WorldWideScience

Sample records for progeria cells effects

  1. Progeria

    Directory of Open Access Journals (Sweden)

    Kaur Charandeep

    2000-01-01

    Full Text Available A case of progeria is being reported in a 7-year old boy. He had characteristic facies, short stature, alopecia, high pitched voice, coxa valga and sclerodermatous changes in skin.

  2. Progeria

    Directory of Open Access Journals (Sweden)

    Raval Ranjan

    1992-01-01

    Full Text Available An 8-year-old boy presented with clinical manifestations of progeria. He had senile looks, scanty scalp hair, stunted growth, and wrinkled skin with loss of subcutaneous fat. Sclerodermatous changes were found on both thighs and pelvic region, which was confirmed by histopathology.

  3. Progeria

    Directory of Open Access Journals (Sweden)

    Mohamed Riyaz S

    2009-01-01

    Full Text Available Hutchinson Gilford Progeria Syndrome (HGPS is a rare, sporadic, autosomal dominant syndrome that involves premature ageing and death at early age due to myocardial infarction or stroke. A 30-year-old male with clinical and radiologic features highly suggestive of HGPS is presented here with description of differential diagnosis, dental considerations and review of literature.

  4. Stem cell aging in adult progeria

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2015-01-01

    Full Text Available Aging is considered an irreversible biological process and also a major risk factor for a spectrum of geriatric diseases. Advanced age-related decline in physiological functions, such as neurodegeneration, development of cardiovascular disease, endocrine and metabolic dysfunction, and neoplastic transformation, has become the focus in aging research. Natural aging is not regarded as a programmed process. However, accelerated aging due to inherited genetic defects in patients of progeria is programmed and resembles many aspects of natural aging. Among several premature aging syndromes, Werner syndrome (WS and Hutchinson–Gilford progeria syndrome (HGPS are two broadly investigated diseases. In this review, we discuss how stem cell aging in WS helps us understand the biology of aging. We also discuss briefly how the altered epigenetic landscape in aged cells can be reversed to a “juvenile” state. Lastly, we explore the potential application of the latest genomic editing technique for stem cell-based therapy and regenerative medicine in the context of aging.

  5. A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells

    Science.gov (United States)

    Cao, Kan; Capell, Brian C.; Erdos, Michael R.; Djabali, Karima; Collins, Francis S.

    2007-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by dramatic premature aging. Classic HGPS is caused by a de novo point mutation in exon 11 (residue 1824, C → T) of the LMNA gene, activating a cryptic splice donor and resulting in a mutant lamin A (LA) protein termed “progerin/LAΔ50” that lacks the normal cleavage site to remove a C-terminal farnesyl group. During interphase, irreversibly farnesylated progerin/LAΔ50 anchors to the nuclear membrane and causes characteristic nuclear blebbing. Progerin/LAΔ50's localization and behavior during mitosis, however, are completely unknown. Here, we report that progerin/LAΔ50 mislocalizes into insoluble cytoplasmic aggregates and membranes during mitosis and causes abnormal chromosome segregation and binucleation. These phenotypes are largely rescued with either farnesyltransferase inhibitors or a farnesylation-incompetent mutant progerin/LAΔ50. Furthermore, we demonstrate that small amounts of progerin/LAΔ50 exist in normal fibroblasts, and a significant percentage of these progerin/LAΔ50-expressing normal cells are binucleated, implicating progerin/LAΔ50 as causing similar mitotic defects in the normal aging process. Our findings present evidence of mitotic abnormality in HGPS and may shed light on the general phenomenon of aging. PMID:17360355

  6. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  7. Genetics Home Reference: Hutchinson-Gilford progeria syndrome

    Science.gov (United States)

    ... Wilson A. Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. J Gerontol A ... should not be used as a substitute for professional medical care or advice. Users with questions about ...

  8. Immortalization of Werner syndrome and progeria fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H.; Moses, R.E. (Baylor College of Medicine, Houston, TX (USA))

    1991-02-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents.

  9. Decreased repair of gamma damaged DNA in progeria

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, A.J.; Howes, M.

    1977-01-01

    A sensitive host-cell reactivation technique was used to examine the DNA repair ability of fibroblasts from two patients with classical progeria. Fibroblasts were infected with either non-irradiated or gamma-irradiated adenovirus type 2 and at 48 hrs after infection cells were examined for the presence of viral structural antigens using immunofluorescent staining. The production of viral structural antigens was considerably reduced in the progeria lines as compared to normal fibroblasts when gamma-irradiated virus was used, indicating a defect in the repair of gamma ray damaged DNA in the progeria cells.

  10. Physical Therapy and Occupational Therapy in Progeria

    Science.gov (United States)

    Physical Therapy and Occupational Therapy in Progeria Information for Families and Caretakers from The Progeria Research Foundation Written ... accelerated aging in children. Children with Progeria need Physical Therapy (PT) and Occupational Therapy (OT) as often as ...

  11. Labor Market Progeria.

    Science.gov (United States)

    Rodeheaver, Dean

    1990-01-01

    Social ambivalence toward women's roles, sexuality, appearance, and aging combine with social standards of attractiveness to create both age and sex discrimination in the workplace. The life expectancy of presentability is shorter among women than men, thus creating an accelerated aging process termed labor market progeria. (SK)

  12. Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo

    Directory of Open Access Journals (Sweden)

    Vera Wenzel

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare disorder characterized by segmental accelerated aging and early death from coronary artery disease or stroke. Nearly 90% of HGPS sufferers carry a G608G mutation within exon 11 of LMNA, producing a truncated form of prelamin A, referred to as “progerin”. Here, we report the isolation of naïve multipotent skin-derived precursor (SKP cells from dermal fibroblast cultures from HGPS donors. These cells form spheres and express the neural crest marker, nestin, in addition to the multipotent markers, OCT4, Sox2, Nanog and TG30; these cells can self-renew and differentiate into smooth muscle cells (SMCs and fibroblasts. The SMCs derived from the HGPS-SKPs accumulate nuclear progerin with increasing passages. A subset of the HGPS-naïve SKPs express progerin in vitro and in situ in HGPS skin sections. This is the first in vivo evidence that progerin is produced in adult stem cells, and implies that this protein could induce stem cells exhaustion as a mechanism contributing to aging. Our study provides a basis on which to explore therapeutic applications for HGPS stem cells and opens avenues for investigating the pathogenesis of other genetic diseases.

  13. Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA

    Directory of Open Access Journals (Sweden)

    Xavier Nissan

    2012-07-01

    Full Text Available One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS, who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.

  14. Hutchinson-Gilford progeria syndrome

    Directory of Open Access Journals (Sweden)

    Agarwal Uma

    2010-01-01

    Full Text Available Progeria is a rare genetic disorder characterized by premature aging, involving the skin, bones, heart, and blood vessels. We report a 4-year-old boy who presented with clinical manifestations of progeria. He had characteristic facies, prominent eyes, scalp and leg veins, senile look, loss of scalp hair, eyebrows and eyelashes, stunted growth, and sclerodermatous changes. The present case is reported due to its rarity.

  15. Progeria syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Rastogi Rajul

    2008-01-01

    Full Text Available Progeria is a rare and peculiar combination of dwarfism and premature aging. The incidence is one in several million births. It occurs sporadically and is probably an autosomal recessive syndrome. Though the clinical presentation is usually typical, conventional radiological and biochemical investigations help in confirming the diagnosis. We present a rare case of progeria with most of the radiological features as a pictorial essay.

  16. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

    DEFF Research Database (Denmark)

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that is most commonly caused by a de novo point mutation in exon 11 of the LMNA gene, c.1824C>T, which results in an increased production of a truncated form of lamin A known as progerin. In this study, we used a mouse...... progerin splicing give hope to patients who are affected by HGPS.-Strandgren, C., Nasser, H. A., McKenna, T., Koskela, A., Tuukkanen, J., Ohlsson, C., Rozell, B., Eriksson, M. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas...

  17. Progeria: a new kind of Laminopathy-- report of the First European Symposium on Progeria and creation of EURO-Progeria, a European Consortium on Progeria and related disorders

    NARCIS (Netherlands)

    Brune, Thomas; Bonne, Gisele; Denecke, Jonas; Elcioglu, Nursel; Hennekam, Raoul C. M.; Marquardt, Thorsten; Ozgen, Heval; Stamsnijder, Marjet; Steichen, Elisabeth; Steinmann, Beat; Wehnert, Manfred; Levy, Nicolas

    2004-01-01

    Progeria is a rare, genetically determined condition characterized by accelerated aging in children. Its name is derived from Greek (Geron) and means "prematurely old". The classic type is the Hutchinson-Gilford Progeria Syndrome (HGPS), which was first described in England in 1886 by Dr. Jonathan

  18. Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Directory of Open Access Journals (Sweden)

    V. Cenni

    2011-10-01

    Full Text Available Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.

  19. Hutchinson-Gilford progeria syndrome

    Directory of Open Access Journals (Sweden)

    Zahoor Hussain Daraz

    2017-06-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare genetic disease in which symptoms of aging are manifested at an early age. In the present report, we describe a 9 months old female child presented with a history of progressive coarsening of skin, failure to thrive and irregular bumps over thighs, buttocks and lower limbs for the last 7½ months. In the course of time, she developed alopecia, hyperpigmented spots over the abdomen with thickening and a typical facial profile of HGPS including micrognathia, absent ear lobules, prominent eyes, loss of eyelashes, eyebrows and a bluish hue over the nose.

  20. Progeria in siblings: A rare case report

    Directory of Open Access Journals (Sweden)

    R Sowmiya

    2011-01-01

    Full Text Available Progeria, also known as Hutchinson-Gilford syndrome, is an extremely rare, severe genetic condition wherein symptoms resembling aspects of aging are manifested at an early age. It is an autosomal dominant disorder. It is not seen in siblings of affected children although there are very few case reports of progeria affecting more than one child in a family. Here we are presenting two siblings, a 14-year-old male and a 13-year-old female with features of progeria, suggesting a possible autosomal recessive inheritance.

  1. The Defective Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome Disrupts the Nucleocytoplasmic Ran Gradient and Inhibits Nuclear Localization of Ubc9▿

    Science.gov (United States)

    Kelley, Joshua B.; Datta, Sutirtha; Snow, Chelsi J.; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J.; Paschal, Bryce M.

    2011-01-01

    The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways. PMID:21670151

  2. Hutchinson-Gilford Progeria Syndrome

    Directory of Open Access Journals (Sweden)

    Gopal G

    2014-08-01

    Full Text Available Hutchinson-Gilford Progeria syndrome (HGPS is a rare pediatric genetic syndrome associated with a characteristic aged appearance very early in life, generally leading to death in the second decade of life. Apart from premature aging, the other notable characteristics of children with HGPS include extreme short stature, prominent superficial veins, poor weight gain, alopecia, as well as various skeletal and cardiovascular pathologies associated with advanced age. The pattern of inheritance of HGPS is uncertain, though both autosomal dominant and autosomal recessive modes have been described. Recent genetic studies have demonstrated mutations in the LMNA gene in children with HGPS. In this article, we report a 16 years old girl who had the phenotypic features of HGPS and was later confirmed to have LMNA mutation by genetic analysis.

  3. Hutchinson-Gilford progeria syndrome: a rare case report

    Directory of Open Access Journals (Sweden)

    Kalegowda Deepadarshan

    2016-04-01

    Full Text Available Progeroid syndromes are characterised by clinical features of physiological aging at an early age. Hutchinson-Gilford progeria syndrome is a type of progeroid syndrome, characterised by abnormal facies, bone abnormalities, sclerodermatous skin changes and retarded physical development. Average life expectancy of progeria patients is 13 years. Herein we are reporting a case of progeria who is 21 years old.

  4. Progeria

    Science.gov (United States)

    ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ... the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein should ...

  5. Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn

    OpenAIRE

    Reunert, Janine; Wentzell, Rüdiger; Walter, Michael; Jakubiczka, Sibylle; Zenker, Martin; Brune, Thomas; Rust, Stephan; Marquardt, Thorsten

    2012-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is an important model disease for premature ageing. Affected children appear healthy at birth, but develop the first symptoms during their first year of life. They die at an average age of 13 years, mostly because of myocardial infarction or stroke. Classical progeria is caused by the heterozygous point mutation c.1824C>T in the LMNA gene, which activates a cryptic splice site. The affected protein cannot be processed correctly to mature lamin A, bu...

  6. Progeria: A rare genetic premature ageing disorder

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar Sinha

    2014-01-01

    Full Text Available Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs. As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent ′drug of hope′ for Hutchinson-Gilford progeria syndrome (HGPS and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.

  7. Progeria Research Foundation Diagnostic Testing Program

    Science.gov (United States)

    ... scientific test to definitively diagnose children with Progeria. What is the Gene for HGPS? The gene responsible for HGPS is called LMNA (pronounced Lamin A). Within this gene there is a change in one element of DNA. This type of gene change is ...

  8. An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca²⁺ rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria.

    Directory of Open Access Journals (Sweden)

    Chun-Yin Lo

    Full Text Available Hutchinson-Gillford Progeria Syndrome (HGPS is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90 iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca²⁺ ([Ca²⁺](i rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca²⁺](i rise in iPSC-ECs from normal individuals but a sustained [Ca²⁺](i elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM, and a specific TRPV2 channel inhibitor, tranilast (100 µM, abolished the sustained phase of hypotonicity-induced [Ca²⁺](i rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca²⁺](i rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca²⁺](i elevation in HGPS

  9. Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn.

    Science.gov (United States)

    Reunert, Janine; Wentzell, Rüdiger; Walter, Michael; Jakubiczka, Sibylle; Zenker, Martin; Brune, Thomas; Rust, Stephan; Marquardt, Thorsten

    2012-09-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an important model disease for premature ageing. Affected children appear healthy at birth, but develop the first symptoms during their first year of life. They die at an average age of 13 years, mostly because of myocardial infarction or stroke. Classical progeria is caused by the heterozygous point mutation c.1824C>T in the LMNA gene, which activates a cryptic splice site. The affected protein cannot be processed correctly to mature lamin A, but is modified into a farnesylated protein truncated by 50 amino acids (progerin). Three more variations in LMNA result in the same mutant protein, but different grades of disease severity. We describe a patient with the heterozygous LMNA mutation c.1821G>A, leading to neonatal progeria with death in the first year of life. Intracellular lamin A was downregulated in the patient's fibroblasts and the ratio of progerin to lamin A was increased when compared with HGPS. It is suggestive that the ratio of farnesylated protein to mature lamin A determines the disease severity in progeria.

  10. Lethal neonatal Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Rodríguez, J I; Pérez-Alonso, P; Funes, R; Pérez-Rodríguez, J

    1999-01-29

    We report on a 35-week gestation female fetus with Hutchinson-Gilford progeria (HGP). This patient, who is the first reported with neonatal HGP in the English literature but is the fourth, counting three previous French cases, supports the existence of a more severe prenatal form of progeria. She died 7 hours after birth and presented with intrauterine growth retardation, premature aging, absence of subcutaneous fat, brachydactyly, absent nipples, hypoplastic external genitalia, and abnormal ear lobes. The child's combination of clinical and skeletal manifestations differentiates this form of HGP from other progeroid syndromes with neonatal presentation. We also report previously undescribed autopsy findings including premature loss of hair follicles, premature regression of the renal nephrogenic layer, and premature closure of the growth plates in the distal phalanges that may be related to the aging processes in this condition. We could not find any histological data to support acro-osteolysis, which is the radiographic sign of brachydactyly. The terminal phalanges in HGP seem to be underdeveloped rather than osteolytic.

  11. Novel LMNA mutations cause an aggressive atypical neonatal progeria without progerin accumulation.

    Science.gov (United States)

    Soria-Valles, Clara; Carrero, Dido; Gabau, Elisabeth; Velasco, Gloria; Quesada, Víctor; Bárcena, Clea; Moens, Marleen; Fieggen, Karen; Möhrcken, Silvia; Owens, Martina; Puente, Diana A; Asensio, Óscar; Loeys, Bart; Pérez, Ana; Benoit, Valerie; Wuyts, Wim; Lévy, Nicolas; Hennekam, Raoul C; De Sandre-Giovannoli, Annachiara; López-Otín, Carlos

    2016-06-22

    Progeroid syndromes are genetic disorders that recapitulate some phenotypes of physiological ageing. Classical progerias, such as Hutchinson-Gilford progeria syndrome (HGPS), are generally caused by mutations in LMNA leading to accumulation of the toxic protein progerin and consequently, to nuclear envelope alterations. In this work, we describe a novel phenotypic feature of the progeria spectrum affecting three unrelated newborns and identify its genetic cause. Patients reported herein present an extremely homogeneous phenotype that somewhat recapitulates those of patients with HGPS and mandibuloacral dysplasia. However, pathological signs appear earlier, are more aggressive and present distinctive features including episodes of severe upper airway obstruction. Exome and Sanger sequencing allowed the identification of heterozygous de novo c.163G>A, p.E55K and c.164A>G, p.E55G mutations in LMNA as the alterations responsible for this disorder. Functional analyses demonstrated that fibroblasts from these patients suffer important dysfunctions in nuclear lamina, which generate profound nuclear envelope abnormalities but without progerin accumulation. These nuclear alterations found in patients' dermal fibroblasts were also induced by ectopic expression of the corresponding site-specific LMNA mutants in control human fibroblasts. Our results demonstrate the causal role of p.E55K and p.E55G lamin A mutations in a disorder which manifests novel phenotypic features of the progeria spectrum characterised by neonatal presentation and aggressive clinical evolution, despite being caused by lamin A/C missense mutations with effective prelamin A processing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Novel LMNA mutations cause an aggressive atypical neonatal progeria without progerin accumulation

    NARCIS (Netherlands)

    Soria-Valles, Clara; Carrero, Dido; Gabau, Elisabeth; Velasco, Gloria; Quesada, Víctor; Bárcena, Clea; Moens, Marleen; Fieggen, Karen; Möhrcken, Silvia; Owens, Martina; Puente, Diana A.; Asensio, Óscar; Loeys, Bart; Pérez, Ana; Benoit, Valerie; Wuyts, Wim; Lévy, Nicolas; Hennekam, Raoul C.; de Sandre-Giovannoli, Annachiara; López-Otín, Carlos

    2016-01-01

    Background Progeroid syndromes are genetic disorders that recapitulate some phenotypes of physiological ageing. Classical progerias, such as Hutchinson-Gilford progeria syndrome (HGPS), are generally caused by mutations in LMNA leading to accumulation of the toxic protein progerin and consequently,

  13. Progeria (Hutchison - Gilford syndrome in siblings: In an autosomal recessive pattern of inheritance

    Directory of Open Access Journals (Sweden)

    Raghu Tanjore

    2001-09-01

    Full Text Available Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclcrodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  14. Rescue of progeria in trichothiodystrophy by homozygous lethal Xpd alleles.

    Directory of Open Access Journals (Sweden)

    Jaan-Olle Andressoo

    2006-10-01

    Full Text Available Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of "null" alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals.

  15. Hutchinson-Gilford progeria syndrome: review of the phenotype

    NARCIS (Netherlands)

    Hennekam, Raoul C. M.

    2006-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads

  16. Bilateral stenosis of carotid siphon in Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Narazaki, Ryo; Makimura, Mika; Sanefuji, Masafumi; Fukamachi, Shigeru; Akiyoshi, Hidetaka; So, Hidenori; Yamamura, Kenichiro; Doisaki, Sayoko; Kojima, Seiji; Ihara, Kenji; Hara, Toshiro; Ohga, Shouichi

    2013-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease, caused by a de novo mutation of lamin-A gene, LMNA G608G. Accumulation of abnormal lamin-A (progerin) compromises nuclear membrane integrity and results in the accelerated senescence. Affected patients show a typical feature of birdlike face, alopecia, sclerotic skin, loss of subcutaneous fat, and short stature with advancing years. Neonatal scleroderma is the first presentation, although early diagnosis is challenging. The leading cause of death is cardio-/cerebro-vascular accidents associated with atherosclerosis. However, not all findings may recapitulate the aging process. We herein report a 9-year-old Japanese male with HGPS who developed cerebral infarction. The genetic study of peripheral blood-derived DNA determined a heterozygous c.1824C>T mutation, p.G608G. Telomere length of lymphocytes was normal. Bilateral stenosis of carotid siphons was prominent, while systemic arteriosclerosis was unremarkable assessed by the ankle-brachial index, carotid ultrasound imaging and funduscopic study. HGPS patients have marked loss and functional defects in vascular smooth muscle cells, leading to the vulnerability to circulatory stress. Symmetrical stenosis of siphons might occur as a distinctive cerebral vasculopathy of HGPS, rather than simple vascular senescence. Peripheral blood study on LMNA G608G and telomere length could screen progerias in infancy for early therapeutic intervention. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Computational Exploration for Lead Compounds That Can Reverse the Nuclear Morphology in Progeria

    Directory of Open Access Journals (Sweden)

    Shailima Rampogu

    2017-01-01

    Full Text Available Progeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening. Utilizing nine training set compounds along with lonafarnib, a common feature pharmacophore was constructed consisting of four features. The validated Hypo1 was subsequently allowed to screen Maybridge, Chembridge, and Asinex databases to retrieve the novel lead candidates, which were then subjected to Lipinski’s rule of 5 and ADMET for drug-like assessment. The obtained 3,372 compounds were forwarded to docking simulations and were manually examined for the key interactions with the crucial residues. Two compounds that have demonstrated a higher dock score than the reference compounds and showed interactions with the crucial residues were subjected to MD simulations and binding free energy calculations to assess the stability of docked conformation and to investigate the binding interactions in detail. Furthermore, this study suggests that the Hits may be more effective against progeria and further the DFT studies were executed to understand their orbital energies.

  18. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Kang, Hyun Tae; Park, Joon Tae; Choi, Kobong; Choi, Hyo Jei Claudia; Jung, Chul Won; Kim, Gyu Ree; Lee, Young-Sam; Park, Sang Chul

    2017-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) constitutes a genetic disease wherein an aging phenotype manifests in childhood. Recent studies indicate that reactive oxygen species (ROS) play important roles in HGPS phenotype progression. Thus, pharmacological reduction in ROS levels has been proposed as a potentially effective treatment for patient with this disorder. In this study, we performed high-throughput screening to find compounds that could reduce ROS levels in HGPS fibroblasts and identified rho-associated protein kinase (ROCK) inhibitor (Y-27632) as an effective agent. To elucidate the underlying mechanism of ROCK in regulating ROS levels, we performed a yeast two-hybrid screen and discovered that ROCK1 interacts with Rac1b. ROCK activation phosphorylated Rac1b at Ser71 and increased ROS levels by facilitating the interaction between Rac1b and cytochrome c. Conversely, ROCK inactivation with Y-27632 abolished their interaction, concomitant with ROS reduction. Additionally, ROCK activation resulted in mitochondrial dysfunction, whereas ROCK inactivation with Y-27632 induced the recovery of mitochondrial function. Furthermore, a reduction in the frequency of abnormal nuclear morphology and DNA double-strand breaks was observed along with decreased ROS levels. Thus, our study reveals a novel mechanism through which alleviation of the HGPS phenotype is mediated by the recovery of mitochondrial function upon ROCK inactivation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. A case of progeria syndrome treated as VIP patient

    Directory of Open Access Journals (Sweden)

    Seema Mahant, Mahant PD, C.M. Reddy

    2014-11-01

    Full Text Available Progeria is rare autosomal recessive genetic disease with an incidence of about one in eight million. He was 16 years old boy lying on the couch. He was short stature thin with minimal subcutaneous tissue, skin was thin and fragile with loss of hair over scalp, eyebrows and eyelashes, and his face was dismorphic with prominent eyes, beaked nose, small jaw and large cranium with visible veins over it. His voice was thin and high pitched. Overall, this gives them an extremely aged nearly 70 -80 years old man look. The patient was a known case of progeria syndrome and he was treated as a VIP patient by all faculty members and staff, though he belongs low socioeconomic status, no political issue with them. But still he was a VIP.

  20. Ocular manifestations in the Hutchinson-Gilford progeria syndrome

    Directory of Open Access Journals (Sweden)

    Shivcharan L Chandravanshi

    2011-01-01

    Full Text Available The Hutchinson-Gilford progeria (HGP syndrome is an extremely rare genetic condition characterized by an appearance of accelerated aging in children. The word progeria is derived from the Greek word progeros meaning ′prematurely old′. It is caused by de novo dominant mutation in the LMNA gene (gene map locus 1q21.2 and characterized by growth retardation and accelerated degenerative changes of the skin, musculoskeletal and cardiovascular systems. The most common ocular manifestations are prominent eyes, loss of eyebrows and eyelashes, and lagophthalmos. In the present case some additional ocular features such as horizontal narrowing of palpebral fissure, superior sulcus deformity, upper lid retraction, upper lid lag in down gaze, poor pupillary dilatation, were noted. In this case report, a 15-year-old Indian boy with some additional ocular manifestations of the HGP syndrome is described.

  1. Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model

    NARCIS (Netherlands)

    Ribas, J.; Zhang, Y.S.; Pitrez, P.R.; Leijten, Jeroen Christianus Hermanus; Miscuglio, M.; Rouwkema, Jeroen; Dokmeci, M.R.; Nissan, X.; Ferreira, L.; Khademhosseini, A.

    2017-01-01

    A progeria-on-a-chip model is engineered to recapitulate the biomechanical dynamics of vascular disease and aging. The model shows an exacerbated injury response to strain and is rescued by pharmacological treatments. The progeria-on-a-chip is expected to drive the discovery of new drugs and to

  2. A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, Robert H. [Harvard Medical School, Pediatric Radiology, Children' s Hospital Boston, Boston, MA (United States); Gordon, Leslie B. [Harvard Medical School, Department of Anesthesia, Children' s Hospital Boston, Boston, MA (United States); Warren Alpert Medical School of Brown University, Department of Pediatrics, Hasbro Children' s Hospital, Providence, RI (United States); Kleinman, Monica E. [Harvard Medical School, Department of Anesthesia, Children' s Hospital Boston, Boston, MA (United States); Miller, David T. [Harvard Medical School, Division of Genetics, Children' s Hospital Boston, Boston, MA (United States); Gordon, Catherine M. [Harvard Medical School, Division of Endocrinology and Adolescent Medicine, Children' s Hospital Boston, Boston, MA (United States); Snyder, Brian D. [Harvard Medical School, Department of Orthopedic Surgery, Children' s Hospital Boston, Boston, MA (United States); Nazarian, Ara [Harvard Medical School, Boston, MA (United States); Giobbie-Hurder, Anita [Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA (United States); Neuberg, Donna [Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA (United States); Harvard School of Public Health, Department of Biostatistics, Boston, MA (United States); Kieran, Mark W. [Dana-Farber Cancer Institute and Children' s Hospital Boston, Division of Pediatric Oncology, Boston, MA (United States)

    2012-09-15

    Progeria is a rare segmental premature aging disease with significant skeletal abnormalities. Defining the full scope of radiologic abnormalities requires examination of a large proportion of the world's progeria population (estimated at 1 in 4 million). There has been no comprehensive prospective study describing the skeletal abnormalities associated with progeria. To define characteristic radiographic features of this syndrome. Thirty-nine children with classic progeria, ages 2-17 years, from 29 countries were studied at a single site. Comprehensive radiographic imaging studies were performed. Sample included 23 girls and 16 boys - the largest number of patients with progeria evaluated prospectively to date. Eight new and two little known progeria-associated radiologic findings were identified (frequencies of 3-36%). Additionally, 23 commonly reported findings were evaluated. Of these, 2 were not encountered and 21 were present and ranked according to their frequency. Nine abnormalities were associated with increasing patient age (P = 0.02-0.0001). This study considerably expands the radiographic morphological spectrum of progeria. A better understanding of the radiologic abnormalities associated with progeria and improved understanding of the biology of progerin (the molecule responsible for this disease), will improve our ability to treat the spectrum of bony abnormalities. (orig.)

  3. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome

    OpenAIRE

    Wang, Yuexia; Östlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphologi...

  4. Defective DSB repair correlates with abnormal nuclear morphology and is improved with FTI treatment in Hutchinson-Gilford progeria syndrome fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, Dan [Department of Cell Biology-Physiology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Pittsburgh Development Center, Magee-Women' s Research Institute, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Csoka, Antonei B. [Division of Geriatrics, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260 (United States); Navara, Christopher S. [Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Pittsburgh Development Center, Magee-Women' s Research Institute, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schatten, Gerald P., E-mail: schattengp@upmc.edu [Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Cell Biology-Physiology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Pittsburgh Development Center, Magee-Women' s Research Institute, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-10-15

    Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair.

  5. Hutchinson-Gilford Progeria Syndrome: A Rare Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Rajat G. Panigrahi

    2013-01-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare pediatric genetic syndrome with incidence of one per eight million live births. The disorder is characterised by premature aging, generally leading to death at approximately 13.4 years of age. This is a follow-up study of a 9-year-old male with clinical and radiographic features highly suggestive of HGPS and presented here with description of differential diagnosis and dental consideration. This is the first case report of HGPS which showed pectus carinatum structure of chest.

  6. Hutchinson - Gilford progeria syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    Subhash Kashyap

    2014-01-01

    Full Text Available Hutchinson - Gilford Progeria Syndrome is a rare genetic disorder characterized by premature aging involving the skin, bones, heart, and blood vessels. We report a three-year-old boy with clinical manifestations characteristic of this syndrome. He had a characteristic "plucked-bird" appearance, prominent eyes and scalp veins, senile look, loss of scalp hair, eyebrows, and eyelashes, stunted growth, and mottled pigmentation with sclerodermatous changes over the trunk and lower limbs. Radiological changes and decreased high-density lipoprotein (HDL levels were also characteristic of the syndrome. This interesting case is reported for its rarity.

  7. [Hutchinson-Gilford progeria. A rare case of neonatal occurrence].

    Science.gov (United States)

    Zucchini, A; Bonfiglioli, G; Masignà Ricciardi, M G

    1986-01-01

    A case of Hutchinson-Gilford progeria syndrome is described in which phenotypic and metabolic symptoms were already evident at birth. Both under a clinical and autopsy point of view an early old age of organs and apparatuses was apparent, posing the problem of the reason why an early old aging occurs. The authors mention literature in favour of a genetic control of cellular aging and make the assumption that the genes controlling old age are various and that a greater or lesser presence and incidence of them could justify the earlier or normal appearance of this status.

  8. Could Metabolic Syndrome, Lipodystrophy, and Aging Be Mesenchymal Stem Cell Exhaustion Syndromes?

    Directory of Open Access Journals (Sweden)

    Eduardo Mansilla

    2011-01-01

    Full Text Available One of the most important and complex diseases of modern society is metabolic syndrome. This syndrome has not been completely understood, and therefore an effective treatment is not available yet. We propose a possible stem cell mechanism involved in the development of metabolic syndrome. This way of thinking lets us consider also other significant pathologies that could have similar etiopathogenic pathways, like lipodystrophic syndromes, progeria, and aging. All these clinical situations could be the consequence of a progressive and persistent stem cell exhaustion syndrome (SCES. The main outcome of this SCES would be an irreversible loss of the effective regenerative mesenchymal stem cells (MSCs pools. In this way, the normal repairing capacities of the organism could become inefficient. Our point of view could open the possibility for a new strategy of treatment in metabolic syndrome, lipodystrophic syndromes, progeria, and even aging: stem cell therapies.

  9. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice

    NARCIS (Netherlands)

    van de Ven, Marieke; Andressoo, Jaan-Olle; Holcomb, Valerie B.; von Lindern, Marieke; Jong, Willeke M. C.; de Zeeuw, Chris I.; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H. J.; van der Horst, Gijsbertus T. J.; Mitchell, James R.

    2006-01-01

    How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a

  10. Different prelamin A forms accumulate in human fibroblasts: a study in experimental models and progeria

    Directory of Open Access Journals (Sweden)

    S Dominici

    2009-08-01

    Full Text Available Lamin A is a component of the nuclear lamina mutated in a group of human inherited disorders known as laminopathies. Among laminopathies, progeroid syndromes and lipodystrophies feature accumulation of prelamin A, the precursor protein which, in normal cells, undergoes a multi-step processing to yield mature lamin A. It is of utmost importance to characterize the prelamin A form accumulated in each laminopathy, since existing evidence shows that drugs acting on protein processing can improve some pathological aspects.We report that two antibodies raised against differently modified prelamin A peptides show a clear specificity to full-length prelamin A or carboxymethylated farnesylated prelamin A, respectively. Using these antibodies, we demonstrated that inhibition of the prelamin A endoprotease ZMPSTE24 mostly elicits accumulation of full-length prelamin A in its farnesylated form, while loss of the prelamin A cleavage site causes accumulation of carboxymethylated prelamin A in progeria cells. These results suggest a major role of ZMPSTE24 in the first prelamin A cleavage step.

  11. Sporadic premature aging in a Japanese monkey: a primate model for progeria.

    Directory of Open Access Journals (Sweden)

    Takao Oishi

    Full Text Available In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes.

  12. Different prelamin A forms accumulate in human fibroblasts: a study in experimental models and progeria

    Directory of Open Access Journals (Sweden)

    G Lattanzi

    2009-03-01

    Full Text Available Lamin A is a component of the nuclear lamina mutated in a group of human inherited disorders known as laminopathies. Among laminopathies, progeroid syndromes and lipodystrophies feature accumulation of prelamin A, the precursor protein which, in normal cells, undergoes a multi-step processing to yield mature lamin A. It is of utmost importance to characterize the prelamin A form accumulated in each laminopathy, since existing evidence shows that drugs acting on protein processing can improve some pathological aspects.We report that two antibodies raised against differently modified prelamin A peptides show a clear specificity to full-length prelamin A or carboxymethylated farnesylated prelamin A, respectively. Using these antibodies, we demonstrated that inhibition of the prelamin A endoprotease ZMPSTE24 mostly elicits accumulation of full-length prelamin A in its farnesylated form, while loss of the prelamin A cleavage site causes accumulation of carboxymethylated prelamin A in progeria cells. These results suggest a major role of ZMPSTE24 in the first prelamin A cleavage step.

  13. Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation.

    NARCIS (Netherlands)

    Verstraeten, V.L.; Broers, J.L.; Steensel, M.A.M. van; Zinn-Justin, S.; Ramaekers, F.C.S.; Steijlen, P.M.; Kamps, M.; Kuijpers, H.J.; Merckx, D.; Smeets, H.J.M.; Hennekam, R.C.M.; Marcelis, C.L.M.; Wijngaard, A. van de

    2006-01-01

    LMNA-associated progeroid syndromes have been reported with both recessive and dominant inheritance. We report a 2-year-old boy with an apparently typical Hutchinson-Gilford progeria syndrome (HGPS) due to compound heterozygous missense mutations (p.T528M and p.M540T) in LMNA. Both mutations affect

  14. The two-faced progeria gene and its implications in aging and metabolism

    NARCIS (Netherlands)

    Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.

    2014-01-01

    Premature aging syndromes have gained much attention, not only because of their devastating symptoms but also because they might hold a key to some of the mechanisms underlying aging. The Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation in the LMNA gene, which normally produces

  15. Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation

    NARCIS (Netherlands)

    Verstraeten, Valerie L. R. M.; Broers, Jos L. V.; van Steensel, Maurice A. M.; Zinn-Justin, Sophie; Ramaekers, Frans C. S.; Steijlen, Peter M.; Kamps, Miriam; Kuijpers, Helma J. H.; Merckx, Diane; Smeets, Hubert J. M.; Hennekam, Raoul C. M.; Marcelis, Carlo L. M.; van den Wijngaard, Arthur

    2006-01-01

    LMNA-associated progeroid syndromes have been reported with both recessive and dominant inheritance. We report a 2-year-old boy with an apparently typical Hutchinson-Gilford progeria syndrome (HGPS) due to compound heterozygous missense mutations (p.T528M and p.M540T) in LMNA. Both mutations affect

  16. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria.

    NARCIS (Netherlands)

    Andressoo, Jaan-Olle; Mitchell, James R; Wit, Jan de; Hoogstraten, Deborah; Volker, Marcel; Toussaint, Wendy; Speksnijder, Ewoud; Beems, Rudolf B; Steeg, Harry van; Jans, Judith; Zeeuw, Chris I de; Jaspers, Nicolaas G J; Raams, Anja; Lehmann, Alan R; Vermeulen, Wim; Hoeijmakers, Jan H J; Horst, Gijsbertus T J van der

    2006-01-01

    Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the

  17. Molecular ageing in progeroid syndromes: Hutchinson-Gilford progeria syndrome as a model

    Directory of Open Access Journals (Sweden)

    da Nóbrega Raphael

    2009-04-01

    Full Text Available Abstract Hutchinson-Gilford progeria syndrome (HGPS is a rare premature aging disorder that belongs to a group of conditions called laminopathies which affect nuclear lamins. Mutations in two genes, LMNA and ZMPSTE24, have been found in patients with HGPS. The p.G608G LMNA mutation is the most commonly reported mutation. The aim of this work was to compile a comprehensive literature review of the clinical features and genetic mutations and mechanisms of this syndrome as a contribution to health care workers. This review shows the necessity of a more detailed clinical identification of Hutchinson-Gilford progeria syndrome and the need for more studies on the pharmacologic and pharmacogenomic approach to this syndrome.

  18. Hypoparathyroidism in an Egyptian child with Hutchinson-Gilford progeria syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Kalil Kotb

    2012-01-01

    Full Text Available Abstract Introduction Hutchinson-Gilford progeria syndrome is a rare genetic disorder. It is reported to be present in one in eight million and is characterized by severe growth failure, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, early atherosclerosis and facial features that resemble those of an aged person. Apart from diabetes mellitus, there are no reported abnormalities of thyroid, parathyroid, pituitary or adrenal function. Here, we report the case of a 10-year-old Egyptian child with Hutchinson-Gilford progeria syndrome and hypoparathyroidism. Case presentation A 10-year-old Egyptian boy was referred to our institution for an evaluation of recurrent attacks of muscle cramps, paresthesia of his fingertips and perioral numbness of two months duration. On examination, we found dilated veins present over his scalp with alopecia and frontal bossing, a beaked nose, thin lips, protruding ears, a high pitched voice with sparse hair over his eyebrows and eyelashes and micrognathia but normal dentition. His eyes appeared prominent and our patient appeared to have poor sexual development. A provisional diagnosis of progeria was made, which was confirmed by molecular genetics study. Chvostek's and Trousseau's signs were positive. He had low total calcium (5.4 mg/dL, low ionized calcium (2.3 mg/dL, raised serum phosphate (7.2 mg/dL, raised alkaline phosphatase (118 U/L and low intact parathyroid hormone (1.2 pg/mL levels. He was started on oral calcium salt and vitamin D; his symptoms improved with the treatment and his serum calcium, urinary calcium and alkaline phosphates level were monitored every three months to ensure adequacy of therapy and to avoid hypercalcemia. Conclusion Routine checking of serum calcium, phosphorus and parathyroid hormone will help in the early detection of hypoparathyrodism among children with progeria.

  19. Progeria syndrome with characteristic deformation of proximal radius observed on CT

    Energy Technology Data Exchange (ETDEWEB)

    Sood, S.; Rao, R.C.K.; Ragav, B.; Berry, M. (All India Inst. of Medical Sciences, New Delhi (India). Dept. of Radio-Diagnosis)

    1991-01-01

    The progeria syndrome (Hutchinson-Gilford) is an uncommon disease. A peculiar shape of the proximal radial metaphyseal region caused by an infolding of the cortex was observed on CT in 2 brothers suffering from this disorder, a feature not previously reported. A brief review of the radiologic literature was undertaken. This new observation needs to be further evaluated as it may provide a clinching diagnostic feature of this disease. (orig.).

  20. Hypoparathyroidism in an Egyptian child with Hutchinson-Gilford progeria syndrome: a case report.

    Science.gov (United States)

    Kalil, Kotb Abbass Metwalley; Fargalley, Hekma Saad

    2012-01-17

    Hutchinson-Gilford progeria syndrome is a rare genetic disorder. It is reported to be present in one in eight million and is characterized by severe growth failure, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, early atherosclerosis and facial features that resemble those of an aged person. Apart from diabetes mellitus, there are no reported abnormalities of thyroid, parathyroid, pituitary or adrenal function. Here, we report the case of a 10-year-old Egyptian child with Hutchinson-Gilford progeria syndrome and hypoparathyroidism. A 10-year-old Egyptian boy was referred to our institution for an evaluation of recurrent attacks of muscle cramps, paresthesia of his fingertips and perioral numbness of two months duration. On examination, we found dilated veins present over his scalp with alopecia and frontal bossing, a beaked nose, thin lips, protruding ears, a high pitched voice with sparse hair over his eyebrows and eyelashes and micrognathia but normal dentition. His eyes appeared prominent and our patient appeared to have poor sexual development. A provisional diagnosis of progeria was made, which was confirmed by molecular genetics study. Chvostek's and Trousseau's signs were positive. He had low total calcium (5.4 mg/dL), low ionized calcium (2.3 mg/dL), raised serum phosphate (7.2 mg/dL), raised alkaline phosphatase (118 U/L) and low intact parathyroid hormone (1.2 pg/mL) levels. He was started on oral calcium salt and vitamin D; his symptoms improved with the treatment and his serum calcium, urinary calcium and alkaline phosphates level were monitored every three months to ensure adequacy of therapy and to avoid hypercalcemia. Routine checking of serum calcium, phosphorus and parathyroid hormone will help in the early detection of hypoparathyrodism among children with progeria.

  1. Model of human aging: Recent findings on Werner’s and Hutchinson-Gilford progeria syndromes

    Directory of Open Access Journals (Sweden)

    Shian-ling Ding

    2008-09-01

    Full Text Available Shian-ling Ding1, Chen-Yang Shen2,3,41Department of Nursing, Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan; 2Institute of Biomedical Sciences, and 3Life Science Library, Academia Sinica, Taipei, Taiwan; 4Graduate Institute of Environmental Science, China Medical University, Taichong, TaiwanAbstract: The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner’s syndrome (WS and Hutchinson-Gilford progeria syndrome (HGPS, characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level of genomic instability, triggering the onset of human aging phenotypes.Keywords: human aging, Hutchinson-Gilford Progeria syndrome, Werner syndrome

  2. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model.

