immunocytochemical analysis after cell stimulation for 36 and 48 h with wild type supragingival S. sanguinis. Doxorubicin (0.5625 μg/ml was used as positive control for caspase-3 activation. Results: The results showed cell shrinkage of bacterial-treated cells; and active caspase-3 molecules were detected after 36 and 48 hours cell stimulation. Conclusion: This study would suggest cell shrinkage and caspase-3-dependent apoptotic cell death induced by S. sanguinis.DOI: 10.14693/jdi.v22i1.375

  10. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    Science.gov (United States)

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  11. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marres, Henri A.M.; Hoogen, Franciscus J.A. van den [Department of Otorhinolaryngology/Head-Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rijken, Paul F.J.W.; Lok, Jasper; Bussink, Johan; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  12. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress

    Directory of Open Access Journals (Sweden)

    Xuedong Yang

    2016-05-01

    Full Text Available The HSF (heat shock factor gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum, which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.

  13. Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions.

    Science.gov (United States)

    Combina, Mariana; Pérez-Torrado, Roberto; Tronchoni, Jordi; Belloch, Carmela; Querol, Amparo

    2012-07-16

    The species Saccharomyces cerevisiae plays a predominant role in the wine making process. However, other species have been associated with must fermentation, such as Saccharomyces uvarum (Saccharomyces bayanus var. uvarum) or Saccharomyces paradoxus. Recently, yeast hybrids of different Saccharomyces species have also been reported as responsible for wine production. Yeast hybrids between the species S. cerevisiae×S. kudriavzevii isolated in wine fermentations show enhanced performance in low temperature enological conditions and increased production of interesting aroma compounds. In this work, we have studied the transcriptomic response in enological conditions of a S. cerevisiae×S. kudriavzevii hybrid strain and compared it with the reference species of S. cerevisiae and S. kudriavzevii. The results show that the hybrid strain presents an up-regulation of genes belonging to functional group translation and amino-acid metabolism. Moreover, key genes related to cold stress and production of glycerol and aroma compounds were also up-regulated. While some genes inherited regulation patterns from one of the parents, most of the up-regulated genes presented a new gene expression pattern, probably generated during the hybridization and adaptation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. All-trans-retinoic Acid Reduces BACE1 Expression under Inflammatory Conditions via Modulation of Nuclear Factor κB (NFκB) Signaling*

    Science.gov (United States)

    Wang, Ruishan; Chen, Shaoya; Liu, Yingchun; Diao, Shiyong; Xue, Yueqiang; You, Xiaoqing; Park, Edwards A.; Liao, Francesca-Fang

    2015-01-01

    Insulin resistance and neuroinflammation have emerged as two likely key contributors in the pathogenesis of Alzheimer disease (AD), especially in those sporadic AD cases compromised by diabetes or cardiovascular disease. Amyloid-β (Aβ) deposition and its associated inflammatory response are hallmarks in sporadic AD brains. Elevated expression and activity of β-secretase 1 (BACE1), the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides, are also observed in sporadic AD brains. Previous studies have suggested that there is therapeutic potential for retinoic acid in treating neurodegeneration based on decreased Aβ. Here we discovered that BACE1 expression is elevated in the brains of both Tg2576 transgenic mice and mice on high fat diets. These conditions are associated with a neuroinflammatory response. We found that administration of all-trans-retinoic acid (atRA) down-regulated the expression of BACE1 in the brains of Tg2576 mice and in mice fed a high fat diet. Moreover, in LPS-treated mice and cultured neurons, BACE1 expression was repressed by the addition of atRA, correlating with the anti-inflammatory efficacy of atRA. Mutations of the NFκB binding site in BACE1 promoter abolished the suppressive effect of atRA. Furthermore, atRA disrupted LPS-induced nuclear translocation of NFκB and its binding to BACE1 promoter as well as promoting the recruitment of the corepressor NCoR. Our findings indicate that atRA represses BACE1 gene expression under inflammatory conditions via the modulation of NFκB signaling. PMID:26240147

  15. [Effects of fluvastatin on the expression of Janus kinase 2/signal transducers and activators of transcription (JAK/STAT) in glomerular mesangial cells under high concentration of glucose].

    Science.gov (United States)

    Shi, Yong-hong; Zhao, Song; Ren, Yun-zhuo; Liu, Qing-juan; Duan, Hui-jun

    2008-07-01

    To investigate the effects of fluvastatin on activation of Janus kinase 2 (JAK2) and signal transducers and activators of transcription 1, 3 (STAT1, 3) in glomerular mesangial cells(GMCs) under high concentration of glucose. Rat GMCs were cultured in vitro, and they were treated with glucose and fluvastatin respectively. Tyrosine phosphorylation of JAK2 (p-JAK2) expression was detected by immunoprecipitation and Western blotting analysis. The protein expressions of JAK2, STAT1, p-STAT1, STAT3 and p-STAT3 were assessed by Western blotting. The protein synthesis of transforming growth factor-beta1 (TGF-beta1) and fibronectin (FN) in the supernatants of the GMCs were determined by enzyme-linked immunoadsorbent assay (ELISA). TGF-beta1 mRNA was assessed by reverse transcription and polymerase chain reaction (RT-PCR). Compared with low glucose control group, the expressions of p-JAK2 (802+/-124 vs.204+/-31), p-STAT1 (2,856.6+/-337.8 vs. 617.7+/-76.2), p-STAT3 (3,049.8+/-421.3 vs. 946.7+/-141.2) and TGF-beta1 mRNA were significantly up-regulated in GMCs under high glucose medium, and the concentration of TGF-beta1 in the supernatants [(2.87+/-0.34) microg/L vs. (1.20+/-0.11) microg/L] and FN [(6.34+/-0.61) mg/L vs. (3.24+/-0.26) mg/L, both P<0.01] were higher in the supernatants. The expression levels of p-JAK2 (412+/-67), p-STAT1 (1,178.4+/-137.1), p-STAT3 (1,572.6+/-181.2) and TGF-beta1 mRNA were significantly lower in fluvastatin group than those in high glucose group. The concentration of TGF-beta1 [(1.94+/-0.27) microg/L] and FN [(4.27+/-0.33)mg/L] in the supernatants in fluvastatin group were lower than those in high glucose control group (all P<0.05). Fluvastatin can inhibit overproduction of TGF-beta1 and FN in GMCs under high concentration of glucose, the underlying mechanism may partly be attributable to its influence on phosphorylation of JAK/STAT.

  16. The osmotin of Calotropis procera latex is not expressed in laticifer-free cultivated callus and under salt stress.

    Science.gov (United States)

    Souza, Isabel C C; Ramos, Márcio V; Costa, José H; Freitas, Cleverson D T; Oliveira, Raquel S B; Moreno, Frederico B; Moreira, Renato A; Carvalho, Cristina P S

    2017-10-01

    The latex of Calotropis procera has previously been reported to contain osmotin. This protein (CpOsm) inhibited phytopathogens and this was mechanistically characterized. Here, the time-course profile of CpOsm transcripts was examined in the salt-stressed cultivated callus of C. procera in order to better understand its role in the physiology of the plant. Stressed callus (80 mM NaCl) showed an unbalanced content of organic compounds (proline and total soluble sugar) and inorganic ions (Na + , Cl - , and K + ). Under salt treatment, the transcripts of CpOsm were detected after 12 h and slightly increased to a maximum at day seven, followed by reduction. Interestingly, CpOsm was not detected in the soluble protein fraction recovered from the salt-stressed callus as probed by electrophoresis, dot/Western blotting and mass spectrometry. The results suggested that (1) CpOsm is not constitutive in cultivated cells (laticifer-free tissues); (2) CpOsm transcripts appear under salt-stressed conditions; (3) the absence of CpOsm in the protein fractions of stressed cultivated cells indicated that salt-induced transcripts were not used for protein synthesis and this accounts to the belief that CpOsm may be a true laticifer protein in C. procera. More effort will be needed to unveil this process. In this study we show evidences that CpOsm gene is responsive to salt stress. However the corresponding protein is not produced in cultivated cells. Therefore, presently the hypothesis that CpOsm is involved in abiotic stress is not fully supported. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Manish Pandey

    2017-06-01

    Full Text Available Salinity-imposed limitations on plant growth are manifested through osmotic and ionic imbalances. However, because salinity-induced responses vary considerably among crop plants, monitoring of such responses at an early stage has relevance. In this study, physiological (seed germination, seed vigor index, root length, shoot length, fresh weight, dry weight and biochemical attributes (osmoprotectants, K+/Na+ ratio were analyzed for a time-course assessment of salt responses in Indian mustard (Brassica juncea L. with an emphasis on early monitoring. The results showed strong correlations for total soluble sugars at germination phase (24 h, proline content in the seedling establishment phase (48 h and various physiological parameters including seed vigor index (R2 = 0.901, shoot length (R2 = 0.982, and fresh weight (R2 = 0.980 at 72 h (adaptation under stress. In addition, transcriptional changes were observed under NaCl treatment for key genes belonging to the family of selective ion transporters (NHX, HKT and abscisic acid synthesis (AAO-3. The status of mitochondrial respiration was also examined as a probe for salinity tolerance at an early stage. The results suggested that although all the analyzed parameters showed correlations (negative or positive with salt stress magnitude, their critical response times differed, with most of the studied biochemical, physiological, or molecular markers providing valuable information only after radicle emergence, whereas mitochondrial respiration via alternative oxidase was useful for the early detection of salt responses.

  18. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica.

