WorldWideScience

Sample records for progenitor proliferation providing

  1. Harmine stimulates proliferation of human neural progenitors

    Directory of Open Access Journals (Sweden)

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  2. Prostate progenitor cells proliferate in response to castration

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    2014-07-01

    Full Text Available Androgen-deprivation is a mainstay of therapy for advanced prostate cancer but tumor regression is usually incomplete and temporary because of androgen-independent cells in the tumor. It has been speculated that these tumor cells resemble the stem/progenitor cells of the normal prostate. The purpose of this study was to examine the response of slow-cycling progenitor cells in the adult mouse prostate to castration. Proliferating cells in the E16 urogenital sinus were pulse labeled by BrdU administration or by doxycycline-controlled labeling of the histone-H2B GFP mouse. A small population of labeled epithelial cells in the adult prostate localized at the junction of the prostatic ducts and urethra. Fluorescence-activated cell sorting (FACS showed that GFP label-retaining cells were enriched for cells co-expressing stem cell markers Sca-1, CD133, CD44 and CD117 (4- marker cells; 60-fold enrichment. FACS showed, additionally, that 4-marker cells were androgen receptor positive. Castration induced proliferation and dispersal of E16 labeled cells into more distal ductal segments. When naïve adult mice were administered BrdU daily for 2 weeks after castration, 16% of 4-marker cells exhibited BrdU label in contrast to only 6% of all epithelial cells (P < 0.01. In sham-castrated controls less than 4% of 4-marker cells were BrdU labeled (P < 0.01. The unexpected and admittedly counter-intuitive finding that castration induced progenitor cell proliferation suggests that androgen deprivation therapy in men with advanced prostate cancer could not only exert pleiotrophic effects on tumor sub-populations but may induce inadvertent expansion of tumor stem cells.

  3. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  4. c-Myb Regulates Proliferation and Differentiation of Adventitial Sca1+ Vascular Smooth Muscle Cell Progenitors by Transactivation of Myocardin.

    Science.gov (United States)

    Shikatani, Eric A; Chandy, Mark; Besla, Rickvinder; Li, Cedric C; Momen, Abdul; El-Mounayri, Omar; Robbins, Clinton S; Husain, Mansoor

    2016-07-01

    Vascular smooth muscle cells (VSMCs) are believed to dedifferentiate and proliferate in response to vessel injury. Recently, adventitial progenitor cells were implicated as a source of VSMCs involved in vessel remodeling. c-Myb is a transcription factor known to regulate VSMC proliferation in vivo and differentiation of VSMCs from mouse embryonic stem cell-derived progenitors in vitro. However, the role of c-Myb in regulating specific adult vascular progenitor cell populations was not known. Our objective was to examine the role of c-Myb in the proliferation and differentiation of Sca1(+) adventitial VSMC progenitor cells. Using mice with wild-type or hypomorphic c-myb (c-myb(h/h)), BrdU (bromodeoxyuridine) uptake and flow cytometry revealed defective proliferation of Sca1(+) adventitial VSMC progenitor cells at 8, 14, and 28 days post carotid artery denudation injury in c-myb(h/h) arteries. c-myb(h/h) cKit(+)CD34(-)Flk1(-)Sca1(+)CD45(-)Lin(-) cells failed to proliferate, suggesting that c-myb regulates the activation of specific Sca1(+) progenitor cells in vivo and in vitro. Although expression levels of transforming growth factor-β1 did not vary between wild-type and c-myb(h/h) carotid arteries, in vitro differentiation of c-myb(h/h) Sca1(+) cells manifested defective transforming growth factor-β1-induced VSMC differentiation. This is mediated by reduced transcriptional activation of myocardin because chromatin immunoprecipitation revealed c-Myb binding to the myocardin promoter only during differentiation of Sca1(+) cells, myocardin promoter mutagenesis identified 2 specific c-Myb-responsive binding sites, and adenovirus-mediated expression of myocardin rescued the phenotype of c-myb(h/h) progenitors. These data support a role for c-Myb in the regulation of VSMC progenitor cells and provide novel insight into how c-myb regulates VSMC differentiation through myocardin. © 2016 American Heart Association, Inc.

  5. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis.

    Science.gov (United States)

    Beverdam, Annemiek; Claxton, Christina; Zhang, Xiaomeng; James, Gregory; Harvey, Kieran F; Key, Brian

    2013-06-01

    Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.

  6. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

    Directory of Open Access Journals (Sweden)

    Yang Xian-Jie

    2009-08-01

    Full Text Available Abstract Background The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. Results We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. Conclusion These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase

  7. Effect of hypoxia on the proliferation of murine cornea limbal epithelial progenitor cells in vitro.

    Science.gov (United States)

    Ma, Xiao-Li; Liu, Han-Qiang

    2011-01-01

    To investigate the effect of hypoxia on the proliferation of mouse corneal epithelial cells in vitro. Mouse corneal epithelial cells(MCEs) were cultured in normoxia (210mL/L O(2) and 50mL/L CO(2)) and hypoxia (20mL/L O(2) and 50mL/L CO(2)), respectively. Colony forming efficiency (CFE) and cell proliferation were determined. The expression of corneal epithelial progenitor cell marker p63 and K19 was investigated by immunostaining. Normoxic colonies were smaller compared with colonies formed in hypoxia. CFE was (12.50±1.50)% in hypoxic cultures, which was similar compared with normoxia cultures [(11.13±1.86)%, P>0.05)]. Cell proliferation was enhanced in hypoxia. Progenitor markers p63 and K19 were expressed in most cells under both normoxic and hypoxic conditions. Murine limbal epithelial progenitor cells can be efficiently expanded in hypoxic conditions.

  8. Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via β-catenin.

    Science.gov (United States)

    Li, Yanxin; Jiao, Jianwei

    2017-07-03

    Histone cell cycle regulator (HIRA) is a histone chaperone and has been identified as an epigenetic regulator. Subsequent studies have provided evidence that HIRA plays key roles in embryonic development, but its function during early neurogenesis remains unknown. Here, we demonstrate that HIRA is enriched in neural progenitor cells, and HIRA knockdown reduces neural progenitor cell proliferation, increases terminal mitosis and cell cycle exit, and ultimately results in premature neuronal differentiation. Additionally, we demonstrate that HIRA enhances β-catenin expression by recruiting H3K4 trimethyltransferase Setd1A, which increases H3K4me3 levels and heightens the promoter activity of β-catenin. Significantly, overexpression of HIRA, HIRA N-terminal domain, or β-catenin can override neurogenesis abnormities caused by HIRA defects. Collectively, these data implicate that HIRA, cooperating with Setd1A, modulates β-catenin expression and then regulates neurogenesis. This finding represents a novel epigenetic mechanism underlying the histone code and has profound and lasting implications for diseases and neurobiology. © 2017 Li and Jiao.

  9. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation

    Science.gov (United States)

    Zhu, Yuan; Harada, Takayuki; Liu, Li; Lush, Mark E.; Guignard, Frantz; Harada, Chikako; Burns, Dennis K.; Bajenaru, M. Livia; Gutmann, David H.; Parada, Luis F.

    2009-01-01

    Summary The gene responsible for neurofibromatosis type 1 (NF1) encodes a tumor suppressor that functions as a negative regulator of the Ras proto-oncogene. Individuals with germline mutations in NF1 are predisposed to the development of benign and malignant tumors of the peripheral and central nervous system (CNS). Children with this disease suffer a high incidence of optic gliomas, a benign but potentially debilitating tumor of the optic nerve; and an increased incidence of malignant astrocytoma, reactive astrogliosis and intellectual deficits. In the present study, we have sought insight into the molecular and cellular basis of NF1-associated CNS pathologies. We show that mice genetically engineered to lack NF1 in CNS exhibit a variety of defects in glial cells. Primary among these is a developmental defect resulting in global reactive astrogliosis in the adult brain and increased proliferation of glial progenitor cells leading to enlarged optic nerves. As a consequence, all of the mutant optic nerves develop hyperplastic lesions, some of which progress to optic pathway gliomas. These data point to hyperproliferative glial progenitors as the source of the optic tumors and provide a genetic model for NF1-associated astrogliosis and optic glioma. PMID:16314489

  10. Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice.

    Science.gov (United States)

    Choi, Yu-Jin; Choi, Yun-Sik

    2016-02-01

    Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.

  11. Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis

    DEFF Research Database (Denmark)

    Ye, Yu-Xiang; Calcagno, Claudia; Binderup, Tina

    2015-01-01

    diet (r(2)=0.33, Pinflamed atherosclerotic vasculature with the highest (18)F-fluorodeoxyglucose uptake enriched (18)F-FLT. In patients...... with atherosclerosis, (18)F-FLT signal significantly increased in the inflamed carotid artery and in the aorta. CONCLUSIONS: (18)F-FLT positron emission tomography imaging may serve as an imaging biomarker for cell proliferation in plaque and hematopoietic activity in individuals with atherosclerosis....

  12. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Pablo Cruz-Martinez

    Full Text Available Fibroblast growth factor 8 (FGF8 is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.

  13. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells

    Directory of Open Access Journals (Sweden)

    Jing-Peng Fu

    2016-08-01

    Full Text Available Abstract Living organisms are exposed to the geomagnetic field (GMF throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF, leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT, produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2, and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.

  14. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  15. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Koike

    Full Text Available In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2, a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3, which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3.

  16. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro.

    Science.gov (United States)

    Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Govitrapong, Piyarat

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH-induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21(CIP) (1) (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells.

    Science.gov (United States)

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-12-06

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells.

  18. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Directory of Open Access Journals (Sweden)

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  19. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma.

    Science.gov (United States)

    Deng, Zhong; Wang, Zhuo; Xiang, Chaomei; Molczan, Aliah; Baubet, Valérie; Conejo-Garcia, Jose; Xu, Xiaowei; Lieberman, Paul M; Dahmane, Nadia

    2012-09-15

    Telomeres play crucial roles in the maintenance of genome integrity and control of cellular senescence. Most eukaryotic telomeres can be transcribed to generate a telomeric repeat-containing RNA (TERRA) that persists as a heterogeneous nuclear RNA and can be developmentally regulated. However, the precise function and regulation of TERRA in normal and cancer cell development remains poorly understood. Here, we show that TERRA accumulates in highly proliferating normal and cancer cells, and forms large nuclear foci, which are distinct from previously characterized markers of DNA damage or replication stress. Using a mouse model for medulloblastoma driven by chronic Sonic hedgehog (SHH) signaling, TERRA RNA was detected in tumor, but not adjacent normal cells using both RNA fluorescence in situ hybridization (FISH) and northern blotting. RNA FISH revealed the formation of TERRA foci (TERFs) in the nuclear regions of rapidly proliferating tumor cells. In the normal developing cerebellum, TERRA aggregates could also be detected in highly proliferating zones of progenitor neurons. SHH could enhance TERRA expression in purified granule progenitor cells in vitro, suggesting that proliferation signals contribute to TERRA expression in responsive tissue. TERRA foci did not colocalize with γH2AX foci, promyelocytic leukemia (PML) or Cajal bodies in mouse tumor tissue. We also provide evidence that TERRA is elevated in a variety of human cancers. These findings suggest that elevated TERRA levels reflect a novel early form of telomere regulation during replication stress and cancer cell evolution, and the TERRA RNA aggregates may form a novel nuclear body in highly proliferating mammalian cells.

  20. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2015-01-01

    Full Text Available Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype.

  1. Proliferation and differentiation potential of mouse adult hepatic progenitor cells cultured in vitro.

    Science.gov (United States)

    Song, Lujun; Wang, Hongshan; Gao, Xiaodong; Shen, Kuntang; Niu, Weixin; Qin, Xinyu

    2010-02-01

    This study aimed to isolate the stem cells or progenitors, if exist, from normal adult mouse liver and investigate their potential of proliferation and differentiation. Hepatocytes were isolated by modified two-step liver perfusion method and centrifugation, and then cultured in modified serumcontaining DMEM for observation more than 60 days. Immunofluorescence technique was applied to check the hepatocytes and to examine the formation of colonies with albumin, alpha-fetoprotein (AFP) and cytokeratin 19 (CK19). Results showed that some hepatocytes that were strongly positive for hepatocyte specific markers albumin on Day 1 in culture, could be activated at Days 2-3, followed by rapid proliferation and formation of colonies. The colonies could expand continually for more than 60 days. On Day 5, all the cells in the colony expressed hepatic stem cell (HSC) markers AFP. With the time of culture, some cells in colonies lost ability to divide at Days 13-15, and differentiated into cells which had a large cytoplasm and some two nuclei, similar to the appearance of mature hepatocytes morphologically. These differentiated cells demonstrated strong expression of albumin. Around Day 30, some big cells appeared in colonies and expressed bile duct cell marker CK19. Therefore, this subpopulation of mouse hepatocytes could acquire some characteristics of immature hepatocytes and showed the profile of hepatic progenitor cells with a high proliferating ability and bi-potential of differentiation. They were isolated from normal adult mouse, hence, named adult hepatic progenitor cells (AHPCs). Mouse AHPCs may be used as an HSC model for hepatocytes transplantation and hepatopathy study.

  2. The role of Zic family zinc finger transcription factors in the proliferation and differentiation of retinal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Yui [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan); Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Division of Orthoptics, Teikyo University School of Medical Care and Technology, Tokyo (Japan); Baba, Yukihiro [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Watanabe, Sumiko, E-mail: sumiko@ims.u-tokyo.ac.jp [Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Zic transcription factors expressed early retinal progenitor cells. Black-Right-Pointing-Pointer Zics sustain proliferation activity of retinal progenitor cells. Black-Right-Pointing-Pointer Overexpression of Zic in retinal progenitors perturbed rod differentiation. Black-Right-Pointing-Pointer Fate determination to rod photoreceptor was not affected. -- Abstract: Members of the Zic family of zinc finger transcription factors play critical roles in a variety of developmental processes. Using DNA microarray analysis, we found that Zics are strongly expressed in SSEA-1-positive early retinal progenitors in the peripheral region of the mouse retina. Reverse-transcription polymerase chain reaction using mRNA from the retina at various developmental stages showed that Zic1 and Zic2 are expressed in the embryonic retina and then gradually disappear during retinal development. Zic3 is also expressed in the embryonic retina; its expression level slightly decreases but it is expressed until adulthood. We overexpressed Zic1, Zic2, or Zic3 in retinal progenitors at embryonic day 17.5 and cultured the retina as explants for 2 weeks. The number of rod photoreceptors was fewer than in the control, but no other cell types showed significant differences between control and Zic overexpressing cells. The proliferation activity of normal retinal progenitors decreased after 5 days in culture, as observed in normal in vivo developmental processes. However, Zic expressing retinal cells continued to proliferate at days 5 and 7, suggesting that Zics sustain the proliferation activities of retinal progenitor cells. Since the effects of Zic1, 2, and 3 are indistinguishable in terms of differentiation and proliferation of retinal progenitors, the redundant function of Zics in retinal development is suggested.

  3. Growth factors enhance endothelial progenitor cell proliferation under high-glucose conditions.

    Science.gov (United States)

    Li, Wei; Yang, Shiyu Y; Hu, Zhong F; Winslet, Marc C; Wang, Wen; Seifalian, Alexander M

    2009-12-01

    The purpose of this study was to investigate the impact of growth regulators, including growth hormone (GH), insulin-like growth factor 1 (IGF-1), and mechano growth factor (MGF), on endothelial progenitor cell (EPC) proliferation at different glucose concentrations. EPCs were isolated and cultured from peripheral blood samples of healthy volunteers and immunocytochemically characterized after 7 days. The effects of glucose and growth regulators on EPC proliferation were determined with the Alamar Blue and Trypan Blue assays. The effect of glucose supplementation at 2.5, 11.1, and 25.0 mM was examined using cells seeded at densities of 15000, 30000, and 45000 cells/ml. For the GH-treated cells, enhancement of EPC proliferation was detected in the samples supplemented with 11.1 and 25.0 mM glucose. A slight elevation in EPC proliferation was only observed in the IGF-1-treated cells supplemented with 25.0 mM glucose. Significant enhancement of EPC proliferation was observed in MGF-treated cells supplemented with 11.1 and 25.0 mM glucose. All three growth factors demonstrated enhancement of cellular proliferation when the cells were supplemented with 25.0 mM glucose. No enhancement of EPC proliferation by the growth factors was detected in any of the cells supplemented with 2.5 mM glucose. GH, IGF-1, and MGF enhance EPC proliferation under 25.0 mM glucose conditions. The presence of these growth regulators in EPC culture may contribute to protecting EPCs from high-glucose conditions. This action may be of therapeutic relevance contributing to beneficial cardiovascular effects for diabetic patient.

  4. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs.

    Science.gov (United States)

    Yasen, Miersalijiang; Fei, Qinming; Hutton, William C; Zhang, Jian; Dong, Jian; Jiang, Xiaoxing; Zhang, Feng

    2013-05-01

    Basic knowledge about the normal regeneration process within the intervertebral disc (IVD) is important to the understanding of the underlying biology. The presence of progenitor and stem cells in IVD has been verified. However, changes of number of progenitor and stem cells with age are still unknown. In this study, changes of cell proliferation and progenitor cell markers with age in IVD cells from rabbits of two different ages were investigated using flow cytometry, immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Proliferating cell nuclear antigen (PCNA) was chosen as a marker for proliferation, and Notch1, Jagged1, C-KIT, CD166 were chosen as stem/progenitor cell markers. Cell cycle analysis showed that cell number in the G2/M phase of the young rabbits was significantly higher than that of mature rabbits. Immunohistochemical staining demonstrated the expression of PCNA, C-KIT, CD166, Notch1, and Jagged1 in both young and mature annulus fibrosus (AF). Protein expressions of these cell markers in the young rabbits were all significantly higher than those in the mature rabbits. The expression levels of PCNA, CD166, C-KIT, Jagged1 were significantly higher in the AF, and PCNA, C-KIT in the nucleus pulposus from young rabbits than those from the mature rabbits. These findings demonstrated that both proliferation and progenitor cells exist in rabbit IVDs and the number of cells expressing proliferation and progenitor cell markers decreases with age in the rabbit IVD cells. Methods that are designed to maintain the endogenous progenitor cells and stimulate their proliferation could be successful in preventing or inhibiting degenerative disc disease.