    Science.gov (United States)

    Capell, Brian C; Olive, Michelle; Erdos, Michael R; Cao, Kan; Faddah, Dina A; Tavarez, Urraca L; Conneely, Karen N; Qu, Xuan; San, Hong; Ganesh, Santhi K; Chen, Xiaoyan; Avallone, Hedwig; Kolodgie, Frank D; Virmani, Renu; Nabel, Elizabeth G; Collins, Francis S

    2008-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is the most dramatic form of human premature aging. Death occurs at a mean age of 13 years, usually from heart attack or stroke. Almost all cases of HGPS are caused by a de novo point mutation in the lamin A (LMNA) gene that results in production of a mutant lamin A protein termed progerin. This protein is permanently modified by a lipid farnesyl group, and acts as a dominant negative, disrupting nuclear structure. Treatment with farnesyltransferase inhibitors (FTIs) has been shown to prevent and even reverse this nuclear abnormality in cultured HGPS fibroblasts. We have previously created a mouse model of HGPS that shows progressive loss of vascular smooth muscle cells in the media of the large arteries, in a pattern that is strikingly similar to the cardiovascular disease seen in patients with HGPS. Here we show that the dose-dependent administration of the FTI tipifarnib (R115777, Zarnestra) to this HGPS mouse model can significantly prevent both the onset of the cardiovascular phenotype as well as the late progression of existing cardiovascular disease. These observations provide encouraging evidence for the current clinical trial of FTIs for this rare and devastating disease.

  3. Progeria caused by a rare LMNA mutation p.S143F associated with mild myopathy and atrial fibrillation.

    Science.gov (United States)

    Madej-Pilarczyk, Agnieszka; Kmieć, Tomasz; Fidziańska, Anna; Rekawek, Joanna; Niebrój-Dobosz, Irena; Turska-Kmieć, Anna; Nestorowicz, Klaudia; Jóźwiak, Sergiusz; Hausmanowa-Petrusewicz, Irena

    2008-09-01

    We present a 6-year-old girl with premature aging associated with mild myopathy, displaying muscle weakness, joint contractures and hyporeflexia. Genetic analysis revealed rare heterozygous point mutation in lamin A/C gene, g.428C>T. Cardiological evaluation showed atrial fibrillation, but we did not find signs of coronary heart disease, which is life-threatening cardiovascular complication in progeria. Electron microscopy of the muscle revealed abnormalities in nuclear architecture, i.e. blebbing, thick lamina and peripheral distribution of heterochromatin. As some diagnostic criteria characteristic for classic progeria are not fulfilled, this case could be regarded as atypical progeria associated with myopathy and atrial fibrillation. To our knowledge, this is the second case of such association described in the literature.

  4. Simultaneous Shoulder and Hip Dislocation in a 12-Year-Old Girl with Hutchinson-Gilford Progeria Syndrome

    Directory of Open Access Journals (Sweden)

    Shirin Mardookhpour

    2012-06-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare premature ageing disorder that is characterized by accelerated degenerative changes of the cutaneous, musculoskeletal and cardiovascular systems. Mean age at diagnosis is 2.9 years and generally leading to death at approximately 13 years of age due to myocardial infarction or stroke. Orthopedic manifestations of HGPS are multiple and shoulder dislocation is a rare skeletal trauma in progeria syndrome. Our patient had simultaneous shoulder and hip dislocation associated with a low energy trauma. This subject has not been reported. Treatment accomplished as close reduction under general anesthesia and immobilization.

  5. Radiological Diagnosis of a Rare Premature Aging Genetic Disorder: Progeria (Hutchinson-Gilford Syndrome

    Directory of Open Access Journals (Sweden)

    Haji Mohammed Nazir

    2017-01-01

    Full Text Available Hutchinson-Gilford Progeria Syndrome (HGPS is a rare disease with a combination of short stature, bone abnormalities, premature ageing, and skin changes. Though the physical appearance of these patients is characteristic, there is little emphasis on the characteristic radiological features. In this paper, we report a 16-year-old boy with clinical and radiological features of this rare genetic disorder. He had a characteristic facial appearance with a large head, large eyes, thin nose with beaked tip, small chin, protruding ears, prominent scalp veins, and absence of hair.

  6. Hutchinson-Gilford progeria syndrome with severe calcific aortic valve stenosis

    Directory of Open Access Journals (Sweden)

    Natesh B Hanumanthappa

    2011-01-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare premature aging syndrome that results from mutation in the Laminin A gene. This case report of a 12-year-old girl with HGPS is presented for the rarity of the syndrome and the classical clinical features that were observed in the patient. All patients with this condition should undergo early and periodic evaluation for cardiovascular diseases. However, the prognosis is poor and management is mainly conservative. There is no proven therapy available. Mortality in this uniformly fatal condition is primarily due to myocardial infarction, strokes or congestive cardiac failure between ages 7 and 21 years due to the rapidly progressive arteriosclerosis involving the large vessels.

  7. A 36 years old woman with Hutchinson-Gilford Progeria Syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Akrami S M

    2007-10-01

    Full Text Available Background: Hutchinson-Gilford Progeria Syndrome (HGPS is a very rare genetic disorder with a frequency of 1 in 8 million live births. It is characterised by premature aging phenotype. The median age at death is 13.4 years. It is an autosomal dominat disease due to a de novo point mutation in the Lamin A gene exon 11 in the majority of cases. More than 100 cases have been reported world wide."nCase report: We describe here an exceptionally long-lived patient with HGPS, who is alive at age 36. She was referred by a cardiologist to our endocrinology clinic to be worked up for presence of a metabolic or genetic disorder before a heart surgery."nResults: Having more attention of clinicians about very rare diseases and referring the patients to geneticist are the main goals of this case report as well as describing the disease.

  8. Hip pathology in Hutchinson-Gilford progeria syndrome: a report of two children.

    Science.gov (United States)

    Akhbari, Pouya; Jha, Shilpa; James, Kyle D; Hinves, Barry L; Buchanan, Jamie A F

    2012-11-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder. The estimated incidence is one in 4 million births. Orthopaedic manifestations include abnormality of the hips occurring early in the disease process. Severe coxa valga can be apparent by the age of 2 years. We report two cases of HGPS, one in a 7-year-old girl with avascular necrosis of the left hip and the second in a 13-year-old girl with recurrent traumatic hip dislocations. We demonstrate the pathoanatomical changes in the hip with HGPS using a combination of imaging modalities including radiographic, computed tomographic and MRI scans. These include coxa magna, coxa valga and acetabular dysplasia. We also comment on how these would affect the surgical management of this high-risk group of patients. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  9. Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype.

    Directory of Open Access Journals (Sweden)

    Diana Gabriel

    Full Text Available Hutchinson-Gilford syndrome (HGPS, OMIM 176670, a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke, is caused by mutations in the LMNA gene. Lamins help maintain the shape and stability of the nuclear envelope in addition to regulating DNA replication, DNA transcription, proliferation and differentiation. The LMNA mutation results in the deletion of 50 amino acids from the carboxy-terminal region of prelamin A, producing the truncated, farnesylated protein progerin. The accumulation of progerin in HGPS nuclei causes numerous morphological and functional changes that lead to premature cellular senescence. Attempts to reverse this HGPS phenotype have identified rapamycin, an inhibitor of mammalian target of rapamycin (mTOR, as a drug that is able to rescue the HGPS cellular phenotype by promoting autophagy and reducing progerin accumulation. Rapamycin is an obvious candidate for the treatment of HGPS disease but is difficult to utilize clinically. To further assess rapamycin's efficacy with regard to proteostasis, mitochondrial function and the degree of DNA damage, we tested temsirolimus, a rapamycin analog with a more favorable pharmacokinetic profile than rapamycin. We report that temsirolimus decreases progerin levels, increases proliferation, reduces misshapen nuclei, and partially ameliorates DNA damage, but does not improve proteasome activity or mitochondrial dysfunction. Our findings suggest that future therapeutic strategies should identify new drug combinations and treatment regimens that target all the dysfunctional hallmarks that characterize HGPS cells.

  10. Transient monoparesis following blade plate removal in a Hutchinson-Gilford progeria syndrome patient. A case report

    OpenAIRE

    Yandow, Suzanne M.; Rimoin, David L.; Grace, Aimee M.; Fillman, Ramona R.; Raney, Ellen M.

    2009-01-01

    Treating patients with Hutchinson-Gilford progeria syndrome (HGPS) are based on the abnormalities of accelerated aging that affect the healing processes, combined with a fragile cardiovascular status. A classic HGPS case is presented, of Korean ancestry, who was treated for severe coxa valga with bilateral varus osteotomies using blade plate fixation. Complications over the blade plate area required removal of the hardware, after which the patient displayed left-sided hypertonicity--determine...

  11. Molecular mechanisms of disease in hereditary red blood cell enzymopathies

    NARCIS (Netherlands)

    Wijk, Henricus Anthonius van

    2004-01-01

    Metabolically defective red blood cells are old before their time, and suffer from metabolic progeria. The focus of this thesis was to identify the molecular mechanisms by which inherited enzymopathies of the red blood cell lead to impaired enzyme function and, consequently, shorten red blood cell

  12. Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome.

    Directory of Open Access Journals (Sweden)

    Haoyue Zhang

    Full Text Available Compelling evidence suggests that defective DNA damage response (DDR plays a key role in the premature aging phenotypes in Hutchinson-Gilford progeria syndrome (HGPS. Studies document widespread alterations in histone modifications in HGPS cells, especially, the global loss of histone H3 trimethylated on lysine 9 (H3K9me3. In this study, we explore the potential connection(s between H3K9me3 loss and the impaired DDR in HGPS. When cells are exposed to a DNA-damaging agent Doxorubicin (Dox, double strand breaks (DSBs are generated that result in the phosphorylation of histone H2A variant H2AX (gammaH2AX within an hour. We find that the intensities of gammaH2AX foci appear significantly weaker in the G0/G1 phase HGPS cells compared to control cells. This reduction is associated with a delay in the recruitment of essential DDR factors. We further demonstrate that ataxia-telangiectasia mutated (ATM is responsible for the amplification of gammaH2AX signals at DSBs during G0/G1 phase, and its activation is inhibited in the HGPS cells that display significant loss of H3K9me3. Moreover, methylene (MB blue treatment, which is known to save heterochromatin loss in HGPS, restores H3K9me3, stimulates ATM activity, increases gammaH2AX signals and rescues deficient DDR. In summary, this study demonstrates an early DDR defect of attenuated gammaH2AX signals in G0/G1 phase HGPS cells and provides a plausible connection between H3K9me3 loss and DDR deficiency.

  13. Transient monoparesis following blade plate removal in a Hutchinson-Gilford progeria syndrome patient. A case report

    Science.gov (United States)

    Yandow, Suzanne M.; Rimoin, David L.; Grace, Aimee M.; Fillman, Ramona R.; Raney, Ellen M.

    2010-01-01

    Treating patients with Hutchinson-Gilford progeria syndrome (HGPS) are based on the abnormalities of accelerated aging that affect the healing processes, combined with a fragile cardiovascular status. A classic HGPS case is presented, of Korean ancestry, who was treated for severe coxa valga with bilateral varus osteotomies using blade plate fixation. Complications over the blade plate area required removal of the hardware, after which the patient displayed left-sided hypertonicity--determined to be a cerebrovascular accident. Subsequently, she returned almost completely to her pre-surgical neurologic status. Perioperative planning for HGPS patients should include risks typically considered in the planning for geriatric patient care. PMID:19373113

  14. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress

    Directory of Open Access Journals (Sweden)

    Worman Howard J

    2005-06-01

    Full Text Available Abstract Background Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare sporadic disorder with an incidence of approximately 1 per 8 million live births. The phenotypic appearance consists of short stature, sculptured nose, alopecia, prominent scalp veins, small face, loss of subcutaneous fat, faint mid-facial cyanosis, and dystrophic nails. HGPS is caused by mutations in LMNA, the gene that encodes nuclear lamins A and C. The most common mutation in subjects with HGPS is a de novo single-base pair substitution, G608G (GGC>GGT, within exon 11 of LMNA. This creates an abnormal splice donor site, leading to expression of a truncated protein. Results We studied a new case of a 5 year-old girl with HGPS and found a heterozygous point mutation, G608G, in LMNA. Complementary DNA sequencing of RNA showed that this mutation resulted in the deletion of 50 amino acids in the carboxyl-terminal tail domain of prelamin A. We characterized a primary dermal fibroblast cell line derived from the subject's skin. These cells expressed the mutant protein and exhibited a normal growth rate at early passage in primary culture but showed alterations in nuclear morphology. Expression levels and overall distributions of nuclear lamins and emerin, an integral protein of the inner nuclear membrane, were not dramatically altered. Ultrastructural analysis of the nuclear envelope using electron microscopy showed that chromatin is in close association to the nuclear lamina, even in areas with abnormal nuclear envelope morphology. The fibroblasts were hypersensitive to heat shock, and demonstrated a delayed response to heat stress. Conclusion Dermal fibroblasts from a subject with HGPS expressing a mutant truncated lamin A have dysmorphic nuclei, hypersensitivity to heat shock, and delayed response to heat stress. This suggests that the mutant protein, even when expressed at low levels, causes defective cell stability, which may be responsible for phenotypic

  15. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice.

    Directory of Open Access Journals (Sweden)

    Marieke van de Ven

    2006-12-01

    Full Text Available How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age, including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPD(G602D/R722W/XPA(-/- that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80(-/- mouse. Specific (but not all types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage.

  16. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus.

    Science.gov (United States)

    Barateau, Alice; Vadrot, Nathalie; Vicart, Patrick; Ferreiro, Ana; Mayer, Michèle; Héron, Delphine; Vigouroux, Corinne; Buendia, Brigitte

    2017-01-01

    A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient's skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient's mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.

  17. Discordant gene expression signatures and related phenotypic differences in lamin A- and A/C-related Hutchinson-Gilford progeria syndrome (HGPS.

    Directory of Open Access Journals (Sweden)

    Martina Plasilova

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a genetic disorder displaying features reminiscent of premature senescence caused by germline mutations in the LMNA gene encoding lamin A and C, essential components of the nuclear lamina. By studying a family with homozygous LMNA mutation (K542N, we showed that HGPS can also be caused by mutations affecting both isoforms, lamin A and C. Here, we aimed to elucidate the molecular mechanisms underlying the pathogenesis in both, lamin A- (sporadic and lamin A and C-related (hereditary HGPS. For this, we performed detailed molecular studies on primary fibroblasts of hetero- and homozygous LMNA K542N mutation carriers, accompanied with clinical examinations related to the molecular findings. By assessing global gene expression we found substantial overlap in altered transcription profiles (13.7%; 90/657 in sporadic and hereditary HGPS, with 83.3% (75/90 concordant and 16.7% (15/90 discordant transcriptional changes. Among the concordant ones we observed down-regulation of TWIST2, whose inactivation in mice and humans leads to loss of subcutaneous fat and dermal appendages, and loss of expression in dermal fibroblasts and periadnexial cells from a LMNA(K542N/K542N patient further confirming its pivotal role in skin development. Among the discordant transcriptional profiles we identified two key mediators of vascular calcification and bone metabolism, ENPP1 and OPG, which offer a molecular explanation for the major phenotypic differences in vascular and bone disease in sporadic and hereditary HGPS. Finally, this study correlates reduced TWIST2 and OPG expression with increased osteocalcin levels, thereby linking altered bone remodeling to energy homeostasis in hereditary HGPS.

  18. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome.

    Science.gov (United States)

    Donadille, Bruno; D'Anella, Pascal; Auclair, Martine; Uhrhammer, Nancy; Sorel, Marc; Grigorescu, Romulus; Ouzounian, Sophie; Cambonie, Gilles; Boulot, Pierre; Laforêt, Pascal; Carbonne, Bruno; Christin-Maitre, Sophie; Bignon, Yves-Jean; Vigouroux, Corinne

    2013-07-12

    Laminopathies, due to mutations in LMNA, encoding A type-lamins, can lead to premature ageing and/or lipodystrophic syndromes, showing that these diseases could have close physiopathological relationships. We show here that lipodystrophy and extreme insulin resistance can also reveal the adult progeria Werner syndrome linked to mutations in WRN, encoding a RecQ DNA helicase. We analysed the clinical and biological features of two women, aged 32 and 36, referred for partial lipodystrophic syndrome which led to the molecular diagnosis of Werner syndrome. Cultured skin fibroblasts from one patient were studied. Two normal-weighted women presented with a partial lipodystrophic syndrome with hypertriglyceridemia and liver steatosis. One of them had also diabetes. Both patients showed a peculiar, striking lipodystrophic phenotype with subcutaneous lipoatrophy of the four limbs contrasting with truncal and abdominal fat accumulation. Their oral glucose tolerance tests showed extremely high levels of insulinemia, revealing major insulin resistance. Low serum levels of sex-hormone binding globulin and adiponectin suggested a post-receptor insulin signalling defect. Other clinical features included bilateral cataracts, greying hair and distal skin atrophy. We observed biallelic WRN null mutations in both women (p.Q748X homozygous, and compound heterozygous p.Q1257X/p.M1329fs). Their fertility was decreased, with preserved menstrual cycles and normal follicle-stimulating hormone levels ruling out premature ovarian failure. However undetectable anti-müllerian hormone and inhibin B indicated diminished follicular ovarian reserve. Insulin-resistance linked ovarian hyperandrogenism could also contribute to decreased fertility, and the two patients became pregnant after initiation of insulin-sensitizers (metformin). Both pregnancies were complicated by severe cervical incompetence, leading to the preterm birth of a healthy newborn in one case, but to a second trimester

  19. Using drug treatments to control genome behaviour in normal and Hutchinson-Gilford Progeria Syndrome fibroblasts, with and without hTERT immortalisation

    OpenAIRE

    Bikkul, Mehmet Ural

    2016-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London Hutchinson-Gilford Progeria Syndrome (HGPS) is an exceedingly rare genetic condition with striking features reminiscent of marked premature ageing. HGPS is commonly caused by a ‘classic’ mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. The nuclear lamina is known to anchor chromosomes, stabilising and re...

  20. Adult Stem Cells and Diseases of Aging

    Directory of Open Access Journals (Sweden)

    Lisa B. Boyette

    2014-01-01

    Full Text Available Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.

  1. Defective lamin A-Rb signaling in Hutchinson-Gilford Progeria Syndrome and reversal by farnesyltransferase inhibition.

    Directory of Open Access Journals (Sweden)

    Jackleen Marji

    Full Text Available Hutchinson-Gilford Progeria Syndrome (HGPS is a rare premature aging disorder caused by a de novo heterozygous point mutation G608G (GGC>GGT within exon 11 of LMNA gene encoding A-type nuclear lamins. This mutation elicits an internal deletion of 50 amino acids in the carboxyl-terminus of prelamin A. The truncated protein, progerin, retains a farnesylated cysteine at its carboxyl terminus, a modification involved in HGPS pathogenesis. Inhibition of protein farnesylation has been shown to improve abnormal nuclear morphology and phenotype in cellular and animal models of HGPS. We analyzed global gene expression changes in fibroblasts from human subjects with HGPS and found that a lamin A-Rb signaling network is a major defective regulatory axis. Treatment of fibroblasts with a protein farnesyltransferase inhibitor reversed the gene expression defects. Our study identifies Rb as a key factor in HGPS pathogenesis and suggests that its modulation could ameliorate premature aging and possibly complications of physiological aging.

  2. Lifespan extension by dietary intervention in a mouse model of Cockayne syndrome uncouples early postnatal development from segmental progeria.

    Science.gov (United States)

    Brace, Lear E; Vose, Sarah C; Vargas, Dorathy F; Zhao, Shuangyun; Wang, Xiu-Ping; Mitchell, James R

    2013-12-01

    Cockayne syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities, and photosensitivity, but without skin cancer predisposition. Cockayne syndrome life expectancy ranges from 5 to 16 years for the two most severe forms (types II and I, respectively). Mouse models of CS have thus far been of limited value due to either very mild phenotypes, or premature death during postnatal development prior to weaning. The cause of death in severe CS models is unknown, but has been attributed to extremely rapid aging. Here, we found that providing mutant pups with soft food from as late as postnatal day 14 allowed survival past weaning with high penetrance independent of dietary macronutrient balance in a novel CS model (Csa(-/-) | Xpa(-/-)). Survival past weaning revealed a number of CS-like symptoms including small size, progressive loss of adiposity, and neurological symptoms, with a maximum lifespan of 19 weeks. Our results caution against interpretation of death before weaning as premature aging, and at the same time provide a valuable new tool for understanding mechanisms of progressive CS-related progeroid symptoms including lipodystrophy and neurodysfunction. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  3. Lonidamine effect on male rat germ cells.

    Science.gov (United States)

    Galdieri, M

    1989-01-01

    Lonidamine, a dichlorinated derivative of indazole-3-carboxylic acid, has recently been indicated as an antiproliferative agent being able to reduce mitotic activity of tumor cells. We have evaluated lonidamine effect on proliferating, non tumor cells choosing as a model the male germ cells obtained from cultured seminiferous epithelium explants. The obtained germ cells are able to duplicate in vitro and we have found that lonidamine, at low doses, induces a significative inhibition of the incorporation of labelled thymidine into the duplicating germ cells. The effect seems to be specific for the germ cells since lonidamine does not affect duplicative ability of the somatic cells of the seminiferous tubules and of muscle fibroblasts.

  4. Effects of teicoplanin on cell number of cultured cell lines

    Directory of Open Access Journals (Sweden)

    Kashkolinejad-Koohi Tahere

    2015-03-01

    Full Text Available Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer.

  5. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus.

    Directory of Open Access Journals (Sweden)

    Alice Barateau

    Full Text Available A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD and lipodystrophy. In culture, the patient's skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient's mutation; R388P-lamin A (LA predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.

  6. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  7. Ionizing radiation damage to cells: effects of cell cycle redistribution.

    Science.gov (United States)

    Chen, P L; Brenner, D J; Sachs, R K

    1995-04-01

    If a population of cycling cells is exposed to a fixed dose of ionizing radiation delivered over time T, it is sometimes observed that increasing T increases the amount of cell killing. This is essentially because at first the radiation preferentially kills cells in a sensitive portion of the cycle and the surviving, more resistant cells then have time to reach more sensitive stages. We refer to this effect as population resensitization, caused by redistribution within the cell cycle. We investigate the effect theoretically by employing the McKendrick-von Foerster equation for age-structured proliferating cell populations, generalized by introducing a radiation damage term. Within our formalism, we show that population resensitization occurs whenever: (a) prior to irradiation the cell population has the stable age-distribution approached asymptotically by an unirradiated population, and (b) T is sufficiently small. Examples and other cases are outlined. The methods of Volterra integral equations, renewal theory, and positive semigroup theory are applied. The effect of varying T is evaluated by considering the ultimate amplitude of the stable age-distribution population at times much greater than both the irradiation duration and the average cell-cycle time. The main biological limitations of the formalism are the following: considering only radiation damage which is not subject to enzymatic repair or quadratic misrepair, using an overly naive method of ensuring loss of cell cycle synchrony, neglecting nonlinear effects such as density inhibition of growth, and neglecting radiatively induced perturbations of the cell cycle. Possible methods for removing these limitations are briefly discussed.

  8. Effect of hypertonic medium on human cell growth: III. Changes in cell kinetics of EUE cells.

    Science.gov (United States)

    Pellicciari, C; Mazzini, G; Fuhrman Conti, A M; De Grada, L; Manfredi Romanini, M G

    1989-04-01

    The effects of hypertonicity on cell kinetics of EUE cells in culture have been investigated. After 4 days of growth in a hypertonic medium, the plating efficiency of EUE cells was reduced and cell growth was significantly slowed. Flow cytometric measurements of DNA content in synchronized cells, as well as flow cytometric determinations of DNA content and bromodeoxyuridine incorporation in asynchronous cells, also showed that the cell cycle is slowed in a hypertonic medium. In addition, the fraction of cycling cells is smaller and their progression through the S phase slower than in an isotonic medium.

  9. Rescue Effects: Irradiated Cells Helped by Unirradiated Bystander Cells

    Science.gov (United States)

    Lam, R. K. K.; Fung, Y. K.; Han, W.; Yu, K. N.

    2015-01-01

    The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed. PMID:25625514

  10. Inhibitory Effect of Aspirin on Cholangiocarcinoma Cells

    Science.gov (United States)

    Boueroy, Parichart; Aukkanimart, Ratchadawan; Boonmars, Thidarut; Sriraj, Pranee; Ratanasuwan, Panaratana; Juasook, Amornrat; Wonkchalee, Nadchanan; Vaeteewoottacharn, Kulthida; Wongkham, Sopit

    2017-11-26

    Aspirin and other non-steroidal anti-inflammatory drugs reduce the risk of cancer due to their anti-proliferative and apoptotic effects, which are the important mechanisms for their anti-tumor activity. Here, the effect of aspirin on human cholangiocarcinoma cells (KKU-214) and the underlying mechanisms of its action were explored. Cell proliferation was measured by sulforhodamine B (SRB) assay, while cell cycle distribution and apoptosis were determined by flow cytometry. Western blotting was used to explore protein expression underlying molecular mechanisms of anti-cancer treatment of aspirin. Aspirin reduced cell proliferation in a dose- and time-dependent manner, and altered the cell cycle phase distribution of KKU-214 cells by increasing the proportion of cells in the G0/G1 phase and reducing the proportion in the S and G2/M phases. Consistent with its effect on the cell cycle, aspirin also reduced the expression of cyclin D1 and cyclin‑dependent kinase 4 (Cdk-4), which are important for G0/G1 cell cycle progression. Treatment with aspirin led to increased induction of apoptosis in a dose-dependent manner. Further analysis of the mechanism underlying the effect of this drug showed that aspirin induced the expression of the tumor-suppressor protein p53 while inhibiting the anti-apoptotic protein B‑cell lymphoma-2 (Bcl-2). Correspondingly, the activation of caspase-9 and -3 was also increased. These findings suggest that aspirin causes cell cycle arrest and apoptosis, both of which could contribute to its anti-proliferative effect. Creative Commons Attribution License

  11. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells.

    Science.gov (United States)

    Titanji, Boghuma Kabisen; Aasa-Chapman, Marlen; Pillay, Deenan; Jolly, Clare

    2013-12-24

    The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4-20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread.

  12. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling

    Directory of Open Access Journals (Sweden)

    Riikka H. Hämäläinen

    2015-06-01

    Full Text Available mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function.

  13. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect

    Science.gov (United States)

    Verstraeten, Valerie L. R. M.; Peckham, Lana A.; Olive, Michelle; Capell, Brian C.; Collins, Francis S.; Nabel, Elizabeth G.; Young, Stephen G.; Fong, Loren G.; Lammerding, Jan

    2011-01-01

    Despite the success of protein farnesyltransferase inhibitors (FTIs) in the treatment of certain malignancies, their mode of action is incompletely understood. Dissecting the molecular pathways affected by FTIs is important, particularly because this group of drugs is now being tested for the treatment of Hutchinson–Gilford progeria syndrome. In the current study, we show that FTI treatment causes a centrosome separation defect, leading to the formation of donut-shaped nuclei in nontransformed cell lines, tumor cell lines, and tissues of FTI-treated mice. Donut-shaped nuclei arise during chromatin decondensation in late mitosis; subsequently, cells with donut-shaped nuclei exhibit defects in karyokinesis, develop aneuploidy, and are often binucleated. Binucleated cells proliferate slowly. We identified lamin B1 and proteasome-mediated degradation of pericentrin as critical components in FTI-induced “donut formation” and binucleation. Reducing pericentrin expression or ectopic expression of nonfarnesylated lamin B1 was sufficient to elicit donut formation and binucleated cells, whereas blocking proteasomal degradation eliminated FTI-induced donut formation. Our studies have uncovered an important role of FTIs on centrosome separation and define pericentrin as a (indirect) target of FTIs affecting centrosome position and bipolar spindle formation, likely explaining some of the anticancer effects of these drugs. PMID:21383178

  14. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Teodoro Anderson

    2012-08-01

    Full Text Available Abstract Background Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound’s action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. Methods Human cell lines were treated with lycopene (1–5 μM for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL and by DAPI. Results Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7 after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145 when cells were treated with lycopene. Conclusions Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.

  15. Progeria Research Foundation, Inc.

    Science.gov (United States)

    ... Find The Other 150 Kids Video Gallery In Memory Of Life According To Sam Awards & Reviews Buy & ... 2018 in Boston MA: Night of Wonder 2018: Music to your ears! Learn More College Diabetes Network ...

  16. Progeria 101/FAQ

    Science.gov (United States)

    ... growth failure, loss of body fat and hair, aged-looking skin and stiffness of joints. As children get older, they suffer from osteoporosis, generalized atherosclerosis, cardiovascular (heart) disease and stroke. The ...

  17. Learning about Progeria

    Science.gov (United States)

    ... and Projects Grant Information NIH Common Fund NIH RePORTER Research at NHGRI An Overview Branches Clinical Research ... use of high-throughput screening technology to identify chemical compounds that might reverse nuclear membrane abnormalities of ...

  18. The effects of RAMPs upon cell signalling.

    Science.gov (United States)

    Routledge, Sarah J; Ladds, Graham; Poyner, David R

    2017-07-05

    G protein-coupled receptors (GPCRs) play a vital role in signal transduction. It is now clear that numerous other molecules within the cell and at the cell surface interact with GPCRs to modulate their signalling properties. Receptor activity modifying proteins (RAMPs) are a group of single transmembrane domain proteins which have been predominantly demonstrated to interact with Family B GPCRs, but interactions with Family A and C receptors have recently begun to emerge. These interactions can influence cell surface expression, ligand binding preferences and G protein-coupling, thus modulating GPCR signal transduction. There is still a great deal of research to be conducted into the effects of RAMPs on GPCR signalling; their effects upon Family B GPCRs are still not fully documented, in addition to their potential interactions with Family A and C GPCRs. New interactions could have a significant impact on the development of therapeutics. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  20. Distributed series resistance effects in solar cells

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1982-01-01

    A mathematical treatment is presented of the effects of one-dimensional distributed series resistance in solar cells. A general perturbation theory is developed, including consistently the induced spatial variation of diode current density and leading to a first-order equivalent lumped resistance...

  1. Cell cycle population effects in perturbation studies.

    Science.gov (United States)

    O'Duibhir, Eoghan; Lijnzaad, Philip; Benschop, Joris J; Lenstra, Tineke L; van Leenen, Dik; Groot Koerkamp, Marian J A; Margaritis, Thanasis; Brok, Mariel O; Kemmeren, Patrick; Holstege, Frank C P

    2014-06-21

    Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  2. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin.

    Directory of Open Access Journals (Sweden)

    Dayle McClintock

    2007-12-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals.

  3. Laser effects on yeast cell suspensions

    Science.gov (United States)

    Grigorovici, A.; Despa, Sanda I.; Paunescu, Teodor G.

    1995-03-01

    The aim of this paper is to determine the effects produced by coherent electromagnetic radiation in the ultraviolet and visible range on the growth of a Saccharomyces cerevisiae cell suspension. There were made several experiments in which we used different irradiation parameters (power, irradiation time, wavelength) for pointing out those that produce the stimulation or inhibition of the cellular culture growth. Beyond the modifications that appeared in the culture evolution we investigated other physical and chemical changes induced by the laser light on yeast cell suspensions.

  4. Percent of Cytopathic Effect in Vero vs Vero-76 cells

    OpenAIRE

    Redding, Taylor; Neilson, Skot; Day, Craig; Westover, Jonna

    2017-01-01

    Vero cells and Vero-76 cells are both used to evaluate the antiviral effect of drugs in vitro. This study tested whether Vero and Vero-76 cells yield similar cytopathic effects when inoculated with yellow fever Virus (YFV) or Dengue Virus(DV). Each virus was plated on replicated 96 well plates of Vero and Vero-76 cells with different cell concentrations. The two cells lines did not give significantly different results for most cell and virus concentrations.

  5. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were .... Effect of different combination of 2, 4-D and KT on cell growth and gallic acid production in cell suspension culture. 0.008 mg. ..... a bottleneck in the commercialization of plant cell cultures,.

  6. EFFECTIVE COMPOUNDS OF POMEGRANATE AND THEIR EFFECT ON ANIMAL CELLS

    Directory of Open Access Journals (Sweden)

    Dagmara Packová

    2014-02-01

    Full Text Available This review describes possible effects of antioxidant compounds of pomegranate on animal cells. Pomegranate (Punica granatum L. fruits are widely consumed. Pomegranate is one of the oldest known edible fruit. Spain is main producer in the Europe. Pomegranate contains bioactive polyphenols - punicalagin with molecular weight 1084. Part of punicalagin's molecule is ellagic acid. The both substances generate total antioxidant capacity of pomegranate. Punicalagin compounds present high antioxidant capacity - approximately 50%, ellagic acid as single molecule has 3% of antioxidant capacity. Punicalagin is molecule with high molecular weight and have to be hydrolised. Colonic microorganism metabolise yield of pomegranate (punigalagin or ellagic acid to urolithin A and is detected in blood, urine or faeces. Extract from pomegranate can show anticarcinogenic effect, induction of cell - cycle arrest, apoptosis and proliferation. Extract from pomegranate has relieving effect on woman's menopausal symptoms, anxienty disorders, depression or attention deficit disorders. Ellagic acid introduces health benefits against cancer, cardiovascular diseases and other disease. It is possible, that compounds of pomegranates or their metabolites could have impact on different animal cells and regulate their intracellular mechanism.

  7. METOPROLOL EFFECT ON FATTY ACIDS COMPOSITION OF CELL MEMBRANE PHOSPHOLIPIDS

    OpenAIRE

    Świerczek-Zięba, G.; Lodowska, J.; Mazurek, U.; Kurkiewicz, S.; Wilczok, T.

    2001-01-01

    It is quite well known that β-blockers influence the stability of cell membranes, but the effect of metoprolol on the composition of cell membrane lipids is not established. On the other hand, synchronous culture of Chlorella vulgaris cells, which consists of cells brought to the same developmental stage by cycling lighting, provides a convenient biological model in unidirectional analyses aimed at assessment of effects of xenobiotics on cells. Advantages of the model include short life cycle...

  8. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakagami

    2015-01-01

    Full Text Available 4H-1-benzopyran-4-ones (chromones are important naturally-distributing compounds. As compared with flavones, isoflavones and 2-styrylchromones, there are only few papers of 3-styrylchromones that have been published. We have previously reported that among fifteen 3-styrylchromone derivatives, three new synthetic compounds that have OCH3 group at the C-6 position of chromone ring, (E-3-(4-hydroxystyryl-6-methoxy-4H-chromen-4-one (compound 11, (E-6-methoxy-3-(4-methoxystyryl-4H-chromen-4-one (compound 4, (E-6-methoxy-3-(3,4,5-trimethoxystyryl-4H-chromen-4-one (compound 6 showed much higher cytotoxicities against four epithelial human oral squamous cell carcinoma (OSCC lines than human normal oral mesenchymal cells. In order to further confirm the tumor specificities of these compounds, we compared their cytotoxicities against both human epithelial malignant and non-malignant cells, and then investigated their effects on fine cell structures and metabolic profiles and cell death in human OSCC cell line HSC-2. Cytotoxicities of compounds 4, 6, 11 were assayed with MTT method. Fine cell structures were observed under transmission electron microscope. Cellular metabolites were extracted with methanol and subjected to CE-TOFMS analysis. Compounds 4, 6, 11 showed much weaker cytotoxicity against human oral keratinocyte and primary human gingival epithelial cells, as compared with HSC-2, confirming their tumor-specificity, whereas doxorubicin and 5-FU were highly cytotoxic to these normal epithelial cells, giving unexpectedly lower tumor-specificity. The most cytotoxic compound 11, induced the mitochondrial vacuolization, autophagy suppression followed by apoptosis induction, and changes in the metabolites involved in amino acid and glycerophospholipid metabolisms. Chemical modification of lead compound 11 may be a potential choice for designing new type of anticancer drugs.

  9. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  10. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  11. Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Y. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Han, W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chiu, S.K. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Zhu, L. [Office of Admission and Careers Advisory Service, Shenzhen University, Shenzhen 518060 (China); Wu, L. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-01-10

    Mammalian cells respond to ionization radiation by sending out extracellular signals to affect non-irradiated neighboring cells, which is referred to as radiation induced bystander effect. In the present paper, we described a phenomenon entitled the 'rescue effects', where the bystander cells rescued the irradiated cells through intercellular signal feedback. The effect was observed in both human primary fibroblast (NHLF) and cancer cells (HeLa) using two-cell co-culture systems. After co-culturing irradiated cells with unirradiated bystander cells for 24 h, the numbers of 53BP1 foci, corresponding to the number of DNA double-strand breaks in the irradiated cells were less than those in the irradiated cells that were not co-cultured with the bystander cells (0.78 {+-} 0.04 foci/cell vs. 0.90 {+-} 0.04 foci/cell) at a statistically significant level. Similarly, both micronucleus formation and extent of apoptosis in the irradiated cells were different at statistically significant levels if they were co-cultured with the bystander cells. Furthermore, it was found that unirradiated normal cells would also reduce the micronucleus formation in irradiated cancer cells. These results suggested that the rescue effects could participate in repairing the radiation-induced DNA damages through a media-mediated signaling feedback, thereby mitigating the cytotoxicity and genotoxicity of ionizing radiation.

  12. The response effect of pheochromocytoma (PC12) cell lines to ...

    African Journals Online (AJOL)

    The toxicity of oxidized multi-walled carbon nanotubes (o-MWCNTs) are of utmost concern and in most in-vitro studies conducted so far are on dendritic cell (DC) lines with limited data on PC12 cell lines. Objectives: We focused on the effect of o-MWCNTs in PC12 cells in vitro: a common model cell for neurotoxicity.

  13. EFFECT OF MACROLIDE ANTIBIOTICS ON VARIOUS CELL CULTURES IN VITRO: 1. CELL MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    Renáta Kováčová

    2012-08-01

    Full Text Available The aim of our study was to evaluate the cytotoxicity of macrolide antibiotics (tilmicosin, tylosin and spiramycin of various concentrations on different cell cultures in vitro. Cellular lines from animal tissues (VERO cells - kidney cells of Macacus rhesus, FE cells - feline embryonal cells, BHK 21 cellular line from young hamster kidneys were used. Tilmicosin effect: BHK cells are most sensitive, significant decrease in vital cells occurs already at the concentration of 50 μg.ml-1. VERO cells were most resistant, significant decrease of vital cells was observed only at the concentration of 300 μg.ml-1. Tylosin effect: BHK cells can be considered most sensitive, since at concentrations higher than 500 μg.ml-1, no vital cells were observed. At the concentration of 1000 μg.ml-1 were 3.13% of vital and 70.52% of subvital FE cells. In Vero cells, we observed a significant decrease at the concentration of 750 μg.ml-1. Spiramycin effect: Significant decrease of vital BHK cells was observed at the concentration of 150 μg.ml-1, at the concentration of 300 μg.ml-1, no vital cells and only 7.53% of subvital cells were observed. At the concentration of 500 μg.ml-1 reported 10.34% of vital FE cells. At the concentration of 500 μg.ml-1 22.48% of vital and 71.16% of subvital VERO cells were recorded.

  14. Effects of granulosa cells on steroidogenesis, proliferation and apoptosis of stromal cells and theca cells derived from the goat ovary.

    Science.gov (United States)

    Qiu, Mingning; Quan, Fusheng; Han, Chengquan; Wu, Bin; Liu, Jun; Yang, Zhongcai; Su, Feng; Zhang, Yong

    2013-11-01

    The aim of this study was to investigate the effect of granulosa cells from small antral follicles on steroidogenesis, proliferation and apoptosis of goat ovarian stromal and theca cells in vitro. Using Transwell co-culture system, we evaluated androgen production, LH responsiveness, cell proliferation and apoptosis and some molecular expression regarding steroidogenic enzyme and apoptosis-related genes in stromal and theca cells. The results indicated that the co-culture with granulosa cells increased steroidogenesis, LH responsiveness and bcl-2 gene expression as well as decreased apoptotic bax and bad expressions in stromal and theca cells. Thus, granulosa cells had a capacity of promoting steroidogenesis in stromal cell and LH responsiveness in cortical stromal cells, maintaining steroidogenesis in theca cells, inhibiting apoptosis of cortical stromal cells and improving anti-apoptotic abilities of stromal and theca cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  16. A senescent cell bystander effect: senescence‐induced senescence

    National Research Council Canada - National Science Library

    Nelson, Glyn; Wordsworth, James; Wang, Chunfang; Jurk, Diana; Lawless, Conor; Martin‐Ruiz, Carmen; von Zglinicki, Thomas

    2012-01-01

    ...‐degrading enzymes and reactive oxygen species (ROS). Thus, it has been proposed that senescent cells can damage their local environment, and a stimulatory effect on tumour cell growth and invasiveness has been documented...

  17. Thrombin has a bimodal effect on glioma cell growth.

    OpenAIRE

    Schafberg, H.; Nowak, G.; Kaufmann, R.

    1997-01-01

    Using rat glioma C6 cells as a model, we have found a bimodal effect of alpha-thrombin on cell growth. In C6 cells treated with alpha-thrombin at concentrations from 0.02 nM to 1.0 nM, inhibition of cell proliferation was noted. Because the thrombin receptor agonist peptide TRAP-6 also induced inhibition of cell proliferation and the thrombin receptor antagonist peptide T1 prevented the inhibitory effect of alpha-thrombin on C6 glioma cell growth, thrombin receptor involvement in antiprolifer...

  18. [Radiosensitization effect of black garlic extract on lung cancer cell line Lewis cells].

    Science.gov (United States)

    Yang, Gui-qing; Wang, Dong; Wang, Yi-shan; Wang, Yuan-yuan; Yang, Ke

    2013-08-01

    To explore the radiosensitization effect of black garlic extract (BGE) on lung cancer cell line Lewis cells. The inhibition rate of lung cancer cells after BGE action was detected by MTT. Effect of BGE combined radiotherapy on the colony formation rate was observed by cloning formation assay. Changes of the cell morphology were observed by Hoechst staining. Changes of the cell cycle were detected by flow cytometry. Real time PCR was used to detect mRNA expressions of bcl-2 and bax. BGE could have significant inhibitory action on the growth of lung cancer Lewis cells. The combination of BGE and radiotherapy (by 60Co gamma) significantly induced Lewis cells' apoptosis in G2/M stage, obviously decreased the expression of bcl-2, and up-regulated the expression of bax. BGE could sensitize the lung cancer Lewis cells to ionizing irradiation. This effect might be probably caused by changing the cell cycles and affecting expressions of bax and bcl-2.

  19. Effect of Methamidophos on cerebellar neuronal cells

    African Journals Online (AJOL)

    olayemitoyin

    Taken together, our study shows that low dose methamidophos may negatively impact. TH-mediated cerebellar neuronal cell development and function, and consequently could interfere with TH-regulated neuronal events. Keywords: Methamidophos, Thyroid hormone, Purkinje cells, Granule cell, Neuronal development.

  20. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  1. Zinc effect on human lymphatic malformation cells in vitro.