    Science.gov (United States)

    Shin, Hyunsuk; Oh, Youngjae; Kim, Daeil

    2015-08-01

    To boost our understanding of a recent outbreak of freezing injury, we sought to confirm distinctive features between the shoot tissues of the peach (Prunus persica) cultivars Daewol and Kiraranokiwami by mimicking unseasonable changes of temperatures that occur in the early spring through repeated deacclimation and reacclimation treatments. Patterns of cold hardiness declined dramatically during the deacclimation and rose during the reacclimation in both cultivars. Our results indicated that 'Daewol' possessed higher capacity in response to repeated deacclimation and reacclimation treatments than 'Kiraranokiwami'. 'Daewol' showed more sensitive changes in the carbohydrates in response to warm and low temperatures compared with 'Kiraranokiwami'. 'Daewol' indicated almost similar repeated down- and up-patterns in soluble sugar content in response to repeated deacclimation and reacclimation, whereas it indicated repeated up- and down-patterns in starch content. However, 'Kiraranokiwami' showed a progressive increase in the soluble sugar content and a progressive decrease in starch content. Notably, patterns of accumulation of a 60-kDa dehydrin protein encoded by the PpDhn1 gene were confirmed through western blotting and paralleled fluctuations of cold hardiness in both cultivars. Expression of this dehydrin was weak in both cultivars during deacclimation but its band intensity increased during reacclimation. Changes in related genes (β-amylase, PpDhn1, PpDhn2 and PpDhn3) were positively correlated with changes in cold hardiness throughout the experiment. Our results indicate that recent repeated warm periods may cause premature deacclimation in the early spring, and that more cold-tolerant cultivar may be more resilient to freezing injury caused by unstable temperature conditions. © 2014 Scandinavian Plant Physiology Society.

  19. Classification of rice (oryza sativa l. japonica nipponbare) immunophilins (fkbps, cyps) and expression patterns under water stress

    Science.gov (United States)

    2010-01-01

    Background FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. Results FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. Conclusion Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice. PMID:21087465

  20. Analysis of expressed sequence tags (ESTs) and gene expression changes under different growth conditions for the ciliate Anophryoides haemophila, the causative agent of bumper car disease in the American lobster (Homarus americanus).

    Science.gov (United States)

    Acorn, Adam R; Clark, K Fraser; Jones, Sarah; Després, Béatrice M; Munro, Sarah; Cawthorn, Richard J; Greenwood, Spencer J

    2011-06-01

    The scuticociliate Anophryoides haemophila, causes bumper car disease in American lobster (Homarus americanus) in commercial holding facilities in Atlantic Canada. While the parasite has been recognized since the 1970s and much has been learned about its biology, minimal molecular characterization exists. With genome consortiums turning to model organisms like the ciliates Tetrahymena and Paramecium, the amount of relevant sequence data available has made sequence surveys more attractive for gene discovery in related ciliates. We sequenced 9984 expressed sequence tags (ESTs) from a non-normalized A. haemophila cDNA library to characterize gene expression patterns, functional gene distribution and to discover novel genes related to the parasitic life history. The A. haemophila ESTs were grouped into 843 clusters and singletons with 658 EST clusters having identifiable homologs, while 159 ESTs were unique and had no similarity to any sequences in the public databases. Not unexpectedly, about 67% of the A. haemophila ESTs have similarity to annotated and hypothetical genes from the related oligohymenophorean ciliate, Tetrahymena. Numerous cysteine proteases, hypothetical proteins and novel sequences possess putative secretory signal peptides suggesting that they may contribute to the pathogenesis of bumper car disease in lobster. Real time RT-qPCR analysis of cathepsin L and two homologs of cathepsin B did not show any changes in gene expression under varying in vitro growth conditions or during a modified-in vivo infection which may be suggestive of the opportunistic life history strategy of this ciliate. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Transgenic mouse model expressing tdTomato under involucrin promoter as a tool for analysis of epidermal differentiation and wound healing.

    Science.gov (United States)

    Kasparek, Petr; Krenek, Pavel; Buryova, Halka; Suchanova, Sarka; Beck, Inken Maria; Sedlacek, Radislav

    2012-06-01

    The epidermis is a stratified tissue composed of different keratinocyte layers that create a barrier protecting the body from external influences, pathogens, and dehydration. The barrier function is mainly achieved by its outermost layer, the stratum corneum. To create a mouse model to study pathophysiological processes in the outermost layers of the epidermis in vivo and in vitro we prepared a construct containing red fluorescent td-Tomato reporter sequence under the control of involucrin promoter and its first intron. Transgenic mice were generated by pronuclear injection and the expression and regulation of the transgene was determined by in vivo imaging and fluorescent microscopy. The promoter targeted the transgene efficiently and specifically into the outermost epidermal layers although weak expression was also found in epithelia of tongue and bladder. The regulation of expression in the epidermis, i.e. fluorescence intensity of the reporter, could be easily followed during wound healing and dermatitis. Thus, these transgenic mice carrying the tdTomato reporter could be used as a valuable tool to study impact of various genes dysregulating the epidermal barrier and to follow effects of therapeutic agents for treatment of skin diseases in vivo.

  2. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Surya Kant

    Full Text Available Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  3. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.).

    Science.gov (United States)

    Kant, Surya; Burch, David; Badenhorst, Pieter; Palanisamy, Rajasekaran; Mason, John; Spangenberg, German

    2015-01-01

    Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  4. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity

    Science.gov (United States)

    2013-01-01

    Background The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. Results Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood–brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). Conclusions Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes

  5. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    Directory of Open Access Journals (Sweden)

    Kathleen D Cusick

    Full Text Available The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1 aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2 anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3 aerobic growth with different heating methods: gyrA, gap, gyrB; (4 all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute

  6. The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress.

    Directory of Open Access Journals (Sweden)

    Francesca eSecchi

    2013-12-01

    Full Text Available In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%, which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm, suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress.

  7. The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress.

    Science.gov (United States)

    Secchi, Francesca; Zwieniecki, Maciej A

    2013-01-01

    In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress.

  8. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  9. Simulating biodegradation under mixing-limited conditions using Michaelis-Menten (Monod) kinetic expressions in a particle tracking model

    Science.gov (United States)

    Ding, Dong; Benson, David A.

    2015-02-01

    Recent studies have demonstrated that effective field-scale bioremediation reactions rates are significantly lower than batch- or lab-scale rates, when the same law of mass action is used to represent the reaction at both scales. The mismatch is usually attributed to poor mixing of reactants brought about by heterogeneity. A recent method, based on a purely Lagrangian particle tracking (PT) theoretical development, successfully reproduces the effects of mixing-limited bimolecular reaction (A + B → C) from two benchmark experiments. In this numerical method, the reactants are represented by particles, and the small-scale physics are directly translated into a combination of two probabilities that govern whether: (1) reactant particles are collocated during a short time interval, and (2) two collocated particles favorably transform into a reaction. The latter is due to thermodynamics and is independent of scale of mixing. The former directly accounts for the degree of mixing in any system. We extend the application of the PT method to biodegradation, which is commonly characterized by more complex Michaelis-Menten (Monod) chemical kinetics. The advantage of the PT method is that it explains the variation of reaction rate based on mixing-controlled particle collisions instead of using empirical parameters. The PT method not only matches the Michaelis-Menten (Monod) equation under ideal conditions, but also captures the characteristics of non-ideal conditions such as imperfect mixing, disequilibrium, and limited availability of the active sites. We show these using hypothetical systems and also successfully apply the method to a column study of carbon tetrachloride biodegradation.

  10. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingyuan, E-mail: sunxingyuan@sina.com; Ren, Zhanjun; Pan, Yunzhi; Zhang, Chenxin

    2016-09-02

    Hypoxia-induced apoptosis-related mechanisms involved in the brain damage following cerebral ischemia injury. A subset of the small noncoding microRNA (miRNAs) is regulated by tissue oxygen levels, and miR-24 was found to be activated by hypoxic conditions. However, the roles of miR-24 and its target gene in neuron are not well understood. Here, we validated miRNA-24 is down-regulated in patients with cerebral infarction. Hypoxia suppressed the expression of miR-24, but increased the expression of neurocan in both mRNA and protein levels in SH-SY5Y cells. MiR-24 mimics reduced the expression of neurocan, suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. By luciferase reporter assay, neurocan is validated a direct target gene of miR-24. Furthermore, knockdown of neurocan suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. Taken together, miR-24 overexpression or silencing of neurocan shows an antihypoxic effect in SH-SY5Y cells. Therefore, miR-24 and neurocan play critical roles in neuron cell apoptosis and are potential therapeutic targets for ischemic brain disease. - Highlights: • miR-24 and neurocan play critical roles in neuron cell apoptosis. • miR-24 and neurocan are potential therapeutic targets for ischemic brain disease. • Antihypoxic effect of miR-24 and neurocan in SH-SY5Y cells.

  11. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2.

    Science.gov (United States)

    Huang, Yun; Cheng, Jun; Lu, Hongxiang; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-01-01

    The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO2 concentrations. The genetic reasons for the higher growth rate, CO2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO2 concentration have not been clearly defined yet. In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO2) dramatically decreased to near 0 in 15% CO2-grown cells, which indicated that CO2 molecules directly permeated into cells under high CO2 stress without CO2-concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the Km (CO2) (the minimum intracellular CO2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO2 fixation reaction) was 16.3 times higher in 15% CO2-grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO2-grown cells. Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L(-1)) under 15% CO2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO2 (0.04-60%), CO2 transport pathways responses to different CO2 (0

  12. S-nitrosoglutathione induces ciliary neurotrophic factor expression in astrocytes, which has implications to protect the central nervous system under pathological conditions.

    Science.gov (United States)

    Paintlia, Manjeet K; Paintlia, Ajaib S; Singh, Avtar K; Singh, Inderjit

    2013-02-08

    Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions.