  5. Centriole Amplification in Zebrafish Affects Proliferation and Survival but Not Differentiation of Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Edo Dzafic

    2015-10-01

    Full Text Available In animal cells, supernumerary centrosomes, resulting from centriole amplification, cause mitotic aberrations and have been associated with diseases, including microcephaly and cancer. To evaluate how centriole amplification impacts organismal development at the cellular and tissue levels, we used the in vivo imaging potential of the zebrafish. We demonstrate that centriole amplification can induce multipolar anaphase, resulting in binucleated cells. Such binucleation causes substantial apoptosis in the neuroepithelium. Interestingly, not all epithelia are similarly sensitive to binucleation, as skin cells tolerate it without entering apoptosis. In the neuroepithelium, however, binucleation leads to tissue degeneration and subsequent organismal death. Notably, this tissue degeneration can be efficiently counterbalanced by compensatory proliferation of wild-type cells. Because the risk for generating a binucleated daughter recurs at every cell division, centriole amplification in the neuroepithelium is especially deleterious during progenitor proliferation. Once cells reach the differentiation phase, however, centriole amplification does not impair neuronal differentiation.

  6. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  7. NKCC1-deficiency results in abnormal proliferation of neural progenitor cells of the lateral ganglionic eminence

    Directory of Open Access Journals (Sweden)

    Ana Cathia Magalhães

    2016-08-01

    Full Text Available The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter NKCC1 is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brains suggesting a potential role in neural development of this region. The ventral telencephalon is a major source for both interneuron and oligodendrocyte precursor cells. Whether NKCC1 is involved in the proliferation of these cell populations remains unknown. In order to assess this question, we monitored several markers for neural, neuronal, and proliferating cells in wild-type and NKCC1 knockout mouse brains. We found that NKCC1 was expressed in neural progenitor cells from the lateral ganglionic eminence (LGE at E12.5. Mice lacking NKCC1 expression displayed reduced PH3-labeled mitotic cells in the ventricular zone and reduced cell cycle reentry. Accordingly, we found a significant reduction of Sp8-labeled immature interneurons migrating from the dorsal LGE in NKCC1-deficient mice at a later developmental stage. Interestingly, at E14.5, NKCC1 regulated also the formation of Olig2-labeled oligodendrocyte precursor cells. Collectively, these findings show that NKCC1 serves in vivo as a modulator of the cell cycle decision in the developing ventral telencephalon at the early stage of neurogenesis. These results present a novel mechanistic avenue to be considered in the recent proposed involvement of chloride transporters in a number of developmentally related diseases such as epilepsy, autism, and schizophrenia.

  8. Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Makiko Okada

    2010-10-01

    Full Text Available Our previous study indicated that both 17β-estradiol (E2, known to be an endogenous estrogen, and bisphenol A (BPA, known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs. The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2, which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1 the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2 the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane‑associated ERs.

  9. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  10. SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina.

    Science.gov (United States)

    Kugler, Martina; Schlecht, Anja; Fuchshofer, Rudolf; Schmitt, Sabrina I; Kleiter, Ingo; Aigner, Ludwig; Tamm, Ernst R; Braunger, Barbara M

    2017-07-01

    The transforming growth factor-β (TGF-β) pathway contributes to maintain the quiescence of adult neural stem and progenitor cells in the brain. In the retina, Müller cells are discussed to represent a glial cell population with progenitor-like characteristics. Here, we aimed to investigate if elevated TGF-β signaling modulates the proliferation of Müller cells during retinal development. We generated mutant mice with a systemic, heterozygous up-regulation of TGF-β signaling by deleting its inhibitor SMAD7. We investigated apoptosis, proliferation, and differentiation of Müller cells in the developing retina. We show that a heterozygous deletion of SMAD7 results in an increased proliferation of Müller cell progenitors in the central retina at postnatal day 4, the time window when Müller cells differentiate in the mouse retina. This in turn results in a thickened retina and inner nuclear layer and a higher number of differentiated Müller cells in the more developed retina. Müller cells in mutant mice contain higher amounts of nestin than those of control animals which indicates that the increase in TGF-β signaling activity during retinal development contribute to maintain some progenitor-like characteristics in Müller cells even after their differentiation period. We conclude that TGF-β signaling influences Müller cell proliferation and differentiation during retinal development.

  11. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    Science.gov (United States)

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  12. Electroacupuncture Promotes Proliferation of Amplifying Neural Progenitors and Preserves Quiescent Neural Progenitors from Apoptosis to Alleviate Depressive-Like and Anxiety-Like Behaviours

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available The present study was designed to investigate the effects of electroacupuncture (EA on depressive-like and anxiety-like behaviours and neural progenitors in the hippocampal dentate gyrus (DG in a chronic unpredictable stress (CUS rat model of depression. After being exposed to a CUS procedure for 2 weeks, rats were subjected to EA treatment, which was performed on acupoints Du-20 (Bai-Hui and GB-34 (Yang-Ling-Quan, once every other day for 15 consecutive days (including 8 treatments, with each treatment lasting for 30 min. The behavioural tests (i.e., forced swimming test, elevated plus-maze test, and open-field entries test revealed that EA alleviated the depressive-like and anxiety-like behaviours of the stressed rats. Immunohistochemical results showed that proliferative cells (BrdU-positive in the EA group were significantly larger in number compared with the Model group. Further, the results showed that EA significantly promoted the proliferation of amplifying neural progenitors (ANPs and simultaneously inhibited the apoptosis of quiescent neural progenitors (QNPs. In a word, the mechanism underlying the antidepressant-like effects of EA is associated with enhancement of ANPs proliferation and preserving QNPs from apoptosis.

  13. Wnt/β-Catenin Signaling Regulates Proliferation of Human Cornea Epithelial Stem/Progenitor Cells

    Science.gov (United States)

    Nakatsu, Martin N.; Ding, Zhenhua; Ng, Madelena Y.; Truong, Thuy T.; Yu, Fei

    2011-01-01

    Purpose. To investigate the expression and role of the Wnt signaling pathway in human limbal stem cells (LSCs). Methods. Total RNA was isolated from the human limbus and central cornea. Limbal or cornea-specific transcripts were identified through quantitative real-time PCR. Protein expression of Wnt molecules was confirmed by immunohistochemistry on human ocular tissue. Activation of Wnt signaling using lithium chloride was achieved in vitro and its effects on LSC differentiation and proliferation were evaluated. Results. Expression of Wnt2, Wnt6, Wnt11, Wnt16b, and four Wnt inhibitors were specific to the limbal region, whereas Wnt3, Wnt7a, Wnt7b, and Wnt10a were upregulated in the central cornea. Nuclear localization of β-catenin was observed in a very small subset of basal epithelial cells only at the limbus. Activation of Wnt/β-catenin signaling increased the proliferation and colony-forming efficiency of primary human LSCs. The stem cell phenotype was maintained, as shown by higher expression levels of putative corneal epithelial stem cell markers, ATP-binding cassette family G2 and ΔNp63α, and low expression levels of mature cornea epithelial cell marker, cytokeratin 12. Conclusions. These findings demonstrate for the first time that Wnt signaling is present in the ocular surface epithelium and plays an important role in the regulation of LSC proliferation. Modulation of Wnt signaling could be of clinical application to increase the efficiency of ex vivo expansion of corneal epithelial stem/progenitor cells for transplantation. PMID:21357396

  14. Resveratrol Inhibits the Proliferation of Neural Progenitor Cells and Hippocampal Neurogenesis*

    Science.gov (United States)

    Park, Hee Ra; Kong, Kyoung Hye; Yu, Byung Pal; Mattson, Mark P.; Lee, Jaewon

    2012-01-01

    Resveratrol is a phytoalexin and natural phenol that is present at relatively high concentrations in peanuts and red grapes and wine. Based upon studies of yeast and invertebrate models, it has been proposed that ingestion of resveratrol may also have anti-aging actions in mammals including humans. It has been suggested that resveratrol exerts its beneficial effects on health by activating the same cellular signaling pathways that are activated by dietary energy restriction (DR). Some studies have reported therapeutic actions of resveratrol in animal models of metabolic and neurodegenerative disorders. However, the effects of resveratrol on cell, tissue and organ function in healthy subjects are largely unknown. In the present study, we evaluated the potential effects of resveratrol on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of healthy young adult mice. Resveratrol reduced the proliferation of cultured mouse multi-potent NPCs, and activated AMP-activated protein kinase (AMPK), in a concentration-dependent manner. Administration of resveratrol to mice (1–10 mg/kg) resulted in activation of AMPK, and reduced the proliferation and survival of NPCs in the dentate gyrus of the hippocampus. Resveratrol down-regulated the levels of the phosphorylated form of cyclic AMP response element-binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Finally, resveratrol-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that resveratrol, unlike DR, adversely affects hippocampal neurogenesis and cognitive function by a mechanism involving activation of AMPK and suppression of CREB and BDNF signaling. PMID:23105098

  15. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Schulz, Robert A., E-mail: rschulz@nd.edu

    2014-10-24

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to lead to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.

  16. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuping Luo

    2010-04-01

    Full Text Available Fragile X syndrome (FXS, the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP. FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs. We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  17. USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors.

    Science.gov (United States)

    Bridges, Caitlin R; Tan, Men-Chee; Premarathne, Susitha; Nanayakkara, Devathri; Bellette, Bernadette; Zencak, Dusan; Domingo, Deepti; Gecz, Jozef; Murtaza, Mariyam; Jolly, Lachlan A; Wood, Stephen A

    2017-03-24

    USP9X, is highly expressed in neural progenitors and, essential for neural development in mice. In humans, mutations in USP9X are associated with neurodevelopmental disorders. To understand USP9X's role in neural progenitors, we studied the effects of altering its expression in both the human neural progenitor cell line, ReNcell VM, as well as neural stem and progenitor cells derived from Nestin-cre conditionally deleted Usp9x mice. Decreasing USP9X resulted in ReNcell VM cells arresting in G0 cell cycle phase, with a concomitant decrease in mTORC1 signalling, a major regulator of G0/G1 cell cycle progression. Decreased mTORC1 signalling was also observed in Usp9x-null neurospheres and embryonic mouse brains. Further analyses revealed, (i) the canonical mTORC1 protein, RAPTOR, physically associates with Usp9x in embryonic brains, (ii) RAPTOR protein level is directly proportional to USP9X, in both loss- and gain-of-function experiments in cultured cells and, (iii) USP9X deubiquitlyating activity opposes the proteasomal degradation of RAPTOR. EdU incorporation assays confirmed Usp9x maintains the proliferation of neural progenitors similar to Raptor-null and rapamycin-treated neurospheres. Interestingly, loss of Usp9x increased the number of sphere-forming cells consistent with enhanced neural stem cell self-renewal. To our knowledge, USP9X is the first deubiquitylating enzyme shown to stabilize RAPTOR.

  18. 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus.

    Science.gov (United States)

    Jha, Shanker; Rajendran, Rajeev; Fernandes, Kimberly A; Vaidya, Vidita A

    2008-08-22

    Adult hippocampal neurogenesis is reported to be a target of antidepressants, drugs of abuse and animal models of depression, suggesting a role for this form of structural plasticity in psychopathology. Serotonergic neurotransmission, which is implicated in several psychiatric diseases, has been reported to regulate adult hippocampal neurogenesis. Amongst the serotonergic receptors, the serotonin2A/2C (5-HT2A/2C) receptors play an important role in the actions of antidepressants and the effects of hallucinogenic drugs of abuse. We have used the mitotic marker 5'-bromo-2-deoxyuridine to address the effects of the 5-HT2A/2C receptors on the proliferation of adult hippocampal progenitors following acute or chronic treatment with the hallucinogenic partial agonists, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) and lysergic acid diethylamide (LSD) and the antagonist, Ketanserin. Acute, and chronic, DOI and LSD treatments induced a strong behavioral activation, but did not alter adult hippocampal progenitor proliferation. In striking contrast, Ketanserin treatment resulted in a biphasic regulation with a significant decline (22%) in progenitor proliferation following a single treatment, and a robust increase (46%) observed following chronic administration. These results indicate that hallucinogenic drugs that primarily target the 5-HT2A/2C receptors, in contrast to other drugs of abuse, may not alter adult hippocampal neurogenesis. In addition, our results that enhanced adult hippocampal progenitor proliferation results from a sustained blockade of the 5-HT2A/2C receptors suggest that the 5-HT2A/2C receptors may be an important target for the neurogenic effects of antidepressant treatment.

  19. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 (Plk2). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification.

    Science.gov (United States)

    Huyck, Ryan W; Nagarkar, Maitreyi; Olsen, Nina; Clamons, Samuel E; Saha, Margaret S

    2015-01-01

    Methylmercury (MeHg) is a widespread environmental toxin that preferentially and adversely affects developing organisms. To investigate the impact of MeHg toxicity on the formation of the vertebrate nervous system at physiologically relevant concentrations, we designed a graded phenotype scale for evaluating Xenopus laevis embryos exposed to MeHg in solution. Embryos displayed a range of abnormalities in response to MeHg, particularly in brain development, which is influenced by both MeHg concentration and the number of embryos per ml of exposure solution. A TC50 of ~50μg/l and LC50 of ~100μg/l were found when maintaining embryos at a density of one per ml, and both increased with increasing embryo density. In situ hybridization and microarray analysis showed no significant change in expression of early neural patterning genes including sox2, en2, or delta; however a noticeable decrease was observed in the terminal neural differentiation genes GAD and xGAT, but not xVGlut. PCNA, a marker for proliferating cells, was negatively correlated with MeHg dose, with a significant reduction in cell number in the forebrain and spinal cord of exposed embryos by tadpole stages. Conversely, the number of apoptotic cells in neural regions detected by a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay was significantly increased. These results provide evidence that disruption of embryonic neural development by MeHg may not be directly due to a loss of neural progenitor specification and gene transcription, but to a more general decrease in cell proliferation and increase in cell death throughout the developing nervous system. Copyright © 2014. Published by Elsevier Inc.

  1. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei, E-mail: limeihit@163.com [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing (China); Zhang, Dong-Qing; Wang, Xiang-Zhen [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Xu, Tie-Jun, E-mail: xztjxu@163.com [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing (China)

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Ro 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.

  2. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche.

    Science.gov (United States)

    Yokohama-Tamaki, Tamaki; Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R; Weisgerber, Daniel W; Harley, Brendan A C

    2015-12-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.

  3. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  4. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China); Zhang, Kunshan [Department of Regenerative Medicine, Stem Cell Center, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Yanlu; Wang, Junbang; Cui, Yaru [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China); Li, Siguang, E-mail: siguangli@163.com [Department of Regenerative Medicine, Stem Cell Center, Tongji University School of Medicine, Shanghai 200092 (China); Luo, Yuping, E-mail: luoyuping@163.com [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China)

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fate specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.

  5. Promotion of adhesion and proliferation of endothelial progenitor cells on decellularized valves by covalent incorporation of RGD peptide and VEGF.

    Science.gov (United States)

    Zhou, Jianliang; Ding, Jingli; Nie, Bin'en; Hu, Shidong; Zhu, Zhigang; Chen, Jia; Xu, Jianjun; Shi, Jiawei; Dong, Nianguo

    2016-09-01

    Tissue engineered heart valve is a promising alternative to current heart valve surgery, for its capability of growth, repair, and remodeling. However, extensive development is needed to ensure tissue compatibility, durability and antithrombotic potential. This study aims to investigate the biological effects of multi-signal composite material of polyethyl glycol-cross-linked decellularized valve on adhesion and proliferation of endothelial progenitor cells. Group A to E was decellularized valve leaflets, composite material of polyethyl glycol-cross-linked decellularized valves leaflets, vascular endothelial growth factor-composite materials, Arg-Gly-Asp peptide-composite materials and multi-signal modified materials of polyethyl glycol-cross-linked decellularized valve leaflets, respectively. The endothelial progenitor cells were seeded for each group, cell adhesion and proliferation were detected and neo-endothelium antithrombotic function of the multi-signal composite materials was evaluated. At 2, 4, and 8 h after the seeding, the cell numbers and 3H-TdR incorporation in group D were the highest. At 2, 4, and 8 days after the seeding, the cell numbers and 3H-TdR incorporation were significantly higher in groups C, D, and E compared with groups A and B (P cell numbers and the expression of t-PA and eons in the neo-endothelium were quite similar to those in the human umbilical vein endothelial cells at 2, 4, and 8 days after the seeding. The Arg-Gly-Asp- peptides (a sequential peptide composed of arginine (Arg), glycine (Gly) and aspartic acid (Asp)) and VEGF-conjugated onto the composite material of PEG-crosslinked decellularized valve leaflets synergistically promoted the adhesion and proliferation of endothelial progenitor cells on the composite material, which may help in tissue engineering of heart valves.

  6. Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Lombardi

    2014-06-01

    Full Text Available Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  7. Disturbances in the positioning, proliferation and apoptosis of neural progenitors contribute to subcortical band heterotopia formation.