    Science.gov (United States)

    O, Teresa Min-Jung; Lou, Man Si; Ma, Yupo

    2016-01-01

    Lymphatic malformations (LM) are clinically characterized by episodes of inflammatory episodes. Often, an upper respiratory illness or trauma will lead to painful swelling in the distribution of the LM. Zinc is an element involved in numerous aspects of cellular metabolism and is a common dietary supplement and cold remedy. We surmise that zinc may act as a therapeutic anti-inflammatory agent for lymphatic malformations and their cellular components. We investigate the apparent cytotoxic effect of zinc ion on lymphatic malformation cells in vitro. Fresh surgical lymphatic malformation specimens from 10 patients were collected and processed in a laboratory. Tissues were processed and lymphatic malformation cells were isolated and grown. Immunohistochemistry and cell morphology were used to confirm LM cells. HUVEC cells were used as controls. Zinc chloride solution was added to the cells and its effect observed. LM cells were isolated from five of the 10 specimens. Of these, the cells of only one specimen were able to be amplified to confluence. Five specimens were contaminated. Immunohistochemical staining (CD31, D2-40, and LYVE-1) and cell morphology of our specimens were consistent with lymphatic malformation while HUVEC control cells were negative. Zinc has a cytotoxic effect on BEL isolates in vitro with no obvious effect on cell morphology or growth rate of the control HUVEC cells. When compared with the published toxic zinc concentration for most cell types in the literature (100μM total zinc in vitro), our result indicates that LM cells may have a lower tolerance to zinc (10μM total zinc in vitro). Zinc has an apparent morphological effect on lymphatic malformation cells in vitro. Compared with other cell types, LM cells have a lower tolerance to zinc. While this result looks very promising for future therapeutic use of zinc in acute lymphangitis, further studies are necessary, such as finding the IC50 of zinc for lymphatic malformation in vitro and also in

  2. Global Reorganization of the Nuclear Landscape in Senescent Cells

    Directory of Open Access Journals (Sweden)

    Tamir Chandra

    2015-02-01

    Full Text Available Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF. However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs, somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

  3. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    Science.gov (United States)

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

  4. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...... of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells...

  5. Immunomodulatory effects of turmeric: Proliferation of spleen cells in mice.

    Science.gov (United States)

    Mustafa, Rafid; Blumenthal, Elliott

    2017-01-01

    Experiments were conducted to examine the effects of turmeric on spleen cell proliferation. Cell suspensions of spleen cells from young and aged mice were treated with or without conconavalin A (Con-A) as a proliferation stimulant, and with and without turmeric (20 mg/mL) in different concentrations. Spleen cells from young mice that received turmeric showed significant increase in spleen cell proliferation (P turmeric showed no significant increase in T lymphocytes. The data indicates that turmeric increases the ability of spleen cells in young mice to proliferate, in vitro.

  6. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function

    NARCIS (Netherlands)

    F. Luk (Franka); Carreras-Planella, L. (Laura); S.S. Korevaar (Sander); S.F. De Witte (Samantha Fh); F.E. Borràs (Francesc); M.G.H. Betjes (Michiel); C.C. Baan (Carla); M.J. Hoogduijn (Martin); M. Franquesa (Marcella)

    2017-01-01

    textabstractThe immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells

  7. [Effects of matrine on proliferation and apoptosis of human renal cell carcinoma cell line GRC-1].

    Science.gov (United States)

    Chong, Tie; Niu, Jian-Qiang; Wang, Zi-Ming; She, Jun-Jun; Huang, Chen

    2006-07-01

    To observe the effects of matrine on proliferation and apoptosis of human renal cell carcinoma cell line GRC-1 in vitro, and to explore its mechanism. The human renal cell carcinoma cell line GRC-1 was treated with matrine of different concentrations for 24, 48, 72 and 96 h respectively. The MTT assay was used to evaluate the cytotoxic effects of matrine on GRC-1 cells. The transmission electron microscope and flow cytometry were utilized to observe and detect the apoptosis of GRC-1 cells induced by matrine. The expression levels of Bcl-2 and Bax proteins were evaluated by streptavidin-biotin-peroxidase method. The matrine of different concentrations all have cytotoxic effects on GRC-1 cells, with obvious dose- and time-dependent effects. The apoptosis induced by matrine was confirmed in GRC-1 cells. With intervention of matrine (1.5 g/L) for 12 h, the expression level of Bcl-2 in GRC-1 cells was decreased while the expression level of Bax was increased as compared with those in the untreated group. The proliferation-inhibiting effects of matrine on human renal cell carcinoma cell line GRC-1 may be related to down-regulating the ratio of Bcl-2/Bax protein expression and promoting the apoptosis.

  8. Retinal ganglion cells electrophysiology: the effect of cell morphology on impulse waveform.

    Science.gov (United States)

    Maturana, Matias I; Wong, Raymond; Cloherty, Shaun L; Ibbotson, Michael R; Hadjinicolaou, Alex E; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; O'Brien, Brendan J; Kameneva, Tatiana

    2013-01-01

    There are 16 morphologically defined classes of rats retinal ganglion cells (RGCs). Using computer simulation of a realistic anatomically correct A1 mouse RGC, we investigate the effect of the cell's morphology on its impulse waveform, using the first-, and second-order time derivatives as well as the phase plot features. Using whole cell patch clamp recordings, we recorded the impulse waveform for each of the rat RGCs types. While we found some clear differences in many features of the impulse waveforms for A2 and B2 cells compared to other cell classes, many cell types did not show clear differences.

  9. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells

    OpenAIRE

    DAROIT,Natália Batista; Visioli, Fernanda; Magnusson, Alessandra Selinger; Vieira, Geila Radunz; Rados, Pantelis Varvaki

    2015-01-01

    The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the m...

  10. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    Directory of Open Access Journals (Sweden)

    Roshni S. Kalkur

    2014-09-01

    Full Text Available For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3 cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.

  11. Effect of ketoprofen on immune cells in mice | Hamdani | Tropical ...

    African Journals Online (AJOL)

    Effect of ketoprofen on immune cells in mice. DA Hamdani, A Javeed, M Ashraf, J Nazir, A Ghafoor. Abstract. Purpose: To study the immunosuppressant and immunopotentiating effects of ketoprofen on antibody producing cells. Methods: Mice were given ketoprofen at doses of 1 mg/kg/day and 5 mg/kg/day for seven days.

  12. Different effects of sonoporation on cell morphology and viability

    Directory of Open Access Journals (Sweden)

    Ji-Zhen Zhang

    2012-05-01

    Full Text Available The objective of our study was to investigate changes in cell morphology and viability after sonoporation. Sonoportion was achieved by ultrasound (21 kHz exposure on adherent human prostate cancer DU145 cells in the cell culture dishes with the presence of microbubble contrast agents and calcein (a cell impermeant dye. We investigated changes in cell morphology immediately after sonoporation under scanning electron microscope (SEM and changes in cell viability immediately and 6 h after sonoporation under fluorescence microscope. It was shown that various levels of intracellular calcein uptake and changes in cell morphology can be caused immediately after sonoporation: smooth cell surface, pores in the membrane and irregular cell surface. Immediately after sonoporation, both groups of cells with high levels of calcein uptake and low levels of calcein uptake were viable; 6 h after sonoporation, group of cells with low levels of calcein uptake still remained viable, while group of cells with high levels of calcein uptake died. Sonoporation induces different effects on cell morphology, intracellular calcein uptake and cell viability.

  13. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells

    Directory of Open Access Journals (Sweden)

    Dido Carrero

    2016-07-01

    Full Text Available Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations.

  14. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines.

    Science.gov (United States)

    Ghashm, Abdulmlik A; Othman, Nor H; Khattak, Mohammed N; Ismail, Noorliza M; Saini, Rajan

    2010-09-14

    The treatment of oral squamous cell carcinomas (OSCC) and human osteosarcoma (HOS) includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang) on OSCC and HOS cell lines. Several concentrations of Tualang honey (1% - 20%) were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50) for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  15. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  16. The effect of noise on beta-cell burst period

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Sørensen, Mads Peter

    2006-01-01

    Bursting electrical behavior is commonly observed in a variety of nerve and endocrine cells, among these in electrically coupled beta-cells located in intact pancreatic islets. However, individual beta-cells usually display either spiking or very fast bursting behavior, and the difference between...... isolated and coupled cells has been suggested to be due to stochastic fluctuations of the plasma membrane ions channels, which are supposed to have a stronger effect on single cells than on cells situated in clusters (the channel sharing hypothesis). This effect of noise has previously been studied based...... system, but with a quantitative description of the effect of noise. This approach supports previous investigations of the channel sharing hypothesis....

  17. The effect of cell phones on human health

    Science.gov (United States)

    Abu-Isbeih, Ibrahim N.; Saad, Dina

    2011-10-01

    The effect of cell phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in cell phone usage throughout the world. Cell phones use electromagnetic radiation in the microwave range, which some believe may be harmful to human health. Other digital wireless systems, such as data communication networks, produce similar radiation. The objective of this survey is to review the effects of cell phones on human health: A large body of research exists, both epidemiological and experimental, in non-human animals and in humans, of which the majority shows no definite causative relationship between exposure to cell phones and harmful biological effects in humans. This is often paraphrased simply as the balance of evidence showing no harm to humans from cell phones, although a significant number of individual studies do suggest such a relationship, or are inconclusive.

  18. [Effects of three Wenyang Jianpi Tang on cell proliferation and apoptosis of nonalcoholic fatty liver cells].

    Science.gov (United States)

    Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong

    2017-04-01

    To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(Pcell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(Pcells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. The pharmacodynamic mechanism may be related to the expressions of key factors in pathways related with proliferation and apoptosis mediated by the three decoctions. Copyright© by the Chinese Pharmaceutical Association.

  19. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  20. Effects of Polyhydroxybutyrate Production on Cell Division

    Science.gov (United States)

    Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.

    2015-01-01

    Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.

  1. Space Radiation Effect on Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Jae-Jin Lee

    2008-12-01

    Full Text Available High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1 was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  2. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells.

    Science.gov (United States)

    Daroit, Natália Batista; Visioli, Fernanda; Magnusson, Alessandra Selinger; Vieira, Geila Radunz; Rados, Pantelis Varvaki

    2015-01-01

    The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  3. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells

    Directory of Open Access Journals (Sweden)

    Natália Batista DAROIT

    2015-01-01

    Full Text Available The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  4. Effects of cell cycle noise on excitable gene circuits

    CERN Document Server

    Veliz-Cuba, Alan; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2016-01-01

    We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a 3-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.

  5. The Effects of Micro- and Nano-Topography on Cells

    DEFF Research Database (Denmark)

    Kolind, Kristian

    2013-01-01

    Cells continuously make decisions on what proteins to express, and when to divide, differentiate and commit suicide, through a complex network of intracellular processes. The signals that determine the cellular processes reside within the extracellular matrix. They involve soluble signaling...... the effect of topography on cells has received much attention understanding how important this is for the rational design of bio-interfaces. Nevertheless, there is still a limited understanding of the effect of topography on cells making it impossible to tailor a biomaterial with specific cellular activity...... at the substrate surface. The major aim of this PhD thesis has been to understand the effect of micro- and nano-topography on focal adhesion assembly and cell spreading, as well as its effect on proliferation and differentiation of cells. Such knowledge will provide a more rational approach to optimize...

  6. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

    Science.gov (United States)

    Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael

    2016-01-01

    To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.

  7. Pharmacodynamic Modeling of Cell Cycle Effects for Gemcitabine and Trabectedin Combinations in Pancreatic Cancer Cells

    Science.gov (United States)

    Miao, Xin; Koch, Gilbert; Ait-Oudhia, Sihem; Straubinger, Robert M.; Jusko, William J.

    2016-01-01

    Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0–120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations. PMID:27895579

  8. Inhibitory effects of ameloblastin on epithelial cell proliferation.

    Science.gov (United States)

    Saito, Noriko; Ariyoshi, Wataru; Okinaga, Toshinori; Kamegawa, Mariko; Matsukizono, Miho; Akebiyama, Yasuo; Kitamura, Chiaki; Nishihara, Tatsuji

    2014-08-01

    Ameloblastin is an enamel matrix protein expressed in several tissues. Many potential mechanisms have been identified by which ameloblastin functions as an extracellular matrix protein. However, the biological effects of ameloblastin on gingival epithelial cells remain unclear. In the present study, we established a novel system to purify recombinant human ameloblastin and clarified its biological functions in epithelial cells in vitro. Recombinant human ameloblastin was isolated from COS-7 cells overexpressing HaloTag-fused human ameloblastin by the HaloTag system and then purified further by reverse-phase high-performance liquid chromatography. SCC-25 cells, derived from human oral squamous cell carcinoma, were treated with recombinant ameloblastin and then cell survival was assessed by a WST-1 assay. Cell cycle analysis was performed by flow cytometry. The novel purification system allowed effective recovery of the recombinant ameloblastin proteins at a high purity. Recombinant ameloblastin protein was found to suppress the proliferation of SCC-25 cells. Flow cytometric analysis showed that ameloblastin treatment induced cell cycle arrest G1 phase. We developed a procedure for production of highly purified recombinant human ameloblastin. Biological analyses suggest that ameloblastin induces cell cycle arrest in epithelial cells and regulates the progression of periodontitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effects of IL-17 upon human natural killer cells.

    Science.gov (United States)

    Al Omar, Suliman; Flanagan, Brian F; Almehmadi, Mazen; Christmas, Stephen E

    2013-04-01

    These experiments were designed to investigate the effects of IL-17 upon the phenotype and function of human Natural Killer (NK) cells. Peripheral blood mononuclear cells from healthy subjects were cultured in the presence or absence of different combinations of IL-17s and changes in relative numbers and cell surface phenotype of NK cells and CD56+CD3+ cells measured by flow cytometry. Real time PCR was used to measure changes in expression of the cytotoxicity-related genes perforin A and granzymes A and B and IL-17 receptors. A chromium release assay was used to measure cytotoxic function against K562 tumour cells. IL-17D, IL-17A, IL-17F or the combination of both of the latter had little effect upon NK cell surface expression of Killer Immunoglobulin-like Receptors, although IL-17A modestly increased NK cell numbers. Slight but not significant increases in expression of perforin and granzymes were induced by IL-17A and/or IL-17F. Both IL-17A and D significantly increased cytotoxic function of NK cells at some E:T ratios. Similarly, numbers of NK cells induced to express CD107a after interaction with K562 cells were increased, but not significantly, by all combinations of IL-17s tested. IL-17RC was not found at the NK cell surface but was expressed at the message level and the protein detected intracellularly. NK cells are known to produce IL-17 but here we report that there is little response to this cytokine although some isoforms may moderately enhance cytotoxic function. There may therefore be some enhancement of NK cell function resulting from Th17 cell activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of red blood cells on hemostasis

    NARCIS (Netherlands)

    Roeloffzen, WilfriedW. H.; Kluin-Nelemans, Hanneke C.; Bosman, Lotte; de Wolf, Joost Th. M.

    BACKGROUND: Currently there is no sensitive laboratory test to establish the influence of red blood cells (RBCs) on hemostasis. As thromboelastography (TEG) measures hemostasis in whole blood, taking into account the interactions of all cellular elements, we used this instrument to investigate the

  11. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  12. Effect of Ultrasonic Vibration on Proliferation and Differentiation of Cells

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2016-12-01

    Full Text Available The effect of mechanical stimulation of vibration on proliferation and differentiation of cells has been studied in vitro. To apply the vibration on the cells, a piezoelectric element was attached on the outside surface of the bottom of the culture plate of six wells. The piezoelectric element was vibrated by sinusoidally alternating voltage at 1.0 MHz generated by a function generator. Five kinds of cells were used in the experiment: C2C12 (mouse myoblast cell, L929 (fibroblast connective tissue of mouse, Hepa1-6 (mouse hepatoma cell, HUVEC (human umbilical vein endothelial cell, and Neuro-2a (mouse neural crest-derived cell line. After the incubation for 24 hours, cells were exposed to the ultrasonic vibration intermittently for three days: for thirty minutes per day. At the end of the experiment, the number of cells was counted by colorimetric method with a microplate photometer. In the case of Neuro-2a, the total length of the neurite was calculated at the microscopic image. The experimental study shows following results. Cells are exfoliated by the strong vibration. Proliferation and differentiation of cells are accelerated with mild vibration. The optimum intensity of vibration depends on the kind of cells.

  13. Phosphonium Salt Displays Cytotoxic Effects Against Human Cancer Cell Lines.

    Science.gov (United States)

    Dhanya, Dhanyalayam; Palma, Giuseppe; Cappello, AnnaRita; Mariconda, Annaluisa; Sinicropi, Maria Stefania; Giordano, Francesca; Vecchio, Vitale Del; Ramunno, Anna; Arra, Claudio; Longo, Pasquale; Saturnino, Carmela

    2017-07-19

    Aims/ Objective: Phosphonium salts are compounds whose structural characteristics enable them to cross the plasma and mitochondrial membrane with ease. Cancer cells have higher plasma membrane potentials than normal cells, phosphonium salts selectively accumulate in the mitochondria of neoplastic cells and inhibit mitochondrial function. In the presente work, we investigate the cytotoxic activity of lipophilic phosphonium salt (11-methoxy11-oxo-undecyl) triphenylphosphonium bromide (MUTP) as well as of two new phosphine oxide salts, 3,3'-(methylphosphoryl) dibenzenaminium chloride (SBAMPO) and 3,3' (phenylphosphoryl) dibenzenaminium chloride (SBAPPO) on the proliferation of breast cancer cell line (MCF-7) and human uterin cervix adenocarcinoma cells (HeLa). We show that only MUTP exhibits antiproliferative effects on both cell lines, without affecting normal breast epithelial cell proliferation. More specifically, we demonstrate that MUTP treatment of breast cancer cells is associated with impaired cell-cycle progression and metabolically induces mitochondrial damage and triggers apoptotic cell death in MCF-7 and HeLa cells. Taken together, these findings suggest that MUTP may be capable of selectively targeting neoplastic cell growth and therefore has potential applications as anticancer agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. [Effects of emdogain on human periodontal ligament cells in vitro].

    Science.gov (United States)

    Zhang, Feng-qiu; Meng, Huan-xin; Han, Jie; Liu, Kai-ning

    2012-02-18

    To investigate the effects of emdogain, enamel matrix derivative (EMD), on the proliferation, cell cycle, mineralization and ultrastructure of human periodontal ligament (PDL) cells in vitro. The influence of cell growth on PDL cells was evaluated by Cell Counting Kit-8 (CCK-8) in the presence and absence of emdogain, after 1, 3, and 5 d of culture. DNA synthesis and ultrastructure of PDL cells were observed by flow cytometry(FCM) and transmission electron microscopy (TEM) in the presence and absence of emdogain after 3 d of culture. The increasing of osteogenic capacity was verified by the expression changes of osteogenic differentiation markers of bone sialoprotein (BSP) and osteopontin (OPN) in emdogain-treated PDL cells by immunohistochemicl staining. Incubation of PDL cells with emdogain after 3 d significantly stimulated cell growth and DNA synthesis. Emdogain enhanced the osteogenic potential of PDL cells by high expression of osteogenic differentiation markers of BSP and OPN. The data indicate that Emdogain enhances cell proliferation and promotes differentiation of PDL cells, which contributes to periodontal tissue regeneration .

  15. The Effect of Titanium Dioxide Nanoparticles on Keratinocyte Cell (KC) and Squamous Cell Carcinoma (SCC-13)

    Science.gov (United States)

    Lin, Chienhsiu; Simon, Marcia; Jurukovski, Vladimir; Lee, Wilson; Rafailovich, Miriam

    2009-03-01

    We have studied the effects of TiO2 nanoparticles on cell keratinocyte and SCC (Squamous Cell Carcinoma) cells. We found that the concentration of particles required to adversely affect the cells was many times higher for keratinocyte than SCC cells. Confocal microscope shows that the particles in keratinocyte culture are sequestered in membranes between the cell colonies. The particles penetrated into the cells in the case of the SCC cells. TEM images revealed very few particles in the keratinocyte, many more particles were observed sequestered in vacuole of the SCC cells. These results indicate that the keratinocyte layer behaves very different from the fibroblast layers which are much more sensate to TiO2 nanoparticle damage and may suggest a protection mechanism of the dermal tissue. The effect of UV exposure in the presence of DNA was also investigated. We found that adsorbed proteins, as well as grafted polymer provided a measure of protection against free radical formation. The effects of low level UV exposure when the particles are near in-vitro cell culture will be presented.

  16. Inflammatory Conditions Dictate the Effect of Mesenchymal Stem or Stromal Cells on B Cell Function

    Science.gov (United States)

    Luk, Franka; Carreras-Planella, Laura; Korevaar, Sander S.; de Witte, Samantha F. H.; Borràs, Francesc E.; Betjes, Michiel G. H.; Baan, Carla C.; Hoogduijn, Martin J.; Franquesa, Marcella

    2017-01-01

    The immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells (Bregs). It is, however, unknown how MSC interact with B cells under inflammatory conditions. In this study, adipose tissue-derived MSC were pretreated with 50 ng/ml IFN-γ for 96 h (MSC–IFN-γ) to simulate inflammatory conditions. Mature B cells were obtained from spleens by CD43− selection. B cells were co-cultured with MSC and stimulated with anti-IgM, anti-CD40, and IL-2; and after 7 days, B cell proliferation, phenotype, Immunoglobulin-G (IgG), and IL-10 production were analyzed. MSC did not inhibit B cell proliferation but increased the percentage of CD38high CD24high B cells (Bregs) and IL-10 production, while MSC–IFN-γ significantly reduced B cell proliferation and inhibited IgG production by B cells in a more potent fashion but did not induce Bregs or IL-10 production. Both MSC and MSC–IFN-γ required proximity to target cells and being metabolically active to exert their effects. Indoleamine 2,3 dioxygenase expression was highly induced in MSC–IFN-γ and was responsible of the anti-proliferative and Breg reduction since addition of tryptophan (TRP) restored MSC properties. Immunological conditions dictate the effect of MSC on B cell function. Under immunological quiescent conditions, MSC stimulate Breg induction; whereas, under inflammatory conditions, MSC inhibit B cell proliferation and maturation through depletion of TRP. This knowledge is useful for customizing MSC therapy for specific purposes by appropriate pretreatment of MSC. PMID:28894451

  17. Effects of epiplakin-knockdown in cultured corneal epithelial cells

    OpenAIRE

    Kokado, Masahide; Okada, Yuka; Miyamoto, Takeshi; Yamanaka, Osamu; Saika, Shizuya

    2016-01-01

    Background To investigate effects of knockdown of epiplakin gene expression on the homeostasis of cultured corneal epithelial cell line. We previously reported acceleration of corneal epithelial wound healing in an epiplakin-null mouse. Methods Gene expression of epiplakin was knockdowned by employing siRNA transfection in SV40-immortalized human corneal epithelial cell line. Protein expression of E-cadherin, keratin 6 and vimentin was examined by western blotting. Cell migration and prolifer...

  18. Dual Effects of Resveratrol on Cell Death and Proliferation of Colon Cancer Cells.

    Science.gov (United States)

    San Hipólito-Luengo, Álvaro; Alcaide, Antonio; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Talero, Elena; Sánchez-Ferrer, Carlos F; Motilva, Virginia; Peiró, Concepción

    2017-10-01

    Colorectal cancer remains a main cause of deaths worldwide, and novel agents are being searched to treat this disease. Polyphenols have emerged as promising therapeutic tools in cancer. Resveratrol (3,5,4'-trihydoxy-trans-stilbene) induces cell death in different tumor cell lines, and it also stimulates the proliferation of specific breast and prostate cancer cell lines. Here, we studied the impact of resveratrol over a 100-fold concentration range on cell death and proliferation of HT-29 colorectal adenocarcinoma cells. After 96 h of treatment, a biphasic pattern was observed. At lower concentrations (1 and 10 μmol/l), resveratrol increased the cell number, as did the polyphenol quercetin. At 50 or 100 μmol/l, resveratrol reduced the cell number and increased the percentage of apoptotic or necrotic cells, thus indicating cytotoxicity. On HCT116 colon cancer cells, however, no proliferative properties of resveratrol were observed. Resveratrol-induced cytotoxicity on HT-29 cells was associated with NADPH oxidase activation and increased levels of histone γH2AX, a marker of DNA damage, paralleled by enhanced sirtuin 6 levels, likely as a repair mechanism. Overall, resveratrol may be an effective tool in anti-tumor chemotherapy. However, since under some conditions it may favor tumor cell growth, appropriate local concentrations must be achieved to minimize unwanted effects of resveratrol.

  19. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    Science.gov (United States)

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  20. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  1. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Nadine Herr; Christoph Bode; Daniel Duerschmied

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  2. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    of cytokines and chemokines - We showed that DC do not induce PSC expression of ECM proteins - We showed that DC induce PSC expression of cytokines... hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21:504–516. http://dx.doi.org/10.1016/j.ccr.2012.02.007 De Monte, L., M...nearly 15% of intrapancreatic leukocytes. Intrapancreatic DCs acquired a distinct immune phenotype in mice with acute pancreatitis; they expressed

  3. Effect of Methamidophos on cerebellar neuronal cells | Ibhazehiebo ...

    African Journals Online (AJOL)

    In the present study, we investigated the effects of methamidophos on cerebellar neuronal cells. Using primary cerebellar culture from new born rats, We observed that Purkinje cell dendrite arborization were greatly impaired in the absence of thyroid hormone (TH), However, low dose methamidophos 10-6 M did not ...

  4. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration

    NARCIS (Netherlands)

    Fu, Yao; Karbaat, Lisanne; Wu, Ling; Leijten, Jeroen; Both, Sanne K.; Karperien, Marcel

    2017-01-01

    Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a

  5. Myeloid-derived cells in tumors: effects of radiation.

    Science.gov (United States)

    Vatner, Ralph E; Formenti, Silvia C

    2015-01-01

    The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Effect of Light and Cytokinins on Secondary Metabolism in Cell ...

    African Journals Online (AJOL)

    The production of secondary metabolites from cell suspensions of P. arguta, an endangered endemic plant from Mauritius has never been reported. In order to identity the optimum culture conditions, the effect of light and cytokinins on phenylpropanoid products was studied. These conditions were, exposure of cells to a ...

  7. Effect of Rosmarinic acid on sertoli cells apoptosis and serum ...

    African Journals Online (AJOL)

    inflammatory and antimicrobial activities and help to prevent cell damage caused by free radicals. The objective was to study the effect of Rosmarinic acid on sertolli cells apoptosis and serum antioxidant levels in rats after they were exposed to ...

  8. Effects on Packed Cell Volume and Parasitic Worm Load from ...

    African Journals Online (AJOL)

    One of the consequences of parasitic worm infestation in children is anaemia which is objectively measured by estimating the packed cell volume. This study carried out through four months was to examine the effects, (on packed cell volume and parasitic worm load) of de-worming pupils of a primary school in Rivers State.

  9. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  10. The effect of stem cell factor on proliferation of human endometrial CD146(+) cells.

    Science.gov (United States)

    Fayazi, Mehri; Salehnia, Mojdeh; Ziaei, Saeideh

    2016-07-01

    Stem cell factor (SCF) is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146(+) cells. In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS) into CD146(+) cells. Human endometrial CD146(+) cells were karyotyped and tested for the effect of SCF on proliferation of CD146(+) cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146(+) cells proliferation was assessed by MTT assay. Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146(+) cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01). The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146(+) cells and it has important implications for medical sciences and cell therapies.

  11. Effect of nutrient calcium on the cell wall composition and ...

    African Journals Online (AJOL)

    The effect of calcium in the nutrient medium on kikuyu grass (Pennisetum clandestinum Hochst), grown in a solution culture, was investigated. Calcium had no effect on the lignin content of leaf material, but decreased the lignin content per unit stem cell wall. Calcium appeared to have no significant effect on either the ...

  12. Gravity effect on lymphocyte deformation through cell shape change.

    Science.gov (United States)

    Hung, R J; Tsao, Y D; Spauling, G F

    1995-01-01

    The effects on human cells (lymphocyte) immersed in a culture liquid under microgravity environment has been investigated. The study was based on the numerical simulation of the Morphology of human cells affected by the time dependent variation of gravity acceleration ranging from 10(-3) to 2 g(o) (g(o) = 9.81 m/s2) in 15 s. Both the free floating cells and the cells which came into contact with the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration were considered in this study. The results show that, when the gravity acceleration increased, the cell morphology changed from spherical to horizontally elongated ellipsoid for both the free floating cells and the stationary cells on the lower inclined wall while the cell morphology varied from spherical to vertically-elongated ellipsoid for the cells hanging on the upper inclined wall. A test of the deformation of human cells exposed to the variation of gravity levels, carried out in the KC-135 free fall aircraft, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results will be useful for study of the behavior and morphology of cells in space.

  13. Osteocalcin Effect on Human β-Cells Mass and Function.

    Science.gov (United States)

    Sabek, Omaima M; Nishimoto, Satoru Ken; Fraga, Daniel; Tejpal, Neelam; Ricordi, Camillo; Gaber, A O

    2015-09-01

    The osteoblast-specific hormone osteocalcin (OC) was found to regulate glucose metabolism, fat mass, and β-cell proliferation in mice. Here, we investigate the effect of decarboxylated OC (D-OC) on human β-cell function and mass in culture and in vivo using a Nonobese diabetic-severe combined immunodeficiency mouse model. We found that D-OC at dose ranges from 1.0 to 15 ng/mL significantly augmented insulin content and enhanced human β-cell proliferation of cultured human islets. This was paralleled by increased expression of sulfonylurea receptor protein; a marker of β-cell differentiation and a component of the insulin-secretory apparatus. Moreover, in a Nonobese diabetic-severe combined immunodeficiency mouse model, systemic administration of D-OC at 4.5-ng/h significantly augmented production of human insulin and C-peptide from the grafted human islets. Finally, histological staining of the human islet grafts showed that the improvement in the β-cell function was attributable to an increase in β-cell mass as a result of β-cell proliferation indicated by MKI67 staining together with the increased β-cell number and decreased α-cell number data obtained using laser scanning cytometry. Our data for the first time show D-OC-enhanced β-cell function in human islets and support future exploitation of D-OC-mediated β-cell regulation for developing useful clinical treatments for patients with diabetes.

  14. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    Directory of Open Access Journals (Sweden)

    Miroslav Barancik

    2011-12-01

    Full Text Available The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX on P-gp-mediated multidrug resistance (MDR in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR. Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs, especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.

  15. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary O. Rankin

    2013-03-01

    Full Text Available Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70 cell lines and a normal ovarian cell line (IOSE-364 were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 µM for baicalin and 25–40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein. Baicalin decreased expression of VEGF (20 µM, cMyc (80 µM, and NFkB (20 µM; baicalein decreased expression of VEGF (10 µM, HIF-1α (20 µM, cMyc (20 µM, and NFkB (40 µM. Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers.

  16. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2007-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  17. Inhibitory effect of puerarin on proliferation of retinoblastoma cells ...

    African Journals Online (AJOL)

    -1 siRNA-treated groups, respectively. Conclusions: The results show that puerarin exert suppressive effects on human retinoblastoma Y79 cells and therefore may find application in the treatment of intraocular tumor. Keywords: Cancer ...

  18. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2006-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  19. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells.

    Science.gov (United States)

    Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong

    2017-04-01

    Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.

  20. The effect of the colostral cells on gene expression of cytokines in cord blood cells.

    Science.gov (United States)

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2017-11-01

    Beneficial effect of maternal milk is acknowledged, but there is still question whether maternal milk from allergic mother is as good as from healthy one. In our study, we have assayed the effect of cells from colostrum of healthy and allergic mothers on gene expression of cytokines in cord blood cells of newborns of healthy and allergic mothers. Cytokines typical for Th1 (IL-2, IFN-gamma), Th2 (IL-4, IL-13), Tregs (IL-10, TGF-beta), and IL-8 were followed. We were not able to detect significant influence of colostral cells on gene expression of cytokines in cord blood after 2-day coculture using Transwell system. There was no difference in gene expression of cytokines in nonstimulated cord blood cells of newborns of healthy and allergic mothers, but generally increased gene expression of cytokines except IL-10 and TGF-beta after polyclonal stimulation was detected in cord blood cells of children of allergic mothers. There was no difference in IL-10 expression in stimulated cord blood cells of children of healthy and allergic mothers. Gene expression of TGF-beta was even decreased in stimulated cord blood cells of children of allergic mothers in comparison to healthy ones. We have not observed difference in the capacity of colostral cells of healthy and allergic mothers to influence gene expression of cytokines in cord blood cells, but we have described difference in the reactivity of cord blood cells between children of allergic and healthy mothers.

  1. Effect of cytokines on tumour cell-endothelial interactions.

    Science.gov (United States)

    Cohen, M C; Bereta, M; Bereta, J

    1997-01-01

    The adherence of tumour cells to microvascular endothelium is believed to be a necessary step in their migration to sites of metastasis. It has been proposed that this process occurs when cell surface molecules on tumour cells bind to complementary sites on endothelial cells. The expression of these endothelial-derived cell adhesion molecules appears to be modulated by cytokines, a broad class of protein mediators which play important roles in immune and inflammatory reactions. It has been found by ourselves and others that exposure of endothelium to some cytokines augments the adhesion of inflammatory cells as well as tumour cells in in vitro assays. We used a murine model consisting of P815 mastocytoma cells and microvascular endothelium and found that pretreatment of endothelial monolayers with TNF-alpha, IL-1, LPS or PMA augmented the number of tumour cells that attach in a dose-dependent fashion. FACS analysis showed that the change in binding was due to an increase in the expression of VCAM-1 on the surface of the endothelial cell. Methylxanthines (caffeine and theophylline) as well as "classical" calcium-mobilizing agents (ionomycin and thapsigargin) inhibited the expression of VCAM-1 in MME. We also studied the possible mechanisms of TNF-alpha signal transduction in endothelial cells. We examined the involvement of protein kinases in the TNF-alpha effect. Although we found that inhibitors of PKC could inhibit the TNF-alpha effect, our studies suggest that the "classical" PKC pathway is not completely responsible for signaling since TNF-alpha did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA. We also studied the effect of TGF-beta on the binding of tumour cells to endothelium. Exposure of endothelium to TGF-beta led to the inhibition of both basal and TNF-alpha enhanced binding of P815 cells. Inhibitors of G-proteins do not abolish TGF-beta action, and PKC and PKA activators elicit an opposite

  2. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pneutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  3. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  4. Effects of drinking desalinated seawater on cell viability and proliferation.

    Science.gov (United States)

    Macarrão, Camila Longhi; Bachi, André Luis Lacerda; Mariano, Mario; Abel, Lucia Jamli

    2017-06-01

    Desalination of seawater is becoming an important means to address the increasing scarcity of freshwater resources in the world. Seawater has been used as drinking water in the health, food, and medical fields and various beneficial effects have been suggested, although not confirmed. Given the presence of 63 minerals and trace elements in drinking desalinated seawater (63 DSW), we evaluated their effects on the behavior of tumorigenic and nontumorigenic cells through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and annexin-V-fluorescein isothiocyanate/propidium iodide staining. Our results showed that cell viability and proliferation in the presence of 63 DSW were significantly greater than in mineral water and in the presence of fetal bovine serum in a dose-dependent manner. Furthermore, 63 DSW showed no toxic effect on murine embryonic fibroblast (NIH-3T3) and murine melanoma (B16-F10) cells. In another assay, we also showed that pre-treatment of non-adherent THP-1 cells with 63 DSW reduces apoptosis incidence, suggesting a protective effect against cell death. We conclude that cell viability and proliferation were improved by the mineral components of 63 DSW and this effect can guide further studies on health effects associated with DSW consumption.

  5. Effect of Blood Cell Subtypes Lysis on Routine Biochemical Tests

    Directory of Open Access Journals (Sweden)

    Ünlü Burcu

    2018-01-01

    Full Text Available Background: The aim of this study is to establish the contribution of blood cells subtypes on hemolysis. Methods: Separated blood cell subtype suspensions prepared with blood from 10 volunteers were serially diluted to obtain different concentrations of cell suspensions. The cells were fully lysed and cell hemolysates were added (1:20 to aliquots of serum pool. Thus, seven serum pools with different concentrations of interferent were obtained for each blood cell subtype. Biochemical parameters and serum indices were measured by an autoanalyzer. As cell lysis markers, free hemoglobin was measured by spectrophotometry while myeloperoxidase and b-thromboglobulin were measured by enzyme immunoassay. The percent changes in analyte levels of the serum pools were evaulated by Wilcoxon Signed Rank Test and compared with clinical thresholds defined for each test. Results: The clinical thresholds were exceeded in lactate dehydrogenase, potassium, aspartate aminotransferase, creatine kinase, magnesium, total protein, total cholesterol, inorganic phosphate, glucose for red blood cells (RBC; lactate dehydrogenase, aspartate aminotransferase, total protein, inorganic phosphate and glucose for platelets (PLT. Free hemoglobin was significantly correlated with RBC (r=0.999; p=0.001, while myeloperoxidase and b thromboglobulin showed no significant correlation to white blood cells (WBC and PLT, respectively. Conclusion: The effect of RBC hemolysis in serum on the routine biochemical tests are clearly established, yet, additional studies are required in order to verify this kind of effects of PLT and WBC hemolysis.

  6. Effect of substrate mechanical properties on T cell activation

    Science.gov (United States)

    Hui, King; Upadhyaya, Arpita

    2013-03-01

    T cell activation is a key process in cell-mediated immunity, and engagement of T cell receptors by peptides on antigen presenting cells leads to activation of signaling cascades as well as cytoskeletal reorganization and large scale membrane deformations. While significant advances have been made in understanding the biochemical signaling pathways, the effects imposed by the physical environment and the role of mechanical forces on cell activation are not well understood. In this study, we have used anti-CD3 coated elastic polyacrylamide gels as stimulatory substrates to enable the spreading of Jurkat T cells and the measurement of cellular traction forces. We have investigated the effect of substrate stiffness on the dynamics of T cell spreading and cellular force generation. We found that T cells display more active and sustained edge dynamics on softer gels and that they exert increased traction stresses with increasing gel stiffness. A dynamic actin cytoskeleton was required to maintain the forces generated during activation, as inferred from small molecule inhibition experiments. Our results indicate an important role for physical properties of the antigen presenting cell as well as cytoskeleton-driven forces in signaling activation.

  7. Cinnamon effectively inhibits the activity of leukemia stem cells.

    Science.gov (United States)

    Guan, X; Su, M C; Zhao, R B; Ouyang, H M; Dong, X D; Hu, P; Pei, Q; Lu, J; Li, Z F; Zhang, C R; Yang, T-H

    2016-08-19

    Cinnamon is the main component of Sanyangxuedai, which is one of the effective traditional Chinese medicines for treating malignancies. Leukemia is a prevalent malignant disease that Sanyangxuedai has been used to treat. Although successful in several studies, there is a lack of solid evidence as to why Sanyangxuedai has an effect on leukemia, and little is known about the underlying mechanisms. In this study, the active ingredients of cinnamon were isolated, purified, and identified. The transwell transport pool formed with the Caco-2 cell model was used to filter the active ingredients of cinnamon by simulating the gastrointestinal barrier in vitro. Moreover, the cell morphology, cell cycle status, apoptosis status, and antigenic variation of the cell surface antigens were observed and measured in K562 cells after treatment with the active ingredients of cinnamon. Our results showed that 50-75 μM was a safe concentration of cinnamon extract for treatment of K562 cells for 72 h. The cinnamon extract caused growth inhibition of K562 cells. Cinnamon extract seemed to arrest the cells at the G1 stage and increased the apoptosis rate significantly. Interestingly, cinnamon extract treatment upregulated the expression of erythroid and myeloid differentiation antigens and downregulated that of the megakaryocytic differentiation antigens in a dose-dependent manner. Our findings indicate that cinnamon extract from Sanyangxuedai may be effective for treating leukemia.

  8. Effects of LLLT on malignant cells: study in vitro

    Science.gov (United States)

    Pinheiro, Antonio L. B.; Nascimento, Silene C.; Vieira, Alessandro L. B.; Rolim, Aluizio B.; da Silva, Pedro S.; Brugnera, Aldo, Jr.; Zanin, Fatima A. A.

    2001-04-01

    In addition to our previous report on the effects of LLLT on the proliferation of laryngeal carcinoma cells in which it was found that irradiation H.Ep.2 cells with 670nm laser results in increased cell proliferation, ti was decided to evaluate the effect of increased does of laser light. The aim of this study was to assess the effect off 635 and 670 nm laser irradiation of H.Ep.2 cells in vitro using MTT. The cells, obtained from SCC of the larynx, were routinely processed from defrost to the experimental condition. The cultures were kept either at 5 or 10 percent of FBS. Twenty- four hours after transplantation, the cells were irradiated with laser light at local light doses between 0.04 and 4.8 X 104 Jm-2. For 670 nm, significant differences in the proliferation were observed between the two concentrations of FBS and between irradiated cultures and controls. Although the results were not significant, 635 nm irradiated cells also proliferated more than non- irradiated ones. This occurred under both conditions of nutrition. It is concluded, that irradiation with 670 nm laser light applied at doses between 0.04 and 4.8 X 104 Jm-2 could significantly increase proliferation of laryngeal cancer cells.

  9. Chemical inhibition of NAT10 corrects defects of laminopathic cells

    Science.gov (United States)

    Larrieu, Delphine; Britton, Sébastien; Demir, Mukerrem; Rodriguez, Raphaël; Jackson, Stephen P.

    2014-01-01

    Downregulation and mutations of the nuclear-architecture proteins Lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we identified the small molecule “Remodelin” that improved nuclear architecture, chromatin organization and fitness of both human Lamin A/C depleted cells and HGPS-derived patient cells, and decreased markers of DNA damage in these cells. Using a combination of chemical, cellular and genetic approaches, we identified the acetyl-transferase protein NAT10 as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. These findings provide insights into how NAT10 affects nuclear architecture, and suggest alternative strategies for treating laminopathies and aging. PMID:24786082

  10. Effects of radiation on solar cells as photovoltaic generators

    Directory of Open Access Journals (Sweden)

    Radosavljević Radovan Lj.

    2012-01-01

    Full Text Available The growing need for obtaining electrical energy through renewable energy sources such as solar energy have lead to significant technological developments in the production of the basic element of PV conversion, the solar cell. Basically, a solar cell is a p-n junction whose characteristics have a great influence on its output parameters, primarily efficiency. Defects and impurities in the basic material, especially if located within the energy gap, may be activated during its lifetime, becoming traps for optically produced electron-hole pairs and, thus, decreasing the output power of the cell. All of the said effects could be induced in many ways over a lifetime of a solar cell and are consistent with the effects that radiation produces in semiconductor devices. The aim of this paper is to investigate changes in the main characteristics of solar cells, such as efficiency, output current and power, due to the exposure of solar systems to different (hostile radiation environments.