  13. S-Nitrosoglutathione Induces Ciliary Neurotrophic Factor Expression in Astrocytes, Which Has Implications to Protect the Central Nervous System under Pathological Conditions*

    Science.gov (United States)

    Paintlia, Manjeet K.; Paintlia, Ajaib S.; Singh, Avtar K.; Singh, Inderjit

    2013-01-01

    Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions. PMID:23264628

  14. Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress.

    Science.gov (United States)

    Nie, Qiong; Gao, Guo-Li; Fan, Qing-jie; Qiao, Guang; Wen, Xiao-Peng; Liu, Tao; Peng, Zhi-Jun; Cai, Yong-Qiang

    2015-05-25

    Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Energy sources and levels influenced on performance parameters, thyroid hormones, and HSP70 gene expression of broiler chickens under heat stress.

    Science.gov (United States)

    Raghebian, Majid; Sadeghi, Ali Asghar; Aminafshar, Mehdi

    2016-12-01

    The present study was conducted to evaluate the effects of energy sources and levels on body and organs weights, thyroid hormones, and heat shock protein (HSP70) gene expression in broilers under heat stress. In a completely randomized design, 600 1-day-old Cobb chickens were assigned to five dietary treatments and four replicates. The chickens were fed diet based on corn as main energy source and energy level based on Cobb standard considered as control (C), corn-based diet with 3 % lesser energy than the control (T1), corn-based diet with 6 % lesser energy than the control (T2), corn and soybean oil-based diet according to Cobb standard (T3), and corn and soybean oil-based diet with 3 % upper energy than the control (T4). Temperature was increased to 34 °C for 8 h daily from days 12 to 41 of age to induce heat stress. The chickens in T1 and T2 had lower thyroid hormones and corticosterone levels than those in C, T3, and T4. The highest liver weight was for C and the lowest one was for T4. The highest gene expression was found in chickens fed T4 diet, and the lowest gene expression was for those in T2 group. The highest feed intake and worse feed conversion ratio was related to chickens in T2. The chickens in T3 and T4 had higher feed intake and weight gain than those in C. The results showed that the higher energy level supplied from soybean oil could enhance gene expression of HSP70 and decline the level of corticosterone and thyroid hormones and consequently improved performance.

  17. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  18. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity.

    Directory of Open Access Journals (Sweden)

    Cristina Girardi

    Full Text Available BACKGROUND: Ionizing radiation (IR can be extremely harmful for human cells since an improper DNA-damage response (DDR to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL incubated for 4 and 24 h in normal gravity (1 g and in modeled microgravity (MMG during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.

  19. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  20. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Nobutaka [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Ogawa, Ryohei, E-mail: ogawa@med.u-toyama.ac.jp [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Cui, Zheng-Guo [Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Morii, Akihiro; Watanabe, Akihiko [Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Kanayama, Shinji; Yoneda, Yuko [New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  1. Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states

    Directory of Open Access Journals (Sweden)

    Osailan Samira

    2008-07-01

    Full Text Available Abstract Background Real-time PCR is a reliable tool with which to measure mRNA transcripts, and provides valuable information on gene expression profiles. Endogenous controls such as housekeeping genes are used to normalise mRNA levels between samples for sensitive comparisons of mRNA transcription. Selection of the most stable control gene(s is therefore critical for the reliable interpretation of gene expression data. For the purpose of this study, 7 commonly used housekeeping genes were investigated in salivary submandibular glands under normal, inflamed, atrophic and regenerative states. Results The program NormFinder identified the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative states, and GAPDH in the atrophic state. For normalisation to multiple housekeeping genes, for each individual state, the optimal number of housekeeping genes as given by geNorm was: ACTB/UBC in the normal, ACTB/YWHAZ in the inflamed, ACTB/HPRT in the atrophic and ACTB/GAPDH in the regenerative state. The most stable housekeeping gene identified between states (compared to normal was UBC. However, ACTB, identified as one of the most stably expressed genes within states, was found to be one of the most variable between states. Furthermore we demonstrated that normalising between states to ACTB, rather than UBC, introduced an approximately 3 fold magnitude of error. Conclusion Using NormFinder, our studies demonstrated the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative groups and GAPDH in the atrophic group. However, if normalising to multiple housekeeping genes, we recommend normalising to those identified by geNorm. For normalisation across the physiological states, we recommend the use of UBC.

  2. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought.

    Directory of Open Access Journals (Sweden)

    B P Mallikarjuna Swamy

    Full Text Available BACKGROUND: Rice (Oryza sativa L. is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. METHODOLOGY/PRINCIPAL FINDINGS: Two pairs of backcross inbred lines (BILs from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the -QTL BILs and IR64, four major-effect QTL--one each on chromosomes 2, 4, 9, and 10--were identified. Meta-analysis of transcriptome data from the +QTL/-QTL BILs identified differentially expressed genes (DEGs significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha⁻¹ over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. CONCLUSIONS/SIGNIFICANCE: Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include

  3. Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress.

    Science.gov (United States)

    Ding, Jianfeng; Li, Jia; Yang, Dongmin; Yang, Feng; Nie, Hongtao; Huo, Zhongming; Yan, Xiwu

    2017-12-22

    The Manila clam Ruditapes philippinarum inhabits the intertidal zone and must therefore tolerate broad fluctuations in water temperature and salinity. Heat shock protein 60 (HSP60) is an evolutionarily conserved, multi-functional protein that plays a significant role in protecting organisms from harmful stress conditions. We cloned the R. philippinarum HSP60 (RpHSP60) gene and analyzed its transcriptional responses to thermal and low-salinity stresses. The complete sequence of RpHSP60 cDNA was 1777 nucleotides, containing a 1728-bp open reading frame encoding a polypeptide of 576-amino acids, with a calculated molecular mass of 61.25 kDa and predicted isoelectric point of 5.08. Comparisons of amino acid sequences and three-dimensional structures of HSP60 revealed that RpHSP60 was highly conserved in the signature HSP60-family domains. RpHSP60 mRNA was detected in all the tested tissues of R. philippinarum, with the highest expression levels in hemocytes. We measured RpHSP60 mRNA levels in the gills under thermal and low-salinity stresses using quantitative real-time reverse transcription-polymerase chain reaction. Following the thermal challenge, RpHSP60 mRNA was significantly upregulated at 6 h, and then progressively downregulated under high-temperature stress (30 °C), while only slight fluctuations were observed under low-temperature stress (-1 °C). Under low-salinity (17 ppt) stress, RpHSP60 mRNA levels were significantly increased at 3, 72, and 96 h (P < 0.05). These results suggest that HSP60 of R. philippinarum may play important roles in responding to high-temperature and low-salinity stresses.

  4. Modulation of inflammatory gene expression by a bilberry ( Vaccinium myrtillus L.) extract and single anthocyanins considering their limited stability under cell culture conditions.

    Science.gov (United States)

    Triebel, Sven; Trieu, Hai-Linh; Richling, Elke

    2012-09-12

    Studies with nonintestinal models indicate that anthocyanin-rich extracts can modulate inflammatory gene expression and may help prevent development of inflammatory bowel diseases (IBD). This work investigated the influence of a bilberry ( Vaccinium myrtillus L.) extract (BE) and comprising anthocyanins on pro-inflammatory genes in IFN-γ/IL-1β/TNF-α stimulated human colon epithelial cells (T84) by qRT-PCR and cytokine arrays. Moreover, the stability of selected anthocyanins under cell culture conditions was examined to assess their anti-inflammatory properties. BE and single anthocyanins significantly inhibited the expression and secretion of IBD-associated pro-inflammatory mediators (TNF-α, IP-10, I-TAC, sICAM-1, GRO-α) in the stimulated cells. The anti-inflammatory activity thereby strongly depends on the aglycon structure (hydroxylation and methylation pattern) and the sugar moiety. In contrast to anthocyanidins, which were highly unstable in cell culture medium, suggesting that their degradation products might contribute to the inhibitory effects assigned to the parent compounds, anthocyanins have higher stability and may directly contribute to BE's effects.

  5. The Peroxisomal 3-keto-acyl-CoA thiolase B Gene Expression Is under the Dual Control of PPARα and HNF4α in the Liver

    Directory of Open Access Journals (Sweden)

    J. Chamouton

    2010-01-01

    Full Text Available PPARα and HNF4α are nuclear receptors that control gene transcription by direct binding to specific nucleotide sequences. Using transgenic mice deficient for either PPARα or HNF4α, we show that the expression of the peroxisomal 3-keto-acyl-CoA thiolase B (Thb is under the dependence of these two transcription factors. Transactivation and gel shift experiments identified a novel PPAR response element within intron 3 of the Thb gene, by which PPARα but not HNF4α transactivates. Intriguingly, we found that HNF4α enhanced PPARα/RXRα transactivation from TB PPRE3 in a DNA-binding independent manner. Coimmunoprecipitation assays supported the hypothesis that HNF4α was physically interacting with RXRα. RT-PCR performed with RNA from liver-specific HNF4α-null mice confirmed the involvement of HNF4α in the PPARα-regulated induction of Thb by Wy14,643. Overall, we conclude that HNF4α enhances the PPARα-mediated activation of Thb gene expression in part through interaction with the obligate PPARα partner, RXRα.