    Science.gov (United States)

    Fitzgerald, M P; Covio, M; Lee, K S

    2011-03-10

    Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6(+) and Tbr2(+) progenitors are mislocalized in tish(+/-) and tish(-/-)- neocortex throughout neurogenesis. In addition, mislocalized tish(-/-) progenitors possess a longer cell cycle than wild type or normally-positioned tish(-/-) progenitors, owing to a lengthened G(2)+M+G(1) time. This mislocalization is not associated with adherens junction breakdown or loss of radial glial polarity in the ventricular zone (VZ), as assessed by immunohistochemistry against phalloidin (to identify F-actin), aPKC-λ and Par3. However, vimentin immunohistochemistry indicates that the radial glial scaffold is disrupted in the region of the tish(-/-) heterotopia. Moreover, lineage tracing experiments using in utero electroporation in tish(-/-) neocortex demonstrate that mislocalized progenitors do not retain contact with the ventricular surface and that ventricular/subventricular zone (SVZ) progenitors produce neurons that migrate into both the heterotopia and cortical plate (CP). Taken together, these findings define a series of developmental errors contributing to SBH formation that differs fundamentally from a primary error in neuronal migration. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2018-02-01

    Full Text Available Overactive p53 has been proposed as an important pathophysiological factor for bone marrow failure syndromes, including Fanconi anemia (FA. Here, we report a p53-dependent effect on hematopoietic stem and progenitor cell (HSPC proliferation in mice deficient for the FA gene Fanca. Deletion of p53 in Fanca−/− mice leads to replicative exhaustion of the hematopoietic stem cell (HSC in transplant recipients. Using Fanca−/− HSCs expressing the separation-of-function mutant p53515C transgene, which selectively impairs the p53 function in apoptosis but keeps its cell-cycle checkpoint activities intact, we show that the p53 cell-cycle function is specifically required for the regulation of Fanca−/− HSC proliferation. Our results demonstrate that p53 plays a compensatory role in preventing FA HSCs from replicative exhaustion and suggest a cautious approach to manipulating p53 signaling as a therapeutic utility in FA.

  9. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development.

    Science.gov (United States)

    Schlieve, Christopher R; Mojica, Salvador Garcia; Holoyda, Kathleen A; Hou, Xiaogang; Fowler, Kathryn L; Grikscheit, Tracy C

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal

  10. The role of atypical protein kinase C in CSF-1-dependent Erk activation and proliferation in myeloid progenitors and macrophages.

    Directory of Open Access Journals (Sweden)

    Angel W Lee

    Full Text Available Colony stimulating factor-1 (CSF-1 or M-CSF is the major physiological regulator of the proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage. CSF-1 binds to a receptor tyrosine kinase, the CSF-1 receptor (CSF-1R. Multiple pathways are activated downstream of the CSF-1R; however, it is not clear which pathways regulate proliferation and survival. Here, we investigated the role of atypical protein kinase Cs (PKCζ in a myeloid progenitor cell line that expressed CSF-1R (32D.R and in primary murine bone marrow derived macrophages (BMMs. In 32D.R cells, CSF-1 induced the phosphorylation of PKCζ and increased its kinase activity. PKC inhibitors and transfections with mutant PKCs showed that optimal CSF-1-dependent Erk activation and proliferation depended on the activity of PKCζ. We previously reported that CSF-1 activated the Erk pathway through an A-Raf-dependent and an A-Raf independent pathway (Lee and States, Mol. Cell. Biol.18, 6779. PKC inhibitors did not affect CSF-1 induced Ras and A-Raf activity but markedly reduced MEK and Erk activity, implying that PKCζ regulated the CSF-1-Erk pathway at the level of MEK. PKCζ has been implicated in activating the NF-κB pathway. However, CSF-1 promoted proliferation in an NF-κB independent manner. We established stable 32D.R cell lines that overexpressed PKCζ. Overexpression of PKCζ increased the intensity and duration of CSF-1 induced Erk activity and rendered cells more responsive to CSF-1 mediated proliferation. In contrast to 32D.R cells, PKCζ inhibition in BMMs had only a modest effect on proliferation. Moreover, PKCζ -specific and pan-PKC inhibitors induced a paradoxical increase in MEK-Erk phosphorylation suggesting that PKCs targeted a common negative regulatory step upstream of MEK. Our results demonstrated that CSF-1 dependent Erk activation and proliferation are regulated differentially in progenitors and differentiated cells.

  11. Regulation of neural progenitor proliferation and survival by beta1 integrins

    DEFF Research Database (Denmark)

    Leone, Dino P; Relvas, João B; Campos, Lia S

    2005-01-01

    Neural stem cells give rise to undifferentiated nestin-positive progenitors that undergo extensive cell division before differentiating into neuronal and glial cells. The precise control of this process is likely to be, at least in part, controlled by instructive cues originating from...

  12. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  13. Endogenous Cannabinoid Signaling Is Required for Voluntary Exercise-induced Enhancement of Progenitor Cell Proliferation in the Hippocampus

    Science.gov (United States)

    Hill, Matthew N.; Titterness, Andrea K.; Morrish, Anna C.; Carrier, Erica J.; Lee, Tiffany T.-Y.; Gil-Mohapel, Joana; Gorzalka, Boris B.; Hillard, Cecilia J.; Christie, Brian R.

    2009-01-01

    Voluntary exercise and endogenous cannabinoid activity have independently been shown to regulate hippocampal plasticity. The aim of the current study was to determine whether the endocannabinoid system is regulated by voluntary exercise and if these changes contribute to exercise-induced enhancement of cell proliferation. In Experiment 1, eight days of free access to a running wheel increased the agonist binding site density of the cannabinoid CB1 receptor; CB1 receptor-mediated GTPγS binding; and the tissue content of the endocannabinoid anandamide in the hippocampus but not in the prefrontal cortex. In Experiment 2, the CB1 receptor antagonist AM251 (1 mg/kg) was administered daily to animals given free access to a running wheel for 8 days, after which cell proliferation in the hippocampus was examined through immunohistochemical analysis of the cell cycle protein Ki-67. Voluntary exercise increased proliferation of progenitor cells, as evidenced by the increase in the number of Ki-67 positive cells in the granule cell layer of the dentate gyrus in the hippocampus. However, this effect was abrogated by concurrent treatment with AM251, indicating that the increase in endocannabinoid signaling in the hippocampus is required for the exercise-induced increase in cell proliferation. These data demonstrate that the endocannabinoid system in the hippocampus is sensitive to environmental change and suggest that it is a mediator of experience-induced plasticity. PMID:19489006

  14. Ciliary neurotrophic factor reduces proliferation and promotes differentiation of TH-MYCN transformed sympathoadrenal progenitors

    Science.gov (United States)

    DeWitt, John; Pappas, Anthony; Nishi, Rae

    2014-01-01

    Neuroblastoma is a childhood cancer caused by transformation of sympathoadrenal progenitors. By following the formation of tumors in homozygous TH-MYCN mice, an established mouse model of neuroblastoma, we were able to capture transformed cells prior to the formation of large, vascularized tumors in order to determine the responsiveness of cells to neurotrophic factors. We discovered that the CNTF receptor is abundantly expressed in tumor cells from these mice. Furthermore, CNTF, but not nerve growth factor, brain-derived nerve growth factor, NT-3, or glial cell line derived neurotrophic factor, promoted neuronal differentiation and withdrawal from the cell cycle. Thus, transformation of sympathoadrenal progenitors by MYCN overexpression differentially affects responsiveness to neurotrophic molecules. PMID:25171250

  15. Ciliary neurotrophic factor reduces the proliferation and promotes the differentiation of TH- MYCN transformed sympathoadrenal progenitors.

    Science.gov (United States)

    DeWitt, John; Pappas, Anthony; Nishi, Rae

    2014-01-01

    Neuroblastoma is a childhood cancer caused by the transformation of sympathoadrenal progenitors. By following the formation of tumors in homozygous TH-MYCN mice, an established mouse model of neuroblastoma, we were able to capture transformed cells prior to the formation of large, vascularized tumors in order to determine the responsiveness of cells to neurotrophic factors. We discovered that the ciliary neurotrophic factor (CNTF) receptor is abundantly expressed in tumor cells from these mice. Furthermore, CNTF - but not nerve growth factor, brain-derived nerve growth factor, neurotrophin 3, or glial cell line-derived neurotrophic factor - promoted neuronal differentiation and withdrawal from the cell cycle. Thus, the transformation of sympathoadrenal progenitors by MYCN overexpression differentially affects responsiveness to neurotrophic molecules. © 2014 S. Karger AG, Basel.

  16. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan); Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  17. Disturbances in the positioning, proliferation, and apoptosis of neural progenitors contribute to subcortical band heterotopia formation

    OpenAIRE

    Fitzgerald, MP; Covio, M; Lee, KS

    2010-01-01

    Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6+ and Tbr2+ progenitors are mislocalized in tish+/− and tish−/− neocortex throughout neurogenesis. In addition, mislocalized tish−/− proge...

  18. Pigment epithelium-derived factor up-regulation induced by memantine, an N-methyl-D-aspartate receptor antagonist, is involved in increased proliferation of hippocampal progenitor cells.

    Science.gov (United States)

    Namba, T; Yabe, T; Gonda, Y; Ichikawa, N; Sanagi, T; Arikawa-Hirasawa, E; Mochizuki, H; Kohsaka, S; Uchino, S

    2010-05-05

    Memantine is classified as an NMDA receptor antagonist. We recently reported that memantine promoted the proliferation of neural progenitor cells and the production of mature granule neurons in the adult hippocampus. However, the molecular mechanism responsible for the memantine-induced promotion of cellular proliferation remains unknown. In this study we searched for a factor that mediates memantine-induced cellular proliferation, and found that pigment epithelium-derived factor (PEDF), a broad-acting neurotrophic factor, is up-regulated in the dentate gyrus of adult mice after the injection of memantine. PEDF mRNA expression increased significantly by 3.5-fold at 1 day after the injection of memantine. In addition, the expression level of PEDF protein also increased by 1.8-fold at 2 days after the injection of memantine. Immunohistochemical study using anti-PEDF antibody showed that the majority of the PEDF-expressing cells were protoplasmic and perivascular astrocytes. Using a neurosphere assay, we confirmed that PEDF enhanced cellular proliferation under the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) but was not involved in the multilineage potency of hippocampal progenitor cells. Over expression of PEDF by adeno-associated virus, however, did not stimulate cellular proliferation, suggesting PEDF per se does not promote cellular proliferation in vivo. These findings suggest that the memantine induced PEDF up-regulation is involved in increased proliferation of hippocampal progenitor cells. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development.

    Science.gov (United States)

    Badouel, Caroline; Zander, Mark A; Liscio, Nicole; Bagherie-Lachidan, Mazdak; Sopko, Richelle; Coyaud, Etienne; Raught, Brian; Miller, Freda D; McNeill, Helen

    2015-08-15

    Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction. © 2015. Published by The Company of Biologists Ltd.

  20. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim

    2005-01-01

    CCAAT/enhancer binding protein (C/EBP)alpha is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which...... dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid...... progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation...

  1. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  2. Effect of estradiol on proliferation and differentiation of side population stem/progenitor cells from murine endometrium

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2011-07-01

    Full Text Available Abstract Background In our previous study, endometrium side population cells (SP cells were isolated from postpartum murine uterus, and characterized by a heterogeneous population of stem/progenitor cells. In this study, we investigated the effect of estrogen on the proliferation and differentiation of SP cells. Methods SP and non-SP cells of postpartum murine endometrium were isolated by DNA dye Hoechst 33342. The expression of estrogen receptor 1 (ESR1 was measured by reverse transcription polymerase chain reaction (RT-PCR, Real-time PCR, Western blot, immunofluorescence and immunohistochemistry. The proliferation and differentiation of SP cells treated with different concentrations [10(-8 M-10(-6 M] of estradiol (E2 and E2+ ICI182780 (Faslodex, inhibitor of ESR1 were measured by 3-(4, 5-dimethylthiazoly1-2-2,5-diphenyltetrazolium bromide(MTT and clonogenic assays. Results (1 SP cells expressed ESR1 at a higher level than non-SP cells. (2 The level of E2 in the serum and the expression of ESR1 in the uterus of postpartum murine changed in the same manner with the ratio of SP cells to total uterus cells at a different postpartum time point. ESR1, as ABCG2 is also predominantly located in the stroma and the glandular epithelium of the uterus. (3 10(-6 M E2 notably promoted the proliferation of SP cells after treatment for 24 h. This effect could be inhibited by ICI182780. E2 at the concentration of 10(-7 M or 10(-8 M was sent to impair the large cloning efficiency (CE of SP cells. Conclusions The effect of estrogen on the proliferation and differentiation of endometrium SP cells via ESR1 was observed and it was in a concentration dependent fashion. Clearly, more work is needed to understand the in vivo effect of E2 at the physiological concentration on the differentiation of SP cells.

  3. Effects of growth hormone therapeutic supplementation on hematopoietic stem/progenitor cells in children with growth hormone deficiency: focus on proliferation and differentiation capabilities.

    Science.gov (United States)

    Kawa, M P; Stecewicz, I; Piecyk, K; Pius-Sadowska, E; Paczkowska, E; Rogińska, D; Sobuś, A; Łuczkowska, K; Gawrych, E; Petriczko, E; Walczak, M; Machaliński, B

    2015-09-01

    We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34(+)-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hematological analyzer. Moreover, collected HPCs were used to analyze GH receptor (GHR) and IGF1 expression, clonogenicity, and cell cycle activity. Finally, global gene expression profile of collected HPCs was analyzed using genome-wide RNA microarrays. GHD resulted in a decrease in several hematological parameters related to RBCs and significantly diminished clonogenicity of erythroid progenies. In contrast, GH-RT stimulated increases in clonogenic growth of erythroid lineage and RBC counts as well as significant up-regulation of cell cycle-propagating genes, including MAP2K1, cyclins D1/E1, PCNA, and IGF1. Likewise, GH-RT significantly modified GHR expression in isolated HPCs and augmented systemic IGF1 levels. Global gene expression analysis revealed significantly higher expression of genes associated with cell cycle, proliferation, and differentiation in HPCs from GH-treated subjects. (i) GH-RT significantly augments cell cycle progression in HPCs and increases clonogenicity of erythroid progenitors; (ii) GHR expression in HPCs is modulated by GH status; (iii) molecular mechanisms by which GH influences hematopoiesis might provide a basis for designing therapeutic interventions for hematological complications related to GHD.

  4. Two Ellagic Acids Isolated from Roots of Sanguisorba officinalis L. Promote Hematopoietic Progenitor Cell Proliferation and Megakaryocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Xiaoping Gao

    2014-04-01

    Full Text Available Using a bioassay-directed chromatographic separation, two ellagic acids were obtained from the ethyl acetate extract of the roots of Sanguisorba officinalis L. On the basis of chemical and spectroscopic methods, the two ellagic acids were identified as 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside and 3,3',4-tri-O-methylellagic acid. Stimulation of cell proliferation was assayed in hematopoietic progenitor cells using the Cell Counting kit-8 method. The megakaryocyte differentiation was determined in human erythroleukemia (HEL cells using Giemsa staining and flow cytometry analysis. The ellagic acids significantly stimulated the proliferation of Baf3/Mpl cells. Morphology analysis and megakaryocyte specific-marker CD41 staining confirmed that the ellagic acids induced megakaryocyte differentiation in HEL cells. This is the first time that 3,3',4-tri-O-methylellagic acid or 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside are reported to induce megakaryopoiesis, suggesting a class of small molecules which differ from others non-peptidyl, and appears to have potential for clinical development as a therapeutic agent for patients with blood platelet disorders.

  5. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  6. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  7. A Dynamic WNT/β-CATENIN Signaling Environment Leads to WNT-Independent and WNT-Dependent Proliferation of Embryonic Intestinal Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Alana M. Chin

    2016-11-01

    Full Text Available Much of our understanding about how intestinal stem and progenitor cells are regulated comes from studying the late fetal stages of development and the adult intestine. In this light, little is known about intestine development prior to the formation of stereotypical villus structures with columnar epithelium, a stage when the epithelium is pseudostratified and appears to be a relatively uniform population of progenitor cells with high proliferative capacity. Here, we investigated a role for WNT/β-CATENIN signaling during the pseudostratified stages of development (E13.5, E14.5 and following villus formation (E15.5 in mice. In contrast to the well-described role for WNT/β-CATENIN signaling as a regulator of stem/progenitor cells in the late fetal and adult gut, conditional epithelial deletion of β-catenin or the Frizzled co-receptors Lrp5 and Lrp6 had no effect on epithelial progenitor cell proliferation in the pseudostratified epithelium. Mutant embryos displayed obvious developmental defects, including loss of proliferation and disruptions in villus formation starting only at E15.5. Mechanistically, our data suggest that WNT signaling-mediated proliferation at the time of villus formation is driven by mesenchymal, but not epithelial, WNT ligand secretion.

  8. Leptin induces proliferation of neuronal progenitors and neuroprotection in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Pérez-González, Rocío; Antequera, Desiree; Vargas, Teo; Spuch, Carlos; Bolós, Marta; Carro, Eva

    2011-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with senile amyloid-β (Aβ) plaques, neuronal death, and cognitive decline. Neurogenesis in the adult hippocampus, which is notably affected by progressive neurodegeneration and Aβ pathology, is implicated in learning and memory regulation. Human postmortem brains of AD patients and AβPP/PS1 double transgenic mice show increased neurodegeneration. Leptin, an adipose-derived hormone, promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the AD brain is still unknown. Thus, we sought to determine if leptin stimulated the proliferation of neuronal precursors in AβPP/PS1 mice. We estimated the number proliferating hippocampal cells after intracerebroventricular administration of a lentiviral vector encoding leptin. After 3 months of treatment with leptin we observed an increase in the number of BrdU-positive cells in the subgranular zone of the dentate gyrus, as shown by morphometric analysis. This increase resulted mainly from an increased proliferation of neuronal precursors. Additionally, leptin led to an attenuation of Aβ-induced neurodegeneration, as revealed by Fluoro-Jade staining. Our results suggest that in AβPP/PS1 mice, leptin exerts changes resembling acute neurotrophic and neuroprotective effects. These effects could serve as the basis for the design of future treatment strategies in AD.