  11. Effects of cobalt nanoparticles on human T cells in vitro.

    Science.gov (United States)

    Jiang, Haitao; Liu, Fan; Yang, Huilin; Li, Yang

    2012-04-01

    Limited information is available on the potential risk of degradation products of metal-on-metal bearings in joint arthroplasty. The aim of this study was to investigate the cytotoxicity and genotoxicity of orthopedic-related cobalt nanoparticles on human T cells in vitro. T cells were collected using magnetic CD3 microbeads and exposed to different concentrations of cobalt nanoparticles and cobalt chloride. Cytotoxicity was evaluated by methyl thiazolyl tetrazolium and lactate dehydrogenase release assay. Cobalt nanoparticles dissolution in culture medium was determined by inductively coupled plasma-mass spectrometry. To study the probable mechanism of cobalt nanoparticles effects on T cells, superoxide dismutase, catalase, and glutathione peroxidase level was measured. Cobalt nanoparticles and cobalt ions could inhibit cell viability and enhance lactate dehydrogenase release in a concentration- and time-dependent manner (P metal-on-metal total hip arthroplasty, and the inhibition of antioxidant capacity may play important role in cobalt nanoparticles effects on T cells.

  12. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro.

    Science.gov (United States)

    Park, Yun-Gwi; Lee, Seung-Eun; Kim, Eun-Young; Hyun, Hyuk; Shin, Min-Young; Son, Yeo-Jin; Kim, Su-Young; Park, Se-Pill

    2015-09-01

    The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/- (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.

  13. Effects of epiplakin-knockdown in cultured corneal epithelial cells.

    Science.gov (United States)

    Kokado, Masahide; Okada, Yuka; Miyamoto, Takeshi; Yamanaka, Osamu; Saika, Shizuya

    2016-05-20

    To investigate effects of knockdown of epiplakin gene expression on the homeostasis of cultured corneal epithelial cell line. We previously reported acceleration of corneal epithelial wound healing in an epiplakin-null mouse. Gene expression of epiplakin was knockdowned by employing siRNA transfection in SV40-immortalized human corneal epithelial cell line. Protein expression of E-cadherin, keratin 6 and vimentin was examined by western blotting. Cell migration and proliferation were examined by using scratch assay and Alamar blue assay, respectively. Scratch assay and Alamar blue assay showed migration and proliferation of the cells was accelerated by epiplakin knockdown. siRNA-knockdown of epiplakin suppressed protein expression of E-cadherin, keratin 6 and vimentin. Decreased expression of E-cadherin, keratin 6 and vimentin might be included in the mechanisms of cell migration acceleration in the absence of epiplakin. The mechanism of cell proliferation stimulation by epiplakin knockdown is to be investigated.

  14. Effects of metal ions on proliferation of aortic smooth muscle cells and myoblastic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Vorpahl, M.; Wiemann, M.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Brauer, H. [Werkstofftechnik, Univ. Essen (Germany)

    2001-12-01

    Metal ions released from implanted stents into the surrounding tissue may contribute to vascular reactions which cause restenosis in about 30%. This assumption prompted us to investigate short term effects of metal ions (Ag, Al, Cr, Fe, Mo, Ni, V, all applied as chloride salts) on proliferation of swine aortic smooth muscle cells (SMC) and a myoblastic cell line (C2C12). Cell confluence was 30 or 50% when metal ions were added and cell growth was monitored with the MTT-test after 2 days. A clear concentration dependence of acute toxicity of the different metal ions was found for both cell types. The order of toxicity indicated by IC50 values was V > Ni > Fe > Mo > Al > Cr. The nearly insoluble silverchloride exerted unclear effects. In experiments starting at high confluence, the apparent toxicity of Fe, Ni, and V was reduced. Al, which to our knowledge is not a major constituent in medical stents, was the only metal ion found here to cause a slightly increased proliferation, but this effect was restricted to the low concentration range (16-250 {mu}mol/l). In general, results for both cell types, C2C12 and SMC, were very similar. We conclude that short term effects of metal ions, which may be released in the interface of stent and vessel wall tissue, comprise a reduction rather than a stimulation of cell proliferation. However, restenosis may be initiated as a complex tissue reaction to primary toxic metal effects. (orig.)

  15. Interleukin-7-engineered mesenchymal cells: in vitro effects on naive T-cell population.

    Science.gov (United States)

    Sportoletti, Paolo; Del Papa, Beatrice; De Ioanni, Mariangela; Moretti, Lorenzo; Bonifacio, Elisabetta; Lanterna, Vania; Bell, Alain; Fettucciari, Katia; Carnevali, Eugenia; Zei, Tiziana; Falzetti, Franca; Martelli, Massimo F; Tabilio, Antonio; Di Ianni, Mauro

    2006-12-01

    T-cell homeostasis is regulated by several molecules; among these, interleukin (IL)-7 plays an essential role in the survival and homeostatic proliferation of peripheral naive T cells. In a previous study, we investigated whether human mesenchymal stromal cells (MSCs) could be engineered with the IL-7 gene to produce functional level of this cytokine. In the present study, we analyzed the impact of different quantities of IL-7 produced by MSCs on the survival and proliferation of a negative immunoselected naive (CD3(+)/CD45RA(+)) T-cell population. Co-cultivation of peripheral naive T cells with MSCs producing low (16 pg/mL) or high (1000 pg/mL) IL-7 levels or in the presence of exogenous IL-7 (0.01 ng/mL and 100 ng/mL) maintained the CD3(+)/CD45RA(+) naive T-cell phenotype. Chemokine receptor CCR7(+) expression was also maintained among this T-cell population. Naive T-cell molecular characteristics were maintained as assessed by the Vbeta spectratyping complexity score, which showed the maintenance of a broad T-cell repertoire. No Th1 or Th2 differentiation was observed, as assessed by interferon-gamma or IL-4 accumulation. In contrast, only MSCs producing high amounts of IL-7 caused increased activation (CD25 31.2% +/- 12% vs 10% +/- 3.5%; P .05), and the phase S cell cycle (15% vs 6.9%, P > .05). Exogenous IL-7 exhibited no significant effect. In conclusion, we demonstrated that IL-7 produced by MSCs has a dose-independent effect on naive T-cell survival while exerting a dose-dependent effect on activation/proliferation. Due to the continuous production of IL-7 by engineered cells, our system is more efficacious than exogenous IL-7.

  16. Cell cycle effects and induction of premitotic apoptosis by irofulven in synchronized cancer cells.

    Science.gov (United States)

    Woynarowski, Jan M; Woynarowska, Barbara A; Trevino, Alex V; Salinas, Richard; Herman, Terence S; Waters, Stephen J; Macdonald, John R

    2004-11-01

    Unlike postmitotic cell death, direct premitotic apoptosis diminishes the risk of clonal selection and allows for the elimination of slowly growing cancer cells. This study characterized the ability to induce premitotic apoptosis by irofulven (hydroxymethylacylfulvene), a novel alkylating drug which targets cellular DNA and proteins. Irofulven effects were examined in HeLa-derived BH2 cancer cells with conditional overexpression of antiapoptotic Bcl-2. Cells were synchronized in either early S or in G(1). Following 12 h exposure to irofulven, cells that were originally in early S accumulated in late S or remained in early S phase (at 0.5 and 2.5 muM drug, respectively). Drug treatment of cells in the G(1) cohort prevented their entry into the S phase. Significant apoptosis was detected based on the appearance of sub-G(1) particles and cells with DNA strand breaks in both G(1) and S cohorts. Apoptotic cells were mostly recruited from the G(1)/S border ("G(1)" cohort) and from the S phase ("early S" cohort). All the cell cycle and apoptotic effects were only marginally affected by Bcl-2 overexpression. Similar results were obtained with irofulven-treated synchronized cultures of leukemic CEM cells. Collectively, these observations indicate that irofulven-treated cells become committed to death early. Neither active DNA replication nor traverse through mitosis are necessary for irofulven-induced cell death. The ability to promote direct premitotic apoptosis is likely to play a role in the consistently potent apoptotic effects of irofulven and its ability to cause tumor regression in vivo.

  17. Effects of inflammation on stem cells: together they strive?

    Science.gov (United States)

    Kizil, Caghan; Kyritsis, Nikos; Brand, Michael

    2015-01-01

    Inflammation entails a complex set of defense mechanisms acting in concert to restore the homeostatic balance in organisms after damage or pathogen invasion. This immune response consists of the activity of various immune cells in a highly complex manner. Inflammation is a double-edged sword as it is reported to have both detrimental and beneficial consequences. In this review, we discuss the effects of inflammation on stem cell activity, focusing primarily on neural stem/progenitor cells in mammals and zebrafish. We also give a brief overview of the effects of inflammation on other stem cell compartments, exemplifying the positive and negative role of inflammation on stemness. The majority of the chronic diseases involve an unremitting phase of inflammation due to improper resolution of the initial pro-inflammatory response that impinges on the stem cell behavior. Thus, understanding the mechanisms of crosstalk between the inflammatory milieu and tissue-resident stem cells is an important basis for clinical efforts. Not only is it important to understand the effect of inflammation on stem cell activity for further defining the etiology of the diseases, but also better mechanistic understanding is essential to design regenerative therapies that aim at micromanipulating the inflammatory milieu to offset the negative effects and maximize the beneficial outcomes. PMID:25739812

  18. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  19. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    Science.gov (United States)

    2009-05-01

    effects of the plasma bullets on bacteria of dental relevance, Streptococcus mutans , which is implicated in the onset and progression of dental caries ...S. mutans is a cariogenic organism that contributes to caries in infants, children and adults. S. mutans alone are not difficult to destroy; however...Hynes " Experimental Investigations of Plasma Bullets and their Effects on Streptococcus mutans ", In Proc. 2nd Int. Conf. Plasma Medicine, San

  20. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Hamze Timari

    2017-12-01

    Full Text Available Hematopoietic stem cells (HSCs are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs. Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT and inhibition of graft versus host disease (GVHD. HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.

  1. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  2. The mechanisms of the effects of magnetic fields on cells

    Science.gov (United States)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins

  3. Effects of Tobacco Smoke (TS) on Growth of Clear Cell Renal Cell Carcinoma (ccRCC)

    Science.gov (United States)

    2015-10-01

    AD_________________ Award Number: W81XWH-14-1-0347 TITLE: Effects of Tobacco Smoke ( TS ) on growth...0347 Effects of Tobacco Smoke ( TS ) on growth of clear cell renal cell carcinoma (ccRCC) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...males than in females1. Tobacco smoking ( TS ), obesity, hypertension, and age are established risk factors for ccRCC development1. Despite the well

  4. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  5. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongxu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Guo, Likun [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064 (China); Wozniak, Michal J. [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kawazoe, Naoki [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tateishi, Tetsuya [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Zhang, Xingdong [National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064 (China); Chen, Guoping, E-mail: Guoping.CHEN@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed that adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.

  6. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2017-10-01

    Full Text Available CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  7. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  8. Effects of Reactive Nitrogen Scavengers on NK-Cell-Mediated Killing of K562 Cells

    Directory of Open Access Journals (Sweden)

    Yili Zeng

    2012-01-01

    Full Text Available This study explored the effects of reactive nitrogen metabolites (RNMS on natural-killer- (NK- cell-mediated killing of K562 cells and the influence of RNM scavengers, such as tiopronin (TIP, glutamylcysteinylglycine (GSH, and histamine dihydrochloride (DHT, on reversing the suppressing effect of RNM. We administered exogenous and endogenous RNM in the NK + K562 culture system and then added RNM scavengers. The concentrations of RNM, TNF-β and IFN-γ, and NK-cell cytotoxicity (NCC and the percentage of living NK cells were then examined. We found that both exogenous and endogenous RNM caused the KIR to decrease (<0.01; however, RNM scavengers such as TIP and GSH rescued this phenomenon dose dependently. In conclusion, our data suggests that RNM scavengers such as TIP and GSH enhance the antineoplasmic activity of NK cells.

  9. Effect of norcantharidin on the proliferation, apoptosis, and cell cycle of human mesangial cells.

    Science.gov (United States)

    Ye, Kun; Wei, Qiaoyu; Gong, Zhifeng; Huang, Yunfeng; Liu, Hong; Li, Ying; Peng, Xiaomei

    2017-11-01

    Norcantharidin (NCTD) regulates immune system function and reduces proteinuria. We sought to investigate the effect of NCTD on proliferation, apoptosis and cell cycle of cultured human mesangial cells (HMC) in vitro. HMC cells were divided into a normal control group, and various concentrations of NCTD group (2.5, 5, 10, 20, or 40 μg/mL). Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis was detected by Annexin V/propidium iodide (PI) assays, and morphological analysis was performed by Hoechest 33258 staining. Finally, cell cycle was analyzed by flow cytometry. NCTD dose and time dependently inhibits HMC proliferation significantly (p Cell-cycle analysis revealed that the number of cells in the G2 phase increased significantly, whereas the fraction of cells in the S phase decreased, especially 24 h after 5 μg/ml NCTD treatment. NCTD inhibits HMC cell proliferation, induces apoptosis, and affects the cell cycle.

  10. The effect of hydroxybenzoate calcium compounds in inducing cell death in epithelial breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nada M Merghani

    2015-12-01

    Full Text Available Hydroxybenzoate (HB compounds have shown their significance in inducing apoptosis in primary chronic lymphocytic leukemia (CLL and cancer cell lines, including HT-1080. The current study focuses on assessing the effects of 2-, 3- and 4-hydroxybenzoate calcium (HBCa compounds on MCF-10A, MDA-MB231 and MCF-7 epithelial breast cell lines. The HBCa-treated cells were examined using annexin V, to measure apoptosis in the three epithelial breast cell lines, after 48 h of treatment. The results indicated that 0.5 and 2.5 mmol/L of HBCa induced cell death in a dose-dependent manner. The induction of cell death in normal MCF-10A cells was found to be significantly less (p = 0.0003–0.0068, in comparison to the malignant cell lines (MDA-MB231 and MCF-7. HBCa compounds were also found to cause cell cycle arrest in the epithelial breast cells at G1/G0. Furthermore, HBCa compounds induced the upregulation of apoptotic proteins (p53, p21, Bax and caspase-3, as well as the downregulation of the anti-apoptotic protein Bcl-2, which may suggest that apoptosis is induced via the intrinsic pathway.

  11. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Science.gov (United States)

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  12. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  13. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    Science.gov (United States)

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  14. Effects of Osmolality on Paracellular Transport in MDCK II Cells.

    Science.gov (United States)

    Tokuda, Shinsaku; Hirai, Toyohiro; Furuse, Mikio

    2016-01-01

    Epithelia separate apical and basal compartments, and movement of substances via the paracellular pathway is regulated by tight junctions. Claudins are major constituents of tight junctions and involved in the regulation of tight junction permeability. On the other hand, the osmolality in the extracellular environment fluctuates in association with life activity. However, effects of osmotic changes on the permeaibility of claudins are poorly understood. Therefore, we investigated the effects of osmotic changes on the paracellular transport in MDCK II cells. Interestingly, apical hyposmolality decreased cation selectivity in the paracellular pathway gradually with time, and the elimination of the osmotic gradient promptly restored the cation selectivity. Apical hyposmolality also induced bleb formation at cell-cell contacts and changed the shape of cell-cell contacts from a jagged pattern to a slightly linear pattern. In claudin-2 knockout MDCK II cells, the decrease of cation selectivity, the bleb formation, nor the changes in the shape of cell-cell contacts was observed under the apical hyposmolality. Our findings in this study indicate that osmotic gradient between apical and basal sides is involved in the acute regulation of the cation selective property of claudin-2 channels.

  15. Effect of PDT-treated apoptotic cells on macrophages

    Science.gov (United States)

    Song, Sheng; Xing, Da; Zhou, Fei-fan; Chen, Wei R.

    2009-02-01

    Recently, the long-term immunological effects of photodynamic therapy have attracted much attention. PDT induced immune response was mainly initiated through necrotic cells and apoptotic cells, as well as immune cells such as macrophages. Nitric oxide (NO) as an important regulatory factor in signal transfer between cells has been wildly studied for generation, development, and metastasis of tumors. NO synthase is a key enzyme in nitric oxide synthesis. However, inducible nitric oxide synthase (iNOS) is usually activated under pathological conditions, such as stress and cancer, which can produce high levels of nitric oxide and contribute to tumor cytotoxicity. In addition, increased NO production by iNOS has been associated with the host immune response and cell apoptosis, which play an important role in many carcinogenesis and anti-carcinoma mechanisms. This study focuses on the NO production in macrophages, induced by mouse breast carcinoma apoptotic cells treated by PDT in vitro, and on the effects of immune response induced by apoptotic cells in tumor cells growth.

  16. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  17. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption.

    Science.gov (United States)

    Yap, Benjamin H J; Crawford, Simon A; Dagastine, Raymond R; Scales, Peter J; Martin, Gregory J O

    2016-12-01

    Nitrogen deprivation (N-deprivation) is a proven strategy for inducing triacylglyceride accumulation in microalgae. However, its effect on the physical properties of cells and subsequently on product recovery processes is relatively unknown. In this study, the effect of N-deprivation on the cell size, cell wall thickness, and mechanical strength of three microalgae was investigated. As determined by analysis of micrographs from transmission electron microscopy, the average cell size and cell wall thickness for N-deprived Nannochloropsis sp. and Chlorococcum sp. were ca. 25% greater than the N-replete cells, and 20 and 70% greater, respectively, for N-deprived Chlorella sp. The average Young's modulus of N-deprived Chlorococcum sp. cells was estimated using atomic force microscopy to be 775 kPa; 30% greater than the N-replete population. Although statistically significant, these microstructural changes did not appear to affect the overall susceptibility of cells to mechanical rupture by high pressure homogenisation. This is important as it suggests that subjecting these microalgae to nitrogen starvation to accumulate lipids does not adversely affect the recovery of intracellular lipids.

  18. Non-targeted radiation effects in vertebrate cell lines

    Science.gov (United States)

    Ryan, Lorna

    Radiation effects, such as bystander effects, hyper radiosensitivity/induced radioresistance (HRS/IRR) and adaptive response that are not related to direct DNA damage are now accepted. However the inter-relationship between them and the possible impact on the scientific basis for radiation protection are highly controversial. This thesis attempts to elucidate the mechanisms of some of these well known but little understood effects. Each paper examines some aspect of bystander effects, adaptive responses and HRS/IRR in an effort to understand how they vary with cell type, dose and time of exposure to single or multiple doses. All the effects involve non-linear dose effect curves and are mainly evident following low doses. Overall findings of the thesis include (1) A clear difference was observed between radioresistant, tumorigenic cell lines with mutant p53 gene expression, and radiosensitive, more normal, cell lines with wild type p53. In general death inducing bystander responses are induced in normal cell populations exposed to low doses of radiation while survival inducing IRR and adaptive responses are seen in the radioresistant tumorigenic cell lines. (2) A cohort of fish cell lines which demonstrated survival promoting bystander effects, also did not show a protective adaptive responses. (3) Adaptive responses traditionally occur when a large challenge dose is given 4--6hrs following low (10--100mGy) priming doses but this thesis shows that for the epithelial cell lines tested, the size of the priming dose (range 0.1--2Gy) does not appear to alter the size of the recovery response. Additionally increased survival could be detected in some cases when the challenge dose was given within one hour of the priming dose. The overall conclusion is that cell lines induce either a bystander response or a protective/adaptive response depending on genetic background and other factors. Care is needed in the interpretation of data generated from only one or two cell lines

  19. Effectiveness of gene delivery systems for pluripotent and differentiated cells

    Directory of Open Access Journals (Sweden)

    Kleopatra Rapti

    Full Text Available Human embryonic stem cells (hESC and induced pluripotent stem cells (hiPSC assert a great future for the cardiovascular diseases, both to study them and to explore therapies. However, a comprehensive assessment of the viral vectors used to modify these cells is lacking. In this study, we aimed to compare the transduction efficiency of recombinant adeno-associated vectors (AAV, adenoviruses and lentiviral vectors in hESC, hiPSC, and the derived cardiomyocytes. In undifferentiated cells, adenoviral and lentiviral vectors were superior, whereas in differentiated cells AAV surpassed at least lentiviral vectors. We also tested four AAV serotypes, 1, 2, 6, and 9, of which 2 and 6 were superior in their transduction efficiency. Interestingly, we observed that AAVs severely diminished the viability of undifferentiated cells, an effect mediated by induction of cell cycle arrest genes and apoptosis. Furthermore, we show that the transduction efficiency of the different viral vectors correlates with the abundance of their respective receptors. Finally, adenoviral delivery of the calcium-transporting ATPase SERCA2a to hESC and hiPSC-derived cardiomyocytes successfully resulted in faster calcium reuptake. In conclusion, adenoviral vectors prove to be efficient for both differentiated and undifferentiated lines, whereas lentiviral vectors are more applicable to undifferentiated cells and AAVs to differentiated cells.

  20. The Multiparametric Effects of Hydrodynamic Environments on Stem Cell Culture

    Science.gov (United States)

    Kinney, Melissa A.; Sargent, Carolyn Y.

    2011-01-01

    Stem cells possess the unique capacity to differentiate into many clinically relevant somatic cell types, making them a promising cell source for tissue engineering applications and regenerative medicine therapies. However, in order for the therapeutic promise of stem cells to be fully realized, scalable approaches to efficiently direct differentiation must be developed. Traditionally, suspension culture systems are employed for the scale-up manufacturing of biologics via bioprocessing systems that heavily rely upon various types of bioreactors. However, in contrast to conventional bench-scale static cultures, large-scale suspension cultures impart complex hydrodynamic forces on cells and aggregates due to fluid mixing conditions. Stem cells are exquisitely sensitive to environmental perturbations, thus motivating the need for a more systematic understanding of the effects of hydrodynamic environments on stem cell expansion and differentiation. This article discusses the interdependent relationships between stem cell aggregation, metabolism, and phenotype in the context of hydrodynamic culture environments. Ultimately, an improved understanding of the multifactorial response of stem cells to mixed culture conditions will enable the design of bioreactors and bioprocessing systems for scalable directed differentiation approaches. PMID:21491967

  1. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  2. Differential effects of activated human renal epithelial cells on T-cell migration.

    Directory of Open Access Journals (Sweden)

    Martijn W H J Demmers

    Full Text Available BACKGROUND: Renal tubular epithelial cells (TECs are one of the main targets of inflammatory insults during interstitial nephritis and kidney transplant rejection. While Th1 cells are know to be essential in the pathogenesis of rejection, the role of Th17 is still under debate. We hypothesize that TECs modulate the outcome of rejection process by production of distinct chemokines and cytokines that determine the attraction of different T-cell subsets. Therefore, we studied differential effects of activated human renal epithelial cells on T-cell migration. METHODS: Human primary TECs were stimulated by IFN-γ and TNF-α in vitro. Chemokines and cytokines produced by activated TECs were measured using Luminex or ELISA. Chemotaxis assay was performed using activated peripheral blood mononuclear cells composed of CD4+CXCR3+ and CD4+CCR6+ T cells migrating towards stimulated and unstimulated TECs. RESULTS: While activated TECs secreted abundant amounts of the pro-inflammatory cytokines IL-6 and IL-8, the T helper cell differentiation cytokines IL-1β, IL-12p70, IL-23 or TGF-β1 were not produced. The production of Th1 chemokines CXCL9, CXCL10 and CCL5 were significantly upregulated after TEC stimulation. In contrast, Th17 chemokine CCL20 could not be detected. Finally, activated TECs attracted significantly higher numbers of CD4+CXCR3+ T cells as compared to unstimulated TECs. No migration of CD4+CCR6+ T cells could be observed. CONCLUSION: Activated primary renal tubular epithelial cells do not attract Th17 cells nor produce cytokines promoting Th17 cell differentiation in our experimental system mimicking the proinflammatory microenvironment of rejection.

  3. Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Danan, Deepa; Lehman, Christine E; Mendez, Rolando E; Langford, Brian; Koors, Paul D; Dougherty, Michael I; Peirce, Shayn M; Gioeli, Daniel G; Jameson, Mark J

    2018-01-01

    Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.

  4. Cytotoxic effects of mistletoe (Viscum album L.) in head and neck squamous cell carcinoma cell lines.

    Science.gov (United States)

    Klingbeil, Ma Fátima G; Xavier, Flávia C A; Sardinha, Luiz R; Severino, Patricia; Mathor, Monica B; Rodrigues, Rodrigo V; Pinto, Décio S

    2013-11-01

    Head and neck squamous cell carcinoma is a complex disease with several etiologic factors and different molecular changes that may trigger certain events; it is also globally one of the most common malignancies in this topography. Extracts from Viscum album L. (VA) (mistletoe) have been used as adjuvant therapies with promising results in several types of cancer, mainly in European countries. In vitro studies have demonstrated that various types of VA may have cytotoxicity in carcinoma cells, activating the apoptotic cascade or leading cells to necrosis. This study aimed to verify the effects of three types of VA extracts (Iscador Qu Spezial, Iscador P and Iscador M) in squamous cell carcinoma of the tongue cell lines SCC9 and SCC25, not previously studied. A concentration of 0.3 mg/ml (IC50) of the drugs induced apoptosis, affecting gene expression and protein levels of AKT, PTEN and CYCLIN D1. It was concluded that VA extracts have a cytotoxic effect on SCC9 and SCC25 cell lines, but while SCC9 cell line was more resistant to the action of the drugs, Iscador Qu Spezial and Iscador M have higher cytotoxic potential in both cell lines compared to Iscador P.

  5. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with {gamma}-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent.

  6. Effect of Magnetic Field on L-Strain Cells

    CERN Document Server

    Ulakoglu, G; Atak, C; Rzakoulieva, A; Danilov, V I; Alikamanoglu, S

    2000-01-01

    The effects of electromagnetic and magnetic fields are currently being made useful in many fields, especially in medicine. In this research work, L-Strain cells which are a type of fibrosarcoma cells were exposed to a magnetic flow of 2-26 mT in periods of 1, 2, 3 and 4 minutes. The L-Strain cells, which were exposed to the magnetic field for these periods, were counted after 24 and 48 hours, when compared with the controls, it was observed that in groups of 1 and 4 minutes exposure a significant decrease (P < 0.05) in the number of cells occurred. The per cent of labelling index of L-Strain cells exposed to the magnetic field for 1 and 4 minutes decreased significantly also in comparison to the controls.

  7. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  8. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  9. Anticancer Effect of Thymol on AGS Human Gastric Carcinoma Cells.

    Science.gov (United States)

    Kang, Seo-Hee; Kim, Yon-Suk; Kim, Eun-Kyung; Hwang, Jin-Woo; Jeong, Jae-Hyun; Dong, Xin; Lee, Jae-Woong; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-01-01

    Numerous plants have been documented to contain phenolic compounds. Thymol is one among these phenolic compounds that possess a repertoire of pharmacological activities, including anti-inflammatory, anticancer, antioxidant, antibacterial, and antimicrobial effects. Despite of the plethora of affects elicited by thymol, its activity profile on gastric cancer cells is not explored. In this study, we discovered that thymol exerts anticancer effects by suppressing cell growth, inducing apoptosis, producing intracellular reactive oxygen species, depolarizing mitochondrial membrane potential, and activating the proapoptotic mitochondrial proteins Bax, cysteine aspartases (caspases), and poly ADP ribose polymerase in human gastric AGS cells. The outcomes of this study displayed that thymol, via an intrinsic mitochondrial pathway, was responsible for inducing apoptosis in gastric AGS cells. Hence, thymol might serve as a tentative agent in the future to treat cancer.

  10. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Paro, Rita [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Tiboni, Gian Mario [Department of Medicine and Aging, Section of Reproductive Sciences, University “G. D' Annunzio”, Chieti-Pescara (Italy); Buccione, Roberto [Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti (Italy); Rossi, Gianna; Cellini, Valerio [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Canipari, Rita [Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, “Sapienza” University of Rome, Rome (Italy); Cecconi, Sandra, E-mail: sandra.cecconi@cc.univaq.it [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy)

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  11. Effect of methylmercury on histamine release from rat mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Graevskaya, Elizabeth E.; Rubin, Andrew B. [Moscow State University, Biological Faculty, Department of Biophysics, 119899, Vorobjovy Gory, Moscow (Russian Federation); Yasutake, Akira; Aramaki, Ryoji [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan)

    2003-01-01

    Methylmercury chloride (MeHgCl) is well known as a significant environmental hazard, particularly as a modulator of the immune system. As it is acknowledged that the critical effector cells in the host response participating in various biological responses are mast cells, we tried to define the possible contribution of mast cells in the development of methylmercury-evoked effects. We investigated the effects of methylmercury on the rat mast cell degranulation induced by non-immunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. Using the cells prepared from methylmercury-intoxicated rats through a 5-day treatment of MeHgCl (10 mg/kg/day), we observed the suppression of calcium ionophore A23187- and 48/80-induced histamine release, which was enhanced with time after treatment. Similar suppression was observed in the ionophore-stimulated release, when cells were prepared from rat with a single treatment of MeHgCl (20 mg/kg). It should be noted that when cells from the control rat were pre-incubated with methylmercury in vitro at a 10{sup -8} M concentration for 10 min, A23187 and compound 48/80-stimulated histamine release was significantly enhanced. However, when the pre-incubation period was prolonged to 30 min, the release was suppressed. An increase in the methylmercury concentration to 10{sup -6} M also suppressed the histamine release. These results show that methylmercury treatment can modify mast cell function depending on concentration and time, and might provide an insight into the role of mast cells in the development of methylmercury-stimulated effects. (orig.)

  12. Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations.

    Science.gov (United States)

    Hajkova, Michaela; Hermankova, Barbora; Javorkova, Eliska; Bohacova, Pavla; Zajicova, Alena; Holan, Vladimir; Krulova, Magdalena

    2017-02-01

    Immunosuppressive drugs are widely used to treat undesirable immune reaction, however their clinical use is often limited by harmful side effects. The combined application of immunosuppressive agents with mesenchymal stem cells (MSCs) offers a promising alternative approach that enables the reduction of immunosuppressive agent doses and simultaneously maintains or improves the outcome of therapy. The present study aimed to determinate the effects of immunosuppressants on individual T cell subpopulations and to investigate the efficacy of MSC-based treatment combined with immunosuppressive drugs. We tested the effect of five widely used immunosuppressants with different action mechanisms: cyclosporine A, mycophenolate mofetil, rapamycin, and two glucocorticoids - prednisone and dexamethasone in combination with MSCs on mouse CD4+ and CD8+ lymphocyte viability and activation, Th17 (RORγt+), Th1 (T-bet+), Th2 (GATA-3+) and Treg (Foxp3+) cell proportion and on the production of corresponding key cytokines (IL-17, IFNγ, IL-4 and IL-10). We showed that MSCs modulate the actions of immunosuppressants and in combination with immunosuppressive drugs display distinct effect on cell activation and balance among different T lymphocytes subpopulations and exert a suppressive effect on proinflammatory T cell subsets while promoting the functions of anti-inflammatory Treg lymphocytes. The results indicated that MSC-based therapy could be a powerful strategy to attenuate the negative effects of immunosuppressive drugs on the immune system.

  13. Detrimental effect of fast neutrons on cultured immature rat hippocampal cells: relative biological effectiveness of in vitro cell death indices.

    Science.gov (United States)

    Yang, M; Kim, J S; Son, Y; Kim, J; Kim, J Y; Kim, S H; Kim, J C; Shin, T; Moon, C

    2011-09-01

    This in vitro study compared the detrimental effect and relative biological effectiveness (RBE) of high-linear energy transfer (LET) fast neutrons on rat immature hippocampal cultured cells with those of low-LET γ rays. Immature hippocampal cells were exposed to fast neutrons or γ rays. Cytotoxicity and cell viability were analyzed using a lactate dehydrogenase (LDH)-release assay and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. The cytotoxicity and cell viability with fast neutrons or γ rays varied in a dose-dependent pattern. In the LDH release and MTT assay indices, the RBEs of fast neutrons were approximately 2.35 and 2.42, respectively. Fast neutrons markedly induced apoptotic changes in immature hippocampal cells with increased expression of active caspase-3 and cleaved poly(ADP-ribose) polymerase. Increased cytotoxicity and decreased cell viability in immature hippocampal cells were seen in a dose-dependent pattern after fast-neutron and γ irradiation. Fast neutrons have a higher RBE for cell death indices than γ rays.

  14. Genome-wide redistribution of BRD4 binding sites in transformation resistant cells

    Directory of Open Access Journals (Sweden)

    Han Si

    2015-03-01

    Full Text Available Hutchinson–Gilford progeria syndrome (HGPS patients do not develop cancer despite a significant accumulation of DNA damage in their cells. We have recently reported that HGPS cells are refractory to experimental oncogenic transformation and we identified the bromodomain-containing 4 protein (BRD4 as a mediator of the transformation resistance. ChIP-sequencing experiments revealed distinct genome-wide binding patterns for BRD4 in HGPS cells when compared to control wild type cells. Here we provide a detailed description of the ChIP-seq dataset (NCBI GEO accession number GSE61325, the specific and common BRD4 binding sites between HGPS and control cells, and the data analysis procedure associated with the publication by Fernandez et al., 2014 in Cell Reports 9, 248-260 [1].

  15. Quantum mechanical effects analysis of nanostructured solar cell models

    Directory of Open Access Journals (Sweden)

    Badea Andrei

    2016-01-01

    Full Text Available The quantum mechanical effects resulted from the inclusion of nanostructures, represented by quantum wells and quantum dots, in the i-layer of an intermediate band solar cell will be analyzed. We will discuss the role of these specific nanostructures in the increasing of the solar cells efficiency. InAs quantum wells being placed in the i-layer of a gallium arsenide (GaAs p-i-n cell, we will analyze the quantum confined regions and determine the properties of the eigenstates located therein. Also, we simulate the electroluminescence that occurs due to the nanostructured regions.

  16. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    Science.gov (United States)

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  17. AMYGDALIN AND ITS EFFECTS ON ANIMAL CELLS

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2013-02-01

    Full Text Available Amygdalin is a natural compound whose anticancer, anti-inflammatory activity and other medicinal benefits have been known for many years. It has been isolated in 1830 by the French chemists Robiquet and Boutron-Charlard from kernels of the bitter almond (Prunus amygdalus. It is a major component of the seeds of prunasin family plants, such as apricots, almonds, peaches, apples, and other rosaceous plants. Amygdalin is composed of two molecules of glucose, one of benzaldehyde, which induces an analgesic action, and one of hydrocyanic acid, which is an anti-neoplastic compound. It has been used as a traditional drug because of its wide range of medicinal benefits. Amygdalin can be used in medicine for preventing and treating migraine, hypertension, chronic inflammation, and other reaction source diseases. This review is focused on the effects of amygdalin on the animal system.

  18. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  19. Effects of hemopoietic growth factors on stem cells in vitro.

    Science.gov (United States)

    Ogawa, M

    1989-09-01

    The central feature of hemopoiesis is the lifelong, stable cell renewal. This process is supported by hemopoietic stem cells, which in the steady-state appear to be dormant in cell cycling. The entry into cell cycle of the dormant stem cells may be promoted by such factors as IL-1, IL-6, and G-CSF. Available evidence indicates that the effects of IL-1 on stem cells are indirectly mediated in part by IL-6 and G-CSF. Once the stem cells leave G0 and begin proliferation, the subsequent process is characterized by continued proliferation and differentiation. While several models of stem cell differentiation have been proposed, micromanipulation studies of individual progenitors suggest that the commitment of multipotential progenitors to single lineages is a stochastic (random) process. The proliferation of early hemopoietic progenitors appears to be supported by IL-3, IL-4, and/or GM-CSF. Once the progenitors are committed to individual lineages, the subsequent maturation process appears to be supported by late-acting, lineage-specific factors such as Ep (for erythropoiesis), G-CSF (for neutrophil production), and IL-5 (for eosinophilopoiesis). Thus, hemopoietic proliferation appears to be regulated by a cascade of factors directed at different developmental stages.

  20. Cytotoxic Effect of Thiabendazole on Hn5 Head and Neck Squamous Cell Carcinoma Cell Line.

    Science.gov (United States)

    Abassi, Amir Jalal; Mohamadnia, Abdolreza; Parhiz, Seyed Alireza; Azizi Moghadam, Nahid; Bahrami, Naghmeh

    2017-09-01

    Evidence shows thiabendazole has the potential to inhibit angiogenesis in melanoma and fibrosarcoma; however, its effect on oral squamous cell carcinoma has not been previously studied. This study sought to assess the cytotoxic effects of thiabendazole on HN5 head and neck squamous carcinoma cell line. HN5 cell lines were exposed to different concentrations of thiabendazole (prepared from 99% pure powder) for 24, 48 and 72 hours. Cell viability was assessed by the methyl thiazol tetrazolium assay, and IC50 of thiabendazole was calculated. Cells were also exposed to different concentrations of thiabendazole for 48 hours to determine its effect on expression and transcription of vascular endothelial growth factor gene. Expression of vascular endothelial growth factor mRNA was assessed by real-time polymerase chain reaction. The vascular endothelial growth factor release was assessed by the enzyme-linked immunosorbent assay test. In all concentrations of thiabendazole except for 200 and 550μM, cell viability was significantly different at different time points (p< 0.05). At 48 and 72 hours, cell viability at all concentrations of thiabendazole (100-650μM) significantly decreased compared to the control group (zero concentration). In addition, cell viability significantly decreased with an increase in thiabendazole concentration. At 48 hours, expression of vascular endothelial growth factor mRNA was significantly lower in presence of 500μM thiabendazole compared to the control group (p< 0.001) and release of vascular endothelial growth factor was inhibited in a dose-dependent manner. Thiabendazole inhibited the proliferation of HN5 cells in a dose-dependent and time-dependent manner. It also inhibited the expression of vascular endothelial growth factor gene.

  1. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  3. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  4. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage.

    Science.gov (United States)

    Hamamoto, Hirotsugu; Gorman, Joseph H; Ryan, Liam P; Hinmon, Robin; Martens, Timothy P; Schuster, Michael D; Plappert, Theodore; Kiupel, Matti; St John-Sutton, Martin G; Itescu, Silviu; Gorman, Robert C

    2009-03-01

    This experiment assessed the dose-dependent effect of a unique allogeneic STRO-3-positive mesenchymal precursor cell (MPC) on postinfarction left ventricular (LV) remodeling. The MPCs were administered in a manner that would simulate an off-the-self, early postinfarction, preventative approach to cardiac cell therapy in a sheep transmural myocardial infarct (MI) model. Allogeneic MPCs were isolated from male crossbred sheep. Forty-six female sheep underwent coronary ligation to produce a transmural LV anteroapical infarction. One hour after infarction, the borderzone myocardium received an injection of 25, 75, 225, or 450 x 10(6) MPCs, or cell medium. Echocardiography was performed at 4 and 8 weeks after MI to quantify LV end-diastolic (LVEDV) and end-systolic volumes (LVESV), ejection fraction (EF), and infarct expansion. CD31 and smooth muscle actin (SMA) immunohistochemical staining was performed on infarct and borderzone specimens to quantify vascular density. Compared with controls, low-dose (25 and 75 x 10(6) cells) MPC treatment significantly attenuated infarct expansion and increases in LVEDV and LVESV. EF was improved at all cell doses. CD31 and SMA immunohistochemical staining demonstrated increased vascular density in the borderzone only at the lower cell doses. There was no evidence of myocardial regeneration within the infarct. Allogeneic STRO-3 positive MPCs attenuate the remodeling response to transmural MI in a clinically relevant large-animal model. This effect is associated with vasculogenesis and arteriogenesis within the borderzone and infarct and is most pronounced at lower cell doses.

  5. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells

    Science.gov (United States)

    Li, Qi-Fu; Ouyang, Gao-Liang; Peng, Xuan-Xian; Hong, Shui-Gen

    2003-01-01

    AIM: To investigate the effects of tachyplesin on the cell cycle regulation in human hepatcarcinoma cells. METHODS: Effects of tachyplesin on the cell cycle in human hepatocarcinoma SMMC-7721 cells were assayed with flow cytometry. The protein levels of p53, p16, cyclin D1 and CDK4 were assayed by immunocytochemistry. The mRNA levels of p21WAF1/CIP1 and c-myc genes were examined with in situ hybridization assay. RESULTS: After tachyplesin treatment, the cell cycle arrested at G0/G1 phase, the protein levels of mutant p53, cyclin D1 and CDK4 and the mRNA level of c-myc gene were decreased, whereas the levels of p16 protein and p21WAF1/CIP1 mRNA increased. CONCLUSION: Tachyplesin might arrest the cell at G0/G1 phase by upregulating the levels of p16 protein and p21WAF1/CIP1 mRNA and downregulating the levels of mutant p53, cyclin D1 and CDK4 proteins and c-myc mRNA, and induce the differentiation of human hepatocacinoma cells. PMID:12632496

  6. Effect of ionizing radiation on the physical biology of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Baker-Groberg, Sandra M; Bornstein, Sophia; Zilberman-Rudenko, Jevgenia; Schmidt, Mark; Tormoen, Garth W; Kernan, Casey; Thomas, Charles R; Wong, Melissa H; Phillips, Kevin G; McCarty, Owen J T

    2015-09-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide. Although there are numerous treatment options for HNSCC, such as surgery, cytotoxic chemotherapy, molecularly targeted systemic therapeutics, and radiotherapy, overall survival has not significantly improved in the last 50 years. This suggests a need for a better understanding of how these cancer cells respond to current treatments in order to improve treatment paradigms. Ionizing radiation (IR) promotes cancer cell death through the creation of cytotoxic DNA lesions, including single strand breaks, base damage, crosslinks, and double strand breaks (DSBs). As unrepaired DSBs are the most cytotoxic DNA lesion, defining the downstream cellular responses to DSBs are critical for understanding the mechanisms of tumor cell responses to IR. The effects of experimental IR on HNSCC cells beyond DNA damage in vitro are ill-defined. Here we combined label-free, quantitative phase and fluorescent microscopy to define the effects of IR on the dry mass and volume of the HNSCC cell line, UM-SCC-22A. We quantified nuclear and cytoplasmic subcellular density alterations resulting from 8 Gy X-ray IR and correlated these signatures with DNA and γ-H2AX expression patterns. This study utilizes a synergistic imaging approach to study both biophysical and biochemical alterations in cells following radiation damage and will aid in future understanding of cellular responses to radiation therapy.

  7. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS.

    Science.gov (United States)

    Denecke, Jonas; Brune, Thomas; Feldhaus, Tobias; Robenek, Horst; Kranz, Christian; Auchus, Richard J; Agarwal, Anil K; Marquardt, Thorsten

    2006-06-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder normally caused by a spontaneous heterozygous mutation in the LMNA gene that codes for the nuclear lamina protein lamin A. Several enzymes are involved in the processing of its precursor, prelamin A, to the mature lamin A. A functional knockout of one of the enzymes involved in prelamin A processing, the zinc metalloprotease ZMPSTE24, causes an even more severe disorder with early neonatal death described as restrictive dermatopathy (RD). This work describes a HGPS patient with a combined defect of a homozygous loss-of-function mutation in the ZMPSTE24 gene and a heterozygous mutation in the LMNA gene that results in a C-terminal elongation of the final lamin A. Whereas the loss of function mutation of ZMPSTE24 normally results in lethal RD, the truncation of LMNA seems to be a salvage alteration alleviating the clinical picture to the HGPS phenotype. The mutations of our patient indicate that farnesylated prelamin A is the deleterious agent leading to the HGPS phenotype, which gives further insights into the pathophysiology of the disorder. Copyright 2006 Wiley-Liss, Inc.