  6. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  7. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences

    Directory of Open Access Journals (Sweden)

    Birman Tatiana

    2009-08-01

    Full Text Available Abstract Background Ovarian cancer ascites fluid (OCAF, contains malignant cells, is usually present in women with an advanced stage disease and currently has no effective therapy. Hence, we developed a new therapy strategy to target the expression of diphtheria toxin gene under the control of H19 regulatory sequences in ovarian tumor cells. H19 RNA is present at high levels in human cancer tissues (including ovarian cancer, while existing at a nearly undetectable level in the surrounding normal tissue. Methods H19 gene expression was tested in cells from OCAF by the in-situ hybridization technique (ISH using an H19 RNA probe. The therapeutic potential of the toxin vector DTA-H19 was tested in ovarian carcinoma cell lines and in a heterotopic animal model for ovarian cancer. Results H19 RNA was detected in 90% of patients with OCAF as determined by ISH. Intratumoral injection of DTA-H19 into ectopically developed tumors caused 40% inhibition of tumor growth. Conclusion These observations may be the first step towards a major breakthrough in the treatment of human OCAF, while the effect in solid tumors required further investigation. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure.

  8. cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress.

    Science.gov (United States)

    Kluge, Christoph; Lamkemeyer, Petra; Tavakoli, Nastaran; Golldack, Dortje; Kandlbinder, Andrea; Dietz, Karl-Josef

    2003-01-01

    The vacuolar-type ATPase (V-ATPase) and the vacuolar H(+)-pyrophosphatase are electrogenic proton pumps at plant endomembranes that create the proton motive force required for secondary activated transport and metabolite accumulation during development and adaptation to a variety of adverse growth conditions. Twelve distinct vacuolar H(+)-ATPase (VHA) subunits are suggested to constitute the functional V-ATPase complex. Starting from the available expressed sequence tag (EST) sequences and by homology screening, the complete set of 12 VHA subunits was cloned as cDNAs from the halophyte Mesembryanthemum crystallinum, vha-A-H, -a,-c, -d and -e. Transcript levels of all 12 VHA subunits as well as of tonoplast pyrophosphatase and P-ATPase were analysed in root and leaf tissue under conditions of osmotic (700 mM mannitol), heat and cold stress, and salinity. Distinct coordinated changes of stress-induced expression were observed for most subunits in roots and leaves, with mostly paralleled changes in transcript levels of all subunits. In some cases, contrasting responses were seen for vha-B and -c transcript amounts.

  9. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Li, Cong; Han, Zhanpin; Yuan, Jiye; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.

  10. Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress.

    Science.gov (United States)

    Shen, Mi; Zhao, Da-Ke; Qiao, Qin; Liu, Lei; Wang, Jun-Ling; Cao, Guan-Hua; Li, Tao; Zhao, Zhi-Wei

    2015-01-01

    Glutathione S-transferases (GSTs) compose a family of multifunctional enzymes that play important roles in the detoxification of xenobiotics and the oxidative stress response. In the present study, twenty four GST genes from the transcriptome of a metal-tolerant dark septate endophyte (DSE), Exophiala pisciphila, were identified based on sequence homology, and their responses to various heavy metal exposures were also analyzed. Phylogenetic analysis showed that the 24 GST genes from E. pisciphila (EpGSTs) were divided into eight distinct classes, including seven cytosolic classes and one mitochondrial metaxin 1-like class. Moreover, the variable expression patterns of these EpGSTs were observed under different heavy metal stresses at their effective concentrations for inhibiting growth by 50% (EC50). Lead (Pb) exposure caused the up-regulation of all EpGSTs, while cadmium (Cd), copper (Cu) and zinc (Zn) treatments led to the significant up-regulation of most of the EpGSTs (p heavy metal-specific differences in performance were observed under various heavy metals in Escherichia coli BL21 (DE3) transformed with EpGSTN-31, the over-expression of this gene was able to enhance the heavy metal tolerance of the host cells. These results indicate that E. Pisciphila harbored a diverse of GST genes and the up-regulated EpGSTs are closely related to the heavy metal tolerance of E. pisciphila. The study represents the first investigation of the GST family in E. pisciphila and provides a primary interpretation of heavy metal detoxification for E. pisciphila.

  11. Identification of glutathione S-transferase (GST genes from a dark septate endophytic fungus (Exophiala pisciphila and their expression patterns under varied metals stress.

    Directory of Open Access Journals (Sweden)

    Mi Shen

    Full Text Available Glutathione S-transferases (GSTs compose a family of multifunctional enzymes that play important roles in the detoxification of xenobiotics and the oxidative stress response. In the present study, twenty four GST genes from the transcriptome of a metal-tolerant dark septate endophyte (DSE, Exophiala pisciphila, were identified based on sequence homology, and their responses to various heavy metal exposures were also analyzed. Phylogenetic analysis showed that the 24 GST genes from E. pisciphila (EpGSTs were divided into eight distinct classes, including seven cytosolic classes and one mitochondrial metaxin 1-like class. Moreover, the variable expression patterns of these EpGSTs were observed under different heavy metal stresses at their effective concentrations for inhibiting growth by 50% (EC50. Lead (Pb exposure caused the up-regulation of all EpGSTs, while cadmium (Cd, copper (Cu and zinc (Zn treatments led to the significant up-regulation of most of the EpGSTs (p < 0.05 to p < 0.001. Furthermore, although heavy metal-specific differences in performance were observed under various heavy metals in Escherichia coli BL21 (DE3 transformed with EpGSTN-31, the over-expression of this gene was able to enhance the heavy metal tolerance of the host cells. These results indicate that E. Pisciphila harbored a diverse of GST genes and the up-regulated EpGSTs are closely related to the heavy metal tolerance of E. pisciphila. The study represents the first investigation of the GST family in E. pisciphila and provides a primary interpretation of heavy metal detoxification for E. pisciphila.

  12. Apoptosis-resistant E1B-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions.

    Science.gov (United States)

    Mercille, S; Massie, B

    1999-06-05

    We have shown previously that recombinant NS/0 myelomas expressing sufficient amounts of E1B-19K were resistant to apoptosis occurring in the late phase of batch culture and under stressful conditions such as cultivation in glutamine-free medium or following heat shock. However, no significant increase in monoclonal antibodies (MAb) was observed during the prolonged stationary phase of these batch cultures. Here, we show that E1B-19K can enhance cell survival and improve MAb productivity in high cell density perfusion culture. Typically, lymphoid cells grown under steady state in perfusion exhibit decreasing viabilities with concomitant accumulation of apoptotic cells. By modulating the ability of these cells to resist to induction of apoptosis in low nutrient environment, a 3-fold decrease in specific death rate from 0.22 day-1 for NS/0 control to 0.07 day-1 for E1B-19K cells was achieved, resulting in a significant improvement in cell viability throughout perfusion. E1B-19K cells at the perfusion plateau phase also exhibited a 3-fold reduction in specific growth rate concomitant with a lower percentage of S and higher percentage of G1 phase cells. This was associated with a 40% decrease in specific oxygen consumption rate, likely related to a reduction in the specific consumption rates of limiting nutrient(s). Expression of E1B-19K consequently had a significant impact on the steady-state viable cell density, allowing maintenance of 11.5 x 10(6) E1B-19K cells/mL versus 5.9 x 10(6) control NS/0 cells/mL for the same amount of fresh medium brought into the system (half a volume per day). Whereas MAb concentrations found in perfusion culture of control NS/0 myelomas were almost 3-fold higher than those found in batch culture; in the case of E1B-19K-expressing myelomas, the MAb concentration in perfusion was more than 7-fold higher than in batch. This was attributable to the 2-fold increase in viable cell plateau and to a 40% increase in the perfusion to batch ratio

  13. NnSR1, a class III non-S-RNase constitutively expressed in styles, is induced in roots and stems under phosphate deficiency in Nicotiana alata.

    Science.gov (United States)

    Rojas, Hernán J; Roldán, Juan A; Goldraij, Ariel

    2013-11-01

    Non-S-ribonucleases (non-S-RNases) are class III T2 RNases constitutively expressed in styles of species with S-RNase-based self-incompatibility. So far, no function has been attributed to these RNases. The aim of this work is to examine if NnSR1, a non-S-RNase from Nicotiana alata, is induced under conditions of phosphate (Pi) deprivation. The hypothesis is that under Pi-limited conditions, non-S-RNase functions may resemble the role of S-like RNases. To date, the only RNases reported to be induced by Pi deficiency are class I and class II S-like RNases, which are phylogenetically different from the class III clade of RNases. Gene and protein expression of NnSR1 were assayed in plants grown hydroponically with and without Pi, by combining RT-PCR, immunoblot and enzymatic activity approaches. NnSR1 transcripts were detected in roots 7 d after Pi deprivation and remained stable for several days. Transcript expression was correlated based on Pi availability in the culture medium. Antiserum against a peptide based on a hypervariable domain of NnSR1 recognized NnSR1 in roots and stems but not leaves exposed to Pi shortage. NnSR1 was not detected in culture medium and was pelleted with the microsomal fraction, suggesting that it was membrane-associated or included in large compartments. The anti-NnSR1 inhibited selectively the enzymatic activity of a 31-kDa RNase indicating that NnSR1 was induced in an enzymatically active form. The induction of NnSR1 indicates that there is a general recruitment of all classes of T2 RNases in response to Pi shortage. NnSR1 appears to have regained ancestral functions of class III RNases related to strategies to cope with Pi limitation and also possibly with other environmental challenges. This constitutes the first report for a specific function of class III RNases other than S-RNases.

  14. Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): Differential expression under conditions of normal growth and heat-induced stress.