  9. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  10. Beneficial Effects of Melatonin Combined with Exercise on Endogenous Neural Stem/Progenitor Cells Proliferation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Youngjeon Lee

    2014-01-01

    Full Text Available Endogenous neural stem/progenitor cells (eNSPCs proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI. We have previously shown that melatonin (MT plus exercise (Ex had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups.These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.

  11. Long-term potentiation promotes proliferation/survival and neuronal differentiation of neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Taesup Cho

    Full Text Available Neural stem cell (NSC replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP, one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR via systemic application of the receptor antagonist, 3-[(R-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP. Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF and its consequent activation of tropomysosin receptor kinase B (TrkB receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.

  12. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2.

    Science.gov (United States)

    Micheli, Laura; Ceccarelli, Manuela; Gioia, Roberta; D'Andrea, Giorgio; Farioli-Vecchioli, Stefano; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo; Tirone, Felice

    2017-01-01

    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.

  13. Effects of growth hormone therapeutic supplementation on hematopoietic stem/progenitor cells in children with growth hormone deficiency: focus on proliferation and differentiation capabilities

    OpenAIRE

    Kawa, M. P.; Stecewicz, I.; Piecyk, K.; Pius-Sadowska, E.; E Paczkowska; Rogi?ska, D.; Sobu?, A.; ?uczkowska, K.; Gawrych, E.; Petriczko, E.; Walczak, M.; Machali?ski, B.

    2015-01-01

    We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34+-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hemat...

  14. Platelet-rich plasma promotes the proliferation of human muscle derived progenitor cells and maintains their stemness.

    Directory of Open Access Journals (Sweden)

    Hongshuai Li

    Full Text Available Human muscle-derived progenitor cells (hMDPCs offer great promise for muscle cell-based regenerative medicine; however, prolonged ex-vivo expansion using animal sera is necessary to acquire sufficient cells for transplantation. Due to the risks associated with the use of animal sera, the development of a strategy for the ex vivo expansion of hMDPCs is required. The purpose of this study was to investigate the efficacy of using platelet-rich plasma (PRP for the ex-vivo expansion of hMDPCs. Pre-plated MDPCs, myoendothelial cells, and pericytes are three populations of hMDPCs that we isolated by the modified pre-plate technique and Fluorescence Activated Cell Sorting (FACS, respectively. Pooled allogeneic human PRP was obtained from a local blood bank, and the effect that thrombin-activated PRP-releasate supplemented media had on the ex-vivo expansion of the hMDPCs was tested against FBS supplemented media, both in vitro and in vivo. PRP significantly enhanced short and long-term cell proliferation, with or without FBS supplementation. Antibody-neutralization of PDGF significantly blocked the mitogenic/proliferative effects that PRP had on the hMDPCs. A more stable and sustained expression of markers associated with stemness, and a decreased expression of lineage specific markers was observed in the PRP-expanded cells when compared with the FBS-expanded cells. The in vitro osteogenic, chondrogenic, and myogenic differentiation capacities of the hMDPCs were not altered when expanded in media supplemented with PRP. All populations of hMDPCs that were expanded in PRP supplemented media retained their ability to regenerate myofibers in vivo. Our data demonstrated that PRP promoted the proliferation and maintained the multi-differentiation capacities of the hMDPCs during ex-vivo expansion by maintaining the cells in an undifferentiated state. Moreover, PDGF appears to be a key contributing factor to the beneficial effect that PRP has on the

  15. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    Science.gov (United States)

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors

    OpenAIRE

    Caitlin R. Bridges; Men-Chee Tan; Susitha Premarathne; Devathri Nanayakkara; Bernadette Bellette; Dusan Zencak; Deepti Domingo; Jozef Gecz; Mariyam Murtaza; Jolly, Lachlan A.; Wood, Stephen A.

    2017-01-01

    USP9X, is highly expressed in neural progenitors and, essential for neural development in mice. In humans, mutations in USP9X are associated with neurodevelopmental disorders. To understand USP9X?s role in neural progenitors, we studied the effects of altering its expression in both the human neural progenitor cell line, ReNcell VM, as well as neural stem and progenitor cells derived from Nestin-cre conditionally deleted Usp9x mice. Decreasing USP9X resulted in ReNcell VM cells arresting in G...

  17. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.

    Science.gov (United States)

    Shi, Jiahai; Yuan, Bingbing; Hu, Wenqian; Lodish, Harvey

    2016-11-01

    JAK2 V617F is a mutant-activated JAK2 kinase found in most polycythemia vera (PV) patients; it skews normal proliferation and differentiation of hematopoietic stem and progenitor cells and simulates aberrant expansion of erythroid progenitors. JAK2 V617F is known to activate some signaling pathways not normally activated in mature erythroblasts, but there has been no systematic study of signal transduction pathways or gene expression in erythroid cells expressing JAK2 V617F undergoing erythropoietin (Epo)-dependent terminal differentiation. Here we report that expression of JAK2 V617F in murine fetal liver Epo-dependent progenitors allows them to divide approximately six rather than the normal approximately four times in the presence of Epo, delaying their exit from the cell cycle. Over time, the number of red cells formed from each Epo-dependent progenitor increases fourfold, and these cells eventually differentiate into normal enucleated reticulocytes. We report that purified fetal liver Epo-dependent progenitors express many cytokine receptors additional to the EpoR. Expression of JAK2 V617F triggers activation of Stat5, the only STAT normally activated by Epo, as well as activation of Stat1 and Stat3. Expression of JAK2 V617F also leads to transient induction of many genes not normally activated in terminally differentiating erythroid cells and that are characteristic of other hematopoietic lineages. Inhibition of Stat1 activation blocks JAK2 V617F hyperproliferation of erythroid progenitors, and we conclude that Stat1-mediated activation of nonerythroid signaling pathways delays terminal erythroid differentiation and permits extended cell divisions. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  18. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Kathleen E. McGrath

    2015-06-01

    Full Text Available Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs. At embryonic day 9.5 (E9.5, we show the first murine definitive erythro-myeloid progenitors (EMPs have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.

  19. Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21.

    Science.gov (United States)

    Cao, Huojun; Florez, Sergio; Amen, Melanie; Huynh, Tuong; Skobe, Ziedonis; Baldini, Antonio; Amendt, Brad A

    2010-11-15

    Tbx1(-/-) mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1(-/-) embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1(-/+)/Pitx2(-/+) double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Directory of Open Access Journals (Sweden)

    Trent eGrundy

    2014-11-01

    Full Text Available Dietary polyunsaturated fatty acid (PUFA manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD. Animal studies suggest that high omega (Ω-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium and high Ω-3:Ω-6 dietary ratio, given from the age of 3 to 7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay ageing effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α.

  1. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice.

    Science.gov (United States)

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J; Corrigan, Frances; Baune, Bernhard T

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3-7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α.

  2. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Science.gov (United States)

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3–7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α. PMID:25484856

  3. F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation.

    Science.gov (United States)

    Xenaki, Dia; Martin, Indira B; Yoshida, Lynn; Ohyama, Kyoji; Gennarini, Gianfranco; Grumet, Martin; Sakurai, Takeshi; Furley, Andrew J W

    2011-02-01

    Modulation of the sonic hedgehog (SHH) pathway is a crucial factor in cerebellar morphogenesis. Stimulation of granule neuron progenitor (GNP) proliferation is a central function of SHH signalling, but how this is controlled locally is not understood. We show that two sequentially expressed members of the contactin (CNTN) family of adhesion molecules, TAG1 and F3, act antagonistically to control SHH-induced proliferation: F3 suppresses SHH-induced GNP proliferation and induces differentiation, whereas TAG1 antagonises F3. Production of GNPs in TAG1-null mice is delayed and reduced. F3 and TAG1 colocalise on GNPs with the related L1-like adhesion molecule NrCAM, and F3 fails to suppress the SHH-induced proliferation of NrCAM-deficient GNPs. We show that F3 and SHH both primarily affect a group of intermediate GNPs (IPs), which, though actively dividing, also express molecules associated with differentiation, including β-tubulin III (TuJ1) and TAG1. In vivo, intermediate progenitors form a discrete layer in the middle of the external germinal layer (mEGL), while F3 becomes expressed on the axons of postmitotic granule neurons as they leave the inner EGL (iEGL). We propose, therefore, that F3 acts as a localised signal in the iEGL that induces SHH-stimulated cells in the overlying mEGL to exit cell cycle and differentiate. By contrast, expression of TAG1 on GNPs antagonises this signal in the mEGL, preventing premature differentiation and sustaining GNP expansion in a paracrine fashion. Together, these findings indicate that CNTN and L1-like proteins play a significant role in modulating SHH-induced neuronal precursor proliferation.

  4. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture.

    Science.gov (United States)

    Jacques, Flavia Jesus; Silva, Thayane Martins; da Silva, Flavia Emenegilda; Ornelas, Isis Moraes; Ventura, Ana Lucia Marques

    2017-07-01

    Nucleotides stimulate phosphorylation of CREB to induce cell proliferation and survival in diverse cell types. We report here that ADP induces the phosphorylation of CREB in a time- and concentration-dependent manner in chick embryo retinal progenitors in culture. ADP-induced increase in phospho-CREB is mediated by P2 receptors as it is blocked by PPADS but not by the adenosine antagonists DPCPX or ZM241385. Incubation of the cultures with the CREB inhibitor KG-501 prevents ADP-induced incorporation of [(3)H]-thymidine, indicating that CREB is involved in retinal cell proliferation. No effect of this compound is observed on the viability of retinal progenitors. While no significant increase in CREB phosphorylation is observed with the P2Y1 receptor agonist MRS2365, ADP-induced phosphorylation of CREB is blocked by the P2Y13 receptor selective antagonist MRS2211, but not by MRS2179 or PSB0739, two antagonists of the P2Y1 and P2Y12 receptors, respectively, suggesting that ADP-induced CREB phosphorylation is mediated by P2Y13 receptors. ADP-induced increase in phospho-CREB is attenuated by the PI3K inhibitor LY294002 and completely prevented by the MEK inhibitor U0126, suggesting that at least ERK is involved in ADP-induced CREB phosphorylation. A pharmacological profile similar to the activation and inhibition of CREB phosphorylation is observed in the phosphorylation of ERK, suggesting that P2Y13 receptors mediate ADP induced ERK/CREB pathway in the cultures. While no increase in [(3)H]-thymidine incorporation is observed with the P2Y1 receptor agonist MRS2365, both MRS2179 and MRS2211 prevent ADP-mediated increase in [(3)H]-thymidine incorporation, but not progenitor's survival, suggesting that both P2Y1 and P2Y13 receptor subtypes are involved in ADP-induced cell proliferation. P2Y1 receptor-mediated increase in [Ca(2+)]i is observed in glial cells only when cultures maintained for 9days are used. In glia from cultures cultivated for only 2days, no increase in [Ca

  5. MAPK/ERK and Wnt/{beta}-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Caixia [Department of Surgery, University of North Carolina at Chapel Hill (United States); Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan 750004 (China); Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong [Department of Surgery, University of North Carolina at Chapel Hill (United States); Gerber, David A., E-mail: david_gerber@med.unc.edu [Department of Surgery, University of North Carolina at Chapel Hill (United States); Lineberger Cancer Center, University of North Carolina at Chapel Hill (United States)

    2011-06-17

    Highlights: {yields} Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1{sup +} HPC proliferation and colony formation. {yields} Activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. {yields} Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1{sup +} HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1{sup +} HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  6. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  7. DISC1 Regulates the Proliferation and Migration of Mouse Neural Stem/Progenitor Cells through Pax5, Sox2, Dll1 and Neurog2

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2017-08-01

    Full Text Available Background: Disrupted-in-schizophrenia 1 (DISC1 regulates neurogenesis and is a genetic risk factor for major psychiatric disorders. However, how DISC1 dysfunction affects neurogenesis and cell cycle progression at the molecular level is still unknown. Here, we investigated the role of DISC1 in regulating proliferation, migration, cell cycle progression and apoptosis in mouse neural stem/progenitor cells (MNSPCs in vitro.Methods: MNSPCs were isolated and cultured from mouse fetal hippocampi. Retroviral vectors or siRNAs were used to manipulate DISC1 expression in MNSPCs. Proliferation, migration, cell cycle progression and apoptosis of altered MNSPCs were analyzed in cell proliferation assays (MTS, transwell system and flow cytometry. A neurogenesis specific polymerase chain reaction (PCR array was used to identify genes downstream of DISC1, and functional analysis was performed through transfection of expression plasmids and siRNAs.Results: Loss of DISC1 reduced proliferation and migration of MNSPCs, while an increase in DISC1 led to increased proliferation and migration. Meanwhile, an increase in the proportion of cells in G0/G1 phase was concomitant with reduced levels of DISC1, but significant changes were not observed in the number MNSPCs undergoing apoptosis. Paired box gene 5 (Pax5, sex determining region Y-box 2 (Sox2, delta-like1 (Dll1 and Neurogenin2 (Neurog2 emerged as candidate molecules downstream of DISC1, and rescue experiments demonstrated that increased or decreased expression of either molecule regulated proliferation and migration in DISC1-altered MNSPCs.Conclusion: These results suggest that Pax5, Sox2, Dll1 and Neurog2 mediate DISC1 activity in MNSPC proliferation and migration.

  8. Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas.

    Science.gov (United States)

    Todd, Levi; Volkov, Leo I; Zelinka, Chris; Squires, Natalie; Fischer, Andy J

    2015-11-01

    Müller glia can be stimulated to de-differentiate, proliferate and form Müller glia-derived progenitor cells (MGPCs) that regenerate retinal neurons. In the zebrafish retina, heparin-binding EGF-like growth factor (HB-EGF) may be one of the key factors that stimulate the formation of proliferating MGPCs. Currently nothing is known about the influence of HB-EGF on the proliferative potential of Müller glia in retinas of birds and rodents. In the chick retina, we found that levels of both hb-egf and egf-receptor are rapidly and transiently up-regulated following NMDA-induced damage. Although intraocular injections of HB-EGF failed to stimulate cell-signaling or proliferation of Müller glia in normal retinas, HB-EGF stimulated proliferation of MGPCs in damaged retinas. By comparison, inhibition of the EGF-receptor (EGFR) decreased the proliferation of MGPCs in damaged retinas. HB-EGF failed to act synergistically with FGF2 to stimulate the formation of MGPCs in the undamaged retina and inhibition of EGF-receptor did not suppress FGF2-mediated formation of MGPCs. In the mouse retina, HB-EGF stimulated the proliferation of Müller glia following NMDA-induced damage. Furthermore, HB-EGF not only stimulated MAPK-signaling in Müller glia/MGPCs, but also activated mTor- and Jak/Stat-signaling. We propose that levels of expression of EGFR are rate-limiting to the responses of Müller glia to HB-EGF and the expression of EGFR can be induced by retinal damage, but not by FGF2-treatment. We conclude that HB-EGF is mitogenic to Müller glia in both chick and mouse retinas, and HB-EGF is an important player in the formation of MGPCs in damaged retinas. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  10. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    Science.gov (United States)

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  11. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo.

    Science.gov (United States)

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease.

  12. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  13. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells.

    Science.gov (United States)

    Dey, A; Robitaille, M; Remke, M; Maier, C; Malhotra, A; Gregorieff, A; Wrana, J L; Taylor, M D; Angers, S; Kenney, A M

    2016-08-11

    Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas.

  14. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    Science.gov (United States)

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Neural progenitor cell proliferation in the hypothalamus is involved in acquired heat tolerance in long-term heat-acclimated rats.

    Science.gov (United States)

    Matsuzaki, Kentaro; Katakura, Masanori; Sugimoto, Naotoshi; Hara, Toshiko; Hashimoto, Michio; Shido, Osamu

    2017-01-01

    Constant exposure to moderate heat facilitates progenitor cell proliferation and neuronal differentiation in the hypothalamus of heat-acclimated (HA) rats. In this study, we investigated neural phenotype and responsiveness to heat in HA rats' hypothalamic newborn cells. Additionally, the effect of hypothalamic neurogenesis on heat acclimation in rats was evaluated. Male Wistar rats (5 weeks old) were housed at an ambient temperature (Ta) of 32°C for 6 days (STHA) or 40 days (LTHA), while control (CN) rats were kept at a Ta of 24°C for 6 days (STCN) or 40 days (LTCN). Bromodeoxyuridine (BrdU) was intraperitoneally injected daily for five consecutive days (50 mg/kg/day) after commencing heat exposure. The number of hypothalamic BrdU-immunopositive (BrdU+) cells in STHA and LTHA rats was determined immunohistochemically in brain samples and found to be significantly greater than those in respective CN groups. In LTHA rats, approximately 32.6% of BrdU+ cells in the preoptic area (POA) of the anterior hypothalamus were stained by GAD67, a GABAergic neuron marker, and 15.2% of BrdU+ cells were stained by the glutamate transporter, a glutamatergic neuron marker. In addition, 63.2% of BrdU+ cells in the POA were immunolabeled with c-Fos. Intracerebral administration of the mitosis inhibitor, cytosine arabinoside (AraC), interfered with the proliferation of neural progenitor cells and acquired heat tolerance in LTHA rats, whereas the selected ambient temperature was not changed. These results demonstrate that heat exposure generates heat responsive neurons in the POA, suggesting a pivotal role in autonomic thermoregulation in long-term heat-acclimated rats.