  8. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  9. Effect of curcumin on aging retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-09-01

    Full Text Available Wei Zhu,1,* Yan Wu,2,* Yi-Fang Meng,1 Jin-Yu Wang,1 Ming Xu,1 Jian-Jun Tao,1 Jiong Lu1 1Department of Ophthalmology, Changshu No 2 People’s Hospital, Changshu, 2Department of Ophthalmology, The First People’s Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Age-related macular degeneration (AMD is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. Keywords: curcumin, retinal pigment epithelium, apoptosis, age-related macular degeneration

  10. Paradoxic effects of metformin on endothelial cells and angiogenesis

    Science.gov (United States)

    Bruno, Antonino; Cantelmo, Anna R.; Albini, Adriana

    2014-01-01

    The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short

  11. Paradoxic effects of metformin on endothelial cells and angiogenesis.

    Science.gov (United States)

    Dallaglio, Katiuscia; Bruno, Antonino; Cantelmo, Anna R; Esposito, Alessia I; Ruggiero, Luca; Orecchioni, Stefania; Calleri, Angelica; Bertolini, Francesco; Pfeffer, Ulrich; Noonan, Douglas M; Albini, Adriana

    2014-05-01

    The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short

  12. Effects of adrenaline in human colon adenocarcinoma HT-29 cells.

    Science.gov (United States)

    Wong, Helen P S; Ho, Judy W C; Koo, Marcel W L; Yu, Le; Wu, William K K; Lam, Emily K Y; Tai, Emily K K; Ko, Joshua K S; Shin, Vivian Y; Chu, Kent Man; Cho, Chi Hin

    2011-06-20

    Stress has been implicated in the development of cancers. Adrenaline levels are increased in response to stress. The effects of adrenaline on colon cancer are largely unknown. The aims of the study are to determine the effects of adrenaline in human colon adenocarcinoma HT-29 cells and the possible underlying mechanisms involved. The effect of adrenaline on HT-29 cell proliferation was determined by [(3)H] thymidine incorporation assay. Expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) were detected by Western blot. Matrix metalloproteinase-9 (MMP-9) activity and prostaglandin E(2) (PGE(2)) release were determined by zymography and enzyme immunoassay, respectively. Adrenaline stimulated HT-29 cell proliferation. This was accompanied by the enhanced expression of COX-2 and VEGF in HT-29 cells. Adrenaline also upregulated MMP-9 activity and PGE(2) release. Adrenaline stimulated HT-29 cell proliferation which was reversed by COX-2 inhibitor sc-236. COX-2 inhibitor also reverted the action of adrenaline on VEGF expression and MMP-9 activity. Further study was performed to determine the involvement of β-adrenoceptors. The stimulatory action of adrenaline on colon cancer growth was blocked by atenolol and ICI 118,551, a β(1)- and β(2)-selective antagonist, respectively. This signified the role of β-adrenoceptors in this process. In addition, both antagonists also abrogated the stimulating actions of adrenaline on COX-2, VEGF expression, MMP-9 activity and PGE(2) release in HT-29 cells. These results suggest that adrenaline stimulates cell proliferation of HT-29 cells via both β(1)- and β(2)-adrenoceptors by a COX-2 dependent pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines.

    Science.gov (United States)

    Catanzaro, Daniela; Ragazzi, Eugenio; Vianello, Caterina; Caparrotta, Laura; Montopoli, Monica

    2015-08-01

    Resistance to chemotherapeutic drugs is a major problem in cancer treatment. The search for new interventions able to overcome this resistance may involve compounds of natural origin, such as flavonoids, ubiquitously present in many foods. In the present study, the cytotoxic effects and cell cycle modulation of the flavonoid quercetin were investigated in ovarian carcinoma (SKOV3) and osteosarcoma (U2OS) human cell lines and in their cisplatin (CDDP)-resistant counterparts (SKOV3/CDDP and U2OSPt cells, respectively). Quercetin (10-50 μM) caused evident changes in the distribution of cell cycle phases in the CDDP-resistant SKOV3/CDDP ovarian cell line. The levels of cyclin D1 and cyclin B1 were determined by means of Western blot in all cell lines incubated with quercetin (50 μM) for 48 hours. The cyclin D1 expression was significantly decreased following the treatment with quercetin in SKOV3 and U2OSPt cells, but not in SKOV3/CDDP and U2OS cells. The reduction of cyclin D1 level could be linked to the G1/S phase alteration found in quercetin-treated cells. Although cyclin B1 is required for G2/M phase, and despite our observation that quercetin influenced the G2/M phase of cell cycle, the flavonoid did not affect cyclin B1 levels in all cell lines, indicating the involvement of other possible mechanisms. These results suggest that quercetin, exceeding the resistance to CDDP, might become an interesting tool to evaluate cytotoxic activity in combination with chemotherapy drugs.

  14. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  15. Effects of femtosecond laser radiation on blood cell suspensions

    Science.gov (United States)

    Gening, Tatyana; Sysolyatin, Aleksey; Abakumova, Tatyana; Arslanova, Dinara; Voronova, Olga; Zolotovsky, Igor; Ostatochnikov, Vladimir; Yavtushenko, Marina

    2011-03-01

    In the present work the effects of high-power femtosecond laser irradiation on a functional condition of red blood cells and neutrophils in vitro have been investigated. The data on parameters of the lipid peroxidation - antioxidants system, hemoglobin level and rigidity of red blood cell membranes testify destabilization of the membranes under the influence of the given laser. The study of phagocytic activity, anaerobic and aerobic metabolism of neutrophils, and rigidity of their membranes allows to suppose the dose-dependent effect to be stimulating.

  16. Effects of rotational culture on morphology, nitric oxide production and cell cycle of endothelial cells.

    Science.gov (United States)

    Tang, Chaojun; Wu, Xue; Ye, Linqi; Xie, Xiang; Wang, Guixue

    2012-12-01

    Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering. However, there are few reports exploring the effects of rotational culture on cell morphology, nitric oxide (NO) production, and cell cycle of the endothelial cells from human umbilical vein on the stent surface. This study focuses on these parameters after the cells are seeded on the stents. Results showed that covering of stents by endothelial cells was improved by rotational culture. NO production decreased within 24 h in both rotational and static culture groups. In addition, rotational culture significantly increased NO production by 37.9% at 36 h and 28.9% at 48 h compared with static culture. Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture. Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents, which are expected to be the most frequently implanted materials in the future.

  17. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  18. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells

    OpenAIRE

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; CHO, SUNG-DAE

    2015-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing...

  19. Effects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Motahare-Sadat Hosseini

    2014-10-01

    Full Text Available Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR and various concentrations of organomodified nanoclay (OC. Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR.

  20. The effect of ginger extract on glycoproteins of Raji cells.

    Science.gov (United States)

    Zamani, Zahra; Nassir-Ud-Din; Kohan, Haleemeh Kabini; Kadivar, Mehdi; Kalyee, Zahra; Rad, Behzad Laame; Iravani, Ayda; Rahimi, Nourooz Ali; Wahabi, Farideh; Sadeghi, Sedigheh; Pourfallah, Fatemeh; Arjmand, Mohammad

    2014-01-15

    Protein glycosylation is associated with the development and progression of specific diseases, including cancers. The ginger rhizome is known to have anti-cancer and anti-fungal properties. This investigation was carried out to study the effect of ginger on glycoproteins of Raji cells. A 10% yield of ginger extract was mixed with 0.01% DMSO and added to 6 x 10(4) Raji cells at different concentrations for 24, 48 and 72 h at 37 degrees C. Their half maximal inhibitory concentration (IC50) was determined and analyzed statistically using Graphpad prism software. Cell extracts were prepared and their glycoproteins purified using lectin-affinity chromatography (Q proteome total glycoprotein and O glycoprotein kits) and SDS PAGE was carried out. IC50 of ginger extract on Raji cells was 20 microg mL(-1) at 72 h with < 0.01 significance. Silver staining of purified glycoprotiens in Raji cells indicated the presence of O-glycans and N-glycans. N-linked mannose and N-linked sialic acids were detected with the total glycoprotein kit. O-linked galactose and O-linked sialic acids were identified with the O-glycoprotein. Ginger reduced the expression of O-linked sialic acid and also N-linked mannose on Raji cells but had no effect on other glycoproteins. Sialic acid is now well known as a cancer marker and investigations are on to use it as a drug-target in cancerous tissues.

  1. Effectiveness of liposomal paclitaxel against MCF-7 breast cancer cells.

    Science.gov (United States)

    Heney, Melanie; Alipour, Misagh; Vergidis, Dimitrios; Omri, Abdelwahab; Mugabe, Clement; Th'ng, John; Suntres, Zacharias

    2010-12-01

    Paclitaxel is an effective chemotherapeutic agent that is widely used for the treatment of several cancers, including breast, ovarian, and non-small-cell lung cancer. Due to its high lipophilicity, paclitaxel is difficult to administer and requires solubilization with Cremophor EL (polyethoxylated castor oil) and ethanol, which often lead to adverse side effects, including life-threatening anaphylaxis. Incorporation of paclitaxel in dimyristoylphosphatidylcholine:dimyristoylphosphatidylglycerol (DPPC:DMPG) liposomes can facilitate its delivery to cancer cells and eliminate the adverse reactions associated with the Cremophor EL vehicle. Accordingly, the effectiveness of liposomal paclitaxel on MCF-7 breast cancer cells was examined. The results from this study showed that (i) the lipid components of the liposomal formulation were nontoxic, (ii) the cytotoxic effects of liposomal paclitaxel were improved when compared with those seen with conventional paclitaxel, and (iii) the intracellular paclitaxel levels were higher in MCF-7 cells treated with the liposomal paclitaxel formulation. The results of these studies showed that delivery of paclitaxel as a liposomal formulation could be a promising strategy for enhancing its chemotherapeutic effects.

  2. Radiation-induced bystander effects in cultured human stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    2010-12-01

    Full Text Available The radiation-induced "bystander effect" (RIBE was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR. RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC and embryonic stem cells (hESC were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05. A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05.These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.

  3. Effect of antioxidants on PDT treatment of cultured tumor cells

    Science.gov (United States)

    Melnikova, Vladislava; Bezdetnaya, Lina N.; Belitchenko, Irina; Potapenko, Alexander Y.; Merlin, Jean-Louis; Guillemin, Francois H.

    1998-05-01

    Lipid peroxidation (LP) is involved in cell damage induced by photodynamic treatment (PDT) sensitized by some lipophylic porphyrins. We investigated an effect of lipophylic antioxidant (alpha) -tocopherol and its water-soluble analog, trolox, on meta-tetra(hydroxyphenyl)chlorin (mTHPC) sensitized PDT (413 nm) of cultured human colon adenocarcinoma cells (HT29). Cell survival was measured by the 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion to farmazan (MTT assay). Both antioxidants in concentrations lower than 0.1 mM did not affect photokilling of HT29 cells. These data might suggest that LP is not of crucial importance in cell damage photosensitized by mTHPC. One mM (alpha) -tocopherol or trolox decreased cell survival by ca. 15 and 13% respectively. Both antioxidants increased PDT- induced damage of HT29. Potentiation was evident as the decrease in the initial shoulder part of fluence dependence curve. We propose that antioxidants at height, pro-oxidant concentrations can potentiate PDT induced killing of tumor cells.

  4. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

    Science.gov (United States)

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  5. The effect of human papillomavirus infection on sperm cell motility.

    Science.gov (United States)

    Lai, Y M; Lee, J F; Huang, H Y; Soong, Y K; Yang, F P; Pao, C C

    1997-06-01

    To investigate the presence of human papillomavirus (HPV) in human sperm cells and to evaluate potential effects of HPV on the sperm functions. A descriptive clinical study. Specimens of semen were collected from 24 randomly selected patients who attended the fertility clinics at Chang Gung Memorial Hospital. The presence of HPV DNA and RNA were examined by polymerase chain reaction. Semen quality and sperm cell function were analyzed by computer-aided autoanalyzer. Human papillomavirus type 16 DNA and RNA were found in 6 (25%) and 2 (8%) of the sperm cells specimens, respectively. Human papillomavirus type 18 DNA and RNA were present in 11 (46%) and 5 (21%) of the same sperm cells specimens, respectively. Incidence of asthenozoospermia among patients infected with either HPV was significantly higher than in those without HPV in their sperm cells (75% versus 8%). Although performance of curvilinear velocity, straight-line velocity, and mean amplitude of lateral head displacement was significantly lower in HPV-infected specimens, the differences of linearity, beat cross frequency, and straightness were not statistically significant. These results suggest that human papillomavirus can be found in human sperm cells and that certain HPV-specific genes are actively transcribed. Sperm motility parameters seem to be affected by the presence of HPV in the sperm cells, and also the incidence of asthenozoospermia may be associated with HPV infection.

  6. Effects of Spaceflight on Cells of Bone Marrow Origin

    Directory of Open Access Journals (Sweden)

    Engin Özçivici

    2013-03-01

    Full Text Available Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types.

  7. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-11-01

    Full Text Available C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.

  8. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells.

    Science.gov (United States)

    Bharathiraja, Subramaniyan; Seo, Hansu; Manivasagan, Panchanathan; Santha Moorthy, Madhappan; Park, Suhyun; Oh, Jungwan

    2016-11-03

    C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS) were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.

  9. Structural effects of the Azospirillum lipopolysaccharides in cell suspensions.

    Science.gov (United States)

    Matora, L Y; Serebrennikova, O B; Shchyogolev, S Y

    2001-01-01

    The structural influence of Azospirillum lipopolysaccharides (LPS) and lipopolysaccharide-protein complexes (LPPC) on carrot, erythrocyte, and bacterial cell suspensions was explored. The structural potentialities of O-specific polysaccharide fragments of LPS and protein fractions of LPPC were also evaluated. An ability to induce the formation of three kinds of structures in the cell suspensions was revealed depending on the chemical composition of the preparations used. The first and the second ones were connected with effects of cell aggregation (a relatively fast process) and agglutination (a relatively slow process). The third one resulted in phase separation of erythrocyte suspensions (a medium-speed process), with segregating the cells to a separate homogeneous liquid phase.

  10. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms

    Directory of Open Access Journals (Sweden)

    Sónia Gonçalves

    2017-06-01

    Full Text Available Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP Psd1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Psd1 antifungal action. Atomic force microscopy (AFM was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Psd1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Psd1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.

  11. Linearity and effective optical pathlength of liquid waveguide capillary cells

    Science.gov (United States)

    Belz, Mathias; Dress, Peter; Sukhitskiy, Aleksandr; Liu, Suyi

    1999-11-01

    The validity of using Beer's Law to describe liquid waveguide capillary cells (LWCC) as absorption cells with increased optical pathlength was investigated. Experimental and theoretical results for two types of LWCC are presented. 'Type I' LWCCs are constructed with solid TEFLON AF tubing. 'Type II' LWCCs consist of quartz tubing with an outer coating of TEFLON AF. UV/Vis absorbance spectra versus chromophore concentration were found to be linear for both LWCC types within the wavelength range and absorbance accuracy of the spectrophotometer used. The ratio between 'effective' and 'physical' pathlength, EPLR was determined experimentally for both LWCC types. Type I cells had an effective optical pathlength that was statistically indistinguishable from the physical pathlength on a 95 percent probability basis. Type II cells had an effective optical pathlength that was slightly shorter than the physical pathlength, dependent on the cell's inner diameter and wall thickness. A theoretical model explaining Type I LWCC result is presented. Our results indicate that Beer- Lambert's Law can be applied to both types of LWCCs for UV/Vis absorption spectroscopy.

  12. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy.

  13. Effect of melanin on radiation response of CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, L.E. (Medical Coll. of Wisconsin, Milwaukee (USA). Dept. of Radiation Oncology); Swartz, H.M. (Illinois Univ., Urbana (USA). Coll. of Medicine); Pajak, S. (Uniwersytet Jagiellonski, Krakow (Poland))

    1985-05-01

    The effect of the presence of melanin on the response of mammalian cells to ionizing radiation was investigated in a model system utilizing the ability of Chinese hamster ovary cells to incorporate melanin by endocytosis. Cells were incubated in monolayer cultures from 2 to 20 hours with melanin prepared from 'beef eye' or synthesized by air oxidation of 3,4-dihydroxyphenylalanine. For asynchronous cultures, the survival curve parameters for cells incubated with both types of melanin were indistinguishable from those of the same cells without added melanin. The radiation response to fractionated doses of 6 Gy separated by various periods did not indicate any effect of melanin on the extent or kinetics of repair of sublethal damage. Likewise, the repair of potentially lethal damage in plateau phase cultures was unaffected by the presence of melanin. Thus the explanation for the clinical radiation resistance of melanomas in the absence of a direct radiation effect might more likely be found in consideration of other factors such as the role of melanin in oxygen consumption or in differentiation.

  14. Cellulose Biosynthesis Inhibitors: Comparative Effect on Bean Cell Cultures

    Directory of Open Access Journals (Sweden)

    José L. Acebes

    2012-03-01

    Full Text Available The variety of bioassays developed to evaluate different inhibition responses for cellulose biosynthesis inhibitors makes it difficult to compare the results obtained. This work aims (i to test a single inhibitory assay for comparing active concentrations of a set of putative cellulose biosynthesis inhibitors and (ii to characterize their effect on cell wall polysaccharides biosynthesis following a short-term exposure. For the first aim, dose-response curves for inhibition of dry-weight increase following a 30 days exposure of bean callus-cultured cells to these inhibitors were obtained. The compound concentration capable of inhibiting dry weight increase by 50% compared to control (I50 ranged from subnanomolar (CGA 325′615 to nanomolar (AE F150944, flupoxam, triazofenamide and oxaziclomefone and micromolar (dichlobenil, quinclorac and compound 1 concentrations. In order to gain a better understanding of the effect of the putative inhibitors on cell wall polysaccharides biosynthesis, the [14C]glucose incorporation into cell wall fractions was determined after a 20 h exposure of cell suspensions to each inhibitor at their I50 value. All the inhibitors tested decreased glucose incorporation into cellulose with the exception of quinclorac, which increased it. In some herbicide treatments, reduction in the incorporation into cellulose was accompanied by an increase in the incorporation into other fractions. In order to appreciate the effect of the inhibitors on cell wall partitioning, a cluster and Principal Component Analysis (PCA based on the relative contribution of [14C]glucose incorporation into the different cell wall fractions were performed, and three groups of compounds were identified. The first group included quinclorac, which increased glucose incorporation into cellulose; the second group consisted of compound 1, CGA 325′615, oxaziclomefone and AE F150944, which decreased the relative glucose incorporation into cellulose but

  15. T Cell-Mediated Modulation of Mast Cell Function: Heterotypic Adhesion-Induced Stimulatory or Inhibitory Effects

    Directory of Open Access Journals (Sweden)

    Yoseph A. Mekori

    2012-01-01

    Full Text Available Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras MAPK systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40-OX40L engagement has been found to underlie the down-regulatory effects exerted by regulatory T cells on mast cell function.

  16. The effect of curcumin on breast cancer cells.

    Science.gov (United States)

    Liu, Dongwu; Chen, Zhiwei

    2013-06-01

    Curcumin, which is extracted from the plant Curcuma longa, has been used in the therapeutic arsenal for clinical oncology. Curcumin has chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The expressions and activities of various proteins, such as inflammatory cytokines and enzymes, transcription factors, and gene-products linked with cell survivals and proliferation, can be modified by curcumin. Moreover, curcumin decreases the toxic effect of mitomycin C. Though curcumin has shown highly cytotoxic to some cancer cell lines, curcumin is insoluble and instable in water. The solubility of curcumin could be enhanced by utilizing the solubilizing properties of rubusoside. In addition, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors may improve the chemopreventive and chemotherapeutic effects. The focus of this short review is to describe how curcumin participates in antitumor processes in breast cancer cells.

  17. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Directory of Open Access Journals (Sweden)

    Isheeta Seth

    Full Text Available Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy, and irradiated-cell conditioned media (ICCM was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control, 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001. These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  18. Synergistic effect of gefitinib and rofecoxib in mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Sacchi Ada

    2010-02-01

    Full Text Available Abstract Background Malignant mesothelioma (MM is an aggressive tumor that is resistant to conventional modes of treatment with chemotherapy, surgery or radiation. Research into the molecular pathways involved in the development of MM should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2 are involved in the carcinogenesis of MM. Combination of COX-2 and EGFR inhibitors, therefore, could be an effective strategy for reducing cell growth in those lines expressing the two molecular markers. Results In order to verify the effect of COX-2 and EGFR inhibitors, five MM cell lines NCI-2452, MPP89, Ist-Mes-1, Ist-Mes-2 and MSTO-211 were characterized for COX-2 and EGFR and then treated with respective inhibitors (rofecoxib and gefitinib alone and in combination. Only MPP89, Ist-Mes-1 and Ist-Mes-2 were sensitive to rofecoxib and showed growth-inhibition upon gefitinib treatment. The combination of two drugs demonstrated synergistic effects on cell killing only in Ist-Mes-2, the cell line that was more sensitive to gefitinib and rofecoxib alone. Down-regulation of COX-2, EGFR, p-EGFR and up-regulation of p21 and p27 were found in Ist-Mes-2, after treatment with single agents and in combination. In contrast, association of two drugs resulted in antagonistic effect in Ist-Mes-1 and MPP89. In these cell lines after rofecoxib exposition, only an evident reduction of p-AKT was observed. No change in p-AKT in Ist-Mes-1 and MPP89 was observed after treatment with gefitinib alone and in combination with rofecoxib. Conclusions Gefitinib and rofecoxib exert cell type-specific effects that vary between different MM cells. Total EGFR expression and downstream signalling does not correlate with gefitinib sensitivity. These data suggest that the effect of gefitinib can be potentiated by rofecoxib in MM cell lines where AKT is not activated.

  19. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effect of rhamnolipids on permeability across Caco-2 cell monolayers.

    Science.gov (United States)

    Wallace, Charity J; Medina, Scott H; ElSayed, Mohamed E H

    2014-04-01

    This report describes the effect of rhamnolipids (RLs), an amphiphilic biosurfactant produced by the bacterium Pseudomonas aeruginosa, on the integrity and permeability across Caco-2 cell monolayers. We measured the trans-epithelial electrical resistance (TEER) and permeability of [(14)C]mannitol across Caco-2 cell monolayers upon incubation with 0.01-5.0% v/v RLs as a function of incubation time (30, 60, 90, and 120 min). We also studied the recovery of RL-treated Caco-2 cell monolayers upon incubation with Kaempferol, which is a natural flavonoid that promotes the assembly of the tight junctions. TEER of Caco-2 cell monolayers incubated with 0.01-5.0% v/v RLs solution dropped to 80-28% of that of untreated cells. Decline in TEER was associated with an increase in [(14)C]mannitol permeability as a function of RLs concentration and incubation time with Caco-2 cells. Incubation of RLs-treated Caco-2 cell monolayers with normal culture medium for 48 h did not restore barrier integrity. Whereas, incubation of a RLs-treated Caco-2 cells with culture medium containing Kaempferol for 24 h restored barrier function indicated by the higher TEER and lower [(14)C]mannitol permeability values. These results show the ability of RLs to modulate the integrity and permeability of Caco-2 cell monolayers in a concentration- and time-dependent fashion, which suggest their potential to function as a non-toxic permeation enhancer.

  1. Progestogenic effects of tibolone on human endometrial cancer cells

    OpenAIRE

    Blok, Leen; Ruiter, Petra; Kuhne, E.C.; Hanekamp, Eline; Grootegoed, Anton; Smid-Koopman, Ellen; Gielen, Susanne; Gooyer, M.E.; Kloosterboer, Helenius; Burger, Curt

    2003-01-01

    textabstractTibolone, a synthetic steroid acting in a tissue-specific manner and used in hormone replacement therapy, is converted into three active metabolites: a Delta(4) isomer (exerting progestogenic and androgenic effects) and two hydroxy metabolites, 3 alpha-hydroxytibolone (3 alpha-OH-tibolone) and 3beta-OH-tibolone (exerting estrogenic effects). In the present study an endometrial carcinoma cell line (Ishikawa PRAB-36) was used to investigate the progestogenic properties of tibolone a...

  2. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  3. Effect of propionyl-L-carnitine on human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Scheffer, M.A.

    1991-01-01

    A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no

  4. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its ...

  5. Breast milk cell components and its beneficial effects on neonates: need for breast milk cell banking

    Directory of Open Access Journals (Sweden)

    Pankaj Kaingade

    2017-01-01

    Full Text Available Universal breastfeeding has been a stated policy of the American Academy of Pediatrics, the World Health Organization as well as UNICEF. Human milk is considered as the gold standard for infants owing to its colossal nutritional values. However, the presence of various cellular components of breast milk have been gaining more attention in recent years since the first discovery of mammary stem cells in 2007, thereby providing a ray of hope not only for growth and immunity of the neonate but also an insight into its regenerative applicability. In this relation, this article summarizes the cell components of breast milk that have been identified to date. It highlights the beneficial effects of these cells for term and preterm delivered infants along with the need for breast milk and its cell banking.

  6. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy......, but not from MCF7 and HT-29, developed an elongated, spindle-shaped morphology with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK......INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...

  7. Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    Science.gov (United States)

    Sokolov, Mykyta V.; Neumann, Ronald D.

    2010-01-01

    Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative

  8. [Inhibitory effect of 17-AAG combined with paclitaxel on proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro].

    Science.gov (United States)

    Chen, Size; Chen, Xuemei; Li, Yuqi; Yang, Shu; Mo, Xianyi; Zhang, Fan; Mo, Kailan; Ding, Ying

    2015-06-01

    To investigate the effect of 17-AAG combined with paclitaxel (PTX) on the proliferation and apoptosis of esophageal squamous cell carcinoma cell line Eca-109 in vitro. Eca-109 cells were treated with 17-AAG and PTX either alone or in combination. The proliferation of Eca-109 cells was detected by MTT assay, and the cell cycle changes and cell apoptosis were determined by flow cytometry. Compared with the control group, both 17-AAG and PTX significantly inhibited the proliferation of Eca-109 cells. A combined treatment of the cells with 0.5 µmol/L PTX and 0.625 µmol/L 17-AAG produced an obviously stronger inhibitory effect on the cell proliferation than either of the agents used alone (PEca-109 cell cycle arrest in G2/M phase and S phase, respectively, and their combined use caused cell cycle arrest in both G2/M and S phases. The cell apoptosis rates of Eca-109 cells treated with 17-AAG, PTX and their combination were 4.52%, 10.91%, and 29.88%, respectively, all significantly higher than that in the control group (1.32%); the combined treatment resulted in a distinct apoptotic peak that was significantly higher than that caused by either of the agents alone. 17-AAG and PTX can inhibit cell proliferation and promote apoptosis of Eca-109 cells, and their combination produces stronger effects in inhibiting cell proliferation and increasing cell apoptosis.

  9. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells.

    Science.gov (United States)

    Reed, Kent M; Mendoza, Kristelle M; Abrahante, Juan E; Barnes, Natalie E; Velleman, Sandra G; Strasburg, Gale M

    2017-05-06

    Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.

  10. Transient Hypothyroidism: Dual Effect on Adult-Type Leydig Cell and Sertoli Cell Development

    Directory of Open Access Journals (Sweden)

    Eddy Rijntjes

    2017-05-01

    Full Text Available Transient neonatal 6-propyl-2-thiouracil (PTU induced hypothyroidism affects Leydig and Sertoli cell numbers in the developing testis, resulting in increased adult testis size. The hypothyroid condition was thought to be responsible, an assumption questioned by studies showing that uninterrupted fetal/postnatal hypothyroidism did not affect adult testis size. Here, we investigated effects of transient hypothyroidism on Leydig and Sertoli cell development, employing a perinatal iodide-deficient diet in combination with sodium perchlorate. This hypothyroidism inducing diet was continued until days 1, 7, 14, or 28 postpartum (pp respectively, when the rats were switched to a euthyroid diet and followed up to adulthood. Continuous euthyroid and hypothyroid, and neonatal PTU-treated rats switched to the euthyroid diet at 28 days pp, were included for comparison. No effects on formation of the adult-type Leydig cell population or on Sertoli cell proliferation and differentiation were observed when the diet switched at/or before day 14 pp. However, when the diet was discontinued at day 28 pp, Leydig cell development was delayed similarly to what was observed in chronic hypothyroid rats. Surprisingly, Sertoli cell proliferation was 6- to 8-fold increased 2 days after the diet switch and remained elevated the next days. In adulthood, Sertoli cell number per seminiferous tubule cross-section and consequently testis weight was increased in this group. These observations implicate that increased adult testis size in transiently hypothyroid rats is not caused by the hypothyroid condition per se, but originates from augmented Sertoli cell proliferation as a consequence of rapid normalization of thyroid hormone concentrations.

  11. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells

    Directory of Open Access Journals (Sweden)

    Kent M. Reed

    2017-11-01

    Full Text Available Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development.Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo from two breeding lines: the F-line (16 wk body weight-selected and RBC2 (randombred control line were used in this study. Cultured cells were induced to differentiate at 38°C (control or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101 with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment.Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the

  12. EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2010-09-28

    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  13. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  14. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  15. Effect of Melatonin on Human Dental Papilla Cells

    Directory of Open Access Journals (Sweden)

    Ryusuke Tachibana

    2014-09-01

    Full Text Available Melatonin regulates a variety of biological processes, which are the control of circadian rhythms, regulation of seasonal reproductive function and body temperature, free radical scavenging and so on. Our previous studies have shown that various cells exist in human and mouse tooth germs that express the melatonin 1a receptor (Mel1aR. However, little is known about the effects of melatonin on tooth development and growth. The present study was performed to examine the possibility that melatonin might exert its influence on tooth development. DP-805 cells, a human dental papilla cell line, were shown to express Mel1aR. Expression levels of mRNA for Mel1aR in DP-805 cells increased until 3 days after reaching confluence and decreased thereafter. Real-time reverse transcription-polymerase chain reaction showed that melatonin increased the expression of mRNAs for osteopontin (OPN, osteocalcin (OCN, bone sialoprotein (BSP, dentin matrix protein-1 (DMP-1 and dentin sialophosphoprotin (DSPP. Melatonin also enhanced the mineralized matrix formation in DP-805 cell cultures in a dose-dependent manner. These results strongly suggest that melatonin may play a physiological role in tooth development/growth by regulating the cellular function of odontogenic cells in tooth germs.

  16. Cytotoxic effect of artocarpin on T47D cells.

    Science.gov (United States)

    Arung, Enos Tangke; Wicaksono, Britanto Dani; Handoko, Yohana Ayupriyanti; Kusuma, Irawan Wijaya; Shimizu, Kuniyoshi; Yulia, Dina; Sandra, Ferry

    2010-10-01

    In our screening projects for anticancer agents from natural resources, artocarpin [6-(3-methyl-1-butenyl)-5,2',4'-trihydroxy-3-isoprenyl-7-methoxyflavone] isolated from wood of jack fruit (Artocarpus heterophyllus) showed potent cytotoxic activity on human T47D breast cancer cells. The mode of action of artocarpin was evaluated by its effect on cell viability, nuclear morphology, cell cycle progression, expression of protein markers for apoptosis, and mitochondrial membrane potential (Delta psi m). These results showed that artocarpin caused a reduction of cell viability in a concentration-dependent manner and an alteration of cell and nuclear morphology. Moreover, the percentage of the sub-G1 phase formation was elevated dose-dependently. Artocarpin induced activation of caspase 8 and 10 as indicated by stronger signal intensity of cleaved-caspase 8 and weaker signal intensity of caspase 10 markers detected after artocarpin treatment. In addition, we also noticed the activation of caspase 3 by artocarpin. There were negligible changes in mitochondrial membrane potential (Delta psi m) due to artocarpin treatment. All together, these data indicated that artocarpin induced apoptosis in T47D cells possibly via an extrinsic pathway.

  17. The Effects of Urethane on Rat Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Mingyu Fu

    2016-01-01

    Full Text Available The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.

  18. Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions

    Science.gov (United States)

    Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.

    2009-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.

  19. Protective effect of sulforaphane against dopaminergic cell death.

    Science.gov (United States)

    Han, Ji Man; Lee, Yong Jin; Lee, So Yeon; Kim, Eun Mee; Moon, Younghye; Kim, Ha Won; Hwang, Onyou

    2007-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with a selective loss of dopaminergic neurons in the substantia nigra. Evidence suggests oxidation of dopamine (DA) to DA quinone and consequent oxidative stress as a major factor contributing to this vulnerability. We have previously observed that exposure to or induction of NAD(P)H:quinone reductase (QR1), the enzyme that catalyzes the reduction of quinone, effectively protects DA cells. Sulforaphane (SF) is a drug identified as a potent inducer of QR1 in various non-neuronal cells. In the present study, we show that SF protects against compounds known to induce DA quinone production (6-hydroxydopamine and tetrahydrobiopterin) in DAergic cell lines CATH.a and SK-N-BE(2)C as well as in mesencephalic DAergic neurons. SF leads to attenuation of the increase in protein-bound quinone in tetrahydrobiopterin-treated cells, but this does not occur in cells that have been depleted of DA, suggesting involvement of DA quinone. SF pretreatment prevents membrane damage, DNA fragmentation, and accumulation of reactive oxygen species. SF causes increases in mRNA levels and enzymatic activity of QR1 in a dose-dependent manner. Taken together, these results indicate that SF causes induction of QR1 gene expression, removal of intracellular DA quinone, and protection against toxicity in DAergic cells. Thus, this major isothiocyanate found in cruciferous vegetables may serve as a potential candidate for development of treatment and/or prevention of PD.

  20. Effects of Benzodiazepines on Acinar and Myoepithelial Cells.

    Science.gov (United States)

    Mattioli, Tatiana M F; Alanis, Luciana R A; Sapelli, Silvana da Silva; de Lima, Antonio A S; de Noronha, Lucia; Rosa, Edvaldo A R; Althobaiti, Yusuf S; Almalki, Atiah H; Sari, Youssef; Ignacio, Sergio A; Johann, Aline C B R; Gregio, Ana M T

    2016-01-01

    Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p glands.

  1. The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.

    Science.gov (United States)

    Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad

    2009-06-01

    Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.

  2. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    DEFF Research Database (Denmark)

    Yang, Hsiao Yin; Vonk, Lucienne A.; Licht, Ruud

    2014-01-01

    % amidation), for siRNA delivery into primary mesenchymal cells including nucleus pulposus cells, articular chondrocytes and mesenchymal stem cells (MSCs). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing by 20 nM or 200 nM siRNA at day...... 3 and day 6 post-transfection. In addition to silencing efficiency, non-specific effects such as cytotoxicity, change in DNA content and differentiation potential of cells were evaluated. Among the four transfection reagents, the commercial liposome-based agent was the most efficient reagent for siRNA...... delivery at 20 nM siRNA, followed by chitosan. Transfection using cationic liposomes, chitosan and PEI showed some decrease in viability and DNA content to varying degrees that was dependent on the siRNA dose and cell type evaluated, but independent of GAPDH knockdown. Some effects on DNA content were...

  3. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses

    NARCIS (Netherlands)

    Rijkelijkhuizen, J.M.; McQuarrie, K.; Girman, C.J.; Stein, P.P.; Mari, A.; Holst, J.J.; Nijpels, G.; Dekker, J.M.

    2010-01-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the β-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin,

  4. Immune modulatory effect of thalidomide on T cells.

    Science.gov (United States)

    Kim, B S; Kim, J Y; Lee, J G; Cho, Y; Huh, K H; Kim, M S; Kim, Y S

    2015-04-01

    Thalidomide was originally used to alleviate morning sickness in pregnant women, but was banned due to severe adverse effects. Since the discovery of its anticancer and anti-inflammatory properties, it has regained research interest. However, its mechanism of action is still unknown. Therefore, we examined the effects of thalidomide on effector T (Teff) and regulatory T (Treg) cells in splenocytes of mice. Splenic CD4(+), CD44(low), and CD62L(high) T lymphocytes (Tnaives) isolated from C57BL/6 mice were cultured for T-cell proliferation and Treg conversion. For T-cell proliferation, naive T cells (Tnaives) were cultured for 72 hours with anti-CD3 and anti-CD28 antibodies, and carboxyfluorescein succinimidyl ester (CFSE) labeling method was used. For Treg conversion, Tnaives were cultured for 72 hours with transforming growth factor-β1 (TGF-β1) and interleukin-2 (IL-2). Naïve T cells were plated at 1.5 × 10(5) cells on 96-well plates with 0, 1, 10, 50, or 100 μmol/L thalidomide. All samples were analyzed by flow cytometry after staining with CFSE, APC-conjugated anti-mouse CD4, and FITC-conjugated anti-mouse FoxP3. Thalidomide significantly decreased the proliferation of CD4(+) Teffs in a dose-dependent manner (P thalidomide treatment, although the increase was not statistically significant. These findings suggest that thalidomide may have an immune modulatory effect by selectively suppressing CD4(+) Teff proliferation. Further studies will be needed to elucidate the underlying signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  6. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Candelario, Jose; Borrego, Stacey [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Reddy, Sita, E-mail: sitaredd@usc.edu [Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Comai, Lucio, E-mail: comai@usc.edu [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  7. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.

    Science.gov (United States)

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.

  8. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  9. Onion cell imaging by using Talbot/self-imaging effect

    Science.gov (United States)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2017-08-01

    This paper presents the amplitude and phase imaging of onion epidermis cell using the self-imaging capabilities of a grating (Talbot effect) in visible light region. In proposed method, the Fresnel diffraction pattern from the first grating and object is recorded at self-image plane. Fast Fourier Transform (FFT) is used for extracting the 3D amplitude and phase image of onion epidermis cell. The stability of the proposed system, from environmental perturbation as well as its compactness and portability give the proposed system a high potential for several clinical applications.

  10. Cytotoxic Effects of Environmental Toxins on Human Glial Cells.

    Science.gov (United States)

    D'Mello, Fiona; Braidy, Nady; Marçal, Helder; Guillemin, Gilles; Rossi, Fanny; Chinian, Mirielle; Laurent, Dominique; Teo, Charles; Neilan, Brett A

    2017-02-01

    Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.

  11. Effect of light trapping in an amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Iftiquar, S.M., E-mail: iftiquar@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Juyeon; Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jaehyun; Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Bong, Sungjae [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sunbo [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V{sub oc}) of 0.87, 0.90 V, short circuit current densities (J{sub sc}) of 14.2, 15.36 mA/cm{sup 2} respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d{sub i}) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d{sub i} while the V{sub oc} and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d{sub i} = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J{sub sc} and red response of the external quantum efficiency to 16.6 mA/cm{sup 2} and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J{sub sc} increases and V{sub oc} decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J{sub sc} improved from 15.4 mA/cm{sup 2} to 16.6 mA/cm{sup 2} due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE.

  12. Effect on pancreatic beta cells and nerve cells by low let x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu health College, Daegu (Korea, Republic of)

    2014-03-15

    Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia condition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

  13. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Directory of Open Access Journals (Sweden)

    Valentina Onesto

    2016-01-01

    Full Text Available Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  14. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  15. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  16. Antibody-dependent cell-mediated effects in bancroftian filariasis.

    Science.gov (United States)

    Mehta, K; Sindhu, R K; Subrahmanyam, D; Hopper, K; Nelson, D S; Rao, C K

    1981-01-01

    The nature of immunoglobulin and effector cells involved in the antibody-dependent cell-mediated adhesion and cytotoxicity to Wuchereria bancrofti larvae has been investigated. Human neutrophils and eosinophils purified from peripheral blood by metrizamide gradients readily adhered to the parasites in presence of IgG fraction of sera from majority of elephantiasis cases with amicrofilaraemia and many of the endemic normals. The cells from normal, microfilariae and elephantiasis cases were equally effective inthe adhesion reaction. While the adhered neutrophils killed the larvae, eosinophils were ineffective in this respect. DEC treatment of elephantiasis cases results in a significant reduction in the ability of their sera to promote cellular adhesion. Images Figure 1 PMID:7019047

  17. Side population cells separated from A549 lung cancer cell line possess cancer stem cell-like properties and inhibition of autophagy potentiates the cytotoxic effect of cisplatin.

    Science.gov (United States)

    Yang, Yang; Fan, Yuxia; Qi, Yu; Liu, Donglei; Wu, Kai; Wen, Fengbiao; Zhao, Song

    2015-08-01

    Recent studies have suggested that cancer stem cells (CSCs) may be responsible for tumorigenesis and contribute to resistance to chemotherapy. Side population (SP) cells are thought to be enriched for CSCs in most types of human tumors. Therefore, the aim of the present study was to sort SP cells using an A549 lung cancer cell line, identify the cancer stem cell-like properties of SP and determine the role of autophagy in the survival of SP cells of lung cancer. SP cells were isolated by fluorescence-activated cell sorter (FACS) from A549 lung cancer cells, and the CSC-like properties were verified through confocal fluorescence imaging, sphere formation assays, cell proliferation and colony formation assay, gene expression in vitro and tumor formation in vivo. The role of autophagy in the survival of SP cells was assessed by western blotting and flow cytometric analysis. A549 lung cancer cells contained 1.10% SP cells. SP cells showed higher abilities of sphere and colony formation, cell proliferation and self-renewal. Moreover, compared to non-SP, SP cells demonstrated a higher mRNA expression of stem cell markers (MDR1, ABCG2 and OCT-4). The clone formation efficiency of SP cells was significantly higher than that non-SP cells under the same conditions. Expression of autophagosomes in SP cells was markedly lower than that in non-SP cells. However, the level of autophagy in SP cells was found to be markedly increased in the presence of cisplatin. In addition, inhibition of autophagy enhanced the effects of apoptosis induced by cisplatin. SP cells from the A549 lung cancer cell line possessed the properties of CSCs and were used to investigate the further characteristics of lung CSCs. SP cells were more resistant to chemotherapy and inhibition of autophagy enhanced the effects of apoptosis induced by the chemotherapeutic agent, cisplatin. These results may provide insight into novel therapeutic targets.

  18. Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2002-01-01

    This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.