    Science.gov (United States)

    Martín-Folgar, Raquel; de la Fuente, Mercedes; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2015-10-01

    Small heat shock proteins (sHSPs) comprise the most numerous, structurally diverse, and functionally uncharacterized family of heat shock proteins. Several Hsp genes (Hsp 90, 70, 40, and 27) from the insect Chironomus riparius are widely used in aquatic toxicology as biomarkers for environmental toxins. Here, we conducted a comparative study and characterized secondary structure of the six newly identified sHsp genes Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, and Hsp34. A characteristic α-crystallin domain is predicted in all the new proteins. Phylogenetic analysis suggests a strong relation to other sHSPs from insects and interesting evidence regarding evolutionary origin and duplication events. Comparative analysis of transcription profiles for Hsp27, Hsp70, and the six newly identified genes revealed that Hsp17, Hsp21, and Hsp22 are constitutively expressed under normal conditions, while under two different heat shock conditions these genes are either not activated or are even repressed (Hsp22). In contrast, Hsp23, Hsp24, and Hsp34 are significantly activated along with Hsp27 and Hsp70 during heat stress. These results strongly suggest functional differentiation within the small HSP subfamily and provide new data to help understand the coping mechanisms induced by stressful environmental stimuli. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cloning of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) gene from white shrimp, Litopenaeus vannamei and its expression level analysis under salinity stress.

    Science.gov (United States)

    Wang, Yanhong; Luo, Peng; Zhang, Lvping; Hu, Chaoqu; Ren, Chunhua; Xia, Jianjun

    2013-11-01

    Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is an intracellular membrane bound enzyme that utilizes the free energy of ATP to transport Ca(2+) against a concentration gradient. In the present study, a new SERCA gene (LvSERCA) from white shrimp (Litopenaeus vannamei) was cloned using suppression subtractive hybridization and rapid amplification of cDNA ends. The full-length cDNA of LvSERCA contained an open reading frame of 3,009 bp coding for 1,002 amino acids with a calculated molecular weight of approximately 109.8 kDa. The identity analysis of the amino acid sequence of LvSERCA showed that it is highly conserved with 10 transmembrane α-helices, one P-domain, one A-domain and one N-domain. The phylogenetic analysis revealed that LvSERCA is similar to other Arthropoda SERCA proteins. The mRNA levels of LvSERCA under salinity stress (3 and 40 g L(-1)) were analyzed by reverse transcription PCR and quantitative real-time PCR. The results showed that LvSERCA was expressed in all tissues detected. LvSERCA mRNA levels were significantly higher under hyper-salinity than hypo-salinity. These results highlight that Ga(2+)-ATPase plays an essential role in adjustment salinity stress, which may be useful for selective breeding of L. vannamei.

  16. In Vitro Infection of Trypanosoma cruzi Causes Decrease in Glucose Transporter Protein-1 (GLUT1 Expression in Explants of Human Placental Villi Cultured under Normal and High Glucose Concentrations

    Directory of Open Access Journals (Sweden)

    Luciana Mezzano

    2012-01-01

    Full Text Available Trypanosoma cruzi, the etiologic Chagas' disease agent, induces changes in protein pattern of the human placenta syncytiotrophoblast. The glucose transporter protein-1 (GLUT1 is the primary isoform involved in transplacental glucose transport. We carried out in vitro assays to determine if T. cruzi infection would induce changes in placental GLUT1 protein expression under normal and high concentration of glucose. Using Western blot and immunohistological techniques, GLUT1 expression was determined in normal placental villi cultured under normal or high concentrations of glucose, with or without in vitro T. cruzi infection, for 24 and 48 hours. High glucose media or T. cruzi infection alone reduced GLUT1 expression. A yet more accentuated reduction was observed when infection and high glucose condition took place together. We inform, for the first time, that T. cruzi infection may induce reduction of GLUT1 expression under normal and high glucose concentrations, and this effect is synergic to high glucose concentrations.

  17. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  18. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available The availability of complete genome sequence of soybean has allowed research community to design the 66 K Affymetrix Soybean Array GeneChip for genome-wide expression profiling of soybean. In this study, we carried out microarray analysis of leaf tissues of soybean plants, which were subjected to drought stress from late vegetative V6 and from full bloom reproductive R2 stages. Our data analyses showed that out of 46,093 soybean genes, which were predicted with high confidence among approximately 66,000 putative genes, 41,059 genes could be assigned with a known function. Using the criteria of a ratio change > = 2 and a q-value<0.05, we identified 1458 and 1818 upregulated and 1582 and 1688 downregulated genes in drought-stressed V6 and R2 leaves, respectively. These datasets were classified into 19 most abundant biological categories with similar proportions. There were only 612 and 463 genes that were overlapped among the upregulated and downregulated genes, respectively, in both stages, suggesting that both conserved and unconserved pathways might be involved in regulation of drought response in different stages of plant development. A comparative expression analysis using our datasets and that of drought stressed Arabidopsis leaves revealed the existence of both conserved and species-specific mechanisms that regulate drought responses. Many upregulated genes encode either regulatory proteins, such as transcription factors, including those with high homology to Arabidopsis DREB, NAC, AREB and ZAT/STZ transcription factors, kinases and two-component system members, or functional proteins, e.g. late embryogenesis-abundant proteins, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins. A detailed analysis of the GmNAC family and the hormone-related gene category showed that expression of many GmNAC and hormone-related genes was altered by drought in V6 and/or R2 leaves. Additionally, the downregulation of

  19. Molecular characterisation of a calmodulin gene, VcCaM1, that is differentially expressed under aluminium stress in highbush blueberry.

    Science.gov (United States)

    Inostroza-Blancheteau, C; Aquea, F; Loyola, R; Slovin, J; Josway, S; Rengel, Z; Reyes-Díaz, M; Alberdi, M; Arce-Johnson, P

    2013-11-01

    Calmodulin (CaM), a small acidic protein, is one of the best characterised Ca(2+) sensors in eukaryotes. This Ca(2+) -regulated protein plays a critical role in decoding and transducing environmental stress signals by activating specific targets. Many environmental stresses elicit changes in intracellular Ca(2+) activity that could initiate adaptive responses under adverse conditions. We report the first molecular cloning and characterisation of a calmodulin gene, VcCaM1 (Vaccinium corymbosum Calmodulin 1), in the woody shrub, highbush blueberry. VcCaM1 was first identified as VCAL19, a gene induced by aluminium stress in V. corymbosum L. A full-length cDNA of VcCaM1 containing a 766-bp open reading frame (ORF) encoding 149 amino acids was cloned from root RNA. The sequence encodes four Ca(2+) -binding motifs (EF-hands) and shows high similarity (99%) with the isoform CaM 201 of Daucus carota. Expression analyses showed that following Al treatment, VcCaM1 message level decreased in roots of Brigitta, an Al-resistant cultivar, and after 48 h, was lower than in Bluegold, an Al-sensitive cultivar. VcCAM1 message also decreased in leaves of both cultivars within 2 h of treatment. Message levels in leaves then increased by 24 h to control levels in Brigitta, but not in Bluegold, but then decreased again by 48 h. In conclusion, VcCaM1 does not appear to be directly involved in Al resistance, but may be involved in improved plant performance under Al toxicity conditions through regulation of Ca(2+) homeostasis and antioxidant systems in leaves. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions.

    Science.gov (United States)

    Martins, Cristina P S; Neves, Diana M; Cidade, Luciana C; Mendes, Amanda F S; Silva, Delmira C; Almeida, Alex-Alan F; Coelho-Filho, Mauricio A; Gesteira, Abelmon S; Soares-Filho, Walter S; Costa, Marcio G C

    2017-05-01

    Overexpression of the citrus CsTIP2;1 improves plant growth and tolerance to salt and drought stresses by enhancing cell expansion, H 2 O 2 detoxification and stomatal conductance. Tonoplast intrinsic proteins (TIPs) are a subfamily of aquaporins, belonging to the major intrinsic protein family. In a previous study, we have shown that a citrus TIP isoform, CsTIP2;1, is highly expressed in leaves and also transcriptionally regulated in leaves and roots by salt and drought stresses and infection by 'Candidatus Liberibacter asiaticus', the causal agent of the Huanglongbing disease, suggesting its involvement in the regulation of the flow of water and nutrients required during both normal growth and stress conditions. Here, we show that the overexpression of CsTIP2;1 in transgenic tobacco increases plant growth under optimal and water- and salt-stress conditions and also significantly improves the leaf water and oxidative status, photosynthetic capacity, transpiration rate and water use efficiency of plants subjected to a progressive soil drying. These results correlated with the enhanced mesophyll cell expansion, midrib aquiferous parenchyma abundance, H2O2 detoxification and stomatal conductance observed in the transgenic plants. Taken together, our results indicate that CsTIP2;1 plays an active role in regulating the water and oxidative status required for plant growth and adaptation to stressful environmental conditions and may be potentially useful for engineering stress tolerance in citrus and other crop plants.

  1. [Anatomy education at the beginning of Japan's Meiji era and an anatomical model with topographical expressions of anatomy under the fasciae].

    Science.gov (United States)

    Tsukisawa, Miyoko

    2007-03-01

    One anatomical model of a human is preserved at Kyushu University. We presume this model to have been made at the beginning of Japan's Meiji era as a copy of the Anatomie clastique, which was designed and manufactured by Louis Thomas Jérôme Auzoux and imported from France at the end of the Edo era. The model has labels of anatomical nomenclature in Japanese, which are taken from Kazuyoshi Taguchi's Kaibou-Ranyo, (see text) and the unique expressions of topographical anatomy under the fasciae. These are unique characteristics that cannot be seen on the Auzoux original. This model is supposed to have been made for use in professional medical training, and these characteristics reflect the historical background of the times when Western medicine was being introduced into Japan. At that time, Japan urgently needed training for doctors who were acquiring the techniques of surgery, but there was no system to supply a plentiful number of cadavers for use in anatomical education.

  2. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  3. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.

    Science.gov (United States)

    Fu, Xing-Zheng; Tong, Ya-Hua; Zhou, Xue; Ling, Li-Li; Chun, Chang-Pin; Cao, Li; Zeng, Ming; Peng, Liang-Zhi

    2017-09-20

    Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.