  16. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis

    Directory of Open Access Journals (Sweden)

    Shama Parween

    2017-12-01

    Full Text Available The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.

  17. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  18. Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia-Derived Progenitors During Zebrafish Retinal Regeneration.

    Science.gov (United States)

    Zhang, Shuqiang; Mu, Zhaoxia; He, Chunjiao; Zhou, Minmin; Liu, Dong; Zhao, Xiao-Feng; Goldman, Daniel; Xu, Hui

    2016-04-01

    The purpose of this study was to investigate the effect of the antiviral drug ganciclovir (GCV) on Müller glia dedifferentiation and proliferation and the underlying cellular and molecular mechanisms in adult zebrafish. A Tg(1016tuba1a:GFP) transgenic line was generated to identify injury-induced dedifferentiation of Müller glia. Mechanical retinal damage was induced by a needle-poke injury on the back of the eyes in adult zebrafish. Phosphate-buffered saline or GCV was injected into the vitreous of the eye at the time of injury or through the cornea. The GCV clearance rate from the eye was determined by a reversed-phase HPLC method. Green fluorescent protein (GFP) and bromodeoxyuridine (BrdU) immunofluorescence were used to determine the effect of GCV on retinal regeneration. Cell apoptosis was evaluated by TUNEL staining. Microglia were labeled by vitreous injection of isolectin IB4 conjugates. Quantitative (q)PCR and Western blot analysis were used to determine gene expression in the retina. Ganciclovir treatment significantly reduced the number of BrdU+ Müller glia-derived progenitor cells (MGPCs) at 4 days post injury. Further analysis showed that GCV had no impact on Müller glia dedifferentiation and the initial formation of MGPCs. Our data indicate that GCV irreversibly inhibited MGPC proliferation likely through a p53-p21(cip1)-dependent pathway. Interestingly, unlike control cells, GCV-treated Müller glia cells were "locked" in a prolonged dedifferentiated state. Our study uncovered a novel inhibitory effect of GCV on MGPC proliferation and suggests its potential use as a tool to uncover molecular mechanisms underlying retinal regeneration in zebrafish.

  19. Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia–Derived Progenitors During Zebrafish Retinal Regeneration

    Science.gov (United States)

    Zhang, Shuqiang; Mu, Zhaoxia; He, Chunjiao; Zhou, Minmin; Liu, Dong; Zhao, Xiao-Feng; Goldman, Daniel; Xu, Hui

    2016-01-01

    Purpose The purpose of this study was to investigate the effect of the antiviral drug ganciclovir (GCV) on Müller glia dedifferentiation and proliferation and the underlying cellular and molecular mechanisms in adult zebrafish. Methods A Tg(1016tuba1a:GFP) transgenic line was generated to identify injury-induced dedifferentiation of Müller glia. Mechanical retinal damage was induced by a needle-poke injury on the back of the eyes in adult zebrafish. Phosphate-buffered saline or GCV was injected into the vitreous of the eye at the time of injury or through the cornea. The GCV clearance rate from the eye was determined by a reversed-phase HPLC method. Green fluorescent protein (GFP) and bromodeoxyuridine (BrdU) immunofluorescence were used to determine the effect of GCV on retinal regeneration. Cell apoptosis was evaluated by TUNEL staining. Microglia were labeled by vitreous injection of isolectin IB4 conjugates. Quantitative (q)PCR and Western blot analysis were used to determine gene expression in the retina. Results Ganciclovir treatment significantly reduced the number of BrdU+ Müller glia–derived progenitor cells (MGPCs) at 4 days post injury. Further analysis showed that GCV had no impact on Müller glia dedifferentiation and the initial formation of MGPCs. Our data indicate that GCV irreversibly inhibited MGPC proliferation likely through a p53-p21cip1–dependent pathway. Interestingly, unlike control cells, GCV-treated Müller glia cells were “locked” in a prolonged dedifferentiated state. Conclusions Our study uncovered a novel inhibitory effect of GCV on MGPC proliferation and suggests its potential use as a tool to uncover molecular mechanisms underlying retinal regeneration in zebrafish. PMID:27096757

  20. Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AβPP/Ps1 mice.

    Science.gov (United States)

    Antequera, Desiree; Portero, Aitziber; Bolos, Marta; Orive, Gorka; Hernández, Rosa M Rm A; Pedraz, José Luis; Carro, Eva

    2012-01-01

    Vascular endothelial growth factor (VEGF) promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the Alzheimer's disease (AD) brain is still unknown. We examined the proliferation of neuronal precursors with an ex vivo approach, using encapsulated VEGF secreting cells, in AβPP/PS1 mice, a mouse model of AD. Overexpression of VEGF and VEGF receptor flk-1 was observed in the cerebral cortex from VEGF microcapsules-treated AβPP/PS1 mice at 1, 3 and 6 months after VEGF-microcapsule implantation. Stereological counting of 5-bromodeoxyuridine positive cells revealed that encapsulated VEGF secreting cells significantly enhanced cellular proliferation in the hippocampal dentate gyrus (DG). The number of neuronal precursors in VEGF microcapsules-treated AβPP/PS1 mice was also greater, and this effect remains after 6 months. We also confirmed that encapsulated VEGF secreting cells also stimulated angiogenesis in the cerebral cortex and hippocampal dentate gyrus. In addition, we found that VEGF-microcapsule treatment was associated with a depressed expression and activity of acetylcholinesterase in the hippocampus of AβPP/PS1 mice, a similar pattern as first-line medications for the treatment of AD. We conclude that stereologically-implanted VEGF-microcapsules exert an acute and long-standing neurotrophic effects, and could be utilized to improve potential therapies to control the progression of AD.

  1. Tapak liman (Elephantopus scaber L) extract-induced CD4+ and CD8+ differentiation from hematopoietic stem cells and progenitor cell proliferation in mice (Mus musculus L)

    Science.gov (United States)

    Djati, Muhammad Sasmito; Habibu, Hindun; Jatiatmaja, Nabilah A.; Rifa'i, Muhaimin

    2017-11-01

    Tapak Liman (Elephantopus scaber L) is a traditional medicinal plant containing several active compounds that potentially affecting hematopoietic stem cells, such as epifrieelinol, lupeol, stigmasterol, triacontane-1-ol, dotriacontane-1-ol, lupeol acetate, deoxyelephan-topin, isodeoxyelephantopin, polyphenol luteolin-7, as well as various flavonoids and glucosides. The aim of this study was to elucidate the effect of leaf extract of Tapak Liman on hematopoietic stem cells in mice BALB/c, by observation of the relative number of cells expressing CD4/CD8, CD4/CD62L, and TER119/B220 in the spleen, and TER119/B220, TER119/VLA-4 and TER119/CD34 in bone marrow, after being administered leaf extract for 2 weeks. This experiment used 12 female mice, which were divided into three treatment groups, P1= 0.5 g.g bw-1.day-1, P2= 1.0 g.g bw-1.day-1 and P3=2.0 g.g bw-1.day-1 Tapak Liman leaf extract as well as a control. The relative numbers of cells expressing surface molecules were analyzed by flowcytometry and quantitative data were tested using one-way ANOVA. The results showed that the leaf extract of Tapak Liman has no significant effect on erythrocyte proliferation; on the other hand, it had a significant effect on both proliferation and differentiation of B lymphocytes (B220+) in bone marrow (p=0.044) and increased the expression of CD4+, CD8+ molecule in B cells (p=0.026) and erythroid cells in spleen and bone marrow, based on the estimation of cells that expressed TER119+VLA-4+, identified as important in the development pathway of erythrocytes. An increased cell percentage of TER11+VLA-4+ occurred for treatment P2, 12% higher than the control. The increased expression of TER119+VLA-4+ was assumed to be due to the iron content in Tapak Liman, which functioned to stimulate the progenitor hematopoietic cells to proliferate and differentiate into a precursor of erythroid cells (TER119+VLA-4+). There was an increasing number of cells expressing the surface molecules TER119

  2. GM-CSF Induces Cyclin D1 Expression and Proliferation of Endothelial Progenitor Cells via PI3K and MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Chaolin Qiu

    2014-03-01

    Full Text Available Background/Aims: Endothelial progenitor cells (EPCs, which can be isolated from the bone marrow or the peripheral blood, have generated interest because of their capacity to migrate to sites of vascularization and endothelialization and differentiate into endothelial cells in a process termed neovasculogenesis. EPCs are therefore possible regenerative tools for the treatment of vascular diseases and potential targets for the inhibition of angiogenesis during tumor development. Here, we investigated the mechanisms underlying the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF on the acceleration of EPC proliferation and colony formation. Methods: EPCs were isolated, identified and cultured in the presence of GM-CSF. The effect of GM-CSF on endothelial cell colony formation and proliferation was examine by colony formation assay and MTT assay, separately. Cell cycle was analyzed by flow cytometry. The expression of cyclin D1 and cyclin E were detected by western bloting. JAK/Stat, PI3K/Akt and MAPK signaling were analyzed. Results: GM-CSF accelerated the G1/S phase transition in EPCs by upregulating the expression of cyclins D1 and E. The GM-CSF induced increase in the levels of cyclin D1 and the subsequent phosphorylation of the retinoblastoma (Rb protein activated E2F-1, resulting in the upregulation of the transcription of cyclin E. Furthermore, the induction of cyclin D1 expression and cell cycle progression by GM-CSF was mediated by the PI3K/Akt, JNK and ERK signaling pathways through the phosphorylation of GSK3β or the activation of AP-1 transcription factors. Conclusion: Our findings shed light on the mechanisms underlying the effect of GM-CSF on the modulation of cell cycle progression in EPCs, which is important considering their role in vascular repair and their therapeutic potential in several diseases.

  3. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    Science.gov (United States)

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Cell kinetic studies fail to identify sequentially proliferating progenitors as the major source of epithelial renewal in the adult murine prostate.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pignon

    Full Text Available There is evidence that stem cells and their progeny play a role in the development of the prostate. Although stem cells are also considered to give rise to differentiated progeny in the adult prostate epithelium ex vivo, the cohort of adult prostate stem cells in vivo as well as the mechanisms by which the adult prostate epithelium is maintained and regenerated remain highly controversial. We have attempted to resolve this conundrum by performing in vivo tracing of serially replicating cells after the sequential administration of two thymidine analogues to mice. Our results show that, during normal prostate homeostasis, sequentially proliferating cells are detected at a rate that is consistent with a stochastic process. These findings indicate that in vivo, under steady-state conditions, most adult prostate epithelial cells do not represent the progeny of a small number of specialized progenitors that generate sequentially replicating transit-amplifying (TA cells but are formed by stochastic cell division. Similarly, no rapidly cycling TA cells were detected during regeneration following one cycle of androgen-mediated involution/regeneration of the prostate epithelium. These findings greatly enhance our understanding of the mechanisms regulating prostate epithelial cell renewal and may have significant implications in defining the cell of origin of proliferative prostatic diseases.

  5. Cell kinetic studies fail to identify sequentially proliferating progenitors as the major source of epithelial renewal in the adult murine prostate.

    Science.gov (United States)

    Pignon, Jean-Christophe; Grisanzio, Chiara; Carvo, Ingrid; Werner, Lillian; Regan, Meredith; Wilson, E Lynette; Signoretti, Sabina

    2015-01-01

    There is evidence that stem cells and their progeny play a role in the development of the prostate. Although stem cells are also considered to give rise to differentiated progeny in the adult prostate epithelium ex vivo, the cohort of adult prostate stem cells in vivo as well as the mechanisms by which the adult prostate epithelium is maintained and regenerated remain highly controversial. We have attempted to resolve this conundrum by performing in vivo tracing of serially replicating cells after the sequential administration of two thymidine analogues to mice. Our results show that, during normal prostate homeostasis, sequentially proliferating cells are detected at a rate that is consistent with a stochastic process. These findings indicate that in vivo, under steady-state conditions, most adult prostate epithelial cells do not represent the progeny of a small number of specialized progenitors that generate sequentially replicating transit-amplifying (TA) cells but are formed by stochastic cell division. Similarly, no rapidly cycling TA cells were detected during regeneration following one cycle of androgen-mediated involution/regeneration of the prostate epithelium. These findings greatly enhance our understanding of the mechanisms regulating prostate epithelial cell renewal and may have significant implications in defining the cell of origin of proliferative prostatic diseases.

  6. Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart

    OpenAIRE

    Cai, Chen-Leng; Liang, Xingqun; Shi, Yunqing; Chu, Po-Hsien; Pfaff, Samuel L.; Chen, Ju; Evans, Sylvia

    2003-01-01

    Hearts of mice lacking Isl1, a LIM homeodomain transcription factor, are completely missing the outflow tract, right ventricle, and much of the atria. isl1 expression and lineage tracing of isl1-expressing progenitors demonstrate that Isl1 is a marker for a distinct population of undifferentiated cardiac progenitors that give rise to the cardiac segments missing in isl1 mutants. Isl1 function is required for these progenitors to contribute to the heart. In isl1 mutants, isl1-expressing progen...

  7. Methylprednisolone inhibits the proliferation and affects the differentiation of rat spinal cord-derived neural progenitor cells cultured in low oxygen conditions by inhibiting HIF-1α and Hes1 in vitro.

    Science.gov (United States)

    Wang, Wenhao; Wang, Peng; Li, Shiyuan; Yang, Jiewen; Liang, Xinjun; Tang, Yong; Li, Yuxi; Yang, Rui; Wu, Yanfeng; Shen, Huiyong

    2014-09-01

    Although there is much controversy over the use of methylprednisolone (MP), it is one of the main drugs used in the treatment of acute spinal cord injury (SCI). The induction of the proliferation and differentiation of endogenous neural progenitor cells (NPCs) is considered a promising mode of treatment for SCI. However, the effects of MP on spinal cord-derived endogenous NPCs in a low oxygen enviroment remain to be delineated. Thus, the aim of this study was to investigate the potential effects of MP on NPCs cultured under low oxygen conditions in vitro and to elucidate the molecular mechanisms involved. Fetal rat spinal cord-derived NPCs were harvested and divided into 4 groups: 2 groups of cells cultured under normal oxygen conditions and treated with or without MP, and 2 groups incubated in 3% O2 (low oxygen) treated in a similar manner. We found that MP induced suppressive effects on NPC proliferation even under low oxygen conditions (3% O2). The proportion of nestin-positive NPCs decreased from 51.8±2.46% to 36.17±3.55% following the addition of MP and decreased more significantly to 27.20±2.68% in the cells cultured in 3% O2. In addition, a smaller number of glial fibrillary acidic protein (GFAP)-positive cells and a greater number of microtubule-associated protein 2 (MAP2)-positive cells was observed following the addition of MP under both normal (normoxic) and low oxygen (hypoxic) conditions. In response to MP treatment, hypoxia-inducible factor-1α (HIF-1α) and the Notch signaling pathway downstream protein, Hes1, but not the upstream Notch-1 intracelluar domain (NICD), were inhibited. After blocking NICD with a γ-secretase inhibitor (DAPT) MP still inhibited the expression of Hes1. Our results provide insight into the molecular mechanisms responsible for the MP-induced inhibition of proliferation and its effects on differentiation and suggest that HIF-1α and Hes1 play an important role in this effect.

  8. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells

    OpenAIRE

    Thieme, Sebastian; Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian

    2013-01-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal str...

  9. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor.

    Science.gov (United States)

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-02-29

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1(+) were large in size, had oval nuclei, and merged with CD34(+) cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1(-/-) mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1(-/-) and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1.

  10. Proliferation extent of CD34+ cells as a key parameter to maximize megakaryocytic differentiation of umbilical cord blood-derived hematopoietic stem/progenitor cells in a two-stage culture protocol.

    Science.gov (United States)

    Hatami, Javad; Andrade, Pedro Z; Bacalhau, Denise; Cirurgião, Fernando; Ferreira, Frederico Castelo; Cabral, Joaquim M S; da Silva, Cláudia L

    2014-12-01

    Co-infusion of ex-vivo generated megakaryocytic progenitors with hematopoietic stem/progenitor cells (HSC/HPC) may contribute to a faster platelet recovery upon umbilical cord blood (UCB) transplantation. A two stage protocol containing cell expansion and megakaryocyte (Mk) differentiation was established using human UCB CD34+-enriched cells. The expansion stage used a pre-established protocol supported by a human bone marrow mesenchymal stem cells (MSC) feeder layer and the differentiation stage used TPO (100 ng/mL) and IL-3 (10 ng/mL). 18% of culture-derived Mks had higher DNA content (>4 N) and were able to produce platelet-like particles. The proliferation extent of CD34+ cells obtained in the expansion stage (FI-CD34+), rather than expansion duration, determined as a key parameter for efficient megakaryocytic differentiation. A maximum efficiency yield (EY) of 48 ± 7.7 Mks/input CD34+ cells was obtained for a FI-CD34+ of 17 ± 2.5, where a higher FI-CD34+ of 42 ± 13 resulted in a less efficient megakaryocytic differentiation (EY of 22 ± 6.7 and 19 ± 4.6 %CD41).

  11. Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure.

    Science.gov (United States)

    Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu

    2015-08-07

    Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage(-) sca-1(+) c-kit(+) (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.

  12. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  13. An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Hideaki Tokunaga

    2016-01-01

    Full Text Available The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs. Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp box polypeptide 54 (Ddx54, a member of the DEAD box family of RNA helicases, (1 specifically labels oligodendrocyte lineages, (2 binds to mRNA and protein isoforms of myelin basic proteins (MBP, and (3 regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5 reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases.