  19. The Effects of Royal Jelly on In-Vitro Cytotoxicity of K562 Cells and Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    SE Hosseini

    2014-02-01

    Full Text Available Abstract Background & aim: Royal jelly, secreted by worker bees, has different biological activities on cells and tissues. The aim of this study was to evaluate the effects of royal jelly on peripheral blood mononuclear cells and on the tumor category of K562 cell line. Methods: In the present experimental study, three subjects were selected separately with three repetitions. K562 (104 cells and PBMC (105 cells with different concentrations of royal jelly (5, 10, 25, 50 and 100 mg/ml were cultured under standard conditions for 48 and 72 h separately. The fatality rate on PBMC cells and K562 cancer cells was evaluated by using MTT (Tetrazolium Dye-Reduction Assay. The number of viable cells in PBMC that were exposed for 48 hours with Royal Jelly was evaluated by trypan blue staining. Data were analyzed by ANOVA. Results: The royal jelly had no cytotoxicity effect on PBMC cells but at concentration of 50 and 100 mg/mL the cytotoxicity effect were observed on k562 cells whereas, at 10 and 25 mg/ml the number of PBMC viable cells increased. Conclusion: Due to the lack of lethality of royal jelly on PBMC cells and PBMC cell viability and an increase in the fatality rate of cancer cells in the future, royal jelly can be used as a potential candidate for treatment of leukemia. Keywords: Royal jelly, K562, peripheral blood mononuclear cell

  20. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  1. Cell Salvage Used in Scoliosis Surgery: Is It Really Effective?

    Science.gov (United States)

    Liu, Jia-Ming; Fu, Bi-Qi; Chen, Wen-Zhao; Chen, Jiang-Wei; Huang, Shan-Hu; Liu, Zhi-Li

    2017-05-01

    Scoliosis surgery usually is associated with large volume of intraoperative blood loss, and cell salvage is used commonly to filter and retranfusion autologous blood to patients. The efficacy of using cell salvage in scoliosis surgery, however, is still controversial. The purpose of this study is to make clear that intraoperative use of cell salvage is effective to decrease the volume of perioperative allogenic blood transfusion in scoliosis surgery. A meta-analysis was conducted to identify the relevant studies from PubMed, Embase, Medline, Cochrane library, and Google scholar until July 2016. All randomized trials and controlled clinical studies comparing the clinical outcomes of using cell salvage versus noncell salvage in scoliosis surgery were retrieved for the meta-analysis. The data were analyzed by RevMan 5.3. A total of 7 studies with 562 patients were included in this meta-analysis. Based on the analysis, the volumes of perioperative and postoperative allogenic red blood cell (RBC) transfusion in cell salvage group were significantly less than those in control group (P = 0.04 and P = 0.01); however, no significant difference was detected in the amount of intraoperative allogenic RBC transfusion and the risk of patients needing allogenic blood transfusion between the 2 groups (P = 0.14 and P = 0.61). Both the hemoglobin and hematocrit levels on the first day after surgery were significantly greater in cell salvage group than those in control group (P = 0.002 and P scoliosis surgery and increased the hemoglobin and hematocrit levels on the first day postoperatively. In addition, it seemed not to increase the rate of transfusion complications during the surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines.

    Science.gov (United States)

    Silva, Dulcelena Ferreira; Vidal, Flávia Castello Branco; Santos, Debora; Costa, Maria Célia Pires; Morgado-Díaz, José Andrés; do Desterro Soares Brandão Nascimento, Maria; de Moura, Roberto Soares

    2014-05-29

    Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the

  3. The effect of ascetic acid on mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Mariana, Oana C [Los Alamos National Laboratory; Trujillo, Antoinette [Los Alamos National Laboratory; Sanders, Claire K [Los Alamos National Laboratory; Burnett, Kassidy S [Los Alamos National Laboratory; Freyer, James P [Los Alamos National Laboratory; Mourant, Judith R [Los Alamos National Laboratory

    2010-01-01

    Effects of the contrast agent, acetic acid, on mammalian cells are studied using light scattering measurements, viability and fluorescence pH assays. Results depend on whether cells are in PBS or are live and metabolizing. Acetic acid is a contrast agent used to aid the detection of cancerous and precancerous lesions of the uterine cervix. Typically 3% or 5% acetic acid is applied to the swface of the cervix and areas of the tissue that turn 'acetowhite' are considered more likely to be precancerous. The mechanism of action of acetic acid has never been understood in detail, although there are several hypotheses. One is that a decrease in pH causes cytokeratins in epithelial cells to polymerize. We will present data demonstrating that this is not the sole mechanism of acetowhitening. Another hypothesis is that a decrease in pH in the nucleus causes deacetylation of the histones which in turn results in a dense chromatin structure. Relevant to this hypothesis we have measured the internal pH of cells. Additional goals of this work are to understand what physical changes result in acetowhitening, to understand why there is variation in how cells respond to acetic acid, and to investigate how acetowhitening affects the light scatter properties measured by a fiber-optic probe we have developed for cervical cancer diagnostics.

  4. Effect of particle irradiation on cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Kiyomi [National Inst. of Radiological Sciences, Chiba (Japan); Ohara, Hiroshi

    1997-02-01

    We studied effects of fractionated exposure of heavy ion beams with high linear energy transfer (LET). Asynchronous V79 cells were irradiated by He-3 or C ion beam at cyclotron at NIRS (12 MeV/u, LET{approx_equal} 20-250 keV/{mu}m). Extent of recovery of sublethal damage (SLDR) decreased with increasing LET. At the highest LET tested, the enhancement of cell killing (potentiation) was observed. Flow cytometry data showed the more efficient accumulation of cells at a G2/M phase at 4 h after irradiation by high LET particle beams than by X-rays. This potentiation might be caused by partial synchronization at a cell cycle position (s) where cells are sensitive to heavy ion exposure. When carbon ion beam with spread-out Bragg peak (SBP) at the RIKEN Ring Cyclotron (initial energy=135 MeV/u) were split into 2 equal exposure at 12-hr-interval, SLDR was observed at the entrance of the beam. In contrast, little recovery was observed at middle or distal peak positions. These results showed the benefits of carbon ion beam for cancer therapy, because we can expect some recovery in normal tissue at entrance of the beam, whereas no recovery in tumor at SBP. (author)

  5. Anti-inflammatory effects of glaucocalyxin B in microglia cells

    Directory of Open Access Journals (Sweden)

    Ping Gan

    2015-05-01

    Full Text Available Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB, one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO, tumor necrosis factor (TNF-α, interleukin (IL-1β, cyclooxygenase (COX-2 and inducible nitric oxide synthase (iNOS in the lipopolysaccharide (LPS-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and generation of reactive oxygen species (ROS in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases.

  6. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P pathophysiology associated with diabetic microangiopathy.

  7. Effect of different carbon nanotubes on cell viability and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    De Nicola, Milena [Dipartimento di Biologia, Universita di Roma Tor Vergata (Italy); Gattia, Daniele Mirabile [Divisione nuovi materiali ENEA Casaccia (Italy); Bellucci, Stefano [INFN Laboratori Nazionali di Frascati (Italy); De Bellis, Giovanni [INFN Laboratori Nazionali di Frascati (Italy); Micciulla, Federico [INFN Laboratori Nazionali di Frascati (Italy); Pastore, Roberto [INFN Laboratori Nazionali di Frascati (Italy); Tiberia, Alessandra [INFN Laboratori Nazionali di Frascati (Italy); Cerella, Claudia [Dipartimento di Biologia, Universita di Roma Tor Vergata (Italy); D' Alessio, Maria [Dipartimento di Biologia, Universita di Roma Tor Vergata (Italy); Antisari, Marco Vittori [Divisione nuovi materiali ENEA Casaccia (Italy); Marazzi, Renzo [Divisione nuovi materiali ENEA Casaccia (Italy); Traversa, Enrico [Dipartimento di Chimica, Universita di Roma Tor Vergata (Italy); Magrini, Andrea [Cattedra Medicina del Lavoro, Universita di Roma Tor Vergata (Italy); Bergamaschi, Antonio [Cattedra di Medicina del Lavoro, Universita Cattolica del Sacro Cuore, Rome (Italy); Ghibelli, Lina [Dipartimento di Biologia, Universita di Roma Tor Vergata (Italy)

    2007-10-03

    Carbon nanotubes (CNTs) are a focus of intense research for their potential applications in multiple diverse applications, including innovative biomedical applications. Due to their very recent discovery, little information is available about the biocompatibility and toxicity of this new class of nanoparticle, and a systematic study on biological interference is lacking. Thus, we decided to explore the toxicity of three different types of carbon nanotube, differing in preparation (arc discharge versus catalysed chemical vapour deposition); size (10-50 versus 100-150 nm wide x 1-10 {mu}m long); contaminants (amorphous C, graphite, fullerenes or iron) and morphological type (multi-walled, MW, or single-walled, SW) on human leukemic U937 cells. We found that these carbon nanotubes exert a strong effect on the proliferation of the reporter U937 monocytic cell. However, these CNTs did not significantly affect the cell viability. These results show that CNTs, though not directly exerting a direct cytotoxic effect, are nonetheless able to deeply alter cell behaviour, and thus we recommend thorough analyses to limit health risk due to uncontrolled exposure.

  8. Effects of Trichothecenes on Cardiac Cell Electrical Function

    Science.gov (United States)

    1985-12-13

    8217 0.05), and similarly, scirpentriol shortened the action potential duration of ventricular muscle cells (p < 0.05). The addition of adenosine to the...of T-2 toxin and diacetoxysoirpenol in combination for broiler chickens. Food and Cosmetics Toxicology 19:185-188. 1981. 10. Holden, C.: "Unequivocal...Woods, W.T., James, T.N. and Walker, A.A.: Effects of adenosine on mechanical performance $1 and electrical activity in the canine heart. Journal of

  9. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities

    OpenAIRE

    Philip Maseghe Mwachaka; Hassan Saidi; Paul Ochieng Odula; Pamela Idenya Mandela

    2015-01-01

    Purpose: To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Methods: Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of ...

  10. The Effect of Curcumin on Breast Cancer Cells

    OpenAIRE

    Liu, Dongwu; Chen, Zhiwei

    2013-01-01

    Curcumin, which is extracted from the plant Curcuma longa, has been used in the therapeutic arsenal for clinical oncology. Curcumin has chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The expressions and activities of various proteins, such as inflammatory cytokines and enzymes, transcription factors, and gene-products linked with cell survivals and proliferation, can be modified by curcumin. Moreover, curcumin decreases the toxic effect of mitomycin ...

  11. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  12. A Systematic Review and Meta-analysis Comparing the Effectiveness and Adverse Effects of Different Systemic Treatments for Non-clear Cell Renal Cell Carcinoma

    NARCIS (Netherlands)

    Fernández-Pello, Sergio; Hofmann, Fabian; Tahbaz, Rana; Marconi, Lorenzo; Lam, Thomas B; Albiges, Laurence; Bensalah, Karim; Canfield, Steven E; Dabestani, Saeed; Giles, Rachel H; Hora, Milan; Kuczyk, Markus A; Merseburger, Axel S; Powles, Thomas; Staehler, Michael; Volpe, Alessandro; Ljungberg, Börje; Bex, Axel

    CONTEXT: While vascular endothelial growth factor-targeted therapy and mammalian target of rapamycin inhibition are effective strategies in treating clear cell renal cell carcinoma (ccRCC), the most effective therapeutic approach for patients with non-clear cell RCC (non-ccRCC) is unknown.

  13. Suppressive effects of tumor cell-derived 5′-deoxy-5′-methylthioadenosine on human T cells

    Science.gov (United States)

    Henrich, Frederik C.; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D.; Limm, Katharina; Ritter, Axel P.; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Kreutz, Marina P.; Aigner, Michael; Mackensen, Andreas

    2016-01-01

    ABSTRACT The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5′-deoxy-5′-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  14. Effects of a cell phone conversation on cognitive processing performances.

    Science.gov (United States)

    Kemker, Brett E; Stierwalt, Julie A G; LaPointe, Leonard L; Heald, Gary R

    2009-10-01

    The ability to apportion cognitive resources to process multiple visual and auditory stimuli is essential for human communication in competing conditions. The purpose of the current research was to examine the effects of a cell phone conversation on a battery of cognitive tests, using both timing (RT) and accuracy (A') as dependent measures. A repeated measures ANOVA was conducted. Forty-two college-age (mean 22 yr) adult females with normal hearing and cognitive function participated in the study. In one condition (quiet), a standardized cognitive assessment battery was administered to participants in a quiet room. In the (cell phone) condition, subjects were formulating and responding to specific questions about their travel experiences during administration of the same cognitive assessment battery. The computer automatically records subject performance. Post-hoc pairwise comparisons were conducted using the Bonferroni approach. The alpha level was set at .05 for all data analysis. This method of analysis was repeated for each of the dependent measures, RT, and A'. The results revealed a consistent, significant effect on reaction time between the two conditions. The same analysis was also conducted to examine the effect of participation in a cell phone discussion on accuracy. As with RT, results revealed a consistent, significant affect on A' between the two conditions. Our study supports the notion that there are differential effects of auditory distracters across cognitive spheres. For simple automatic type visual cognitive tasks, the effect is minimal. However, as visual tasks increase in difficulty, the effect of the auditory distraction is magnified, particularly when the task requires extensive division of language resources.

  15. Cell Type-Specific Effects of Adenosine on Cortical Neurons

    Science.gov (United States)

    van Aerde, Karlijn I.; Qi, Guanxiao; Feldmeyer, Dirk

    2015-01-01

    The neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3–6 were hyperpolarized (range 1.2–10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening. PMID:24108800

  16. Effects of non-thermal plasma on mammalian cells.

    Directory of Open Access Journals (Sweden)

    Sameer Kalghatgi

    2011-01-01

    Full Text Available Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS. We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers.

  17. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Tiffany M. Phillips

    2007-12-01

    Full Text Available BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs. In breast cancer, CICs can be identified by phenotypic markers and their fate is controlled by the Notch pathway. METHODS: In this study, we investigated the effect of erythropoietin on CICs in breast cancer cell lines. Levels of erythropoietin receptor (EpoR, CD24, CD44, Jagged-1 expression, activation of Notch-1 were assessed by flow cytometry. Self-renewing capacity of CICs was investigated in sphere formation assays. RESULTS: EpoR expression was found on the surface of CICs. Recombinant human Epo (rhEpo increased the numbers of CICs and self-renewing capacity in a Notch-dependent fashion by induction of Jagged-1. Inhibitors of the Notch pathway and P13-kinase blocked both effects. CONCLUSIONS: Erythropoietin functionally affects CICs directly. Our observation may explain the negative impact of recombinant Epo on local control and survival of cancer patients with EpoR-positive tumors.

  18. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  19. Effects of simulated microgravity on mouse Sertoli cells in culture

    Science.gov (United States)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  20. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell.

    Science.gov (United States)

    Zhong, Si; Luo, Rifang; Wang, Xin; Tang, Linlin; Wu, Jian; Wang, Jin; Huang, Runbo; Sun, Hong; Huang, Nan

    2014-04-01

    Previous investigations have demonstrated that TiO2 nanotubes (NTs) with particular structure cues could control the behavior of different types of cells, including endothelial cells (ECs) and smooth muscle cells (SMCs). Besides, polydopamine (PDA) modified surfaces were reported to be beneficial to increase the proliferation and viability of ECs and meanwhile could inhibit the proliferation of SMCs. The TiO2 nanotubes (NTs) were functionalized with polydopamine (PDA) (PDA/NTs) to study the synergetic effect of both nanotopography (NTs) and chemical cues (PDA) of TiO2 nanotubes on the regulation of cellular behavior of ECs and SMCs. The PDA-modified TiO2 nanotubes were subjected to field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) analysis. In vitro cell culture tests confirmed that, comparing with flat titanium (Ti) and TiO2 nanotubes, PDA/NTs surface synergistically promoted ECs attachment, proliferation, migration and release of nitric oxide (NO). Meanwhile, the PDA/NTs performed well in reducing SMCs adhesion and proliferation. This novel approach might provide a new platform to investigate the synergistic effect of local chemistry and topography, as well as the applications for the development of titanium-based implants for enhanced endothelialization. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bioglass enhanced wound healing ability of urine-derived stem cells through promoting paracrine effects between stem cells and recipient cells.

    Science.gov (United States)

    Zhang, Yunlong; Niu, Xin; Dong, Xin; Wang, Yang; Li, Haiyan

    2017-10-12

    In cell therapy, tissue regeneration ability of stem cells relies on the paracrine effects between stem cells and recipient cells. Our recent studies demonstrated that, in tissue engineering, bioactive silicates could stimulate paracrine effects between stem cells and recipient cells, which enhanced tissue generation. Therefore, we proposed that, in cell therapy, it may be an effective method to improve tissue regeneration ability of stem cells through activating the paracrine effects between stem cells and recipient cells with bioactive silicates. As urine-derived stem cells (USCs) have been injected for wound healing and bioglass (BG) have shown bioactivity for various types of stem cells, in this study, we activated USCs with effective BG ionic products. Then the conditioned medium of BG-activated USCs were used to culture endothelial cells and fibroblasts as well as co-cultures of endothelial cells and fibroblasts. Results showed that growth factor expression in BG-activated USCs was upregulated. In addition, paracrine effects between USCs and recipient cells in wound healing were stimulated, which resulted in enhanced capillary-like network formation of endothelial cells and matrix protein production as well as myofibroblast differentiation of fibroblasts. Finally, the BG-activated USCs were applied on full-thickness excisional wounds. Results confirmed that BG-activated USCs had better wound healing ability through improving angiogenesis and collagen deposition in wound sites as compared with USCs without any treatment. Taken together, BG can be used to promote wound healing ability of USCs by enhancing paracrine effects between USCs and recipient cells. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Effects of lubiprostone on human uterine smooth muscle cells.

    Science.gov (United States)

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  3. Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kotowski, Ulana; Heiduschka, Gregor; Eckl-Dorna, Julia; Kranebitter, Veronika; Stanisz, Isabella; Brunner, Markus; Lill, Claudia; Thurnher, Dietmar [Medical University of Vienna, Department of Otorhinolaryngology, Head and Neck Surgery, Vienna (Austria); Seemann, Rudolf [Medical University of Vienna, Departement of Cranio-, Maxillofacial- and Oral Surgery, Vienna (Austria); Schmid, Rainer [Medical University of Vienna, Department of Radiotherapy, Vienna (Austria)

    2015-01-10

    Cafestol is a diterpene molecule found in coffee beans and has anticarcinogenic properties. The aim of the study was to examine the effects of cafestol in head and neck squamous cell carcinoma (HNSCC) cells. Three HNSCC cell lines (SCC25, CAL27 and FaDu) were treated with increasing doses of cafestol. Then combination experiments with cisplatin and irradiation were carried out. Drug interactions and possible synergy were calculated using the combination index analysis. Clonogenic assays were performed after irradiation with 2, 4, 6 and 8 Gy, respectively, and the rate of apoptosis was measured with flow cytometry. Treatment of HNSCC cells with cafestol leads to a dose-dependent reduction of cell viability and to induction of apoptosis. Combination with irradiation shows a reduction of clonogenic survival compared to each treatment method alone. In two of the cell lines a significant additive effect was observed. Cafestol is a naturally occurring effective compound with growth-inhibiting properties in head and neck cancer cells. Moreover, it leads to a significant inhibition of colony formation. (orig.) [German] Cafestol ist ein Diterpen, das in der Kaffeebohne vorkommt und antikanzerogene Eigenschaften besitzt. Ziel der Studie war, die Wirkung von Cafestol auf Kopf-Hals-Tumorzelllinien zu untersuchen. Drei Kopf-Hals-Tumorzelllinien (SCC25, CAL27 und FaDu) wurden mit steigenden Cafestol-Dosen behandelt. Anschliessend fanden Kombinationsexperimente mit Cisplatin und Bestrahlung statt. Die Wechselwirkung zwischen den Substanzen und moegliche synergistische Wirkungen wurden mit dem Combination-Index analysiert. Koloniebildungstests wurden nach Bestrahlung mit 2, 4, 6 und 8 Gy durchgefuehrt. Apoptose wurde mittels Durchflusszytometrie gemessen. Die Behandlung der Kopf-Hals-Tumorzelllinien mit Cafestol fuehrt zu einer dosisabhaengigen Abnahme des Zellueberlebens und zur Induktion von Apoptose. Die Kombination von Cafestol mit Bestrahlung zeigt eine geringere

  4. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan

    2017-01-01

    have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human......Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies...... primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used...

  5. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression.

    Science.gov (United States)

    Sun, L-M; Liu, Y-C; Li, W; Liu, S; Liu, H-X; Li, L-W; Ma, R

    2017-03-01

    Nivolumab is an anti-PD-1 (anti-programmed death-1) monoclonal antibody. It has achieved an overall response rate of 17% in Phase 1 clinical trial for patient with platinum-resistant ovarian cancer (PROC). However, its underlying mechanism has not been fully explored yet. The aim of the study is to investigate the efficiency of nivolumab to inhibit PROC cells and its possible mechanism. Firstly, methylthiazolyl tetrazolium bromide (MTT) assay was performed to determine the IC50 values of cisplatin in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. The results showed that IC50 (half maximal inhibitory concentration) values of cisplatin were significantly decreased in a time-dependent manner in A2780, A2780/DDP, SKOV3, and SKOV3/DDP cells. Secondly, MMT assay was used once again to measure anti-tumor effects of nivolumab in A2780/DDP cells. The results showed that anti-tumor effects of nivolumab increased in a dose- and time-dependent manner. Thirdly, A2780/DDP cells were treated with nivolumab in combination with cisplatin for 48 h. The results demonstrated that nivolumab increased the anti-tumor effects of cisplatin in A2780/DDP cells. Notably, the combined treatment effectively reversed cisplatin resistance in PROC cells. Also, nivolumab induced cell apoptosis and cell-cycle arrest in G0/G1 phase in PROC cells. FACS and Western blot were performed to measure cell apoptosis and Bcl-2 and Bax expression respectively. The results showed that combined treatment significantly increased cell apoptosis rate, down-regulated Bcl-2, and unregulated Bax expression in PROC cells. Additionally, the expression levels of ADAM17 were significantly decreased in a dose-dependent manner in PROC cells, which were treated with nivolumab. Therefore, all the results demonstrated that the combined treatment with nivolumab and cisplatin effectively inhibited PROC cells via induction of cell apoptosis and inhibition of ADAM17 expression.

  6. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles.

    Science.gov (United States)

    Demir, Eşref; Akça, Hakan; Turna, Fatma; Aksakal, Sezgin; Burgucu, Durmuş; Kaya, Bülent; Tokgün, Onur; Vales, Gerard; Creus, Amadeu; Marcos, Ricard

    2015-01-01

    The in vitro genotoxic and the soft-agar anchorage independent cell transformation ability of titanium dioxide nanoparticles (nano-TiO2) and its microparticulated form has been evaluated in human embryonic kidney (HEK293) and in mouse embryonic fibroblast (NIH/3T3) cells. Nano-TiO2 of two different sizes (21 and 50 nm) were used in this study. The comet assay, with and without the use of FPG enzyme, the micronucleus assay and the soft-agar colony assay were used. For both the comet assay and the frequency of micronuclei a statistically significant induction of DNA damage, was observed at the highest dose tested (1000 µg/mL). No oxidative DNA damage induction was observed when the comet assay was complemented with the use of FPG enzyme. Furthermore, long-term exposure to nano-TiO2 has also proved to induce cell-transformation promoting cell-anchorage independent growth in soft-agar. Results were similar for the two nano-TiO2 sizes. Negative results were obtained when the microparticulated form of TiO2 was tested, indicating the existence of important differences between the microparticulated and nanoparticulated forms. As a conclusion it should be indicated that the observed genotoxic/tranforming effects were only detected at the higher dose tested (1000 µg/mL) what play down the real risk of environmental exposures to this nanomaterial. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effective polyethyleneimine-mediated gene transfer into zebrafish cells.

    Science.gov (United States)

    Ouyang, Sui-Dong; Pei, Yuan-Yuan; Weng, Shao-Ping; Lü, Ling; Yu, Xiao-Qiang; He, Jian-Guo

    2009-09-01

    Polyethyleneimine (PEI) has been broadly studied as a leading nonviral gene delivery carrier because of its relatively high transfection efficiency in a wide range of cell types. Here, we report gene transfer in zebrafish cells (ZF4) using PEI as a gene carrier and lipofectamine as a control. Formations of PEI-DNA complexes were characterized by a series of measurements. The particle size of PEI-DNA complexes decreased from 274 to 132 nm, the surface charge gradually increased from -26 to 29 mV, and the cytotoxicity for zebrafish cells was observed with increasing proportion of PEI. Gel retardation assay showed that DNA was completely bound by PEI with a negative-to-positive charge ratio of 4. It was observed by transmission electron microscopy that the morphology of PEI-DNA complexes was spherical with smooth surfaces. Flow cytometry revealed that the optimum transfection efficiency (27%) mediated by PEI was obtained at an negative-to-positive charge ratio of 8, which was higher than that with lipofectamine. Luciferase activity assay confirmed the increase in reporter gene expression probably due to a more efficient formation of complex between DNA and PEI than DNA and lipofectamine. In conclusion, our study demonstrates that PEI may be applied as an effective gene carrier to mediate gene transfer into zebrafish cells.

  8. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells.

    Science.gov (United States)

    Bach, Frances; Libregts, Sten; Creemers, Laura; Meij, Björn; Ito, Keita; Wauben, Marca; Tryfonidou, Marianna

    2017-10-24

    During intervertebral disc ageing, chondrocyte-like cells (CLCs) replace notochordal cells (NCs). NCs have been shown to induce regenerative effects in CLCs. Since vesicles released by NCs may be responsible for these effects, we characterized NC-derived extracellular vesicles (EVs) and determined their effect on CLCs. EVs were purified from porcine NC-conditioned medium (NCCM) through size exclusion chromatography, ultracentrifugation or density gradient centrifugation. Additionally, the EVs were quantitatively analyzed by high-resolution flow cytometry. The effect of NCCM-derived EVs was studied on canine and human CLC micro-aggregates in vitro and compared with NCCM-derived proteins and unfractionated NCCM. Porcine NCCM contained a considerable amount of EVs. NCCM-derived EVs induced GAG deposition in canine CLCs to a comparable level as NCCM-derived proteins and unfractionated NCCM, and increased the DNA and glycosaminoglycan (GAG) content of human micro-aggregates, although to a lesser extent than unfractionated NCCM. The biological EV effects were not considerably influenced by ultracentrifugation compared with size exclusion-based purification. Upon ultracentrifugation, interfering GAGs, but not collagens, were lost. Nonetheless, collagen type I or II supplemented to CLCs in a concentration as present in NCCM induced no anabolic effects. Porcine NCCM-derived EVs exerted anabolic effects comparable to NCCM-derived proteins, while unfractionated NCCM was more potent in human CLCs. GAGs and collagens appeared not to mediate the regenerative EV effects. Thus, NC-derived EVs have regenerative potential, and their effects may be influenced by the proteins present in NCCM. The optimal combination of NC-secreted factors needs to be determined to fully exploit the regenerative potential of NC-based technology.

  9. Prenatal Sickle Cell Screening Education Effect on the Follow-up Rates of Infants with Sickle Cell Trait.

    Science.gov (United States)

    Yang, Yih-Ming; Andrews, Susan; Peterson, Rose; Shah, Arvind; Cepeda, Manuel

    2000-01-01

    Assesses the effect of prenatal education about newborn sickle cell screening on parents' compliance with the follow-up for infants with sickle cell trait. Results show that parents whose prenatal education included sickle cell hemoglobinopathy information retained significantly more of the information given during the post-natal education than…

  10. Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
.

    Science.gov (United States)

    Zhuo, Yumin; Chen, Qibiao; Chen, Bo; Zhan, Xiongyu; Qin, Xiaoping; Huang, Jun; Lv, Xiuxiu

    2017-01-01

    The present study was aimed to observe the effect of berberine (Ber) on epirubicin (EPI)-induced growth inhibition, apoptosis, and cell cycle arrest in T24 bladder cancer cells. The cancer cells were exposed to EPI, with or without different concentrations of Ber. The viability of the cancer cells was measured by cell counting Kit-8, the apoptosis was determined by Hoechst 33258 staining and the expression of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and P53 proteins were detected by Western blot assay. In addition, cell cycle arrest and the production of reactive oxygen species (ROS) were also measured. We found that Ber enhanced the inhibitory effect of EPI on the viability of T24 cells and promoted EPI-induced cell cycle arrest at G0/G1 and apoptosis in T24 cells. EPI increased the expression of cleaved caspase-3, cleaved caspase-9, Bax, P53, and P21 proteins, all of which were enhanced by treatment with Ber. In contrast, Ber exposure further decreased the expression of Bcl-2 in EPI-treated T24 cells. Furthermore, we also demonstrated that Ber significantly increased ROS production in EPI-treated T24 cells. These data indicate that Ber enhances the antiproliferative effects of EPI in bladder cancer cells by promoting apoptosis and cell cycle arrest.
.

  11. Effect of [10]-Gingerol on [Ca2+]i and Cell Death in Human Colorectal Cancer Cells

    OpenAIRE

    Chung-Yi Chen; Yi-Wen Li; Soong-Yu Kuo

    2009-01-01

    The effect of [10]-gingerol on cytosol free Ca2+ concentration ([Ca2+]i) and viability is large unknown. This study examines the early signaling effects of [10]-gingerol on human colorectal cancer cells. It was found that this compound caused a slow and sustained rise of [Ca2+]i in a concentration-dependent manner. [10]-Gingerol also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 38%. In a Ca2+-free medium, the [10]-gingerol-induced [Ca2+]i rise w...

  12. Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells.

    Science.gov (United States)

    Bar-On, Ortal; Shapira, Ma'anit; Hershko, Dan D

    2007-11-01

    Overexpression of Skp2, the ubiquitin ligase subunit that targets p27 for degradation, is often observed in cancers, and is associated with aggressive tumor proliferation and poor prognosis. As there is no drug at present that specifically targets Skp2, studies were undertaken to examine the effects of commonly used drugs on Skp2 regulation. Doxorubicin is among the most effective antitumor agents used for the management of breast cancer, but its effect on Skp2 expression is unknown. The objective of this study was to examine the effect of doxorubicin on Skp2 expression regulation in breast cancer cell lines. The expression of Skp2 mRNA and the protein levels of Skp2, p27, p21 and cyclin B were examined in doxorubicin-treated MCF-7 and MDA-MB-231 breast cancer cells. The effect of doxorubicin on the cell cycle profile was assessed by fluorescence-activated cell sorting analysis. Doxorubicin decreased Skp2 mRNA and protein levels in MCF-7 cells, but had the opposite effect in MDA-MB-231 cells. p27 levels were slightly decreased, whereas p53 and p21 levels were significantly upregulated in doxorubicin-treated MCF-7 cells. In contrast, p27 levels were unaffected by doxorubicin treatment in MDA-MB-231 cells, but cyclin B levels were markedly increased. Doxorubicin arrested MCF-7 cells at G1/S and G2/M checkpoints, whereas MDA-MB-231 cells were arrested at G2/M only. The differential effects of doxorubicin on Skp2 expression in breast cancer cells depend upon the specific cell cycle checkpoints activated by the drug. These changes induced by doxorubicin, however, do not significantly affect p27 expression in these cell lines, suggesting that the potential of a given drug to alter p27 expression through Skp2 modulation might depend on its specific action on cell cycle arrest.

  13. The Effects of Old Age on Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Warren

    2011-01-01

    Full Text Available Aging is associated with marked changes in the hepatic sinusoid, yet the effect of old age on hepatic stellate cells (HSC has not been well described. Transmission electron microscopy and immunohistochemistry were used to study the effects of aging on HSC in livers from rats (3-4 mths versus 24–27 mths and mice (2-3 mths versus 20–22 mths. Desmin-positive HSC doubled in old age in both mice and rats. Alpha-smooth muscle actin- (αSMA- positive cells did not increase significantly and remained only a small percentage of desmin-positive cells. Electron microscopy revealed that old age is associated with HSC that have a substantial increase in the number of lipid droplets which are larger in diameter. There was also a marked increase of HSC that protruded into the sinusoidal lumen in old mice. In conclusion, old age is associated with hyperplasia of HSC that are not activated and are engorged with lipid droplets.

  14. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  15. Effects of radiation on metastasis and tumor cell migration.

    Science.gov (United States)

    Vilalta, Marta; Rafat, Marjan; Graves, Edward E

    2016-08-01

    It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies.

  16. Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells.

    Science.gov (United States)

    Syed, Yasir Ahmed; Abdulla, Sarah Ali; Kotter, Mark R N

    2017-01-01

    Oligodendrocytes are the myelinating cells of the central nervous system. The role of oligodendrocytes in health and disease has been considerably enhanced by the development of methods to isolate and culture oligodendrocytes from central nervous system tissue. The cellular and molecular mechanisms involved in oligodendrocyte differentiation can be identified by challenging oligodendrocyte progenitors cells (OPCs) by altering their extracellular environment and intrinsic differentiation pathways. To address these issues, it is imperative to develop an in vitro protocol where pure OPCs are isolated and cultured in the presence of inhibitory developmental and differentiation cues like Semaphorin 3A. In this chapter, we describe methods to isolate and culture OPCs from neonatal rat brain tissue and further characterise their differentiation into oligodendrocytes. The described protocol is relatively simple in comparison to existing protocols and can be used to study the effect of lesion-associated inhibitors like Semaphorin 3A on oligodendrocyte differentiation.

  17. Bystander killing effect of tymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells.

    Science.gov (United States)

    Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Osada, Hideo; Tange, Yuichi; Yamamoto, Takuji; Aiko, Yasuhisa; Tamura, Masaru; Shiroishi, Toshihiko

    2010-01-01

    Transduction of the suicide gene of Herpes simplex virus thymidine kinase (Hsv-tk) into glioma cells or neural stem cells combined with pro-drug ganciclovir (GCV) treatment has been effective to treat experimental glioma in the rat through the bystander effect. Bone marrow stromal cells (MSCs) in the adult bone marrow have tropism for brain tumors and act as tumor stromal cells. Whether adult MSCs expressing Hsv-tk can also act as effector cells of the bystander killing effect on murine glioma cells was investigated. In vitro study of co-culture between 9L/LacZ (9L) glioma cells and Hsv-tk-transduced MSCs (MSCs/tk(+)) followed by GCV administration in the culture medium resulted in apparent nuclear morphological changes in the 9L glioma cells surrounding the MSCs/tk(+). 9L glioma cell survival in the presence of MSCs/tk(+) and GCV treatment was quantitatively measured and showed significant decrease of 9L glioma cell proliferation with higher MSCs/tk(+) ratio and GCV concentration. Intracerebral co-inoculation experiments in Fisher rats used 9L glioma cells and either MSCs/tk(+) or Hsv-tk-non-transduced MSCs (MSCs/tk(-)) followed by intraperitoneal injection of GCV (100 mg/kg, daily for 7 days). The animals co-inoculated with 9L glioma cells and MSCs/tk(+) showed significant retardation of tumor growth and prolongation of survival time compared with the animals with 9L glioma cells and MSCs/tk(-). Quantitative findings were established of the novel effects of adult MSCs/tk(+) as effector cells of the bystander killing effect on glioma cells.

  18. Cellular Effect of Curcumin and Citral Combination on Breast Cancer Cells: Induction of Apoptosis and Cell Cycle Arrest.

    Science.gov (United States)

    Patel, Pinaki B; Thakkar, Vasudev R; Patel, Jagdish S

    2015-09-01

    The unmanageable side effects caused by current chemotherapy regimens to treat cancer are an unresolved problem. Although many phytonutrients are useful as chemoprevention without side effects, their effects are slower and smaller than conventional chemotherapy. In the present work, we examined the cumulative effect of two phytonutrients, curcumin and citral, on breast cancer cell lines and compared their effect with the known chemotherapy regimen of cyclophosphamide, methotrexate, and 5-fluorouracil. Using cultured breast cancer and normal epithelial cells, the cytotoxic and apoptotic effect of curcumin and citral was evaluated in vitro. The synergistic effect of curcumin and citral was calculated by a combination index study using the method by Chou and Talalay. Cell death pathways and mechanisms were analyzed by measuring intracellular reactive oxygen species (ROS) and apoptotic protein levels. Curcumin and citral caused dose and time dependent cell death and showed a synergistic effect at effective concentration EC50 and above concentrations in breast cancer cells without disturbing normal breast epithelial cells. With combination curcumin and citral treatment, apoptosis induction and cell cycle arrest at G0/G1 phase in breast cancer cells were observed. Curcumin and citral generated ROS and activated p53 and poly (ADP-ribose) polymerase-1 mediated apoptotic pathways. The results of this study suggest that curcumin and citral in combination may be a useful therapeutic intervention for breast cancer.

  19. In vitro effects of simulated microgravity on Sertoli cell function

    Science.gov (United States)

    Masini, M. A.; Prato, P.; Scarabelli, L.; Lanza, C.; Palmero, S.; Pointis, G.; Ricci, F.; Strollo, F.

    2011-02-01

    With the advent of space flights questions concerning the effects of microgravity (0×G) on human reproductive physiology have received great attention. The aim of this study was to evaluate the influence of 0×G on Sertoli cells. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal and Sex Hormone Binding Globilin (SHBG) changes by immunohistochemistry, for antioxidant content by RT-PCR and for culture medium lactate concentrations by protein chemistry. Cells were cultured for 6, 24 and 48 h on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1×G) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or lysed and RNA-extracted or used for culture medium lactate measurements as needed. At 0×G, Sertoli cytoskeleton became disorganized, microtubules fragmented and SHBG undetectable already after 24 h, with alterations worsening by 48 h. It was evident that various antioxidant systems appreciably increased during the first 24 h but significantly decreased at 48 h. No changes occurred in the 1×G samples. Initially, 0×G seemed to disturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0×G slightly decreased after 24 h. Further experiments are needed in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out male infertility as a possible consequence, which could be a problem, as life expectancy increases.

  20. Effect of retinoic acid on cell-cell adhesiveness in cloned BHK21/C13 cells which form piling-up colonies.

    Science.gov (United States)

    Kamei, H

    1983-10-01

    The effect was studied of retinoic acid (RA) on cell-cell adhesiveness in Ag8-1 cells, which are piling-up colony-forming cells cloned from a Syrian hamster kidney fibroblastic cell line BHK21/C13. From the piled-up part of the colonies grown with RA (10 microM), many cells were dissociated by mere shaking or pipetting. The dissociated cells soon adhered to and spread on plastic surfaces in the presence of RA. The number of cells per colony increased almost at the same rate in the presence or absence of RA. The effect of RA on the appearance of cells dissociable from colonies was noticeable above 0.1 microM, prominent from 1 to 10 microM, greater when added in the earlier stages of colony formation and negligible when added just before the dissociation assay. Single cells from the monolayer culture grown with RA (10 microM) had less tendency to aggregate than did those from the control culture. Cells from the colonies grown with RA adhered to and spread on a plastic dish for bacterial use, but control cells seldom adhered. These results indicate that RA decreases the cell-cell adhesiveness or suppresses the development of it but increases cell-substratum adhesiveness.

  1. CD11c⁺ cells partially mediate the renoprotective effect induced by bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Myung-Gyu Kim

    Full Text Available Previous studies have shown that induction of immune tolerance by mesenchymal stem cells (MSCs is partially mediated via monocytes or dendritic cells (DCs. The purpose of this study was to determine the role of CD11c⁺ cells in MSC-induced effects on ischemia/reperfusion injury (IRI. IRI was induced in wildtype (WT mice and CD11c⁺-depleted mice following pretreatment with or without MSCs. In the in-vitro experiments, the MSC-treated CD11c⁺ cells acquired regulatory phenotype with increased intracellular IL-10 production. Although splenocytes cocultured with MSCs showed reduced T cell proliferation and expansion of CD4⁺FoxP3⁺ regulatory T cells (Tregs, depletion of CD11c⁺ cells was associated with partial loss of MSCs effect on T cells. In in-vivo experiment, MSCs' renoprotective effect was also associated with induction of more immature CD11c⁺ cells and increased FoxP3 expression in I/R kidneys. However all these effects induced by the MSCs were partially abrogated when CD11c⁺ cells were depleted in the CD11c⁺-DTR transgenic mice. In addition, the observation that adoptive transfer of WT CD11c⁺ cells partially restored the beneficial effect of the MSCs, while transferring IL-10 deficient CD11c⁺ cells did not, strongly suggest the important contribution of IL-10 producing CD11c⁺ cells in attenuating kidney injury by MSCs. Our results suggest that the CD11c⁺ cell-Tregs play critical role in mediating renoprotective effect of MSCs.

  2. Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib.

    Science.gov (United States)

    Wei, Wei-Jun; Shen, Chen-Tian; Song, Hong-Jun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2016-09-01

    Treatment options for advanced metastatic or progressive thyroid cancers are limited. Although targeted therapy specifically inhibiting intracellular kinase signaling pathways has markedly changed the therapeutic landscape, side-effects and resistance of single agent targeted therapy often leads to termination of the treatment. The objective of the present study was to identify the antitumor property of the non-selective β-adrenergic receptor antagonist propranolol for thyroid cancers. Human thyroid cancer cell lines 8505C, K1, BCPAP and BHP27 were used in the present study. Broad β-blocker propranolol and β2-specific antagonist ICI118551, but not β1-specific antagonist atenolol, inhibited the growth of 8505C and K1 cells. Propranolol treatment inhibited growth and induced apoptosis of 8505C cells in vitro and in vivo, which are closely associated with decreased expressions of cyclin D1 and anti-apoptotic Bcl-2. Expression of hexokinase 2 (HK2) and glucose transporter 1 (GLUT1) also decreased following propranolol intervention. 18F-FDG PET/CT imaging of the 8505C xenografts validated shrinkage of the tumors in the propranolol-treated group when compared to the phosphate‑buffered saline treated group. Finally, we found that propranolol can amplify the cytotoxicity of vemurafenib and sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Our present results suggest that propranolol has potential activity against thyroid cancers and investigation of the combination with targeted molecular therapy for progressive thyroid cancers could be beneficial.

  3. Differential effects of protoporphyrin and uroporphyrin on murine mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.W.; Gigli, I.; Wasserman, S.I.