    Directory of Open Access Journals (Sweden)

    Harmeet eKaur

    2015-09-01

    Full Text Available Small heat shock proteins (sHSP are a diverse group of proteins and are highly abundant in plant species. Although majority of these sHSPs were shown to express specifically in seed, their potential function in seed physiology remains to be fully explored. Our proteomic analysis revealed that OsHSP18.2, a class II cytosolic HSP is an aging responsive protein as its abundance significantly increased after artificial aging in rice seeds. OsHSP18.2 transcript was found to markedly increase at the late maturation stage being highly abundant in dry seeds and sharply decreased after germination. Our biochemical study clearly demonstrated that OsHSP18.2 forms homooligomeric complex and is dodecameric in nature and functions as a molecular chaperon. OsHSP18.2 displayed chaperone activity as it was effective in preventing thermal inactivation of Citrate Synthase. Further, to analyze the function of this protein in seed physiology, seed specific Arabidopsis overexpression lines for OsHSP18.2 were generated. Our subsequent functional analysis clearly demonstrated that OsHSP18.2 has ability to improve seed vigor and longevity by reducing deleterious ROS accumulation in seeds. In addition, transformed Arabidopsis seeds displayed better performance in germination and cotyledon emergence under adverse conditions as well. Collectively, our work demonstrates that OsHSP18.2 is an aging responsive protein which functions as a molecular chaperon and possibly protect and stabilize the cellular proteins from irreversible damage particularly during maturation drying, desiccation and aging in seeds by restricting ROS accumulation and thereby improves seed vigor, longevity and seedling establishment.

  6. A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide.

    Science.gov (United States)

    Imokawa, Genji

    2009-07-01

    A deficiency of ordinary ceramides in the stratum corneum is an essential etiologic factor for the dry and barrier-disrupted skin of patients with atopic dermatitis (AD). We have proposed that the mechanism underlying that deficiency involves a novel sphingolipid metabolizing enzyme, termed sphingomyelin (SM) glucosylceramide (GCer) deacylase, which hydrolyzes SM or GCer at the acyl site to yield their lysoforms sphingosylphosphorylcholine (SPC) or glucosylsphingosine (GSP) instead of ceramide, leading to the ceramide deficiency in the AD skin. The enzymic characteristics observed showed a pH dependency of catalytic activity with a peak at pH 5.0 and a molecular weight of 40,000. Analytical isoelectric focusing (IEF) chromatography demonstrated that the pI values of SM deacylase, GlcCDase, SMase and ceramidase were 4.2, 7.4, 7.0 and 5.7, respectively. Those enzymic characteristics of SM-GCer deacylase are completely distinct from ceramidase as well as the other known deacylases. Our enzymic measurements demonstrated that SM-GCer deacylase activity is enhanced more than 5-fold in involved stratum corneum, more than 3-fold in uninvolved stratum corneum and approximately 3-fold in the involved epidermis from patients with AD compared with healthy controls. Our findings suggest that the novel enzyme, SM-GCer deacylase, is expressed in situ at significant levels in the epidermis of AD patients. This results in the production of SPC and GSP, instead of ceramides, which leads in turn to the ceramide deficiency seen in the stratum corneum of those patients. It is likely that the biogenesis of SM-GCer deacylase may be critical to the pathogenesis of AD.

  7. Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development.

    Science.gov (United States)

    McKenna, Tomás; Rosengardten, Ylva; Viceconte, Nikenza; Baek, Jean-Ha; Grochová, Diana; Eriksson, Maria

    2014-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) are two laminopathies caused by mutations leading to cellular accumulation of prelamin A or one of its truncated forms, progerin. One proposed mechanism for the more severe symptoms in patients with RD compared with HGPS is that higher levels of farnesylated lamin A are produced in RD. Here, we show evidence in support of that hypothesis. Overexpression of the most common progeroid lamin A mutation (LMNA c.1824C>T, p.G608G) during skin development results in a severe phenotype, characterized by dry scaly skin. At postnatal day 5 (PD5), progeroid animals showed a hyperplastic epidermis, disorganized sebaceous glands and an acute inflammatory dermal response, also involving the hypodermal fat layer. PD5 animals also showed an upregulation of multiple inflammatory response genes and an activated NF-kB target pathway. Careful analysis of the interfollicular epidermis showed aberrant expression of the lamin B receptor (LBR) in the suprabasal layer. Prolonged expression of LBR, in 14.06% of the cells, likely contributes to the observed arrest of skin development, clearly evident at PD4 when the skin had developed into single-layer epithelium in the wild-type animals while progeroid animals still had the multilayered appearance typical for skin at PD3. Suprabasal cells expressing LBR showed altered DNA distribution, suggesting the induction of gene expression changes. Despite the formation of a functional epidermal barrier and proven functionality of the gap junctions, progeroid animals displayed a greater rate of water loss as compared with wild-type littermates and died within the first two postnatal weeks. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Desempenho produtivo, partenocarpia e expressão sexual de linhagens de pepino caipira em ambiente protegido Yield, parthenocarpy and sexual expression of 'caipira' cucumber lines under protected cultivation

    Directory of Open Access Journals (Sweden)

    Amanda Regina Godoy

    2009-06-01

    linhagens principalmente devido ao tipo de fruto caipira mais próximo dos frutos comerciais.The yield capacity, parthenocarpy and sexual expression of 'caipira' cucumber lines were evaluated under protected cultivation. Yield capacity was evaluated in an experiment in randomized blocks design with 18 treatments (16 lines and two 'caipira' hybrids, Safira and Guarani, four replicates and five plants per plot, in a greenhouse with opened laterals to permit the entrance of pollinators. Sexual expression and parthenocarpy were evaluated in similar design, with 16 lines of SHS population (F2BC1 from the crossing between hybrids Safira and Hatem-beith alpha type and 19 of GH population (F2 from the crossing between hybrids Guarani and Hatem, but this experiment was set up in closed greenhouse, with anti-aphid net, avoiding the entrance of pollinators. Parthenocarpy was evaluated verifying fruit set in each line. Many lines were statistically similar to hybrids in yield capacity, but none was superior. Hybrids Safira and Guarani yielded 23.1 and 19.1 fruits plant-1, and 21.9 and 17.5 commercial fruits, respectively. Total and commercial weights plant-1 were respectively 3.8 and 3.6 kg for hybrid Safira and 2.9 and 2.7 kg for hybrid Guarani. Line SHS-2 presented good yield, similar to both hybrids, with light 'caipira' fruit type, besides parthenocarpy and gynoecious plants. All lines from population SHS have 'caipira' fruit type, but only five were parthenocarpic. In population GH, nine lines were parthenocarpic and ten have 'caipira' fruit type. Two lines from population SHS have only monoecious plants, with the others segregating to gynoecious and monoecious plants. In population GH, all plants were gynoecious. SHS population is more interesting to obtain lines because the 'caipira' fruit type is more similar to commercial fruits.

  9. Gene expression of H+-pumps in plasma and vacuolar membranes of corn root cells under the effect of sodium ions and bioactive preparations.

    Science.gov (United States)

    Kovalenko, N O; Palladina, T A

    2016-01-01

    Four isoforms of H+-ATPase of plasma membrane: MHA1, MHA2, MHA3, MHA4 are expressed in the corn seedling roots with prevalence of genes MHA3 і MHA4. The exposure of seedlings in the presence of 0.1 M NaCl activated the expression of MHA4 gene isoform, that demonstrates its important role in the processes of adaptation to salinization conditions. In vacuolar membrane, where potential is created by two Н+-pumps, sodium ions activated gene expression of only Н+-АТРase of V-type, taking no effect on the expression of Н+-pyrophosphatase. The seeds pretreatment by synthetic preparations Methyure and Ivine did not affect gene expression of Н+-pumps. Thus we can suppose that the ability of the above preparations to activate functioning of Н+-pumps in the presence of sodium ions is realized at the post-tranlation level.

  10. A spatial analysis to study access to emergency obstetric transport services under the public private "Janani Express Yojana" program in two districts of Madhya Pradesh, India.

    Science.gov (United States)

    Sabde, Yogesh; De Costa, Ayesha; Diwan, Vishal

    2014-07-22

    The government in Madhya Pradesh (MP), India in 2006, launched "Janani Express Yojana" (JE), a decentralized, 24X7, free emergency transport service for all pregnant women under a public-private partnership. JE supports India's large conditional cash transfer program, the "Janani Suraksha Yojana" (JSY) in the province and transports on average 60,000 parturients to hospital every month. The model is a relatively low cost one that potentially could be adopted in other parts of India and South Asia. This paper describes the uptake, time taken and geographic equity in access to the service to transport women to a facility in two districts of MP. This was a facility based cross sectional study. We interviewed parturients (n = 468) who delivered during a five day study period at facilities with >10 deliveries/month (n = 61) in two study districts. The women were asked details of transportation used to arrive at the facility, time taken and their residential addresses. These details were plotted onto a Geographic Information System (GIS) to estimate travelled distances and identify statistically significant clusters of mothers (hot spots) reporting delays >2 hours. JE vehicles were well dispersed across the districts and used by 236 (50.03%) mothers of which 111(47.03%) took >2 hours to reach a facility. Inability of JE vehicle to reach a mother in time was the main reason for delays. There was no correlation between the duration of delay and distance travelled. Maps of the travel paths and travel duration of the women are presented. The study identified hot spots of mothers with delays >2 hours and explored the possible reasons for longer delays. The JE service was accessible in all parts of the districts. Relatively high utilization rates of JE indicate that it ably supported JSY program to draw more women for institutional deliveries. However, half of the JE users experienced long (>2 hour) delays. The delayed mothers clustered in difficult terrains of the districts

  11. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  12. Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80 - and CSF-1R-expressing populations.