  14. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance

    Directory of Open Access Journals (Sweden)

    Karen A. Boehme

    2018-01-01

    Full Text Available Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC.

  15. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  16. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium.

    Science.gov (United States)

    Xiang, Lusai; Chen, Mo; He, Ling; Cai, Bin; Du, Yu; Zhang, Xinchun; Zhou, Chen; Wang, Chenglin; Mao, Jeremy J; Ling, Junqi

    2014-12-15

    involvement in alveolar bone remodeling and/or resorption. P-Jnk1/2 was activated in Wnt5a overexpressed dental follicle cells; conversely, exposure to SP600125, a c-Jun N-terminal kinase (JNK) inhibitor attenuated Runx2, collagen 1α1 and osteocalcin expression either in the presence or absence of Wnt5a. Wnt5a overexpression in dental follicle stem/progenitor cells significantly reduced their proliferation rates, but robustly augmented their migration capacity. These findings provide a glimpse of Wnt5a's putative roles in dental follicle stem/progenitor cells and the periodontium with implications in periodontal disease, tooth eruption, dental implant bone healing and orthodontic tooth movement.

  17. Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sixun; Shu, Haifeng; Yang, Tao; Huang, Haidong [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China); Li, Song [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 (China); Zhao, Ziyi [Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, 610075 (China); Kuang, Yongqin, E-mail: kuangyongqin@163.com [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China)

    2016-04-29

    Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed by treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation. - Highlights: • NFL model is an accurate experimental reproduction of focal microgyria of FCD. • The increase of the Nogo-A Levels occurs in response to freeze-induced focal lesioning. • Nogo-A/NgR may play a critical role for in the pathologic progression of FCD. • Nogo-A is associated with the migration, proliferation and self-renewal of SVZ-NPCs.

  18. Endothelial progenitor cells (CD34+KDR+) and monocytes may provide the development of good coronary collaterals despite the vascular risk factors and extensive atherosclerosis.

    Science.gov (United States)

    Kocaman, Sinan Altan; Yalçın, Mehmet Rıdvan; Yağcı, Münci; Sahinarslan, Asife; Türkoğlu, Sedat; Arslan, Uğur; Kurşunluoğlu, Nevruz; Ozdemir, Murat; Timurkaynak, Timur; Cemri, Mustafa; Abacı, Adnan; Boyacı, Bülent; Cengel, Atiye

    2011-06-01

    Endothelial progenitor cells (EPC) have a regenerative role in the vascular system. In this study, we aimed to evaluate simultaneously the effects of EPC and inflammatory cells on the presence and the extent of coronary artery disease (CAD) and the grade of coronary collateral growth in patients with clinical suspicion of CAD. This study has a cross-sectional and observational design. We enrolled 112 eligible patients who underwent coronary angiography consecutively (mean age: 59±9 years). The association of circulating inflammatory cells and EPC (defined by CD34+KDR+ in the lymphocyte and monocyte gate) with the presence, severity and extent of CAD and the degree of collateral growth were investigated. Logistic regression analysis was used to define the predictors of collateral flow. Of 112 patients 30 had normal coronary arteries (NCA, 27%, 55±9 years) and 82 had CAD (73%, 61±8 years). Among the patients with CAD, the percent degree of luminal stenosis was <50% in 12 patients; 50-90% in 35 patients; and ≥90% in the other 35 patients. Circulating inflammatory cells were higher (leukocytes, 7150±1599 vs 8163±1588 mm(-3), p=0.001; neutrophils, 4239±1280 vs 4827±1273 mm(-3), p=0.021; monocytes, 512±111 vs 636±192 mm(-3), p=0.001) and EPCs were lower (0.27±0.15% vs 0.17±0.14%, p<0.001; 21±15 vs 13±12 mm(-3), p=0.004) in CAD group than NCA group. When we investigated the collateral growth in patients having ≥90% stenosis in at least one major coronary artery, we found that the patients with good collateral growth had significantly higher EPC (0.22±0.17% vs 0.10±0.05%, p=0.009; 18±15 vs 7±3 mm(-3), p=0.003) in comparison to patients with poor collateral growth. Presence of EPC was associated with reduced risk for coronary artery disease (OR: 0.934, 95%CI: 0.883-0.998, p=0.018) and was an independent predictor for good collateral growth (OR: 1.295, 95%CI: 1.039-1.615, p=0.022). A sum of CD34+KDR-, CD34+KDR+ and CD34-KDR+ cells (192±98 mm(-3)), and a

  19. NOTCH signaling in skeletal progenitors is critical for fracture repair

    Science.gov (United States)

    Wang, Cuicui; Inzana, Jason A.; Mirando, Anthony J.; Liu, Zhaoyang; Shen, Jie; O’Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2016-01-01

    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  20. Multipotent progenitor cells in gingival connective tissue.

    Science.gov (United States)

    Fournier, Benjamin P J; Ferre, François C; Couty, Ludovic; Lataillade, Jean-Jacques; Gourven, Murielle; Naveau, Adrien; Coulomb, Bernard; Lafont, Antoine; Gogly, Bruno

    2010-09-01

    The gum has an exceptional capacity for healing. To examine the basis for this property and explore the potential of conferring it to organs with inferior healing capacity, we sought the presence of progenitor cells in gingival connective tissue. Colony-forming units of fibroblast-enriched cells from gingival fibroblast cultures were assessed for expression of membrane markers of mesenchymal stem cells; capacity to differentiate into osteoblasts, chondroblasts, and adipocytes; and engraftment efficiency after in vivo transfer. On the basis of their ability to differentiate into several lineages, proliferate from single cells, induce calcium deposits, and secrete collagen in vivo after transfer on hydroxyapatite carriers, we suggest that this population represents gingival multipotent progenitor cells. The discovery of progenitor cells in gingival connective tissue may help improve our understanding of how the wounded gum is capable of almost perfect healing and opens the prospect of cellular therapy for wound healing using readily available cells at limited risk to the patient.

  1. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  2. Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro.

    Science.gov (United States)

    Davies, William R; Wang, Shaohua; Oi, Keiji; Bailey, Kent R; Tazelaar, Henry D; Caplice, Noel M; McGregor, Christopher G A

    2005-11-01

    Recent experimental evidence suggests that the neointimal proliferation seen in cardiac allograft vasculopathy may in part derive from recipient progenitor cells. The effect of cyclosporine on these circulating progenitors in the setting of cardiac transplantation is currently unknown. Three surgical series were performed: sham operation alone, sham operation with immunosuppression, and heterotopic porcine cardiac transplantation with immunosuppression. The sham operation involved laparotomy and consecutive clamping of the abdominal aorta and inferior vena cava. Post-operative immunosuppression consisted of cyclosporine at therapeutic levels (100-300 ng/ml) and 0.5 mg/kg methylprednisolone. Endothelial outgrowth colony numbers (EOC(CFU)) and smooth muscle outgrowth colony numbers (SOC(CFU)) were quantified weekly for 4 weeks post-operatively. A series of in vitro experiments were performed to determine the effect of cyclosporine on the differentiation, migration, and proliferation of EOCs and SOCs. In the sham alone series there were no changes to either EOC(CFU) or SOC(CFU). In the sham with immunosuppression and the transplant series, both EOC(CFU) and SOC(CFU) fell in the first 2 weeks (p Cyclosporine, even at a low dose, prevented differentiation, inhibited proliferation, and attenuated migration of both EOCs and SOCs. Immunosuppression in the setting of cardiac transplantation causes a profound reduction in circulating progenitor cells capable of differentiating into endothelial and smooth muscle cells. This effect can in part be explained by the inhibitory effects of cyclosporine on progenitor growth and differentiation seen in this study.

  3. Rod progenitor cells in the mature zebrafish retina.

    Science.gov (United States)

    Morris, Ann C; Scholz, Tamera; Fadool, James M

    2008-01-01

    The zebrafish is an excellent model organism in which to study the retina's response to photoreceptor degeneration and/or acute injury. While much has been learned about the retinal stem and progenitor cells that mediate the damage response, several questions remain that cannot be addressed by acute models of injury. The development of genetic models, such as the XOPS-mCFP transgenic line, should further efforts to understand the nature of the signals that promote rod progenitor proliferation and differentiation following photoreceptor loss. This in turn may help to refine future approaches in higher vertebrates aimed at enhancing retinal progenitor cell activity for therapeutic purposes.

  4. Hemopoietic stem cells: stochastic differentiation and humoral control of proliferation.

    Science.gov (United States)

    Ogawa, M

    1989-03-01

    The central feature of hemopoiesis is life-long, stable cell renewal. This process is supported by hemopoietic stem cells which, in the steady state, appear to be dormant in cell cycling. The entry into cell cycle of the dormant stem cells may be promoted by such factors as interleukin-1, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). Once the stem cells leave G0 and begin proliferation, the subsequent process is characterized by continued proliferation and differentiation. While several models of stem cell differentiation have been proposed, micromanipulation studies of individual progenitors suggest that the commitment of multipotential progenitors to single lineages is a random (stochastic) process. The proliferation of early hemopoietic progenitors requires the presence of interleukin-3 (IL-3), and the intermediate process appears to be supported by granulocyte/macrophage colony-stimulating factor (GM-CSF). Once the progenitors are committed to individual lineages, the subsequent maturation process appears to be supported by late-acting, lineage-specific factors such as erythropoietin and G-CSF. Synthesis of a hemopoietic factor may take place in different cell types and is regulated by multiple factors. The physiological regulator of erythropoiesis is erythropoietin, which, by a feedback mechanism, provides fine control of erythrocyte production. Feedback mechanisms for leukocyte production have not been identified. It is possible that there is no feedback regulator of leukopoiesis. In this model, leukocyte production in the steady state is maintained at a genetically determined level. When an infection occurs, the bacterial lipopolysaccharides may augment the production of interleukin 1 alpha and beta, tumor necrosis factor, macrophage colony-stimulating factor, etc.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Expression of C/EBPβ in myeloid progenitors during sepsis promotes immunosuppression.

    Science.gov (United States)

    Dai, Jun; Kumbhare, Ajinkya; Youssef, Dima; Yao, Zhi Q; McCall, Charles E; El Gazzar, Mohamed

    2017-11-01

    Sepsis-induced myeloid-derived suppressor cells (MDSCs) contribute to immunosuppression associated with sepsis. We reported that the CCAAT enhancer-binding protein C/EBPβ activates microRNA (miR)-21 and miR-181b expressions, which induce transcription factor NFI-A to support the generation and expansion of MDSCs in the bone marrow and spleens of septic mice. Here, using a conditional knockout mouse model lacking C/EBPβ in the myeloid lineage, we find that without C/EBPβ, myeloid progenitor cells could not express miR-21 or miR-181b, and ectopic expression of C/EBPβ in the C/EBPβ-deficient myeloid progenitors activated the expression of the two miRNAs. Moreover, C/EBPβ-reconstituted myeloid cells expressed IL-10 and reduced T cell proliferation and function, similar to control MDSCs that express C/EBPβ. Exogenous expression of miR-21 and miR-181b in the C/EBPβ-deficient myeloid progenitors from septic mice produced similar results. Notably, NFI-A-dependent transactivation of NF-kB MDSC generating pathway was reversed in the C/EBPβ-deficient myeloid progenitors from septic mice. Together, these results support that decreasing C/EBPβ expression prevents MDSC generation and decreases immunosuppression in septic mice, providing a target for sepsis treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    Science.gov (United States)

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-08

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration.

    Science.gov (United States)

    Giroux, Véronique; Lento, Ashley A; Islam, Mirazul; Pitarresi, Jason R; Kharbanda, Akriti; Hamilton, Kathryn E; Whelan, Kelly A; Long, Apple; Rhoades, Ben; Tang, Qiaosi; Nakagawa, Hiroshi; Lengner, Christopher J; Bass, Adam J; Wileyto, E Paul; Klein-Szanto, Andres J; Wang, Timothy C; Rustgi, Anil K

    2017-06-01

    The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15- basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium.

  8. Ovarian monocyte progenitor cells: phenotypic and functional characterization.

    Science.gov (United States)

    Pascual, Cherry J; Sanberg, Paul R; Chamizo, Wilfredo; Haraguchi, Soichi; Lerner, Danika; Baldwin, Margi; El-Badri, Nagwa S

    2005-04-01

    Leukocytes of the macrophage lineage are abundant in the ovarian tissues and have an important function in both follicular development and regression of postovulatory follicles. In this study, we tested the hypothesis that continuous production of macrophages in the ovarian stroma is maintained by a resident population of progenitors. We established a long-term culture of ovarian follicular stromal cells from BALB/c and green fluorescent protein-transgenic (GFP-TG) C57BL/6 mice. Nonadherent cells were collected and tested for hematopoietic function in vitro and in vivo. Histological and ultrastructural analyses revealed a homogenous population of monocyte-like rounded cells. Nonadherent cells continued to proliferate in culture for several months without senescence. When plated at very low density in methylcellulose, these cells formed colonies consisting of monocyte-like cells. Ovarian monocyte-like cells reacted with CD45, CD11b, CD11c, and Ly6-Gr-1 cell surface markers. A distinct CD45low population within these cells reacted with CD117 (C-kit) surface marker, suggestive of a primitive hematopoietic progenitor. Fifty thousand nonadherent cells failed to provide radioprotection to lethally irradiated mice and thus were not considered to be equivalent to pluripotent hematopoietic stem cells. Ovarian nonadherent stromal cells were positive for alkaline phosphatase but lacked embryonic cell antigens stage-specific embryonic antigen (SSEA-1) and Oct-4. We conclude that in the ovaries, a higher requirement for macrophages is provided by a resident stromal population of progenitors whose progeny is restricted to the production of cells of the monocyte-macrophage lineage.

  9. Effects of hematopoietic growth factors on purified bone marrow progenitor cells

    NARCIS (Netherlands)

    F.J. Bot (Freek)

    1992-01-01

    textabstractWe have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the following questions: 1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched hematopoietic progenitor cells have not been clearly defined: - how do IL~3

  10. Pre-supernova properties of progenitors detected by HST

    Science.gov (United States)

    Fuller, Jim

    2017-08-01

    HST has provided essential data on the connection between core-collapse supernovae (SNe) and their massive star progenitors, both through precise post-explosion localization of nearby SNe, and by identification of progenitor stars in pre-explosion HST images. However, mounting evidence suggests that many SN progenitors exhibit outbursts and/or enhanced mass loss in the years preceding the SN, potentially affecting the progenitor properties measured by HST. Inferring progenitor characteristics such as stellar mass thus requires a better theoretical understanding of the pre-SN stellar evolution. A compelling mechanism for pre-SN outbursts is energy transport via gravity/acoustic waves within massive star SN progenitors. We propose to quantify the observable effects of wave-driven outbursts and mass loss in the final years of massive star lives using stellar evolution calculations incorporating wave energy transport. Our models will make predictions for progenitor luminosity in HST bands as a function of stellar mass and time before SN explosion. We will also model the SN light curves and spectra of stars with wave energy transport, which we can compare with SN observations to assert whether wave heating operated in the progenitors detected by HST. We will then revisit the interpretation of HST progenitor data and make predictions for future SN progenitor detections by HST.

  11. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    Science.gov (United States)

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  12. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  13. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi

    2016-08-01

    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  14. Chemokine polyreactivity of IL7Rα+CSF-1R+ lympho-myeloid progenitors in the developing fetal liver.

    Science.gov (United States)

    Kajikhina, Katja; Melchers, Fritz; Tsuneto, Motokazu

    2015-08-03

    In murine ontogeny, fetal liver is the major hemato- and B-lymphopoietic site until birth. Hematopoiesis develops in largely non-hematopoietic niches, which provide contacts, chemokines and cytokines that induce migration, residence, proliferation and differentiation of progenitors. Within early multipotent progenitors an IL7Rα(+)CSF-1R(+) subset expressed a mixture of lymphoid- and myeloid-specific genes and differentiated to lymphoid and myeloid lineages in vitro. By contrast, IL7Rα(+) cells were lymphoid-committed, and CSF-1R(+) cells were erythro-myeloid-restricted. To respond to a multitude of chemokines single biphenotypic cells expressed CXCR4 and as many as five other chemokine receptors. The monopotent IL7Rα(+) and CSF-1R(+)progenitors all expressed CXCR4, and mutually exclusive, more restricted sets of the analysed five chemokine receptors. This study proposes that chemokine polyreactive, cytokine-bipotent and monopotent progenitors transmigrate through LYVE-1(high) endothelium, attracted by selected chemokines, and reach the IL7- and CSF-1-producing ALCAM(high) mesenchymal niche, attracted by other sets of chemokines, to differentiate to B-lymphoid respectively myeloid cells.