    1987-03-01

    To investigate the mechanisms responsible for the distinct cutaneous manifestations of erythropoietic protoporphyria and porphyria cutanea tarda, the effects of protoporphyrin (PP) and uroporphyrin (URO), the predominant porphyrins in the respective disease, on mast cells were examined. Release of preformed and generated mediators was assessed by the release of radioactivity from cells labeled with (/sup 3/H)serotonin and (/sup 14/C)arachidonic acid, respectively. Clinically relevant doses of PP (25-500 ng/ml) and 396-407 nm irradiation (3-16 X 10(2)J/m2) induced maximal net release of preformed mediators ,f 44.52 +/- 6.6 to 58.01 +/- 4.0% (mean +/- SE). In contrast, irradiation in the presence of URO (50-5000 ng/ml) resulted in less than 5% net release. (3H)Serotonin release induced by PP and irradiation was calcium-independent, and was not enhanced by phorbol 12-myristate 13-acetate, a known activator of protein kinase C. This release was suppressed by catalase, a scavenger of hydrogen peroxide. Furthermore, irradiation in the presence of PP, but not in the presence of URO, resulted in perturbation of cell membrane. Irradiation in the presence of PP also resulted in a maximal net release of generated mediators of 9.98 +/- 3.5% (mean +/- SE), whereas similar treatment in the presence of URO induced less than 0.5% net release. These results suggested that the burning, stinging, erythema, and edema experienced by patients with erythropoietic protoporphyria following sun exposure, and the lack of such findings in patients with porphyria cutanea tarda, may be explained, at least in part, by the differential effects of PP and URO on mast cells.

  4. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    consisting of 3 to 20 amino acids, can be released from proteins upon degradation by proteolytic enzymes, e.g. in the intestinal tract. The numerous described bioactivities include antihypertensive, anticancerous, antimicrobial, and immunomodulating effects. Here, we investigate the effect of fish protein......Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... Corresponding author: Carlo G. Ossum (cgossum@gmail.com) A large number of bioactive peptides have been identified in and isolated from various food sources. Milk seems to be a particularly rich source but also different fish species have been found to yield bioactive peptides. Bioactive peptides, usually...

  5. Effect of [10]-Gingerol on [Ca2+]i and Cell Death in Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chung-Yi Chen

    2009-03-01

    Full Text Available The effect of [10]-gingerol on cytosol free Ca2+ concentration ([Ca2+]i and viability is large unknown. This study examines the early signaling effects of [10]-gingerol on human colorectal cancer cells. It was found that this compound caused a slow and sustained rise of [Ca2+]i in a concentration-dependent manner. [10]-Gingerol also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 38%. In a Ca2+-free medium, the [10]-gingerol-induced [Ca2+]i rise was partially abolished by depleting stored Ca2+ with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor. The elevation of [10]-gingerol-caused [Ca2+]i in a Ca2+-containing medium was not affected by modulation of protein kinase C activity. The [10]-gingerol-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers. At concentrations of 10-100 mM, [10]-gingerol killed cells in a concentration-dependent manner. These findings suggest that [10]-gingerol induces [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from non-L-type Ca2+ channels in SW480 cancer cells.

  6. Effects of cigarette smoke on degranulation and NO production by mast cells and epithelial cells

    Directory of Open Access Journals (Sweden)

    Hunt John E

    2005-09-01

    Full Text Available Abstract Exhaled nitric oxide (eNO is decreased by cigarette smoking. The hypothesis that oxides of nitrogen (NOX in cigarette smoke solution (CSS may exert a negative feedback mechanism upon NO release from epithelial (AEC, A549, and NHTBE and basophilic cells (RBL-2H3 was tested in vitro. CSS inhibited both NO production and degranulation (measured as release of beta-hexosaminidase in a dose-dependent manner from RBL-2H3 cells. Inhibition of NO production by CSS in AEC, A549, and NHTBE cells was also dose-dependent. In addition, CSS decreased expression of NOS mRNA and protein expression. The addition of NO inhibitors and scavengers did not, however, reverse the effects of CSS, nor did a NO donor (SNP or nicotine mimic CSS. N-acetyl-cysteine, partially reversed the inhibition of beta-hexosaminidase release suggesting CSS may act via oxidative free radicals. Thus, some of the inhibitory effects of CSS appear to be via oxidative free radicals rather than a NOX -related negative feedback.

  7. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  8. Effect of vitamin D on endothelial progenitor cells function.

    Science.gov (United States)

    Hammer, Yoav; Soudry, Alissa; Levi, Amos; Talmor-Barkan, Yeela; Leshem-Lev, Dorit; Singer, Joel; Kornowski, Ran; Lev, Eli I

    2017-01-01

    Endothelial progenitor cells (EPCs) are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD) and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function. To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes. Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8%) and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs), their viability (measured by MTT assay), KLF-10 levels and angiogenic markers were evaluated after 1 week of culture. In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0) vs. 0.5 (IQR 0.5-1.9), p < 0.001; MTT:0.62 (IQR 0.44-0.93) vs. 0.52 (IQR 0.31-0.62), p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46) vs. 0.19 (0.09-0.39), p = 0.04], but without differences in CFU count or angiopoietic markers. In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  9. Effect of vitamin D on endothelial progenitor cells function.

    Directory of Open Access Journals (Sweden)

    Yoav Hammer

    Full Text Available Endothelial progenitor cells (EPCs are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function.To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes.Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8% and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs, their viability (measured by MTT assay, KLF-10 levels and angiogenic markers were evaluated after 1 week of culture.In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0 vs. 0.5 (IQR 0.5-1.9, p < 0.001; MTT:0.62 (IQR 0.44-0.93 vs. 0.52 (IQR 0.31-0.62, p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46 vs. 0.19 (0.09-0.39, p = 0.04], but without differences in CFU count or angiopoietic markers.In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  10. Effect of temperature on a miniaturized microbial fuel cell (MFC)

    Science.gov (United States)

    Ren, Hao; Jiang, Chenming; Chae, Junseok

    2017-12-01

    A microbial fuel cell (MFC) is a bioinspired energy converter which directly converts biomass into electricity through the catalytic activity of a specific species of bacteria. The effect of temperature on a miniaturized microbial fuel cell with Geobacter sulfurreducens dominated mixed inoculum is investigated in this paper for the first time. The miniaturized MFC warrants investigation due to its small thermal mass, and a customized setup is built for the temperature effect characterization. The experiment demonstrates that the optimal temperature for the miniaturized MFC is 322-326 K (49-53 °C). When the temperature is increased from 294 to 322 K, a remarkable current density improvement of 282% is observed, from 2.2 to 6.2 Am-2. Furthermore, we perform in depth analysis on the effect of temperature on the miniaturized MFC, and found that the activation energy for the current limiting mechanism of the MFC is approximately between 0.132 and 0.146 eV, and the result suggest that the electron transfer between cytochrome c is the limiting process for the miniaturized MFC.

  11. [Effects of infrasound on ultrastructure of testis cell in mice].

    Science.gov (United States)

    Wei, Ya-Ning; Liu, Jing; Shu, Qing; Huang, Xiao-Feng; Chen, Jing-Zao

    2002-01-01

    To investigate the effects of infrasound on ultrastructure of testis in mouse. Twelve male BALB/C mice were randomly divided into three groups according to exposed duration on 1, 7 and 14 day. The mice were separately exposed to infrasound environment under 8 Hz/90 dB, 8 Hz/130 dB, 16 Hz/90 dB, 16 Hz/130 dB 2 hours per day. There was another control group which had three mice were separated into module with no infrasound. All the mice were killed on schedule. Then all the sections of testis were observed under electronic microscope. The alterations of structure and the chromatin were observed. Some acute alteration in one day group was found in testis cell, such as cellular denaturation and necrosis, intercellular edema, mitochondria swelling, liposome hyperplasia. When the infrasound was up to 8 Hz/130 dB, the damage showed seriously. In 7 and 14 day group, the acute alteration was gradually decreased. A plenty of abnormal sperm were found. And other alteration was chromatin condense. The effect of variational frequency was important in ultrastructure. The infrasound markedly effected to testicular cell morphology and secreting function. Infrasound will lead to the alteration of procreation in mouse.

  12. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses

    DEFF Research Database (Denmark)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J

    2009-01-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose...... of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response...... as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1...

  13. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, Christoffer, E-mail: christoffer.tamm@imbim.uu.se; Galito, Sara Pijuan, E-mail: sara.pijuan@imbim.uu.se; Anneren, Cecilia, E-mail: cecilia.anneren@imbim.uu.se

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  14. Effect of skin fibroblast-derived allogeneic feeder cells on porcine ES-like cell establishment.

    Science.gov (United States)

    Panasophonkul, Sasithorn; Tharasanit, Theerawat; Techakumphu, Mongkol

    2012-10-01

    In the present study, the effect of two types of allogeneic-derived feeder cells [porcine ear and tail skin fibroblasts (PESF, PTSF)] and three types of xenogeneic-derived feeder cells [human foreskin fibroblasts (HFK), mouse embryonic fibroblasts (MEF) and immortalized mouse embryonic fibroblasts (STO)] on the isolation and cultivation of putative porcine embryonic stem cells (pESCs) was evaluated. In vivo derived zona pellucida (ZP)-free blastocysts were cultured on different mitotically inactivated feeder layers. The rates of ICM outgrowth and primary colony formation were observed, and further passage onto new feeders was performed. The characteristics of pESCs, including alkaline phosphatase (AP) activity, and pluripotent-related markers (OCT3/4, NANOG, SSEA-4) and genes were examined. Attached blastocysts cultured on HFK and STO feeders showed a higher percentage of ICM outgrowths than those cultured on PESF (76.7, 72.9 and 38.9%, respectively; P<0.05). The rates of primary ES-like colony formation and the number of putative ESC lines were significantly decreased when ICM outgrowths were cultured on PESF, compared with those cultured on HFK (30.6 vs. 76.7%, respectively; P<0.05). Only ES-like colonies from one (25%) and three (50%) cell lines developed on PTSF and STO feeders, respectively, were further maintained in an undifferentiated morphology associated with the presence of all ES characteristics; however, these characteristics disappeared when colonies were continued to the 8th and 6th passages, respectively. The present study indicated that feeder cell types affect the success of pESC establishment and maintenance of their pluripotency.

  15. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  16. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    NARCIS (Netherlands)

    Yang, Hsiao-yin; Vonk, Lucienne A; Licht, Ruud; van Boxtel, Antonetta M G; Bekkers, Joris E J; Kragten, Angela H M; Hein, San; Varghese, Oommen P; Howard, Kenneth A; Öner, F Cumhur; Dhert, Wouter J A; Creemers, Laura B

    2014-01-01

    The application of RNA interference (RNAi) has great therapeutic potential for degenerative diseases of cartilaginous tissues by means of fine tuning the phenotype of cells used for regeneration. However, possible non-specific effects of transfection per se might be relevant for future clinical

  17. [Effect of salidroside on rat bone marrow mesenchymal stem cells differentiation into cholinergic nerve cells].

    Science.gov (United States)

    Zhang, Ming; Zhao, Hongbin; Li, Zhiyun; Yang, Yinshu; Wen, Yimin; Dong, Juzi; Zhang, Quanwei; Ge, Baofeng

    2012-02-01

    To investigate the effect of salidroside on rat bone marrow mesenchymal stem cells (BMSCs) differentiation into the cholinergic nerve cells, so as to provide the theory basis of the combination of salidroside and stem cells for clinical therapy of nervous system diseases. BMSCs were isolated from 2 Wistar rats (aged 4-6 weeks,weighing 120 g), which were identified by CD34, CD45, CD90, and CD106 with flow cytometry. According to inducing method, BMSCs at passage 2 were divided into 3 groups: In groups A and B, BMSCs were induced by salidroside (20 microg/mL) and retinoic acid (5 micromol/mL) respectively for 1, 3, 6, and 9 days, in group C, BMSCs were cultured with serum-free DMEM/F12 medium as control. MTT assay was used to detect the cellular proliferation activity. The immunofluorescence chemical technology was used to detect the expressions of nerve growth factor (NGF) and relevant marker molecule of nerve cells, including neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP2), beta-Tubulin III, glial fibrillary acidic protein (GFAP), and the marker of cholinergic neuron, such as Acetylcholine (Ach) and NGF. RT-PCR was used to detect mRNA expressions of NSE, beta-Tubulin III, GFAP,brain derived neurotrophic factor (BDNF),and gamma-aminobutyric acid (GABA). ELISA was used to detect the levels of BDNF and NGF, and the expression level of NGF protein was analyzed by Western blot. The results of the flow cytometry showed that the cultured cells were CD90 and CD106 positive, and CD34 and CD45 negative,which indicated that the cells were BMSCs. The cellular proliferation activity in groups A and B were significantly higher than that in group C at 6 days and 9 days (P 0.05). The expression level of NGF protein in groups A and B were significantly higher than that in group C (P nerve cells in vitro.

  18. Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells.

    Science.gov (United States)

    Sanchez-Freire, Veronica; Lee, Andrew S; Hu, Shijun; Abilez, Oscar J; Liang, Ping; Lan, Feng; Huber, Bruno C; Ong, Sang-Ging; Hong, Wan Xing; Huang, Mei; Wu, Joseph C

    2014-08-05

    Human-induced pluripotent stem cells (iPSCs) are a potentially unlimited source for generation of cardiomyocytes (iPSC-CMs). However, current protocols for iPSC-CM derivation face several challenges, including variability in somatic cell sources and inconsistencies in cardiac differentiation efficiency. This study aimed to assess the effect of epigenetic memory on differentiation and function of iPSC-CMs generated from somatic cell sources of cardiac versus noncardiac origins. Cardiac progenitor cells (CPCs) and skin fibroblasts from the same donors were reprogrammed into iPSCs and differentiated into iPSC-CMs via embryoid body and monolayer-based differentiation protocols. Differentiation efficiency was found to be higher in CPC-derived iPSC-CMs (CPC-iPSC-CMs) than in fibroblast-derived iPSC-CMs (Fib-iPSC-CMs). Gene expression analysis during cardiac differentiation demonstrated up-regulation of cardiac transcription factors in CPC-iPSC-CMs, including NKX2-5, MESP1, ISL1, HAND2, MYOCD, MEF2C, and GATA4. Epigenetic assessment revealed higher methylation in the promoter region of NKX2-5 in Fib-iPSC-CMs compared with CPC-iPSC-CMs. Epigenetic differences were found to dissipate with increased cell passaging, and a battery of in vitro assays revealed no significant differences in their morphological and electrophysiological properties at early passage. Finally, cell delivery into a small animal myocardial infarction model indicated that CPC-iPSC-CMs and Fib-iPSC-CMs possess comparable therapeutic capabilities in improving functional recovery in vivo. This is the first study to compare differentiation of iPSC-CMs from human CPCs versus human fibroblasts from the same donors. The authors demonstrate that although epigenetic memory improves differentiation efficiency of cardiac versus noncardiac somatic cell sources in vitro, it does not contribute to improved functional outcome in vivo. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier

  19. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Long Zheng

    2017-12-01

    Full Text Available T cells expressing chimeric antigen receptors (CARs recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR on the surface of human B-cell lymphomas. Lym-1 CAR T cells were thus generated for evaluation of cytotoxic activity towards lymphoma cells in vitro and in vivo. Human T cells from healthy donors were transduced to express a Lym-1 CAR, and assessed for epitope-driven function in culture and towards Raji xenografts in NOD-scidIL2Rgammanull (NSG mice. Lym-1 CAR T cells exhibited epitope-driven activation and lytic function against human B-cell lymphoma cell lines in culture and mediated complete regression of Raji/Luciferase-Green fluorescent protein (Raji/Luc-GFP in NSG mice with similar or better reactivity than CD19 CAR T cells. Lym-1 CAR transduction of T cells is a promising immunotherapy for patients with Lym-1 epitope positive B-cell malignancies.

  20. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-08-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage /sup 51/Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed.

  1. [Effect of Sijunzi decoction on the proliferation of side population cells of human gastric cancer cell line].

    Science.gov (United States)

    Li, Jing; Qian, Jun; Jia, Jian-guang; Jin, Xin; Yu, Da-jun; Xie, Bo; Qian, Li-yu; Zhang, Li-gong; Guo, Chen-xu

    2014-06-01

    To observe the proliferation changes of the side population of gastric cancer cell line SGC-7901 cells (SP), the non-side population (NSP) cells, and unsorted cells (Total) after intervened by Sijunzi Decoction (SD) containing serum. Sixteen pure bred New Zealand rabbits were equally divided into the normal control group, the low dose SD group (at the daily dose of 7 mL/kg), the middle dose SD group (at the daily dose of 14 mL/kg), and the high dose SD group (at the daily dose of 28 mL/kg) according to the random digit table. Rabbits' serum was extracted after equal volume of corresponding medication was given by gastrogavage twice daily for 2 consecutive weeks. The drug serum was identified using high performance liquid chromatography. SP cells of SGC-7901 were detected using flow cytometry, SP and NSP cells were screened. The proliferation curve of SP, NSP, and Total cells were detected with CCK-8 assay. Changes of their proliferation were also observed. Ginsenoside Rg1, an effective ingredient in SD was detected in prepared drug serum. The proliferation of SGC-7901 SP cells was significantly higher than that of NSP cells and Total cells (P line SGC-7901 SP, NSP, and Total cells could inhibit their proliferation, but its inhibition on SP cells' proliferation was significantly lower than on NSP and Total cells (P line SGC-7901 SP, NSP, and Total cells. But there exist obvious difference in the inhibition among the three groups.

  2. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    Directory of Open Access Journals (Sweden)

    A. Mastrofrancesco

    2014-01-01

    Full Text Available Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc, in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5 and older (Euro 4 diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF. DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems.

  3. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  4. Gender differences in the effect of genistein on vascular smooth muscle cells: a possible cardioprotective effect?

    Science.gov (United States)

    Vincent, A; Ruan, M; Fitzpatrick, L A

    2001-01-01

    Isoflavones are a class of phytoestrogens found abundantly in soybeans. They share structural similarity to 17-beta-estradiol, bind to the estrogen receptors alpha and beta, and produce estrogenic or antiestrogenic effects. Atherosclerosis is an inflammatory-mediated fibroproliferative response to injury to the arterial wall. Vascular smooth muscle cells (VSMCs) are the prominent cells in the atherosclerotic plaque. VSMCs contain estrogen receptors and, at physiologic concentrations, 17-beta-estradiol-inhibited proliferation of VSMCs from sexually mature female pigs. We determined if genistein inhibited proliferation and altered matrix protein production in VSMCs from coronary arteries of sexually mature pigs. The effect of genistein on cell proliferation was assessed by thymidine incorporation. The effect of genistein on matrix protein production in VSMCs was assessed by Western blot analysis. We demonstrate gender-specific effects in the proliferation of coronary artery vascular smooth muscle cells obtained from a sexually mature pig model treated with genistein at physiologically relevant concentrations. There were no differences in the amount of estrogen receptor proteins between the genders, suggesting that nongenomic mechanisms may be responsible for these effects. Genistein also upregulated matrix protein expression, which may be related to the formation of the atherosclerotic plaque. Overall, these results suggest possible cardioprotection by genistein.

  5. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  6. Effects of calcitriol, seocalcitol, and medium-chain triglyceride on a canine transitional cell carcinoma cell line

    DEFF Research Database (Denmark)

    Kaewsakhorn, T.; Kisseberth, W.C.; Capen, C.C.

    2005-01-01

    with calcitriol or seocalcitol, alone or combined with MCT. Cell growth, cell cycle kinetics, vitamin D receptor (VDR) localization and expression, and Bcl-2 expression were measured. Results: Canine TCC expresses high levels of nuclear VDR. Furthermore, calcitriol and seocalcitol significantly inhibited cell...... inhibited TCC cell growth via induction of cell cycle arrest and MCT enhanced this effect. Therefore, calcitriol and seocalcitol with MCT may have therapeutic potential for canine bladder cancer....... growth and calcitriol caused G0/G1 cell cycle arrest. Bcl-2 expression was slightly decreased in cells treated with these compounds, although no significant changes in VDR expression were observed. MCT enhanced the growth inhibitory effect of both compounds. Conclusion: Calcitriol and seocalcitol...

  7. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  8. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  9. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Science.gov (United States)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  10. Effect of Mesenchymal Stem Cells and a Novel Curcumin Derivative on Notch1 Signaling in Hepatoma Cell Line

    Directory of Open Access Journals (Sweden)

    Mohamed Talaat Abdel Aziz

    2013-01-01

    Full Text Available This study was conducted to evaluate the effect of mesenchymal stem cells (MSCs and a novel curcumin derivative (NCD on HepG2 cells (hepatoma cell line and to investigate their effect on Notch1 signaling pathway target genes. HepG2 cells were divided into HepG2 control group, HepG2 cells treated with MSC conditioned medium (MSCs CM, HepG2 cells treated with a NCD, HepG2 cells treated with MSCs CM and NCD, and HepG2 cells treated with MSCs CM (CM of MSCs pretreated with a NCD. Expression of Notch1, Hes1, VEGF, and cyclin D1 was assessed by real-time, reverse transcription-polymerase chain reaction (RT-PCR in HepG2 cells. In addition, HepG2 proliferation assay was performed in all groups. Notch1 and its target genes (Hes1 and cyclin D1 were downregulated in all treated groups with more suppressive effect in the groups treated with both MSCs and NCD. Also, treated HepG2 cells showed significant decrease in cell proliferation rate. These data suggest that modulation of Notch1 signaling pathway by MSCs and/or NCD can be considered as a therapeutic target in HCC.

  11. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  12. Effect of Acute Toxicity of Cadmium in Mice Kidney Cells

    Directory of Open Access Journals (Sweden)

    Masoomeh Masoomi Karimi

    2012-11-01

    Full Text Available Background: Cadmium is one of the most toxic heavy metals in our environment having a very strong ability to accumulate in body organs, especially in kidney. The present study was done to determine the genotoxicity and cytotoxicity in kidneys of rats exposed to cadmium. Methods: Male rats (n=30, kept in standard conditions were used in this study. The animals were randomly divided into 2 groups (control and treatment. The treatment group was intraperitoneally injected with Cd (300µm/kg at hours 0, 6, 12, 24, 48. Twenty four hours after the last injection, the rats were sacrificed and their kidneys were obtained. Then oxidative stress markers, malondialdehide (MDA, glutathione (GSH, and superoxide dismutase (SOD, were assayed in homogenized kidney for studying their cytotoxicity. For genotoxicity and DNA damage studies, Comet assay was run on isolated kidney cells. Data analysis was done by t-test and ANOVA using SPSS software version 15. Results: MDA and GSH concentrations in normal and Cd exposed kidney cells were 287.01±37.30nmol/g.pr and 15.61±3.89µmol/g.pr and 609.24±87.87nmol/g.pr and 28.52±5.22µmol/g.pr, respectively. In addition, SOD activity in normal and Cd exposed kidney cells were 77.75±4.12 and 218.91±5.40 U/mg.pr, respectively. Comet assay results (content comet length, tail length, and head diameter showed DNA breakage in the treatment group that was stimulated by Cd which was not seen in the control group. Conclusion: The results demonstrated the genotoxicity effect of Cd on kidney cells as well as the ability of Cd to producing cytotoxicity.

  13. Effect of enzymatic and mechanical methods of dissociation on neural progenitor cells derived from induced pluripotent stem cells.

    Science.gov (United States)

    Jager, Lindsey D; Canda, Claire-Marie A; Hall, Crystal A; Heilingoetter, Cassandra L; Huynh, Joann; Kwok, Susanna S; Kwon, Jin H; Richie, Jacob R; Jensen, Matthew B

    2016-03-01

    To determine the most effective method of dissociating neural stem and progenitor cells into a single-cell suspension. Induced pluripotent stem cells were differentiated toward the neural fate for 4 weeks before clusters were subjected to enzymatic (Accutase, trypsin, TrypLE, dispase, or DNase I) or mechanical (trituration with pipettes of varying size) or combined dissociation. Images of cells were analyzed for cluster size using ImageJ. Cells treated with the enzymes Accutase, TrypLE, or trypsin/EDTA, these enzymes followed by trituration, or a combination one of these enzymes followed by incubation with another enzyme, including DNase I, were more likely to be dissociated into a single-cell suspension. Cells treated with enzymes or combinations of methods were more likely to be dissociated into a single-cell suspension. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  15. The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells.

    Science.gov (United States)

    Bailey, Arnold D; Gray, Lucas T; Pavelitz, Thomas; Newman, John C; Horibata, Katsuyoshi; Tanaka, Kiyoji; Weiner, Alan M

    2012-05-01

    Cockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. Using a host cell reactivation assay, we show that the fusion protein inhibits TCR of oxidative damage but facilitates TCR of UV damage. We also show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome (UVSS) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  17. Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line

    Science.gov (United States)

    Faedmaleki, Firouz; H Shirazi, Farshad; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2014-01-01

    Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming more and more widespread in medicine. In this study we investigated the cytotoxic effects of AgNPs on liver primary cells of mice, as well as the human liver HepG2 cell. Cell viability was examined with MTT assay after HepG2 cells exposure to AgNPs at 1, 2, 3, 4, 5, 7.5, 10 ppm compared to mice primary liver cells at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration-dependent decrease of cell viability in both cells. IC50 value of 2.764 ppm (µg/mL) was calculated in HepG2 cell line and IC50 value of 121.7 ppm (µg/mL) was calculated in primary liver cells of mice. The results of this experiment indicated that silver nanoparticles had cytotoxic effects on HepG2 cell line and primary liver cells of mice. The results illustrated that nano-silver had 44 times stronger inhibitory effect on the growth of cancerous cells (HepG2 cell line) compared to the normal cells (primary liver cells of mice). which might further justify AgNPs as a cytotoxic agents and a potential anticancer candidate which needs further studies in this regard. PMID:24734076

  18. [Study in the killing effect of Myxoma virus to C6 glioma cell in vitro].

    Science.gov (United States)

    Zang, Meng; Zhang, Qiu-Sheng; Liang, Shi-Jie; Ji, Tao; Lin, Heng-Zhou; Li, Wei-Ping

    2012-02-01

    To evaluate the susceptibility of C6 glioma cells to Myxoma virus and the killing effect of Myxoma virus to the C6 glioma cells in vitro. C6 glioma cells were infected with myxoma virus, used death virus as the negative control, 5-FU as the positive control, DEMD as blank control. The number of living cells were counted every 24 h, and Western-Blot method, inverted microscope and MTT assay were applicated to observe the cell morphology and survival rate in each group. The cell number were decreased rapidly in virus effected group and 5-FU group, with significant differences to the negative and blank control groups. And cells in virus effected group appeared cytopathic effect. C6 glioma cells were susceptible to myxoma virus and myxoma virus had killing effect to C6 glioma cells in vitro.

  19. Effects of indirect bandgap top cells in a monolithic cascade cell structure

    Science.gov (United States)

    Curtis, H. B.; Godlewski, M. P.

    1982-01-01

    The effect of having a slightly indirect top cell in a three junction cascade monolithic stack is calculated. The minority carrier continuity equations are utilized to calculate individual junction performance. Absorption coefficient curves for general III-V compounds are calculated for a variety of direct and indirect gap materials. The results indicate that for a small excursion into the indirect region, (about 0.1 eV), the loss of efficiency is acceptably small (less than 2.5 percent) and considerably less than attempting to make the top junction a smaller direct bandgap.

  20. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  1. Effects of microcystins, cyanobacterial toxins, on Mammalian cells and organs.

    Science.gov (United States)

    Suput, Dušan

    2011-12-01

    Microcystins are hepatotoxic cyclic heptapeptides characterized by the presence of non proteinogenic b-amino acid ADDA. They are produced by numerous bloom forming cyanobacterial genera. Acute lethal intoxications of humans are rare, but especially chronic exposure to these toxins presents a serious threat to the health of human population. Microcystins enter cells mostly via bile acid transporters; therefore liver is the main target organ in acute intoxication. It has been shown that microcystins are potent inhibitors of intracellular protein phosphatases 1 and 2A. This leads to hyper-phosphorylation of a number of intracellular structural and signal proteins, activation of caspases, and apoptosis of the affected cells. Tumour promoting effects of microcystins have also been described. Considering reports by several authors showing harmful effects of long term exposure to microcystins in several highly populated regions of the planet it must be emphasized that high safety measures should be taken in monitoring the quality of water and food used in human nutrition and medical care.

  2. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  3. [Effect of Intercellular Adhesion Molecule-1 on Adherence Between Mesenchymal Stem Cells and Endothelial Progenitor Cells].

    Science.gov (United States)

    Guo, Jun; Xia, Jie; Zhang, Hong-Wei; Wang, Xiao-Yi; Hou, Ji-Xue; Chen, Xue-Ling; Wu, Xiang-Wei

    2016-02-01

    To investigate the effects of intercellular adhesion molecule-1(ICAM-1) on the adherence between mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC). MSC and EPC were isolated, cultured and expanded from the 6-8 weeks aged C57BL/6 murine bone marrow by in vitro. Immuno-fluorescence was used to detect the expression of ICAM-1 in MSC group, EPC group and co-cultured MSC and EPC group. The mRNA and protein levels of ICAM-1 were detected by RT-PCR and Western blot respectively, then, the ICAM-1 adherence between MSC and EPC was observed by adding different concentration of neutralizing antibody. The expression of ICAM-1 on surface of MSC and EPC could be detected by cell immunofluorescence method. According to results of the semiquantitative fluorescene detection, the fluorescence strength of MSC+EPC co-cultured group (89.02 ± 24.52) was higher than that of MSC group (31.25 ± 2.95) and EPC group (34.32 ± 5.02), and there was statistical difference between them (P 0.05). RT-PCR detection showed that the expression levels of ICAM-1 in MSC+EPC co-cultured group were higher than that in MSC group and that in EPC group (P adhesion capability of MSC and EPC was gradually decreasing. The ICAM-1 can mediate the adherence process between MSC and EPC.

  4. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines.

    Science.gov (United States)

    Drwal, Eliza; Rak, Agnieszka; Grochowalski, Adam; Milewicz, Tomasz; Gregoraszczuk, Ewa Lucja

    2017-10-05

    In the preset study we measured the concentrations of 16 priority PAHs in maternal blood and placental tissue by using the GC-MS/MS system, and investigated the effects of selected PAHs (naphthalene, anthracene, phenanthrene, pyrene) and mixtures on BeWo and JEG-3 human placental cell line proliferation (Alamar Blue), cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (XTT), lactate dehydrogenase (LDH), acid phosphatase (AP), endocrine activity (progesterone and estradiol secretion) and apoptosis (cyclin A1, cyclin D2, cdk 2, cdk 4, Bcl-xl, Bax, and caspase-3 protein expression). The concentrations of 16 PAHs in maternal blood were higher than in placental tissue. In JEG-3 cells except for naphthalene, all PAHs studied and their mixtures at maternal doses, and only naphthalene at placental doses, increased XTT, while in BeWo cells, placental doses increased XTT and AP activity. A cell-type dependent action: a proapoptotic effect (increased Bax and caspase-3) in BeWo cells and an antiapoptotic effect (decreased Bax and increased cdk2 and cyclin D1) in JEG-3 cells was observed. Naphthalene, pyrene, and phenanthrene exhibited an endocrine-disrupting effect in JEG3 cells but not in BeWo cells. Our results provide evidence of cell specific effects of selected low molecular weight PAHs on proliferation, the cell cycle, proapoptotic protein expression, and hormone secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effectiveness of allogeneic CD3AK cells on transplanted human renal cell cancer in mice with severe combined immune deficiency.

    Science.gov (United States)

    Ge, Lei; Shan, Zhongjie; Han, Qianhe; Zhang, Nan; Zhao, Yang

    2016-01-01

    To assess the activity of allogeneic anti-CD3 antibody induced activated killer (CD3AK) cells on transplanted human renal cell cancer (RCC) in mice with severe combined immune deficiency (SCID), thus to provide theoretical and experimental support for clinical application of allogeneic CD3AK cells in the treatment of RCC. A culture system which can massively increase allogeneic CD3AK cells was constructed. CCK-8 method was used to detect lethal effect of allogeneic CD3AK cells on human OS-RC-2 renal cancer cell line. Then, tumor-bearing mice models were constructed. SCID mice were randomly divided into four groups: group A (caudal vein was injected with allogeneic CD3AK cells before tumor bearing), group B (the control group of group A: caudal vein was injected with PBS before tumor bearing), group C (caudal vein was injected with allogeneic CD3AK cells after tumor bearing) and group D (the control group of group C: caudal vein was injected with PBS after tumor bearing), and spleen parameters were calculated to observe any inhibitory effect of allogeneic CD3AK cells on the growth of renal cancer cells, as well as their effect on the immune system of mice. Compared with the control groups B and D, spleen parameters of groups A and C increased significantly (p0.05); compared with the control groups B and D, tumor weight of groups A and C decreased significantly and tumors grew slowly (pcancer in mice with SCID. Also CD3AK cells expressed certain preventive effect on the development of implanted cancer in SCID mice; allogeneic CD3AK cells possessed antitumor activity and could enhance the immunologic functions of SCID mice with human renal cell-bearing cancer.

  6. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size.

    Science.gov (United States)

    Kaneko, Tomoyuki; Kojima, Kensuke; Yasuda, Kenji

    2007-09-01

    We investigate the effect of haloperidol on a four-cell and nine-cell cardiomyocyte network on an agarose microchamber array chip to evaluate a cell-based model for drug screening. Using a network of cardiomyocytes whose beating intervals were stable and relatively uniform (they only fluctuated 10% from the mean beating interval), we easily observed the effect of haloperidol on the cell network beating interval 5 min after administering it. We also observed the beating interval returned to its original state 10 min after the haloperidol was washed out of the chip. Although the four-cell network showed the unstable recovery of its beating rhythm after washout of haloperidol, the nine-cell network recovered completely to the stable original beating rhythm even after a second administration of haloperidol. The results indicate the importance of the community size in cell networks used in the stable cell-based screening model. Moreover, they indicate the advantage of using direct cell-based measurements in which the amount of drug administered and the time course over which it is administered are strictly controlled for evaluating the quantitative chemical effects of drugs on cells.

  7. Stem Cell Depletion by Global Disorganization of the H3K9me3 Epigenetic Marker in Aging.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2015-08-01

    Epigenomic change and stem cell exhaustion are two of the hallmarks of aging. Accumulation of molecular damage is thought to underlie aging, but the precise molecular composition of the damage remains controversial. That some aging phenotypes, especially those that result from impaired stem cell function, are reversible suggest that such "damage" is repairable. Evidence is accumulating that dysfunction in aging stem cells results from increasing, albeit, subtle disorganization of the epigenome over time. Zhang et al. (2015) report that decreasing levels of WRN, Werner's syndrome (WS) helicase, with increasing age results in loss of heterochromatin marks in mesenchymal stem cells (MSCs) and correlates with an increased rate of cellular senescence. Although WRN plays a role in DNA repair, WRN exerted its effects on aging via maintaining heterochromatin, evidenced by reduced levels of interacting chromatin regulators heterochromatin protein 1α (HP1α), suppressor of variegation 3-9 homolog 1 (SUV39H1), and lamina-associated polypeptide 2β (LAP2β) as well as modified histone H3K9me3. Reducing expression of chromatin modeling co-factors SUV39H1 or HP1α in wild-type MSCs recapitulates the phenotype of WRN deficiency, resulting in reduced H3K9me3 levels and increased senescence without induction of markers of DNA damage, suggesting that chromatin disorganization and not DNA damage is responsible for the pathology of WS during aging in animals. Ectopic expression of HP1α restored H3K9me3 levels and repressed senescence in WRN-deficient MSCs. That HP1α can also suppress senescence in Hutchinson-Gilford progeria syndrome (HGPS) and extend life span in flies when over-expressed suggests that HP1α and H3K9me3 play conserved roles in maintenance of cell state. H3K9me3 levels are dynamic and expected to be potentially responsive to manipulation by extrinsic factors. Recent reports that migration inhibitory factor (MIF) or periodic fasting rejuvenate old MSCs provide the

  8. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study.

    Science.gov (United States)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    2017-04-01

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000 cells/cm2, 20,000 cells/cm2, 50,000 cells/cm2, and 400,000 cells/cm2 with and without 10 or 20 ng/ml tumor necrosis factor alpha (TNFα) and 25 or 50 ng/ml interferon gamma (IFNγ). ASC-sheets formed at 400,000 cells/cm2 after 48 h of culture. With increasing concentrations of TNFα and IFNγ, ASC-sheets with 400,000 cells/cm2 had increased production of angiogenic factors Vascular Endothelial Growth Factor and Fibroblast Growth Factor and decreased expression of pro-inflammatory genes TNFA and Prostaglandin Synthase 2 (PTGS2) compared to lower density ASCs. Moreover, the conditioned medium of ASC-sheets with 400,000 cells/cm2 stimulated with the low concentration of TNFα and IFNγ enhanced endothelial cell proliferation and fibroblast migration. These results suggest that a high cell density enhances ASC paracrine function might beneficial for wound repair, especially in pro-inflammatory conditions.

  9. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  10. Molecular pathways: comparing the effects of drugs and T cells to effectively target oncogenes.

    Science.gov (United States)

    Anders, Kathleen; Blankenstein, Thomas

    2013-01-15

    Mutant cancer-driving oncogenes are the best therapeutic targets, both with drugs like small-molecule inhibitors (SMI) and adoptive T-cell therapy (ATT), the most effective form of immunotherapy. Cancer cell survival often depends on oncogenes, which implies that they are homogeneously expressed by all cancer cells and are difficult to select against. Mutant oncogene-directed therapy is relatively selective, as it targets preferentially the oncogene-expressing cancer cells. Both SMI and ATT can be highly effective in relevant preclinical models as well as selected clinical situations, and both share the risk of therapy resistance, facilitated by the frequent genetic instability of cancer cells. Recently, both therapies were compared in the same experimental model targeting the same oncogene. It showed that the oncogene-inactivating drug selected resistant clones, leading eventually to tumor relapse, whereas ATT eradicated large established tumors completely. The mode of tumor destruction likely explained the different outcome with only ATT destroying the tumor vasculature. Elucidating the cellular and molecular mechanisms responsible for tumor regression and relapse will define optimal conditions for the clinic. We argue that the ideal conditions of ATT in the experimental cancer model can be translated to individuals with cancer. ©2012 AACR.

  11. [Effect of genistein on proliferation of renal cell carcinoma cell line GRC-1 and its influence to p27 expression].

    Science.gov (United States)

    Wang, Yong; Zhang, Yun-Tao; Liu, Fan; Zhang, Shun; Wang, Wen; Li, Yu-Mei

    2003-12-01

    There has always been a significant morbidity difference of renal cell carcinoma between the Oriental and Occidental countries. The high soybean consumption in Oriental countries may be one of the reasons. We investigated the effect of a tyrosine protein kinase inhibitor extracted from soybean, namely genistein, on the proliferation of a renal cell carcinoma cell line, GRC-1; and analyzed the correlation between this effect and a well-known anti-oncogene, p27. Inverted microscopy, MTT method, and flow cytometry (FCM) were used to examine the changes in proliferation of GRC-1 cells after treatment with genistein; and the intracellular p27 protein expression was determined by Western blot analysis. (1)After treatment with genistein, changed morphology of the GRC-1 cells was observed. Cell junctions decreased. In the presence of 20 micromol/L genistein, GRC-1 cells showed shuttle-shaped, and fewer pseudopodia, mitoses and cell junctions were observed. In the 40 micromol/L genistein group, many cells broke into debris, and became extremely irregular in shape. Meanwhile, mitoses and cell junctions were rarely seen. (2)Treated with 20 micromol/L genistein, 73.8% GRC-1 cells were in G(1) phase, 26.2% in G2 phase 72 hours after treatment; while in control group, 31.6% in G(1) phase and 3.8% in G2 phase, respectively. (3)After exposure to 20 micromol/L genistein for 72 hours, Western blot suggested that the band of p27 was 65.4+/-4.7 in gray scale value, while the control group was 52.3+/-6.3. Genistein can inhibit the proliferation of renal cell carcinoma cells, and cause cell cycle arrest at G(1)/M, G(2)/S phase. The possible underlying mechanism may involve its upregulation of p27 expression in the renal cancer cells.

  12. Non-CpG Oligonucleotides Exert Adjuvant Effects by Enhancing Cognate B Cell-T Cell Interactions, Leading to B Cell Activation, Differentiation, and Isotype Switching

    Directory of Open Access Journals (Sweden)

    Melinda Herbáth

    2015-01-01

    Full Text Available Natural and synthetic nucleic acids are known to exert immunomodulatory properties. Notably, nucleic acids are known to modulate immune function via several different pathways and various cell types, necessitating a complex interpretation of their effects. In this study we set out to compare the effects of a CpG motif containing oligodeoxynucleotide (ODN with those of a control and an inhibitory non-CpG ODN during cognate B cell-T cell interactions. We employed an antigen presentation system using splenocytes from TCR transgenic DO11.10 mice and the ovalbumin peptide recognized by the TCR as model antigen. We followed early activation events by measuring CD69 expression, late activation by MHC class II expression, cell division and antibody production of switched, and nonswitched isotypes. We found that both of the tested non-CpG ODN exerted significant immunomodulatory effects on early T cell and on late B cell activation events. Importantly, a synergism between non-CpG effects and T cell help acting on B cells was observed, resulting in enhanced IgG production following cognate T cell-B cell interactions. We propose that non-CpG ODN may perform as better adjuvants when a strong antigen-independent immune activation, elicited by CpG ODNs, is undesirable.

  13. Non-CpG Oligonucleotides Exert Adjuvant Effects by Enhancing Cognate B Cell-T Cell Interactions, Leading to B Cell Activation, Differentiation, and Isotype Switching

    Science.gov (United States)

    Herbáth, Melinda; Papp, Krisztián; Erdei, Anna; Prechl, József

    2015-01-01

    Natural and synthetic nucleic acids are known to exert immunomodulatory properties. Notably, nucleic acids are known to modulate immune function via several different pathways and various cell types, necessitating a complex interpretation of their effects. In this study we set out to compare the effects of a CpG motif containing oligodeoxynucleotide (ODN) with those of a control and an inhibitory non-CpG ODN during cognate B cell-T cell interactions. We employed an antigen presentation system using splenocytes from TCR transgenic DO11.10 mice and the ovalbumin peptide recognized by the TCR as model antigen. We followed early activation events by measuring CD69 expression, late activation by MHC class II expression, cell division and antibody production of switched, and nonswitched isotypes. We found that both of the tested non-CpG ODN exerted significant immunomodulatory effects on early T cell and on late B cell activation events. Importantly, a synergism between non-CpG effects and T cell help acting on B cells was observed, resulting in enhanced IgG production following cognate T cell-B cell interactions. We propose that non-CpG ODN may perform as better adjuvants when a strong antigen-independent immune activation, elicited by CpG ODNs, is undesirable. PMID:26380319

  14. Effect of epithermal neutrons on viability of glioblastoma tumor cells in vitro.

    Science.gov (United States)

    Mostovich, L A; Gubanova, N V; Kutsenko, O S; Aleinik, V I; Kuznetsov, A S; Makarov, A N; Sorokin, I N; Taskaev, S Yu; Nepomnyashchikh, G I; Grigor'eva, E V

    2011-06-01

    We studied in vitro effect of epithermal neutrons in various doses on viability of glioblastoma U87 tumor cells. Increasing the dose from 1.9 to 4.1 Sv promoted cell death. Cytofluorimetric analysis revealed no activation of apoptosis in the irradiated cells, which attested to necrotic death of the tumor cells exposed to epithermal neutron radiation.