    Science.gov (United States)

    Pillai, Manoj M; Hayes, Brian; Torok-Storb, Beverly

    2009-12-01

    Macrophages are critical components of diverse microenvironments (ME) in adulthood, as well as during embryogenesis. Their role in development precludes the use of gene-targeting and knockout approaches for studying their function. Hence, we proposed to create a macrophage-specific inducible transgenic mouse where genes can be turned on or off at will. A transgenic mouse in which the reverse tetracycline activator (rtTA-M2) is expressed under the hCD68 promoter for macrophage-specific gene induction was developed and crossed with a second transgenic reporter mouse strain in which the gene for green fluorescent protein (GFP) is under the control of tetracycline responsive element promoter. After doxycycline induction of the double transgenic animals (designated CD68-rtTA-tet-GFP), inducible expression of GFP was characterized by multicolor flow cytometric analysis of blood, marrow, and spleen cells and by demonstration of GFP expression in fresh-frozen sections in diverse tissues. In bone marrow, inducible GFP expression was not confined to, or inclusive of, all cells expressing the classical macrophage markers, such as F4/80. However, GFP-expressing cells in thioglycollate-elicited peritoneal macrophages were also positive for F4/80 and monocyte-macrophage-specific 2 antigen. Interestingly, flow analysis also indicated little overlap between the F4/80 and CSF-1R-positive populations. Fresh-frozen samples of tissues known to contain macrophages revealed GFP-expressing cells with variable morphologies. Our results show that the hCD68 promoter directs gene expression in a macrophage population distinct from that defined by classical monocyte-macrophage markers or promoters. Whether this population is functionally distinct remains to be established.

  13. Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia

    Directory of Open Access Journals (Sweden)

    Yue-Xin Yu

    2017-01-01

    Conclusions: The data support the hypothesis that TGF-β1 is involved in the pathogenesis of EMs through regulating VEGF expression. An additive effect of TGF-β1 and hypoxia is taking place at the transcriptional level.

  14. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, K. E.; Novosadová, Vendula; Bendahl, P.-O.; Graffman, C.; Larsson, A.-M.; Ryden, L.

    2017-01-01

    Roč. 8, č. 28 (2017), s. 45544-45565 ISSN 1949-2553 Keywords : metastatic breast cancer * circulating tumor cells * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  15. Under Under Under / Merit Kask

    Index Scriptorium Estoniae

    Kask, Merit

    2006-01-01

    20. nov. esietendub Kumu auditooriumis MTÜ Ühenduse R.A.A.A.M teatriprojekt "Under" poetess Marie Underist. Lavastajad Merle Karusoo ja Raimo Pass, kunstnik Jaagup Roomet, helilooja Urmas Lattikas, peaosas Katrin Saukas

  16. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases.

    Science.gov (United States)

    Mildner, Alexander; Huang, Hao; Radke, Josefine; Stenzel, Werner; Priller, Josef

    2017-02-01

    Microglia are resident immune cells in the central nervous system (CNS), which are essential for immune defence and critically contribute to neuronal functions during homeostasis. Until now, little is known about microglia biology in humans in part due to the lack of microglia-specific markers. We therefore investigated the expression of the purinergic receptor P2Y12 in human brain tissue. Compared to classical markers used to identify microglia such as Iba1, CD68 or MHCII, we found that P2Y12 is expressed on parenchymal microglia but is absent from perivascular or meningeal macrophages. We further demonstrate that P2Y12 expression is stable throughout human brain development, including fetal phases, and quantification of P2 Y12+ microglia revealed that the density of human microglia is constant throughout lifetime. In contrast, CD68 expression increases during aging in cerebellar but not in cortical microglia, indicating regional heterogeneity. CNS pathologies such as Alzheimer's disease or multiple sclerosis-but not schizophrenia-result in decreased P2Y12 immunoreactivity in plaque- or lesion-associated myeloid cells, whereas Iba1 expression remains detectable. Our results suggest that P2Y12 is a useful marker for the identification of human microglia throughout the lifespan. Moreover, P2Y12 expression might help to discriminate activated microglia and infiltrating myeloid cells from quiescent microglia in the human CNS. GLIA 2017;65:375-387. © 2016 Wiley Periodicals, Inc.

  17. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy

    Science.gov (United States)

    Aaltonen, Kristina E.; Novosadová, Vendula; Bendahl, Pär-Ola; Graffman, Cecilia; Larsson, Anna-Maria; Rydén, Lisa

    2017-01-01

    Resistance to systemic therapy is a major problem in metastatic breast cancer (MBC) that can be explained by initial tumor heterogeneity as well as by evolutionary changes during therapy and tumor progression. Circulating tumor cells (CTCs) detected in a liquid biopsy can be sampled and characterized repeatedly during therapy in order to monitor treatment response and disease progression. Our aim was to investigate how CTC derived gene expression of treatment predictive markers (ESR1/HER2) and other cancer associated markers changed in patient blood samples during six months of first-line systemic treatment for MBC. CTCs from 36 patients were enriched using CellSearch (Janssen Diagnostics) and AdnaTest (QIAGEN) before gene expression analysis was performed with a customized gene panel (TATAA Biocenter). Our results show that antibodies against HER2 and EGFR were valuable to isolate CTCs unidentified by CellSearch and possibly lacking EpCAM expression. Evaluation of patients with clinically different breast cancer subgroups demonstrated that gene expression of treatment predictive markers changed over time. This change was especially prominent for HER2 expression. In conclusion, we found that changed gene expression during first-line systemic therapy for MBC could be a possible explanation for treatment resistance. Characterization of CTCs at several time-points during therapy could be informative for treatment selection. PMID:28489591

  18. A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells

    Science.gov (United States)

    Cao, Kan; Capell, Brian C.; Erdos, Michael R.; Djabali, Karima; Collins, Francis S.

    2007-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by dramatic premature aging. Classic HGPS is caused by a de novo point mutation in exon 11 (residue 1824, C → T) of the LMNA gene, activating a cryptic splice donor and resulting in a mutant lamin A (LA) protein termed “progerin/LAΔ50” that lacks the normal cleavage site to remove a C-terminal farnesyl group. During interphase, irreversibly farnesylated progerin/LAΔ50 anchors to the nuclear membrane and causes characteristic nuclear blebbing. Progerin/LAΔ50's localization and behavior during mitosis, however, are completely unknown. Here, we report that progerin/LAΔ50 mislocalizes into insoluble cytoplasmic aggregates and membranes during mitosis and causes abnormal chromosome segregation and binucleation. These phenotypes are largely rescued with either farnesyltransferase inhibitors or a farnesylation-incompetent mutant progerin/LAΔ50. Furthermore, we demonstrate that small amounts of progerin/LAΔ50 exist in normal fibroblasts, and a significant percentage of these progerin/LAΔ50-expressing normal cells are binucleated, implicating progerin/LAΔ50 as causing similar mitotic defects in the normal aging process. Our findings present evidence of mitotic abnormality in HGPS and may shed light on the general phenomenon of aging. PMID:17360355

  19. Expression of genes related to antioxidant activity in Nile tilapia kept under salinity stress and fed diets containing different levels of vitamin C.

    Science.gov (United States)

    Caxico Vieira, Caio Alexandre Santos; Vieira, Jodnes Sobreira; Bastos, Marisa Silva; Zancanela, Vittor; Barbosa, Leandro Teixeira; Gasparino, Eliane; Del Vesco, Ana Paula

    2018-01-01

    The aim of this study was to examine whether (1) severe changes in salinity produced increased stress, and (2) vitamin C supplementation might reduce the observed damage in Nile tilapia. The parameters measured included condition factor, survival rate, and gene expression of catalase (CAT), heat shock protein 70 (HSP70), glutathione reductase (GSR), glutathione synthase (GSS), and glutathione peroxidase (GPx). The investigation was conducted with 160 Nile tilapia divided into four treatment groups: freshwater; 7 or 21 parts per thousand (‰) salinity, all fed a basal diet; as well as a fourth treatment group consisting of fish kept at 21‰ salinity fed a diet supplemented with vitamin C (1500 mg/kg). For gene expression analysis, liver samples were collected after 24 h or after 14 d. After 24 h, fish raised in 21‰ salinity and fed with the diet supplemented with vitamin C showed similar GPx expression as the control freshwater group. GSS expression in 21‰ salinity was similar to fish exposed to 7‰ salinity. Nile tilapia exposed to 21‰ salinity without vitamin C supplementation exhibited the highest HSP70 gene expression levels after 24 h. After 14-dtreatment, the lowest survival rate was observed in the 21‰ salinity group. After 14 d, the highest expression of GPx and GSR levels was detected in fish in the 21‰ salinity group that received vitamin C. Data indicate that vitamin C supplementation enhanced the expression of genes related to antioxidant capacity in Nile tilapia exposed to higher salinity, thereby increasing protection against the oxidative effects induced by high water salinity..

  20. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

    Science.gov (United States)

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung

    2014-01-01

    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Selection of endogenous genes for gene expression studies in Eucalyptus under biotic (Puccinia psidii and abiotic (acibenzolar-S-methyl stresses using RT-qPCR

    Directory of Open Access Journals (Sweden)

    Ferro Maria IT

    2010-02-01

    Full Text Available Abstract Background Rust caused by Puccinia psidii Winter has been limiting for the establishment of new Eucalyptus plantations, as well as for resprouting of susceptible genetic materials. Identifying host genes involved in defense responses is important to elucidate resistance mechanisms. Reverse transcription-quantitative PCR is the most common method of mRNA quantitation for gene expression analysis. This method generally employs a reference gene as an internal control to normalize results. A good endogenous control transcript shows minimal variation due to experimental conditions. Findings We analyzed the expression of 13 genes to identify transcripts with minimal variation in leaves of 60-day-old clonal seedlings of two Eucalyptus clones (rust-resistant and susceptible subjected to biotic (P. psidii and abiotic (acibenzolar-S-methyl, ASM stresses. Conclusions For tissue samples of clones that did not receive any stimulus, a combination of the eEF2 and EglDH genes was the best control for normalization. When pathogen-inoculated and uninoculated plant samples were compared, eEF2 and UBQ together were more appropriate as normalizers. In ASM-treated and untreated leaves of both clones, transcripts of the CYP and elF4B genes combined were the ones with minimal variation. Finally, when comparing expression in both clones for ASM-treated leaves, P. psidii-inoculated leaves, ASM-treated plus P. psidii-inoculated leaves, and their respective controls, the genes with the most stable expression were EgIDH and UBQ. The chitinase gene, which is highly expressed in studies on plant resistance to phytopathogens, was used to confirm variation in gene expression due to the treatments.