  15. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); M.R.M. Baert (Miranda); C.M. van den Burg (Caroline); M. van Noort (Mascha); E.F. de Haas (Edwin); J.J.M. van Dongen (Jacques)

    2004-01-01

    textabstractThe thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals

  16. BCR-ABL-induced deregulation of the IL-33/ST2 pathway in CD34+ progenitors from chronic myeloid leukemia patients.

    Science.gov (United States)

    Levescot, Anaïs; Flamant, Stéphane; Basbous, Sara; Jacomet, Florence; Féraud, Olivier; Anne Bourgeois, Elvire; Bonnet, Marie-Laure; Giraud, Christine; Roy, Lydia; Barra, Anne; Chomel, Jean-Claude; Turhan, Ali; Guilhot, François; Girard, Jean-Philippe; Gombert, Jean-Marc; Herbelin, André

    2014-05-15

    Although it is generally acknowledged that cytokines regulate normal hematopoiesis in an autocrine/paracrine fashion, their possible role in chronic myelogenous leukemia (CML) and resistance to imatinib mesylate treatment remain poorly investigated. Here, we report that CD34(+) progenitors from patients with CML at diagnosis are selectively targeted by the cytokine/alarmin interleukin (IL)-33. Indeed, CML CD34(+) progenitors upregulate their cell surface expression of the IL-33-specific receptor chain ST2, proliferate and produce cytokines in response to IL-33, conversely to CD34(+) cells from healthy individuals. Moreover, ST2 overexpression is normalized following imatinib mesylate therapy, whereas IL-33 counteracts in vitro imatinib mesylate-induced growth arrest in CML CD34(+) progenitors via reactivation of the STAT5 pathway, thus supporting the notion that IL-33 may impede the antiproliferative effects of imatinib mesylate on CD34(+) progenitors in CML. Clinically, the levels of circulating soluble ST2, commonly considered a functional signature of IL-33 signaling in vivo, correlate with disease burden. Indeed, these elevated peripheral concentrations associated with a high Sokal score predictive of therapeutic outcome are normalized in patients in molecular remission. Finally, we evidenced a facilitating effect of IL-33 on in vivo maintenance of CD34(+) progenitors from patients with CML by using xenotransplant experiments in immunodeficient NOG mice, and we showed that engraftment of mouse BCR-ABL-transfected bone marrow progenitors was less efficient in IL-33-deficient mice compared with wild-type recipients. Taken together, our results provide evidence that IL-33/ST2 signaling may represent a novel cytokine-mediated mechanism contributing to CML progenitor growth and support a role for this pathway in CML maintenance and imatinib mesylate resistance. ©2014 American Association for Cancer Research.

  17. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro.

    Science.gov (United States)

    Jaeger, Alexandra; Fröhlich, Michael; Klum, Susanne; Lantow, Margareta; Viergutz, Torsten; Weiss, Dieter G; Kriehuber, Ralf

    2015-11-01

    Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.

  18. [Humoral regulation of stem cell proliferation].

    Science.gov (United States)

    Musashi, M; Ogawa, M

    1991-05-01

    The central feature of hematopoiesis is life-long, stable cell renewal. This process is supported by hemopoietic stem cells which, in the steady state, appear to be dormant in cell cycling. The recruitment of the dormant stem cells into cell cycle may be promoted by such factors as interleukin (IL)-1, IL-6, granulocyte-colony stimulating factor (G-CSF), and newly discovered IL-11. The effects of IL-1 on stem cells may be indirect. Once the stem cells leave Go and begin proliferation, the subsequent process is characterized by continued proliferation and differentiation. Though several models of stem cell differentiation have been proposed, micromanipulation studies of individual progenitors suggest that the commitment of multipotential progenitors to single lineages is a stochastic process. The proliferation of early hemopoietic progenitors requires the presence of IL-3 and/or IL-4, and the intermediate process appears to be supported by granulocyte/macrophage-CSF (GM-CSF). Once the progenitors are committed to individual lineages, the subsequent maturation process appears to be supported by late-acting, lineage-specific factors such as erythropoietin (erythropoiesis), G-CSF (neutrophil production), and IL-5 (eosinophilopoiesis). Thus, hemopoietic proliferation appears to be regulated by a cascade of factors directed at different developmental stages.

  19. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver.

    Science.gov (United States)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or alpha-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  20. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  1. The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors

    NARCIS (Netherlands)

    Wessely, O.; Deiner, E. M.; Beug, H.; von Lindern, M.

    1997-01-01

    During development and in regenerating tissues such as the bone marrow, progenitor cells constantly need to make decisions between proliferation and differentiation. We have used a model system, normal erythroid progenitors of the chicken, to determine the molecular players involved in making this

  2. Dysfunctional Endothelial Progenitor Cells in Metabolic Syndrome

    Science.gov (United States)

    Devaraj, Sridevi; Jialal, Ishwarlal

    2012-01-01

    The metabolic syndrome (MetS) is highly prevalent and confers an increased risk of diabetes and cardiovascular disease. A key early event in atherosclerosis is endothelial dysfunction. Numerous groups have reported endothelial dysfunction in MetS. However, the measurement of endothelial function is far from optimum. There has been much interest recently in a subtype of progenitor cells, termed endothelial progenitor cells (EPCs), that can circulate, proliferate, and dfferentiate into mature endothelial cells. EPCs can be characterized by the assessment of surface markers, CD34 and vascular endothelial growth factor receptor-2, VEGFR-2 (KDR). The CD34+KDR+ phenotype has been demonstrated to be an independent predictor of cardiovascular outcomes. MetS patients without diabetes or cardiovascular diseases have decreased EPC number and functionality as evidenced by decreased numbers of colony forming units, decreased adhesion and migration, and decreased tubule formation. Strategies that have been shown to upregulate and enhance EPC number and functionality include statins, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and peroxisome-proliferator-activating-receptor gamma agonists. Mechanisms by which they affect EPC number and functionality need to be studied. Thus, EPC number and/or functionality could emerge as novel cellular biomarkers of endothelial dysfunction and cardiovascular disease risk in MetS. PMID:21941528

  3. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Wang, Kai [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Gong, Yun Guo; Khoo, Sok Kean [Genomic Microarray Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 (United States); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States)

    2013-02-08

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and

  4. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion.

    Science.gov (United States)

    Baksh, Dolores; Davies, John E; Zandstra, Peter W

    2003-08-01

    We show the existence of adult human mesenchymal progenitor cells (hMPCs) that can proliferate, in a cytokine-dependent manner, as individual cells in stirred suspension cultures (SSC) while maintaining their ability to form functional differentiated mesenchymal cell types. Ficolled human bone marrow (BM)-derived cells were grown in SSC (and adherent controls) in the presence and absence of exogenously added cytokines. Phenotypic, gene expression, and functional assays for hematopoietic and nonhematopoietic cell populations were used to kinetically track cell production. Limiting-dilution analysis was used to relate culture-produced cells to input cell populations. Cytokine cocktail influenced total and progenitor cell expansion, as well as the types of cells generated upon plating. Flow cytometric analysis of CD117, CD123, and CD45 expression showed that cytokine supplementation influenced SSC output. The concomitant growth of CD45(+) and CD45(-) cells in the cultures that exhibited the greatest hMPC expansions suggests that the growth of these cells may benefit from interactions with hematopoietic cells. Functional assays demonstrated that the SSC-derived cells (input CFU-O number: 1990+/-377) grown in the presence of SCF+IL-3 resulted, after 21 days, in the generation of a significantly greater number (p<0.05) of bone progenitors (33,700+/-8763 CFU-O) than similarly initiated adherent cultures (214+/-75 CFU-O). RT-PCR analysis confirmed that the SSC-derived cells grown in osteogenic conditions express bone-specific genes (Cbfa1/Runx2, bone sialoprotein, and osteocalcin). Our approach not only provides an alternative strategy to expand adult BM-derived nonhematopoietic progenitor cell numbers in a scalable and controllable bioprocess, but also questions established biological paradigms concerning the properties of connective-tissue stem and progenitor cells.

  5. Red supergiants as supernova progenitors

    Science.gov (United States)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  6. Noninvasive Imaging of Administered Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    -99% pure population of leukocytes. Viability was assessed using Trypan blue histological analysis. We successfully isolated and labeled ~25-30 x 10{sup 7} CD34+ lymphocytes in cytokine mobilized progenitor cell apharesis harvests. Cells were also subjected to a stat gram stain to look for bacterial contamination, stat endotoxin LAL to look for endotoxin contamination, flow cytometry for evaluation of the purity of the cells and 14-day sterility culture. Colony forming assays confirm the capacity of these cells to proliferate and function ex-vivo with CFU-GM values of 26 colonies/ 1 x 10{sup 4} cells plated and 97% viability in cytokine augmented methylcellulose at 10-14 days in CO{sub 2} incubation. We developed a closed-processing system for the product labeling prior to infusion to maintain autologous cell integrity and sterility. Release criteria for the labeled product were documented for viability, cell count and differential, and measured radiolabel. We were successful in labeling the cells with up to 500 uCi/10{sup 8} cells, with viability of >98%. However, due to delays in getting the protocol approved by the FDA, the cells were not infused in humans in this location (although we did successfully use CD34+ cells in humans in a study in Australia). The approach developed should permit labeling of progenitor cells that can be administered to human subjects for tracking. The labeling approach should be useful for all progenitor cell types, although this would need to be verified since different cell lines may have differential radiosensitivity.

  7. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Bauer, Matthias; Szulc, Jolanta; Meyer, Morten

    2008-01-01

    function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation...... in vitro. The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation....

  8. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Haibo Shi

    2017-04-01

    Full Text Available Cochlear supporting cells (SCs have been shown to be a promising resource for hair cell (HC regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  9. Endothelial progenitor cells, cardiovascular risk factors and lifestyle modifications.

    Science.gov (United States)

    Di Stefano, Rossella; Felice, Francesca; Feriani, Roberto; Balbarini, Alberto

    2013-04-01

    Endothelial progenitor cells (EPCs) contribute substantially to preservation of a structurally and functionally intact endothelium. EPCs home in to the sites of endothelial injury and ischemia, where they proliferate, differentiate and integrate into the endothelial layer or exert a paracrine function by producing vascular growth factors. This review will focus on successful lifestyle interventions that aim to maintain vascular health through beneficial actions on cell populations with vasculogenic potential. The results of the studies proving the role of healthy lifestyle are particularly emphasized.

  10. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  11. Monomeric CXCL12 outperforms its dimeric and wild type variants in the promotion of human endothelial progenitor cells' function.

    Science.gov (United States)

    Chang, Shuang; Li, Yaning; Yuan, Fang; Qu, Meijie; Song, Yaying; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2017-06-24

    CXCL12 overexpression improves neurobehavioral recovery during post-ischemic stroke through multiple mechanisms including promoting endothelial progenitor cells function in animal models. It has been proposed that the monomer and dimer forms possess differential chemotactic and regulatory function. The aim of present study is to explore whether a monomeric or dimeric CXCL12 plays a different role in the endothelial progenitor cells proliferation, migration, and tube-formation in vitro. In this study, we transferred monomeric, dimeric and wild type CXCL12 gene into endothelial progenitor cells via lentiviral vectors. We investigated endothelial progenitor cells function following the interaction of CXCL12/CXCR4 or CXCL12/CXCR7 and downstream signaling pathways. Our results showed that the monomeric CXCL12 transfected endothelial progenitor cells had enhanced ability in cell proliferation, migration, and tube-formation compared to that in dimeric or wild type controls (p function of migration, but not proliferation or tube-formation, was significantly reduced in the monomeric CXCL12 transfected endothelial progenitor cells when the cells were pre-treated with either CXCR4 inhibitor AMD3100 or siCXCR7 (p function was partially regulated by CXCL12/CXCR4 and CXCL12/CXCR7 signal pathways. Our study demonstrated that monomeric CXCL12 was the fundamental form, which played important roles in endothelial progenitor cells' proliferation, migration, and tube-formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis

    Directory of Open Access Journals (Sweden)

    Samira Chabab

    2016-01-01

    Full Text Available The heart arises from distinct sources of cardiac progenitors that independently express Mesp1 during gastrulation. The precise number of Mesp1 progenitors that are specified during the early stage of gastrulation, and their clonal behavior during heart morphogenesis, is currently unknown. Here, we used clonal and mosaic tracing of Mesp1-expressing cells combined with quantitative biophysical analysis of the clonal data to define the number of cardiac progenitors and their mode of growth during heart development. Our data indicate that the myocardial layer of the heart derive from ∼250 Mesp1-expressing cardiac progenitors born during gastrulation. Despite arising at different time points and contributing to different heart regions, the temporally distinct cardiac progenitors present very similar clonal dynamics. These results provide insights into the number of cardiac progenitors and their mode of growth and open up avenues to decipher the clonal dynamics of progenitors in other organs and tissues.

  13. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA

    DEFF Research Database (Denmark)

    Weng, Ruifen; Cohen, Stephen M

    2015-01-01

    Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports proliferat......Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports...... proliferation of transit-amplifying intermediate neural progenitor cells in type II neuroblast lineages. The stem cell factors brat and prospero are identified as bantam targets acting on different aspects of these processes. Thus, bantam appears to act in multiple regulatory steps in the maintenance...

  14. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells.

    Science.gov (United States)

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-09-08

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.

  15. Laminin-511 and -521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells.

    Science.gov (United States)

    Polisetti, Naresh; Sorokin, Lydia; Okumura, Naoki; Koizumi, Noriko; Kinoshita, Shigeru; Kruse, Friedrich E; Schlötzer-Schrehardt, Ursula

    2017-07-11

    Optimization of culture conditions for human limbal epithelial stem/progenitor cells (LEPC) that incorporate the in vivo cell-matrix interactions are essential to enhance LEPC ex vivo-expansion and transplantation efficiency. Here, we investigate the efficacy of laminin (LN) isoforms preferentially expressed in the limbal niche as culture matrices for epithelial tissue engineering. Analyses of expression patterns of LN chains in the human limbal niche provided evidence for enrichment of LN-α2, -α3, -α5, -β1, -β2, -β3, -γ1, -γ2 and -γ3 chains in the limbal basement membrane, with LN-α5 representing a signature component specifically produced by epithelial progenitor cells. Recombinant human LN-521 and LN-511 significantly enhanced in vitro LEPC adhesion, migration and proliferation compared to other isoforms, and maintained phenotype stability. The bioactive LN-511-E8 fragment carrying only C-terminal domains showed similar efficacy as full-length LN-511. Functional blocking of α3β1 and α6β1 integrins suppressed adhesion of LEPC to LN-511/521-coated surfaces. Cultivation of LEPC on fibrin-based hydrogels incorporating LN-511-E8 resulted in firm integrin-mediated adhesion to the scaffold and well-stratified epithelial constructs, with maintenance of a progenitor cell phenotype in their (supra)basal layers. Thus, the incorporation of chemically defined LN-511-E8 into biosynthetic scaffolds represents a promising approach for xeno-free corneal epithelial tissue engineering for ocular surface reconstruction.

  16. Functional Blood Progenitor Markers in Developing Human Liver Progenitors

    Directory of Open Access Journals (Sweden)

    Orit Goldman

    2016-08-01

    Full Text Available In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors.

  17. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Shasha Zhang

    2017-07-01

    Full Text Available Lgr5+ supporting cells (SCs are enriched hair cell (HC progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.

  18. The poster as modernist progenitor

    National Research Council Canada - National Science Library

    Katherine Hauser

    2015-01-01

    Ruth E. Iskin’s The Poster: Art, Advertising. Design, and Collecting, 1860s-1900s positions the late-nineteenth-century advertising poster as the progenitor of valued modernist practices typically attached solely to photography and film...

  19. Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells

    Science.gov (United States)

    Kasten, Annika; Grüttner, Cordula; Kühn, Jens-Peter; Bader, Rainer; Pasold, Juliane; Frerich, Bernhard

    2014-01-01

    Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions. PMID:25244560

  20. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  1. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    Science.gov (United States)

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  2. MicroRNA-22 Induces Endothelial Progenitor Cell Senescence by Targeting AKT3

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2014-10-01

    Full Text Available Objectives: Endothelial progenitor cells (EPCs play an important role in postnatal neovascularization. The number and function of EPCs declines as part of aging-associated senescence, thereby potentially contributing to vascular pathologies. Here, we investigated the significance and molecular mechanisms of microRNA-22 (miR-22 governing EPC senescence. Methods: EPCs were isolated from human circulating mononuclear cells from healthy young and aged volunteers. Cell senescence, proliferation, migration and tube formation ability were detected by SA-β-gal staining assay, MTT assay, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were analyzed by qRT-PCR and Western blot respectively. Results: We found that miR-22 was upregulated in aged EPCs. Overexpression of miR-22 in young EPCs induced cell senescence, decreased proliferation and migration, and impaired angiogenesis in vitro. Conversely, silencing of endogenous miR-22 led to decreased cell senescence, increased proliferation and migration, and improved angiogenesis. AKT3 was identified as a direct target of miR-22, and restoration of AKT3 expression attenuated the effects of miR-22 in young EPCs. Conclusion: Our results indicate that miR-22 induces EPC senescence by downregulating AKT3 expression, providing a potential novel target for the reversal of EPC dysfunction in angiogenesis.

  3. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands.

    Science.gov (United States)

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.

  4. Isolation and characterization of stromal progenitor cells from ascites of patients with epithelial ovarian adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Ho Chih-Ming

    2012-02-01

    Full Text Available Abstract Background At least one-third of epithelial ovarian cancers are associated with the development of ascites containing heterogeneous cell populations, including tumor cells, inflammatory cells, and stromal elements. The components of ascites and their effects on the tumor cell microenvironment remain poorly understood. This study aimed to isolate and characterize stromal progenitor cells from the ascites of patients with epithelial ovarian adenocarcinoma (EOA. Methods Seventeen ascitic fluid samples and 7 fresh tissue samples were collected from 16 patients with EOA. The ascites samples were then cultured in vitro in varying conditions. Flow cytometry and immunocytochemistry were used to isolate and characterize 2 cell populations with different morphologies (epithelial type and mesenchymal type deriving from the ascites samples. The in vitro cell culture model was established using conditional culture medium. Results The doubling times of the epithelial type and mesenchymal type cells were 36 h and 48 h, respectively, indicating faster growth of the epithelial type cells compared to the mesenchymal type cells. Cultured in vitro, these ascitic cells displayed the potential for self-renewal and long-term proliferation, and expressed the typical cancer stem/progenitor cell markers CD44high, CD24low, and AC133+. These cells also demonstrated high BMP-2, BMP4, TGF-β, Rex-1, and AC133 early gene expression, and expressed EGFR, integrin α2β1, CD146, and Flt-4, which are highly associated with tumorigenesis and metastasis. The epithelial type cells demonstrated higher cytokeratin 18 and E-cadherin expression than the mesenchymal type cells. The mesenchymal type cells, in contrast, demonstrated higher AC133, CD73, CD105, CD117, EGFR, integrin α2β1, and CD146 surface marker expression than the epithelial type cells. Conclusion The established culture system provides an in vitro model for the selection of drugs that target cancer

  5. Isolation and characterization of stromal progenitor cells from ascites of patients with epithelial ovarian adenocarcinoma.