  15. Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells

    DEFF Research Database (Denmark)

    Marzec, Michal; Halasa, Krzysztof; Kasprzycka, Monika

    2008-01-01

    three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3 kinase- and Jak1 kinase- dependent. These findings document the vastly different effect of IL-2 and IL-15 versus IL-21 on CTCL cells. They also suggest...... two novel therapeutic approaches to CTCL and, possibly, other CD4+ T-cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, natural killer, and B cells, application of this cytokine to boost an immune response against......, the expression of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated Jak1 and Jak3 in CTCL cell lines and native leukemic (Sezary) cells. However, only IL-2 and IL-15 strongly activated signal transducers and activators...

  16. Photodynamic Effects of Pterin on HeLa Cells

    DEFF Research Database (Denmark)

    Denofrio, M. Paula; Lorente, Carolina; Breitenbach, Thomas

    2011-01-01

    cells (HeLa) and that these cells die upon UV-A irradiation of Ptr. Cell death was assessed using two tests: (1) the Rhodamine 123 fluorescence assay for mitochondrial viability and (2) the Trypan Blue assay for membrane integrity. The data suggest that, for Ptr-dependent photoinitiated cell death...

  17. Antioxidant, Antibacterial and Cell Toxicity Effects of Polyphenols

    African Journals Online (AJOL)

    Z. Ghouila, S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, A. Baaliouamer

    2017-01-01

    sulfonic acid diammonium (a powerful ... agent on tumoral cells. Human cancer cell lines are frequently used and ... on HeLa (cell line derived from a cervical cancer of the uterus) and BCPAP (cell line derived from a papillary ...

  18. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation.

    Science.gov (United States)

    Yango, Pamela; Altman, Eran; Smith, James F; Klatsky, Peter C; Tran, Nam D

    2014-11-01

    To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. In vitro human testicular tissues. Academic research unit. Adult testicular tissues (n=4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n=3). Testicular tissue versus single cell suspension cryopreservation. Cell viability, total cell recovery per milligram of tissue, as well as viable and SSEA-4+ cell recovery. Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs, whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient's age, type of samples cryopreserved, and end points of therapeutic applications. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. TLR4- and TLR9-dependent effects on cytokines, cell viability, and invasion in human bladder cancer cells.

    Science.gov (United States)

    Olbert, Peter J; Kesch, Claudia; Henrici, Marcus; Subtil, Florentine S; Honacker, Astrid; Hegele, Axel; Hofmann, Rainer; Hänze, Jörg

    2015-03-01

    Adjuvant immunotherapy of bladder cancer by instillation of bacillus Calmette-Guérin (BCG) is highly recommended within certain groups of non-muscle-invasive stages but only partially effective. Toll-like receptors (TLRs) TLR4 and TLR9 likely mediate BCG effects by triggering innate systemic immune cell responses. In addition, TLR4 and TLR9 expressed in bladder cancer cells may contribute to the outcome of BCG treatment. Here, we studied the expression and function of TLR4 and TLR9 in human bladder cancer cell lines. TLR4 and TLR9 messenger RNA and protein levels were determined by real-time reverse transcription polymerase chain reaction and Western blot. Selected cell lines were analyzed with respect to cytokine induction, proliferation, and cell invasion after addition of BCG, TLR4-specific agonist lipopolysaccharide (LPS), or TLR9 agonist (CpG-oligodeoxynucleotide [ODN]). TLR4 and TLR9 were expressed quite heterogeneously in human bladder cancer cells. BCG caused induction of interleukin (IL)-6 or IL-8 in BFTC905 and T24 cells as representatives for TLR4-/TLR9-expressing cells. The study aimed to dissect TLR4- and TLR9-mediated effects. For functional analysis of TLR4 with LPS, we selected T24 and BFTC905 cells with high and undetectable TLR4 levels, respectively. For TLR9 analysis with CpG-ODN, we selected UMUC3 and RT112 cells with high and low TLR9 levels, respectively. Addition of LPS caused significant induction of TNFα and IL-6 messenger RNA in T24 cells but not in BFTC905 cells. Addition of CpG-ODN induced interferon ß (INFß), IL-8, tumor necrosis factor α (TNFα) and the angiogenic factors vascular endothelial growth factor-A and placental growth factor in UMUC3 cells; whereas in RT112 cells, induction of IL-8 and TNFα was noticed. Interestingly, addition of CpG-ODN significantly reduced cell viability and increased cell invasion in UMUC3 and RT112 cells. Our findings demonstrate that bladder cancer cell lines express functional TLR4 and TLR9 with

  20. [Effects of ginsenoside Rh2(GS-Rh2) on cell cycle of Eca-109 esophageal carcinoma cell line].

    Science.gov (United States)

    Li, Li; Qi, Feng-ying; Liu, Jun-ru; Zuo, Lian-fu

    2005-10-01

    To investigate the effects of ginsenoside Rh2 (GS-Rh2) on growth inhibition and cell cycle of Eca-109 esophageal carcinoma cell line in culture. The effects of GS-Rh2 on cell growth inhibition was detected by MTT assay. Cell cycle was analyzed by flow cytometry (FCM). Cell morphology was observed by a light microscope after HE staining. The protein expression of cell cycle components (cyclinE, CDK2, p21WAF1) were examined by immunocytochemistry and Western blot. The mRNA expression were examined by semiquantitative RT-PCR. GS-Rh2 inhibited the proliferation of Eca-109 cells in dose and time-dependent manners. The inhibition rate was about 50% after 1-day treatment with 20 microg x mL(-1) GS-Rh2 x 20 microg x mL(-1) GS-Rh2 induced the mature differentiation and morphological reversion. With increasing dose of GS-Rh2 treatment, the cell number of G0/G1 phase was increased, whereas it decreased at S and G2/M phase. There was significant difference between 10, 20 microg x mL(-1) GS-Rh2 groups and the corresponding group without GS-Rh2 treatement. After treating cells by 20 microg x mL(-1) GS-Rh2 for 1, 2, 3 days individually, the protein and mRNA expression of both cyclinE and CDK2 reduced, while the expression of p21WAF1 enhanced gradually. GS-Rh2 could arrest Eca-109 cells at G0/G1 phase and induce cell differentiation tending to normal. Furthermore, GS-Rh2 had an effect on expression of cell cycle components (cyclinE, CDK2 and p21WAF1) to inhibit Eca-109 cell proliferation.

  1. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunction

  2. Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hilde Kvestad

    2014-01-01

    Full Text Available The combined use of the histone deacetylase inhibitor valproic acid (VPA, the retinoic acid receptor-α agonist all-trans retinoic acid (ATRA, and the deoxyribonucleic acid polymerase-α inhibitor cytarabine (Ara-C is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML. Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.

  3. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  4. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  5. The effect of caffeine on cisplatin-induced apoptosis of lung cancer cells

    National Research Council Canada - National Science Library

    Wang, Gan; Bhoopalan, Vanitha; Wang, David; Wang, Le; Xu, Xiaoxin

    2015-01-01

    .... The effect of caffeine on cisplatin-based cancer treatment is not well known. Caspase-3 activation and cell growth inhibition assays were used to determine the effect of caffeine on cisplatin-induced apoptosis and cell growth in lung cancer cells...

  6. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  7. Electron injection and scaffold effects in perovskite solar cells.

    Science.gov (United States)

    Anaya, Miguel; Zhang, Wei; Hames, Bruno Clasen; Li, Yuelong; Fabregat-Santiago, Francisco; Calvo, Mauricio E; Snaith, Henry J; Míguez, Hernán; Mora-Seró, Iván

    2017-01-21

    In spite of the impressive efficiencies reported for perovskite solar cells (PSCs), key aspects of their working principles, such as electron injection at the contacts or the suitability of the utilization of a specific scaffold layer, are not yet fully understood. Increasingly complex scaffolds attained by the sequential deposition of TiO2 and SiO2 mesoporous layers onto transparent conducting substrates are used to perform a systematic characterization of both the injection process at the electron selective contact and the scaffold effect in PSCs. By forcing multiple electron injection processes at a controlled sequence of perovskite-TiO2 interfaces before extraction, interfacial injection effects are magnified and hence characterized in detail. An anomalous injection behavior is observed, the fingerprint of which is the presence of significant inductive loops in the impedance spectra with a magnitude that correlates with the number of interfaces in the scaffold. Analysis of the resistive and capacitive behavior of the impedance spectra indicates that the scaffolds could hinder ion migration, with positive consequences such as lowering the recombination rate and implications for the current-potential curve hysteresis. Our results suggest that an appropriate balance between these advantageous effects and the unavoidable charge transport resistive losses introduced by the scaffolds will help in the optimization of PSC performance.

  8. Quantum size effects in amorphous Si superlattice solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Varonides, Argyrios C. [Department of Physics and Electrical Engineering, University of Scranton, A Jesuit University, Scranton, PA 18510 (United States)

    2008-02-15

    Amorphous silicon/alloy superlattices provide advantages in solar cell design, such as (a) effective band gap widening (b) effective mass separation (c) increased open-circuit voltage. The latter increases via Fermi level control, due to p-doping of potential barriers, pushing EF towards the valence bands, with simultaneous widening of the effective band gap, thus leading to potentially higher collection incident wavelengths. The density of gap states in the heavily doped layer is modeled as an exponential whose parameter kT* can be varied by the doping concentrations, while its activation energy saturates at some value. This communication provides (i) a general formulation of the problem at finite temperatures as well as numerical results for specific realizable contacts (ii) detailed treatment of gap states (iii) the neutrality condition (iv) a relation between Fermi level position and open-circuit voltage in the nitride region (superlattice p-region). For a p-(a-SiN: H/a-Si: H)-i (a-Si: H)-n (a-Si: H) sample, we compute the Fermi level position relative to the a-Si: H valence band edge. For low and wide gap thin layers of the order of 2.5-3.5 nm, open-circuit voltage values are predicted in excess of 1.05 V, and efficiencies are predicted in excess of 12%. (author)

  9. Protective effects of nimodipine and lithium against aluminum-induced cell death and oxidative stress in PC12 cells

    Directory of Open Access Journals (Sweden)

    Jamileh Saberzadeh

    2016-11-01

    Full Text Available Objective(s: The role of aluminum (Al in the pathogenesis of neurodegenerative diseases has been implicated in several studies. However, the exact mechanisms of cytotoxic effects of Al have not been elucidated yet. The aim of this study was to investigate the effect of L-type calcium channel antagonist, nimodipine (NM, and lithium chloride (LiCl on Al-induced toxicity in PC12 cells. Materials and Methods: PC12 cells were treated with Al-maltolate (Almal in the presence and absence of different concentrations of NM (50-150 μm and/or LiCl (0.5-1.0 mm for 48 hr. Cell viability, apoptosis, and catalase (CAT activity, a marker of oxidative stress, were then measured using MTT, flow cytometry and enzyme assay, respectively. Results: The results showed that Almal, dose dependently induced cell death, apoptosis and CAT activity in the PC12 cells. NM significantly increased cell viability and decreased apoptosis and CAT activity of Almal-treated cells in a dose dependent mode. LiCl reduced CAT activity and increased cell viability in Almal-treated cells, without significant effect on apoptosis (P=0.74. Conclusion: These findings suggest that NM and Li may have benefits in the prevention of Al-induced cytotoxicity through decreasing oxidative stress.

  10. Antiproliferative and Apoptotic Effects of a Specific Antiprostate Stem Cell Single Chain Antibody on Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Foroogh Nejatollahi

    2013-01-01

    Full Text Available Prostate stem cell antigen (PSCA is a highly glycosylated cell surface protein which is overexpressed in several malignancies including prostate, pancreas, and urinary bladder cancers. Tumor suppression has been reported by anti-PSCA antibody. Small and high affinity single chain antibodies (scFv have been introduced as effective agents for cancer immunotargeting approaches. In the present study, we used a phage antibody display library of scFv and selected two antibodies against two immunodominant epitopes of PSCA by panning process. The reactivity of the scFvs for the corresponding epitopes was determined by phage ELISA. The binding specificity of antibodies to PSCA-expressing prostate cancer cell line, DU-145, was analyzed by flow cytometry. The antiproliferative and apoptotic induction effects were evaluated by MTT and Annexin-V assays, respectively. Results represented functional scFv C5-II which could bind specifically to DU-145 cells and significantly inhibited the proliferation of these cells (61% with no effect on PSCA-negative cells. The antibody also induced apoptosis in the PSCA expressing cells. The percentage of the apoptotic cells after 24 hrs of exposure to 500 scFv/cell was 33.80%. These results demonstrate that the functional anti-PSCA scFv C5-II has the potential to be considered as a new agent for targeted therapy of prostate cancer.

  11. Immunomodulatory effects of polysaccharide from marine fungus Phoma herbarum YS4108 on T cells and dendritic cells.

    Science.gov (United States)

    Chen, Song; Ding, Ran; Zhou, Yan; Zhang, Xian; Zhu, Rui; Gao, Xiang-Dong

    2014-01-01

    YCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungus Phoma herbarum YS4108, has great antitumor potential via enhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-) γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA. Receptor knock-out mice and fluorescence-activated cell sorting are used to analyze the YCP-binding receptor of T cells and DCs. RT-PCR is utilized to measure MAGE-A3 for analyzing the tumor-specific killing effect. In our study, we demonstrated YCP can provide the second signal for T cell activation, proliferation, and IFN-γ production through binding to toll-like receptor- (TLR-) 2 and TLR-4. YCP could effectively promote IL-12 secretion and expression of markers (CD80, CD86, and MHC II) via TLR-4 on DCs. Antigen-specific immunity against mouse melanoma cells was strengthened through the activation of T cells and the enhancement of capacity of DCs by YCP. The data supported that YCP can exhibit specific immunomodulatory capacity mediated by T cells and DCs.

  12. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions.

    Science.gov (United States)

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-04-13

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.

  13. Magnetic nanoparticle effects on the red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, D E; Nadejde, C; Curecheriu, L [' Al. I. Cuza' University, Faculty of Physics, 11A Blvd. Carol I, Iasi (Romania)], E-mail: dorinacreanga@yahoo.com; Culea, M [' Babes Bolyai' University, Cluj-Napoca (Romania); Oancea, S [University of Veterinary Medicine ' I. Ionescu de la Brad' , Iasi (Romania); Racuciu, M [' Lucian Blaga' University, Sibiu (Romania)

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm{sup -1} or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  14. Magnetic nanoparticle effects on the red blood cells

    Science.gov (United States)

    Creangă, D. E.; Culea, M.; Nădejde, C.; Oancea, S.; Curecheriu, L.; Racuciu, M.

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm-1 or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  15. The Antioxidant Effect of Erythropoietin on Thalassemic Blood Cells

    Directory of Open Access Journals (Sweden)

    Johnny Amer

    2010-01-01

    Full Text Available Because of its stimulating effect on RBC production, erythropoietin (Epo is used to treat anemia, for example, in patients on dialysis or on chemotherapy. In β-thalassemia, where Epo levels are low relative to the degree of anemia, Epo treatment improves the anemia state. Since RBC and platelets of these patients are under oxidative stress, which may be involved in anemia and thromboembolic complications, we investigated Epo as an antioxidant. Using flow-cytometry technology, we found that in vitro treatment with Epo of blood cells from these patients increased their glutathione content and reduced their reactive oxygen species, membrane lipid peroxides, and external phosphatidylserine. This resulted in reduced susceptibility of RBC to undergo hemolysis and phagocytosis. Injection of Epo into heterozygous (Hbbth3/+ β-thalassemic mice reduced the oxidative markers within 3 hours. Our results suggest that, in addition to stimulating RBC and fetal hemoglobin production, Epo might alleviate symptoms of hemolytic anemias as an antioxidant.

  16. Geometrical Effects on Nonlinear Electrodiffusion in Cell Physiology

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-12-01

    We report here new electrical laws, derived from nonlinear electrodiffusion theory, about the effect of the local geometrical structure, such as curvature, on the electrical properties of a cell. We adopt the Poisson-Nernst-Planck equations for charge concentration and electric potential as a model of electrodiffusion. In the case at hand, the entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. We construct an asymptotic approximation for certain singular limits to the steady-state solution in a ball with an attached cusp-shaped funnel on its surface. As the number of charge increases, they concentrate at the end of cusp-shaped funnel. These results can be used in the design of nanopipettes and help to understand the local voltage changes inside dendrites and axons with heterogeneous local geometry.

  17. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  18. [Effects of LAK cells activated by IL-2 on MCF-7 human breast cancer cell line maintained in organotypic culture].

    Science.gov (United States)

    Gharib, M; Mainguené, C; Tamboise, E; Tamboise, A; Lièvre, N; Amouroux, J; Beaupain, R

    1993-08-01

    Lymphokine Activated Killer (LAK) cells, stimulated by interleukin 2 (IL-2) have a pronounced antitumor effect in the therapy of melanoma and renal cancers. LAK cells were cultivated in presence of the nodules of the human breast adenocarcinoma cell line MCF-7 maintained in organotypic culture to study the interactions between lymphocytes and breast tumor cells. After two days of co-culture, the proliferation of MCF-7 nodules and that of LAK cells was diminished about five folds. The cytotoxic effect of the latter, appreciated by Chrome 51 release was unchanged after the coculture. In histological sections, the penetration of the LAK cells into the MCF-7 nodules was accompanied by an increase of tumor necrosis but also by a glandular differentiation of cancerous tissue. Polarized epithelial cell formations bording neoplasic lumens with intracytoplasmic vacuoles filled with mucus, appeared in the nodules. The immunohistochemistry underlines the presence of T lymphocytes marked by UCHL1 and CD3 antibodies and of Natural Killer (NK) cells marked by IOT10, located between the MCF-7 cancer cells. In electron microscopy, the membrane contacts were tight and were accompanied by the appearance of secondary lysosomes and nuclear alterations. The relatively low infiltration level of the nodules may lead to the supposition that an indirect mechanism will intervene in this dual action of a LAK cells: increase of necrosis, although partially, and development of glandular and functional differentiation.

  19. The Effects of Isosorbide Dinitrate on in Vitro Proliferation of WEHI-164 Cells and Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Resvan Madani FZ

    2012-02-01

    Full Text Available Background: Isosorbide dinitrate has been broadly used in the treatment of various ischemic heart diseases. Isosorbide is a nitric oxide donor which increases blood flow to tumors through vasodilatation and consequently accelerates the access of chemo-drugs to them. Furthermore, this drug has inhibitory effects on angiogenesis, tumor growth and metastasis in vivo. Moreover, its ant-inflammatory effects have also been reported. In the present study we evaluated the effects of isosorbide on the proliferative activity of fibrosarcoma WEHI-164 cell line and peripheral blood mononuclear cells (PBMCs. Methods: WEHI-164 fibrosarcoma cells and human PBMCs were cultured in complete Roswell Park Memorial Institute (RPMI 1640 medium with 10% fetal bovine serum and 2×104 cells/mL for WEHI-164 and 2×105 cells/mL for PBMCs. The cells were then incubated at the exponential growth phase with different concentrations of isosorbide (4×10-6-1.6×10-3 M for 24, 48 and 72 hours. Subsequently, isosorbide effects on proliferation of the cells were evaluated by trypan blue dye exclusion (TB test and MTT assay. Statistical comparisons between groups were made by analysis of variance. Results: The proliferative activity of WEHI-164 fibrosarcoma cells and human PBMCs treated with different concentrations of isosorbide, did not show any significant difference with untreated control cells. Conclusion: The results of this study showed that isosorbide neither had any significant effects on the proliferative activity of fibrosarcoma WEHI-164 cells nor on human PBMCs. Our findings suggest that anti-tumoral effects of isosorbide reported by other investigators may be mediated through non-cytotoxic mechanisms.

  20. Hydroxyurea and sickle cell anemia: effect on quality of life

    Directory of Open Access Journals (Sweden)

    Pegelow Charles H

    2006-08-01

    Full Text Available Abstract Background The Multicenter Study of Hydroxyurea (HU in Sickle Cell Anemia (MSH previously showed that daily oral HU reduces painful sickle cell (SS crises by 50% in patients with moderate to severe disease. The morbidity associated with this disease is known to have serious negative impact on the overall quality of life(QOL of affected individuals. Methods The data in this report were collected from the 299 patients enrolled in the MSH. Health quality of llife (HQOL measures were assessed in the MSH as a secondary endpoint to determine if the clinical benefit of HU could translate into a measurable benefit perceptible to the patients. HQOL was assessed with the Profile of Mood States, the Health Status Short Form 36 (SF-36, including 4-week pain recall, and the Ladder of Life, self-administered twice 2-weeks apart pre-treatment and every 6 months during the two-year, randomized, double-blind, treatment phase. The effects of factors including randomized treatment, age, gender, pre-treatment crises frequency, Hb-F level mean, daily pain from 4-week pre-treatment diaries, and 2-year Hb-F response level (low or high were investigated. Results Over two years of treatment, the benefit of HU treatment on QOL, other than pain scales, was limited to those patients taking HU who maintained a high HbF response, compared to those with low HbF response or on placebo. These restricted benefits occurred in social function, pain recall and general health perception. Stratification according to average daily pain prior to treatment showed that responders to HU whose average daily pain score was 5–9 (substantial pain achieved significant reduction in the tension scale compared to the placebo group and to non-responders. HU had no apparent effect on other QOL measures. Conclusion Treatment of SS with HU improves some aspects of QOL in adult patients who already suffer from moderate-to-severe SS.

  1. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    Directory of Open Access Journals (Sweden)

    Andrea Fernández Araújo

    2015-06-01

    Full Text Available Yessotoxin (YTX modulates cellular phosphodiesterases (PDEs. In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3´,5´-cyclic monophosphate (cAMP production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis and autophagy after 24 and 48 hours of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-526 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-526 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed.

  2. Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells.

    Science.gov (United States)

    Salani, Barbara; Maffioli, Sara; Hamoudane, Meriem; Parodi, Alessia; Ravera, Silvia; Passalacqua, Mario; Alama, Angela; Nhiri, Mohamed; Cordera, Renzo; Maggi, Davide

    2012-02-01

    Metformin causes an AMP/ATP ratio increase and AMP-activated protein kinase (AMPK) activation. Since caveolin-1 (Cav-1) plays a role in AMPK activation and energy balance, we investigated whether Cav-1 could participate in metformin's inhibitory effect on IGF1 signaling. The effect of metformin was studied in two non-small-cell lung cancer (NSCLC) cell lines, Calu-1 and Calu-6, expressing higher and lower amounts of Cav-1, respectively. In Calu-1, but not in Calu-6 cells, metformin reduced phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR) substrates Akt and Forkhead transcription factor 3a (FOXO3a), inhibited IGF1-dependent FOXO3a nuclear exit, and decreased IGF1-dependent cell proliferation. Here, we show that sensitivity of NSCLC cells to metformin was dependent on Cav-1 expression and that metformin required Cav-1 to induce AMPK phosphorylation and AMP/ATP ratio increase. Cav-1 silencing in Calu-1 and overexpression in Calu-6 reduced and improved, respectively, the inhibitory effect of metformin on IGF1-dependent Akt phosphorylation. Prolonged metformin treatment in Calu-6 cells induced a dose-dependent expression increase of Cav-1 and OCT1, a metformin transporter. Cav-1 and OCT1 expression was associated with the antiproliferative effect of metformin in Calu-6 cells (IC(50)=18 mM). In summary, these data suggest that Cav-1 is required for metformin action in NSCLC cells.

  3. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  4. Anti-Metastatic Effect of Dehydrocorydaline on H1299 Non-Small Cell Lung Carcinoma Cells via Inhibition of Matrix Metalloproteinases and B Cell Lymphoma 2.

    Science.gov (United States)

    Lee, Jihyun; Sohn, Eun Jung; Yoon, Sang Wook; Kim, Chang Geun; Lee, Sangil; Kim, Joe Young; Baek, Namin; Kim, Sung-Hoon

    2017-03-01

    Though Dehydrocorydaline, an alkaloid isolated from Corydalis turtschaninovii tuber, was known to have anti-coronary artery disease, anti-inflammatory, apoptotic, anti-allergic, anti-acetylcholinesterase, and antitumor effects, the underlying anti-metastatic mechanism of Dehydrocorydalin was never elucidated in lung cancer cells so far. Thus, in the present study, the anti-metastatic effect of Dehydrocorydaline was examined in non-small cell lung carcinoma (NSCLC) cells, mainly targeting matrix metalloproteinases (MMPs) and B cell lymphoma-2 (Bcl-2) signaling. Here, Dehydrocorydaline exerted weak cytotoxicity and attenuated the protein expression of Bcl-2 and activated Bax in a concentration-dependent manner in NSCLC cells, such as A549, H460, H1299, and H596 cells. Also, Dehydrocorydaline suppressed the migration of H1299 cells by wound healing assay and transwell migration assay. Consistently, Dehydrocorydaline attenuated mRNA and protein levels of MMP7 and MMP9 as metastasis biomarkers in H1299 cells by quantitative reverse transcription polymerase chain reaction. Of note, Bcl-2 overexpression reduced the cytotoxic and anti-metastatic effects of Dehydrocorydaline on pCDNA-Bcl-2 transfected H1299 cells. Overall, our findings provide scientific evidence that Dehydrocorydaline exerts anti-metastatic potential via suppression of MMPs and Bcl-2 signaling in NSCLC cells. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. [Study on relationship of dose-effect and time-effect of APA microencapsulated bovine chromaffin cells on pain treatment].

    Science.gov (United States)

    Hui, Jianfeng; Li, Tao; Du, Zhi; Song, Jichang

    2011-12-01

    This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.

  6. Bystander effect in glioma suicide gene therapy using bone marrow stromal cells.

    Science.gov (United States)

    Li, Shaoyi; Gu, Chunyu; Gao, Yun; Amano, Shinji; Koizumi, Shinichiro; Tokuyama, Tsutomu; Namba, Hiroki

    2012-11-01

    An established rat intracranial glioma was successfully treated through the tumoricidal bystander effect generated by intratumoral injection of rat bone marrow stromal cells (BMSCs) transduced with the herpes simplex virus-thymidine kinase gene (BMSCtk cells) followed by systemic ganciclovir administration. In the present study, we tested the bystander effect of this treatment strategy when using human BMSCs as the vector cells. Human BMSCtk cells were mixed with various kinds of brain tumor cell lines (human and rat glioma cells) and examined in vitro and in vivo tumoricidal bystander effects, by co-culture study and co-implantation study in the nude mouse, respectively. A significant in vitro bystander effect was observed between human BMSCtk cells and any of the tumor cells examined in the ganciclovir-containing medium. A potent in vivo bystander effect against human and rat glioma cells was also demonstrated when ganciclovir was administered. Migratory activity of the human BMSCs toward the tumor cells was enhanced by the conditioned media obtained from both human and rat glioma cells compared to the fresh media. The results of this study have demonstrated that the bystander effect generated by BMSCtk cells and ganciclovir is not cell type-specific, suggesting that the strategy would be quite feasible for clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A study on some psychological health effects of cell-phone usage amongst college going students

    OpenAIRE

    Jayanti P Acharya, Indranil Acharya, Divya Waghrey

    2013-01-01

    Cell phones have come to stay. Their use without any knowledge of their harmful effects like cancers and other health effects is not ‘quite’ safe. Studies on cancers due to electromagnetic radiations from cell phones are available but there is a need to research on the detrimental physical and psychological effects esp. on rampant users like college-goers. This study focused on certain psychological or mental health effects of cell phone usage amongst students pursuing professional courses in...

  8. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  9. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  10. The effect of Lactobacillus casei extract on cervical cancer cell lines

    Science.gov (United States)

    Kim, Soo-Nyung; Lee, Won Moo; Park, Kyoung Sik; Kim, Jong Bin; Han, Dae Jong

    2015-01-01

    Aim of the study Lactobacillus casei (L. casei) has been shown to inhibit the proliferation of several types of cancer in vivo, but its effect on cervical cells has not been reported. We incubated cells of the human cervical cell lines Caski and HeLa with extracts of L. casei and investigated its effects on the growth of the cells and possible synergy with anticancer drugs. Material and methods Cell-free extracts of L. casei were prepared and purified. Cultures of Caski and HeLa cells adhering to tissue culture plates were treated with L. casei extract. The effects of L. casei extract on the growth of cancer cells and its possible synergy with anti-cancer drugs in cervical cancer cell lines were investigated. The cells were treated with L. casei extract alone, anti-cancer drugs alone [doxorubicin, paclitaxel, 5-fluorouracil (5-FU), and cisplatin], or L. casei extract plus anti-cancer drugs. Results L. casei extract had no significant effect on the growth rate of the two cell lines. Anti-cancer drugs alone induced growth inhibition, but there was no synergistic effect of L. casei extract on growth inhibition. Conclusions L. casei extract does not have a potent effect on the viability of cervical cancer cells in vitro. In addition, L. casei extract has no synergistic effect on the inhibition of growth of cancer cells in the presence of anti-cancer drugs. PMID:26557779

  11. Development and Effects of a Prevention Program for Cell Phone Addiction in Middle School Students

    National Research Council Canada - National Science Library

    Koo, Hyun-Young

    2011-01-01

    This study was done to develop a cell phone addiction prevention program for middle school students, and to examine the effects of the program on self-esteem, self-efficacy, impulsiveness, and cell phone use...

  12. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    Science.gov (United States)

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  13. Effects of extracellular matrices derived from different cell sources on chondrocyte functions.

    Science.gov (United States)

    Hoshiba, Takashi; Lu, Hongxu; Yamada, Tomoe; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2011-01-01

    Cell-derived extracellular matrices (ECMs) are a key factor in regulating cell functions in tissue engineering and regenerative medicine. The fact that cells are surrounded by their specific ECM in vivo elicits the need to elucidate the effects of ECM derived from different cell sources on cell functions. Here, three types of ECM were prepared by decellularizing cultured chondrocytes, fibroblasts, and mesenchymal stem cells (MSC) and used for chondrocyte culture to compare their effects on chondrocyte adhesion, proliferation, and differentiation. Chondrocyte adhesion to the chondrocyte-derived ECM was greater than those to the fibroblast- and MSC-derived ECM. Chondrocyte proliferation on the chondrocyte-derived ECM was lower than those on the fibroblast- and MSC-derived ECM. The ECM showed no evident effect on chondrocyte differentiation. The effects of ECM on cell functions depended on the cell source used to prepare the ECM. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  14. Protective Effects of Memantine on Hydroquinone-Treated Human Retinal Pigment Epithelium Cells and Human Retinal Müller Cells.

    Science.gov (United States)

    Moustafa, Mohamed Tarek; Ramirez, Claudio; Schneider, Kevin; Atilano, Shari R; Limb, Gloria Astrid; Kuppermann, Baruch D; Kenney, Maria Cristina

    2017-10-01

    Memantine (MEM) acts on the glutamatergic system by blocking N-methyl-d-aspartate (NMDA) glutamate receptors. The role that MEM plays in protecting retinal cells is unknown. Hydroquinone (HQ) is one of the cytotoxic components in cigarette smoke. In the present study, we tested whether pretreatment with MEM could protect against the cytotoxic effects of HQ on human retinal pigment epithelium cells (ARPE-19) and human retinal Müller cells (MIO-M1) in vitro. Cells were plated, pretreated for 6 h with 30 μM of MEM, and then exposed for 24 h to 200, 100, 50, and 25 μM of HQ while MEM was still present. Cell viability (CV), reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and lactate dehydrogenase (LDH) release assays were performed. HQ-treated cells showed a dose-dependent decrease in CV and ΔΨm, but an increase in ROS production and LDH levels in both cell lines. MEM pretreatment reversed the CV in 50, 100, and 200 μM doses in ARPE-19 cells and at all HQ concentrations in MIO-M1 cells compared to HQ-treated cultures. ROS production was reversed in all HQ concentrations in both cell lines. ΔΨm was significantly increased after MEM pretreatment only in 50 μM HQ concentration for both cell lines. LDH levels were decreased at 50 and 25 μM HQ in ARPE-19 and MIO-M1 cells, respectively. HQ-induced toxicity is concentration dependent in ARPE-19 and MIO-M1 cultures. MEM exerts protective effects against HQ-induced toxicity on human retinal pigment epithelial and Müller cells in vitro.

  15. Differential effects of Viscum album extract IscadorQu on cell cycle progression and apoptosis in cancer cells.

    Science.gov (United States)

    Harmsma, Marjan; Grommé, Monique; Ummelen, Monique; Dignef, Wendy; Tusenius, Karel Jan; Ramaekers, Frans C S

    2004-12-01

    Extracts from European mistletoe or Viscum album L. have been reported to exert cytotoxic and immunomodulatory effects in vitro and in vivo. The mechanism of this anti-tumoral activity is however, largely unknown. In this study we tested the hypothesis that IscadorQu, an aqueous fermented extract from the European mistletoe grown on oaks, induces tumor regression by cell cycle inhibition and/or interference with apoptotic signaling pathways in cancer cells. Also a possible effect on angiogenesis, which is a prerequisite for tumor growth in vivo, is studied in endothelial cell cultures. Furthermore, we examined which apoptotic signaling route is activated by staining cells for specific pro-apoptotic proteins. To characterize these properties, 6 different human cancer cell lines, one epidermis derived cell line and 2 endothelial cell cultures were incubated with different concentrations of IscadorQu. Cell cycle kinetics parameters were measured by bromodeoxyuridine (BrdU) pulse labeling and tubulin staining. Apoptotic responses were detected by M30 CytoDeath or Annexin V/propidium iodide assays. Characterization of the apoptotic pathway was performed by staining cells for active caspase 3, active caspase 8, cytochrome C and chloromethyl-X-rosamine. The results of this study show that sensitivity to IscadorQu treatment varies strongly between different cell lines. In sensitive cell lines, including tumor and endothelial cell cultures, IscadorQu caused early cell cycle inhibition followed by apoptosis in a dose-dependent manner. Apoptosis was induced by activating the mitochondrial but not the death receptor-dependent pathway.

  16. Effects of heat treatment and concentration of fish serum on cell growth in adhesion culture of Chinese hamster ovary cells

    OpenAIRE

    Fujiwara, Masashi; Tsukada, Ryohei; Shioya, Itaru; Takagi, Mutsumi

    2009-01-01

    The effects of heat treatment and concentration of fish serum (FS) on cell growth and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) production in an adhesion culture of recombinant Chinese hamster ovary (CHO) cells, DR1000L4N, were investigated. The addition of heat treated FS instead of non-heat-treated FS improved cell growth in terms of cell density, which reached 60% that in 10% fetal calf serum (FCS)-containing medium (FCS medium). A decrease in FS concentration from 1...

  17. An Investigation of the Effects of Raw Garlic on Radiation-induced Bystander Effects in MCF7 Cells

    Directory of Open Access Journals (Sweden)

    Shokouhozaman Soleymanifard

    2014-11-01

    Full Text Available Introduction Radiation-induced bystander effect (RIBE is a phenomenon in which radiation signals are transmitted from irradiated cells to non-irradiated ones, inducing radiation effects in these cells. RIBE plays an effective role in radiation response at environmentally relevant low doses and in radiotherapy, given its impact on adjacent normal tissues or those far from the irradiated tumor. Reactive oxygen species contribute to RIBE induction. Therefore, the present study was conducted to investigate the possible inhibitory effects of garlic, as an antioxidant-containing plant, on RIBE. Materials and Methods MCF7 cells, treated with raw garlic extracts, were irradiated by 60Co gamma rays, and their culture medium was transferred to non-irradiated autologous bystander cells. Percentage cell viability and micronucleus formation in both irradiated and bystander cells were examined and compared with corresponding cell groups, not treated with garlic. Results Treatment with garlic extract reduced the number of micronucleus-containing cells in both irradiated and bystander cells. However, it only increased the percentage cell viability in bystander cells, not the irradiated ones. Conclusion RIBE was effectively suppressed by raw garlic extracts. Inhibitory effects of raw garlic may be of particular importance for exposure to environmentally relevant low doses, where RIBE dominates direct radiation effects. They are also partially important for addressing the limited therapeutic gain of radiotherapy, as they may only increase the percentage cell viability of bystander cells, not the directly irradiated tumor cells. However, more comprehensive in-vivo research regarding garlic treatment duration is required to support the obtained results.

  18. Effect of sirolimus on urinary bladder cancer T24 cell line

    OpenAIRE

    Oliveira Paula A; Ribeiro Eufemia; Botelho Pedro; Pinto-Leite Rosario; Santos Lucios

    2009-01-01

    Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus in...

  19. Effect of monocular deprivation on rabbit neural retinal cell densities

    Directory of Open Access Journals (Sweden)

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  20. Effects of chlorhexidine on stem cells from exfoliated deciduous teeth

    Directory of Open Access Journals (Sweden)

    Yuan-Yu Tu

    2015-01-01

    Conclusion: Different concentrations of CHX can inhibit SHED cell proliferation in a dose- and time-dependent manner. In addition, the mineralization potential of SHED cells is inhibited to some degree by different concentrations of CHX.

  1. Thermal effects investigation on electrical properties of silicon solar cells treated by laser irradiation

    Directory of Open Access Journals (Sweden)

    Ali Pourakbar Saffar

    2014-12-01

    Full Text Available In this paper, we were investigated electrical properties of monocrystalline and polycrystalline silicon solar cells due to laser irradiation with 650 nm wavelength in two states, proximate irradiation and via optics setup. Thermal effect on the cell surface due to laser irradiation was investigated on electrical properties too. Electrical parameters investigation of solar cells illustrates cell excitement via laser irradiation and efficiency decreases due to cell surface temperature increase. Monocrystalline parameters change with uniform shape due to thermal effect and laser irradiation toward polycrystalline cells.

  2. Effect of culture age, protectants, and initial cell concentration on viability of freeze-dried cells of Metschnikowia pulcherrima.

    Science.gov (United States)

    Spadaro, Davide; Ciavorella, Annalisa Alessandra; Lopez-Reyes, Jorge Giovanny; Garibaldi, Angelo; Gullino, Maria Lodovica

    2010-10-01

    The effect of freeze-drying using different lyoprotectants at different concentrations on the viability and biocontrol efficacy of Metschnikowia pulcherrima was evaluated. The effects of initial yeast cell concentration and culture age on viability were also considered. Yeast cells grown for 36 h were more resistant to freeze-drying than were 48 h cells. An initial concentration of 10⁸ cells·mL⁻¹ favoured the highest survival after freeze-drying. When maltose (25%, m/v) was used as protectant, a high cell viability was obtained (64.2%). Cells maintained a high viability after 6 months of storage at 4 °C. The biocontrol efficacy of freeze-dried cells was similar to the activity of fresh cells on 'Gala' apples and was slightly lower on 'Golden Delicious' apples. After optimizing freeze-drying conditions, the viability of M. pulcherrima cells was similar to that obtained in other studies. The results constitute a first step towards the commercial development of M. pulcherrima as a biocontrol agent.

  3. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  4. Comparing the level of bystander effect in a couple of tumor and normal cell lines.

    Science.gov (United States)

    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T Toossi

    2012-04-01

    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of (60)Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P MRC5 cells (P MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.

  5. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells.

    Science.gov (United States)

    Moniri, M R; Sun, X-Y; Rayat, J; Dai, D; Ao, Z; He, Z; Verchere, C B; Dai, L-J; Warnock, G L

    2012-09-01

    Mesenchymal stem cells (MSCs) have attracted great interest in cancer therapy owing to their tumor-oriented homing capacity and the feasibility of autologous transplantation. Currently, pancreatic cancer patients face a very poor prognosis, primarily due to the lack of therapeutic strategies with an effective degree of specificity. Anticancer gene-engineered MSCs specifically target tumor sites and can produce anticancer agents locally and constantly. This study was performed to characterize pancreas-derived MSCs and investigate the effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-engineered MSCs on pancreatic cancer cells under different culture conditions. Pancreas-derived MSCs exhibited positive expression on CD44, CD73, CD95, CD105, negative on CD34 and differentiated into adipogenic and osteogenic cells. TRAIL expression was assessed by both enzyme-linked immunosorbent assay and western blot analysis. Different patterns of TRAIL receptor expression were observed on the pancreatic cancer cell lines, including PANC1, HP62, ASPC1, TRM6 and BXPC3. Cell viability was assessed using a real-time monitoring system. Pancreatic cancer cell death was proportionally related to conditioned media from MSC(nsTRAIL) and MSC(stTRAIL). The results suggest that MSCs exhibit intrinsic inhibition of pancreatic cancer cells and that this effect can be potentiated by TRAIL-transfection on death receptor-bearing cell types.

  6. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    Directory of Open Access Journals (Sweden)

    Jon-Magnus Tangen

    2017-01-01

    Full Text Available Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7% and Grifola frondosa (2.9%, has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.

  7. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    Science.gov (United States)

    Holien, Toril; Mirlashari, Mohammad Reza; Misund, Kristine

    2017-01-01

    Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan. PMID:29238712

  8. Saccharomyces cerevisiae cell wall products: The effects on gut ...

    African Journals Online (AJOL)

    ... no differences between treatments. From the results of this study it appears as if yeast cell wall preparations can contribute to the gastrointestinal health and performance of broiler chickens by affecting mucus secreting goblet cells in a favourable manner. Keywords: Yeast, villi width and height, growth rate, goblet cells ...

  9. Cytotoxic effect of TDZ on human cervical cancer cells.

    Science.gov (United States)

    Enkhtaivan, Gansukh; Kim, Doo Hwan; Pandurangan, Muthuraman

    2017-08-01

    The present study investigates the anticancer activity of Thidiazuron (TDZ). Anticancer activity of TDZ was evaluated in cervical carcinoma cells (HeLa cells). Sulforhodamine-B (SRB) assay indicates that TDZ was about 100 times more toxic to the cancer cell than normal cells. TUNEL assay showed TDZ induced DNA damage in tumor cells. The loss of mitochondrial membrane potential (MMP) in cancer cells was observed following TDZ treatment. The Bax and bcl-2 gene expression ratio are highly responsible for the regulation of MMP balance, and these ratio was significantly altered following TDZ treatment. The p53 and caspase-3 expressions were increased in cancer cells following treatment. Caspase-3 activation is the key factor for apoptosis. Cytotoxicity of TDZ on HeLa cells was 100 times higher than normal kidney cell (MDCK cells). Moreover, the anticancer activity of TDZ was tested by DNA damage, mitochondrial dysfunction, some gene expression and caspase-3 inhibition in silico. TDZ detected has higher ability on early apoptosis of cancer cell through DNA damage. Additionally, cancer cellular MMP was significantly reduced under inoculation of TDZ. In silico assay confirmed that TDZ was able to bind with the active site of the capase-3 protein. Therefore, taking all these data together it is suggested that the TDZ may be a potential agent to act against cervical cancer cells. Copyright © 2017. Published by Elsevier B.V.

  10. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells.

    Science.gov (United States)

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2016-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3