  2. VE-statin/egfl7 expression in endothelial cells is regulated by a distal enhancer and a proximal promoter under the direct control of Erg and GATA-2.

    Directory of Open Access Journals (Sweden)

    Alexandra Le Bras

    Full Text Available Angiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult. We studied here the regulatory mechanisms that control this tissue-specific expression. RT-qPCR analyses showed that the specificity of expression of VE-statin/egfl7 in endothelial cells is not shared with its closest neighbor genes notch1 and agpat2 on the mouse chromosome 2. Chromatin-immunoprecipitation analysis of histone modifications at the VE-statin/egfl7 locus showed that the chromatin is specifically opened in endothelial cells, but not in fibroblasts at the transcription start sites. A 13 kb genomic fragment of promoter was cloned and analyzed by gene reporter assays which showed that two conserved regions are important for the specific expression of VE-statin/egfl7 in endothelial cells; a -8409/-7563 enhancer and the -252/+38 region encompassing the exon-1b transcription start site. The latter contains essential GATA and ETS-binding sites, as assessed by linker-scanning analysis and site-directed mutagenesis. An analysis of expression of the ETS and GATA transcription factors showed that Erg, Fli-1 and GATA-2 are the most highly expressed factors in endothelial cells. Erg and GATA-2 directly control the expression of the endogenous VE-statin/egfl7 while Fli-1 probably exerts an indirect control, as assessed by RNA interference and chromatin immunoprecipitation. This first detailed analysis of the mechanisms that govern the expression of the VE-statin/egfl7 gene in endothelial cells pinpoints the specific importance of ETS and GATA factors in the specific

  3. Species-specific differences in tissue-specific expression of alcohol dehydrogenase are under the control of complex cis-acting loci: Evidence from Drosophila hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ranganayakulu, G.; Reddy, A.R. (University of Hyderbad (India)); Kirkpatrick, R.B.; Martin, P.F. (Drexel University, Philadelphia, PA (United States))

    1991-12-01

    Differences in the expression of alcohol dehydrogenase in the hindgut and testis of adult Drosophila virilis, D. texana, D. novamexicana and D. borealis flies were observed. These heritable differences do not arise due to chromosomal rearrangements, since the polytene chromosome banding patterns did not reveal any such gross chromosomal rearrangements near the Adh locus in any of the tested species. Analysis of the interspecific hybrids revealed that these differences are controlled by complex cis-acting genetic loci. Further, the cis-acting locus controlling the expression of ADH in testis was found to be separable by crossing-over.

  4. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  5. Hypercholesterolemia and tissue-specific differential mRNA expression of type-1 5'-iodothyronine deiodinase under different selenium status in rats

    Directory of Open Access Journals (Sweden)

    SANJIV DHINGRA

    2006-01-01

    Full Text Available Type-1 5'-iodothyronine deiodinase (5'-DI is responsible for conversion of T4 to T3. Selenium (Se is an integral part of this enzyme. Keeping in view the strong association between atherosclerosis and hypothyroidism, the present study examined the behavior of 5'-DI in liver, aorta and thyroid during hypercholesterolemia following different Se status, i.e., Se deficiency (0.02ppm, adequate (0.2ppm and excess dose (1ppm in SD male rats. Animals were fed a control or high-cholesterol diet (2% for 1 and 2 months. 5'-DI activity and mRNA expression was measured by RIA and RT-PCR respectively. In liver and aorta, 5'-DI expression significantly decreased with the Se-deficient and the high-cholesterol diet. The trend was opposite in thyroid, i.e., mRNA expression increased significantly during selenium deficiency and with a high-cholesterol feeding. But with 1ppm Se supplementation, the 5'-DI expression increased in all the three tissues. The present study indicates that hypercholesterolemia along with selenium deficiency is co-responsible for differential regulation of 5'-DI enzyme in thyroidal vs. extrathyroidal tissues. Distinct regulation of 5'-DI in the thyroid reflects the clinical importance of this selenoprotein during hypercholesterolemia as this enzyme is essential for T3 production, which further has a vital role in the maintenance of lipid metabolism

  6. Expression of globulin-2, a member of the cupin superfamily of proteins with similarity to known food allergens, is increased under high temperature regimen during wheat grain development

    Science.gov (United States)

    Twenty-three expressed sequence tags (ESTs)from the US spring wheat Butte 86 were identified that encode proteins similar to a globulin-2 protein from maize embryos. The ESTs assembled into three contigs, two of which include the entire coding region for the mature protein. The encoded proteins co...

  7. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  8. Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels.

    Science.gov (United States)

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2017-03-01

    The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P bacteria groups (Firmicutes, Clostridium cluster IV, Clostridium cluster XIVa, Escherichia coli, and Lactobacillus), but EAI showed limited effects. Low-CP diet down-regulated gene expressions of pro-inflammatory cytokines, toll-like receptor (TLR4), myeloid differentiating factor 88 (MyD88), and nuclear factor-κB p65 (NF-κB p65) (P fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.

  9. Expression of NO Synthase Under Medication with Cyclosporine A, Mycophenolate Mofetil, and Tacrolimus during Development of Transplant Vasculopathy on Rat Cardiac Allograft.

    Science.gov (United States)

    Bogossian, Harilaos; Frommeyer, Gerrit; Ninios, Ilias; Bandorski, Dirk; Seyfarth, Melchior; Matzaroglou, Charalampos; Lemke, Bernd; Eckardt, Lars; Zarse, Markus; Kafchitsas, Konstantinos

    2016-08-01

    The transplant vasculopathy as a sign of chronic graft rejection affects both the epicardial and the intramyocardial arteries of the graft. This is at least partially mediated by NO synthases. The aim of this study was to assess possible protective effects of cyclosporine A (CsA), tacrolimus (FK506), and mycophenolate mofetil (MMF) on the expression of NO synthases in an experimental transplant rat model. Heart transplantation was performed in 322 rats. These were randomly assigned to four equal groups (control, CsA, FK506, MMF). Recipients were monitored up to 60 days after transplantation, while transplanted hearts were recovered at certain time points for analysis. Expression and staining intensity for endothelial nitric oxide synthases (e-nos) and inducible nitric oxide synthases (i-nos) were analyzed in epicardial and intramyocardial vessels in each group. All employed drugs led to a significant reduction of expression or staining intensity of i-nos and e-nos. MMF was most effective in reduction in expression of both NO synthases. These results imply that all described drugs prevent endothelial impairment induced by toxicity of NO and thereby prevent transplant vasculopathy. MMF seems to be the most effective drug. © 2016 John Wiley & Sons Ltd.

  10. Evaluation of stability and validation of reference genes for RT-qPCR expression studies in rice plants under water deficit.

    Science.gov (United States)

    Auler, Priscila Ariane; Benitez, Letícia Carvalho; do Amaral, Marcelo Nogueira; Vighi, Isabel Lopes; Dos Santos Rodrigues, Gabriela; da Maia, Luciano Carlos; Braga, Eugenia Jacira Bolacel

    2017-05-01

    Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (β-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes β-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.

  11. Altered gene and protein expression of glucose transporter1 underlies dexamethasone inhibition of insulin-stimulated glucose uptake in chicken muscles.

    Science.gov (United States)

    Zhao, J P; Bao, J; Wang, X J; Jiao, H C; Song, Z G; Lin, H

    2012-12-01

    A study was performed to characterize the effects of dexamethasone (DEX) and insulin administration on gene expression of glucose transporters (GLUT) in chicken (Gallus gallus domesticus) skeletal muscles and in cultured embryonic myoblasts. Three groups of 1-wk-old male chickens were randomly subjected to one of the following treatments for 7 d: DEX (a subcutaneous injection of 1 mg/kg BW, twice daily at 0800 h and 2000 h), controls (injected with saline), and pair-fed controls (restricted to the same feed intake as for the DEX treatment). Expressions of GLUT-1, GLUT-3, GLUT-8, and 18S rRNA mRNA were determined by quantitative reverse transcription PCR in the pectoralis major (PM) and biceps femoris (BF) muscles. Using chicken embryonic myoblasts (CEM), the interaction between DEX (200 nM) and insulin (100 nM) administration was evaluated on GLUT gene and GLUT-1 protein expressions and 2-deoxy-D-[1, 2-(3)H]-glucose (2-DG) uptake. Myoblasts were incubated with serum-free medium for 3 h in the presence or absence of insulin (0, 0.02, 0.1, 0.5, and 2.5 μM). Although GLUT-1 is not considered an insulin-responsive GLUT in mammals, this study shows that insulin stimulated 2-DG uptake and GLUT-1 mRNA and protein expression in CEM (P muscle. Dexamethasone inhibited insulin-stimulated glucose uptake in CEM (P muscles. The results of the present study indicate that the altered GLUT-1 gene and protein expression may contribute to the insulin resistance induced by DEX treatment in chicken mu