    Science.gov (United States)

    Ho, Chih-Ming; Chang, Shwu-Fen; Hsiao, Chih-Chiang; Chien, Tsai-Yen; Shih, Daniel Tzu-Bi

    2012-02-14

    At least one-third of epithelial ovarian cancers are associated with the development of ascites containing heterogeneous cell populations, including tumor cells, inflammatory cells, and stromal elements. The components of ascites and their effects on the tumor cell microenvironment remain poorly understood. This study aimed to isolate and characterize stromal progenitor cells from the ascites of patients with epithelial ovarian adenocarcinoma (EOA). Seventeen ascitic fluid samples and 7 fresh tissue samples were collected from 16 patients with EOA. The ascites samples were then cultured in vitro in varying conditions. Flow cytometry and immunocytochemistry were used to isolate and characterize 2 cell populations with different morphologies (epithelial type and mesenchymal type) deriving from the ascites samples. The in vitro cell culture model was established using conditional culture medium. The doubling times of the epithelial type and mesenchymal type cells were 36 h and 48 h, respectively, indicating faster growth of the epithelial type cells compared to the mesenchymal type cells. Cultured in vitro, these ascitic cells displayed the potential for self-renewal and long-term proliferation, and expressed the typical cancer stem/progenitor cell markers CD44(high), CD24(low), and AC133(+). These cells also demonstrated high BMP-2, BMP4, TGF-β, Rex-1, and AC133 early gene expression, and expressed EGFR, integrin α2β1, CD146, and Flt-4, which are highly associated with tumorigenesis and metastasis. The epithelial type cells demonstrated higher cytokeratin 18 and E-cadherin expression than the mesenchymal type cells. The mesenchymal type cells, in contrast, demonstrated higher AC133, CD73, CD105, CD117, EGFR, integrin α2β1, and CD146 surface marker expression than the epithelial type cells. The established culture system provides an in vitro model for the selection of drugs that target cancer-associated stromal progenitor cells, and for the development of ovarian

  6. Identification of regulatory elements that control PPARγ expression in adipocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Chou

    Full Text Available Adipose tissue renewal and obesity-driven expansion of fat cell number are dependent on proliferation and differentiation of adipose progenitors that reside in the vasculature that develops in coordination with adipose depots. The transcriptional events that regulate commitment of progenitors to the adipose lineage are poorly understood. Because expression of the nuclear receptor PPARγ defines the adipose lineage, isolation of elements that control PPARγ expression in adipose precursors may lead to discovery of transcriptional regulators of early adipocyte determination. Here, we describe the identification and validation in transgenic mice of 5 highly conserved non-coding sequences from the PPARγ locus that can drive expression of a reporter gene in a manner that recapitulates the tissue-specific pattern of PPARγ expression. Surprisingly, these 5 elements appear to control PPARγ expression in adipocyte precursors that are associated with the vasculature of adipose depots, but not in mature adipocytes. Characterization of these five PPARγ regulatory sequences may enable isolation of the transcription factors that bind these cis elements and provide insight into the molecular regulation of adipose tissue expansion in normal and pathological states.

  7. Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection.

    Science.gov (United States)

    MacNamara, Katherine C; Jones, Maura; Martin, Olga; Winslow, Gary M

    2011-01-01

    How hematopoietic stem cells (HSCs) respond to inflammatory signals during infections is not well understood. Our studies have used a murine model of ehrlichiosis, an emerging tick-born disease, to address how infection impacts hematopoietic function. Infection of C57BL/6 mice with the intracellular bacterium, Ehrlichia muris, results in anemia and thrombocytopenia, similar to what is observed in human ehrlichiosis patients. In the mouse, infection promotes myelopoiesis, a process that is critically dependent on interferon gamma (IFNγ) signaling. In the present study, we demonstrate that E. muris infection also drives the transient proliferation and expansion of bone marrow Lin-negative Sca-1(+) cKit(+) (LSK) cells, a population of progenitor cells that contains HSCs. Expansion of the LSK population in the bone marrow was associated with a loss of dormant, long-term repopulating HSCs, reduced engraftment, and a bias towards myeloid lineage differentiation within that population. The reduced engraftment and myeloid bias of the infection-induced LSK cells was transient, and was most pronounced on day 8 post-infection. The infection-induced changes were accompanied by an expansion of more differentiated multipotent progenitor cells, and required IFNγ signaling. Thus, in response to inflammatory signals elicited during acute infection, HSCs can undergo a rapid, IFNγ-dependent, transient shift from dormancy to activity, ostensibly, to provide the host with additional or better-armed innate cells for host defense. Similar changes in hematopoietic function likely underlie many different infections of public health importance.

  8. Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection.

    Directory of Open Access Journals (Sweden)

    Katherine C MacNamara

    Full Text Available How hematopoietic stem cells (HSCs respond to inflammatory signals during infections is not well understood. Our studies have used a murine model of ehrlichiosis, an emerging tick-born disease, to address how infection impacts hematopoietic function. Infection of C57BL/6 mice with the intracellular bacterium, Ehrlichia muris, results in anemia and thrombocytopenia, similar to what is observed in human ehrlichiosis patients. In the mouse, infection promotes myelopoiesis, a process that is critically dependent on interferon gamma (IFNγ signaling. In the present study, we demonstrate that E. muris infection also drives the transient proliferation and expansion of bone marrow Lin-negative Sca-1(+ cKit(+ (LSK cells, a population of progenitor cells that contains HSCs. Expansion of the LSK population in the bone marrow was associated with a loss of dormant, long-term repopulating HSCs, reduced engraftment, and a bias towards myeloid lineage differentiation within that population. The reduced engraftment and myeloid bias of the infection-induced LSK cells was transient, and was most pronounced on day 8 post-infection. The infection-induced changes were accompanied by an expansion of more differentiated multipotent progenitor cells, and required IFNγ signaling. Thus, in response to inflammatory signals elicited during acute infection, HSCs can undergo a rapid, IFNγ-dependent, transient shift from dormancy to activity, ostensibly, to provide the host with additional or better-armed innate cells for host defense. Similar changes in hematopoietic function likely underlie many different infections of public health importance.

  9. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases

    Science.gov (United States)

    Feng, F; Akiyama, K; Liu, Y; Yamaza, T; Wang, T-M; Chen, J-H; Wang, BB; Huang, G T-J; Wang, S; Shi, S

    2010-01-01

    Objective Periodontal disease is an inflammatory disorder with widespread morbidities involving both oral and systemic health. The primary goal of periodontal treatment is the regeneration of the lost or diseased periodontium. In this study, we retrospectively examined feasibility and safety of reconstructing the periodontal intrabony defects with autologous periodontal ligament progenitor (PDLP) implantation in three patients. Materials and Methods In this retrospective pilot study, we treated 16 teeth with at least one deep intrabony defect of probing depth (PD) ≥ 6 mm with PDLP transplantation and evaluated clinical outcome measures in terms of probing depth, gingival recession and attachment gain for a duration of 32–72 months. Furthermore, we compare PDLPs with standard PDL stem cells (PDLSCs) and confirmed that PDLPs possessed progenitor characters. Results Clinical examination indicated that transplantation of PDLPs may provide therapeutic benefit for the periodontal defects. All treated patients showed no adverse effects during the entire course of follow up. We also found that PDLPs were analogous to PDLSCs in terms of high proliferation, expression of mesenchymal surface molecules, multipotent differentiation, and in vivo tissue regain. However, PDLPs failed to express scleraxis, a marker of tendon, as seen in PDLSCs. Conclusions This study demonstrated clinical and experimental evidences supporting a potential efficacy and safety of utilizing autologous PDL cells in the treatment of human periodontitis. PMID:20355278

  10. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  11. High-resolution mass spectrometric analysis of the secretome from mouse lung endothelial progenitor cells.

    Science.gov (United States)

    Hemmen, Katherina; Reinl, Tobias; Buttler, Kerstin; Behler, Friederike; Dieken, Hauke; Jänsch, Lothar; Wilting, Jörg; Weich, Herbert A

    2011-05-01

    Recently, we isolated and characterized resident endothelial progenitor cells from the lungs of adult mice. These cells have a high proliferation potential, are not transformed and can differentiate into blood- and lymph-vascular endothelial cells under in vitro and in vivo conditions. Here we studied the secretome of these cells by nanoflow liquid chromatographic mass spectrometry (LC-MS). For analysis, 3-day conditioned serum-free media were used. We found 133 proteins belonging to the categories of membrane-bound or secreted proteins. Thereby, several of the membrane-bound proteins also existed as released variants. Thirty-five proteins from this group are well known as endothelial cell- or angiogenesis-related proteins. The MS analysis of the secretome was supplemented and confirmed by fluorescence activated cell sorting analyses, ELISA measurements and immunocytological studies of selected proteins. The secretome data presented in this study provides a platform for the in-depth analysis of endothelial progenitor cells and characterizes potential cellular markers and signaling components in hem- and lymphangiogenesis.

  12. Hepatic progenitors for liver disease: current position

    Directory of Open Access Journals (Sweden)

    Alice Conigliaro

    2010-02-01

    Full Text Available Alice Conigliaro1, David A Brenner2, Tatiana Kisseleva21University “La Sapienza”, Dipartimento di Biotecnologie Cellulari ed Ematologia Policlinico Umberto I, V Clinica Medica, Rome, Italy; 2Department of Medicine, University of California, San Diego, La Jolla, CA, USAAbstract: Liver regeneration restores the original functionality of hepatocytes and cholangiocytes in response to injury. It is regulated on several levels, with different cellular populations contributing to this process, eg, hepatocytes, liver precursor cells, intrahepatic stem cells. In response to injury, mature hepatocytes have the capability to proliferate and give rise to new hepatocytes and cholangiocytes. Meanwhile, liver precursor cells (oval cells have become the most recognized bipotential precursor cells in the damaged liver. They rapidly proliferate, change their cellular composition, and differentiate into hepatocytes and cholangiocytes to compensate for the cellular loss and maintain liver homeostasis. There is a growing body of evidence that oval cells originate from the intrahepatic stem cell(s, which in turn give(s rise to epithelial, including oval cells, and/or other hepatic cells of nonepithelial origin. Since there is a close relationship between the liver and hematopoiesis, bone marrow derived cells can also contribute to liver regeneration by the fusion of myeloid cells with damaged hepatocytes, or differentiation of mesenchymal stem cells into hepatocyte-like cells. The current review discusses the contribution of different cells to liver regeneration and their characteristics.Keywords: hepatic progenitor, liver disease, liver precursor cells, oval cells, hepatocytes, intrahepatic stem cells, cholangiocytes

  13. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    Science.gov (United States)

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  15. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Jelnes, Peter; Thorgeirsson, Snorri S

    2005-01-01

    on hepatic progenitor cells have focused on their origin and phenotypic characterization, recent attention has focused on the influence of the hepatic microenvironment on their activation and proliferation. This microenvironment comprises the extracellular matrix, epithelial and non-epithelial resident liver......, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes...... and biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations...

  16. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.

  17. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration.

    Directory of Open Access Journals (Sweden)

    Masako Osada

    2010-02-01

    Full Text Available Thymic epithelial cell (TEC microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus.Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of DeltaNP63(+ Foxn1(+ and Aire(+ TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments.Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic

  18. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  19. Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina

    Directory of Open Access Journals (Sweden)

    Bibliowicz Jonathan

    2009-10-01

    Full Text Available Abstract Background The roles of the Hedgehog (Hh pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS, a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2, and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS

  20. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  1. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  2. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  3. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  4. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis

    NARCIS (Netherlands)

    Pellissier, Lucie P.; Alves, Celso Henrique; Quinn, Peter M.; Vos, Rogier M.; Tanimoto, Naoyuki; Lundvig, Ditte M. S.; Dudok, Jacobus J.; Hooibrink, Berend; Richard, Fabrice; Beck, Susanne C.; Huber, Gesine; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Le Bivic, André; Seeliger, Mathias W.; Wijnholds, Jan

    2013-01-01

    Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results

  5. MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke

    DEFF Research Database (Denmark)

    Tseng, Kuan-Yin; Anttila, Jenni E; Khodosevich, Konstantin

    2018-01-01

    Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs...

  6. Effect of excess dietary copper on proliferation and differentiation of ...

    African Journals Online (AJOL)

    It was found that the application of copper sulphate doses modulates the proliferation and differentiation of stem cell progenitors and erythrocytes. Several alterations were observed and these were time- and dosedependent. Of these alterations, the predominant existence of giant pro-erythroblasts and promyeloblasts ...

  7. Embryonic Heart Progenitors and Cardiogenesis

    Science.gov (United States)

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  8. Circulating Progenitor Cells in Diabetic Vascular Disease

    NARCIS (Netherlands)

    van Oostrom, O.

    2009-01-01

    Patients with diabetes have altered levels and function of (bone marrow-derived) vascular progenitor cells (endothelial progenitor cells-EPC, smooth muscle progenitor cells-SPC) which may contribute to their accelerated atherosclerosis. The results from clinical and experimental studies in this

  9. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool.

    Directory of Open Access Journals (Sweden)

    Angela Anderegg

    Full Text Available MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key

  10. DYRK1A Is a Regulator of S-Phase Entry in Hepatic Progenitor Cells.

    Science.gov (United States)

    Kruitwagen, Hedwig S; Westendorp, Bart; Viebahn, Cornelia S; Post, Krista; van Wolferen, Monique E; Oosterhoff, Loes A; Egan, David A; Delabar, Jean-Maurice; Toussaint, Mathilda J; Schotanus, Baukje A; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Spee, Bart

    2018-01-15

    Hepatic progenitor cells (HPCs) are adult liver stem cells that act as second line of defense in liver regeneration. They are normally quiescent, but in case of severe liver damage, HPC proliferation is triggered by external activation mechanisms from their niche. Although several important proproliferative mechanisms have been described, it is not known which key intracellular regulators govern the switch between HPC quiescence and active cell cycle. We performed a high-throughput kinome small interfering RNA (siRNA) screen in HepaRG cells, a HPC-like cell line, and evaluated the effect on proliferation with a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. One hit increased the percentage of EdU-positive cells after knockdown: dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Although upon DYRK1A silencing, the percentage of EdU- and phosphorylated histone H3 (pH3)-positive cells was increased, and total cell numbers were not increased, possibly through a subsequent delay in cell cycle progression. This phenotype was confirmed with chemical inhibition of DYRK1A using harmine and with primary HPCs cultured as liver organoids. DYRK1A inhibition impaired Dimerization Partner, RB-like, E2F, and multivulva class B (DREAM) complex formation in HPCs and abolished its transcriptional repression on cell cycle progression. To further analyze DYRK1A function in HPC proliferation, liver organoid cultures were established from mBACtgDyrk1A mice, which harbor one extra copy of the murine Dyrk1a gene (Dyrk+++). Dyrk+++ organoids had both a reduced percentage of EdU-positive cells and reduced proliferation compared with wild-type organoids. This study provides evidence for an essential role of DYRK1A as balanced regulator of S-phase entry in HPCs. An exact gene dosage is crucial, as both DYRK1A deficiency and overexpression affect HPC cell cycle progression.

  11. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration.

    Science.gov (United States)

    Huang, Sha; Yao, Bin; Xie, Jiangfan; Fu, Xiaobing

    2016-03-01

    Sweat glands perform a vital thermoregulatory function in mammals. Like other skin appendages, they originate from epidermal progenitors. However, they have low regenerative potential in response to injury, and whether adult epidermal progenitors could be specified to differentiate to a sweat gland cell lineage remains largely unexplored. We used bioprinting technology to create a functional in vitro cell-laden 3D extracellular matrix mimics (3D-ECM) with composite hydrogels based on gelatin and sodium alginate because of chemical and structural similarity to ECM components. To achieve specific cell differentiation, mouse plantar dermis and epidermal growth factor were synchronously incorporated into the 3D-ECM mimics to create an inductive niche for epidermal progenitor cells obtained from mice. The biological 3D construct could maintain cell viability, thereby facilitating cell spreading and matrix formation. In vitro data by immunofluorescence and gene expression assay of key cell-surface markers demonstrated that the bioprinted 3D-ECM could effectively create a restrictive niche for epidermal progenitors that ensures unilateral differentiation into sweat gland cells. Furthermore, direct delivery of bioprinted 3D-ECM into burned paws of mice resulted in functional restoration of sweat glands. This study represents the rational design to enhance the specific differentiation of epidermal lineages using 3D bioprinting and may have clinical and translational implications in regenerating sweat glands. Sweat gland regeneration after injury is of clinical importance but remains largely unsolved because of low regenerative potential and lack of a definite niche. Some studies have shown sweat gland regeneration with gene-based interventions or cell-based induction via embryonic components, but translation to clinic is challenging. The novelty and significance of the work lies in the fact that we design a 3D bioprinted extracellular matrix that provides the spatial

  12. Mechanisms of temporal identity regulation in mouse retinal progenitor cells.

    Science.gov (United States)

    Mattar, Pierre; Cayouette, Michel

    2015-01-01

    While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcriptional cascade similar to the one used in Drosophila neuroblasts might control progenitor temporal identity in vertebrates. The zinc finger transcription factor Ikzf1 (Ikaros), an ortholog of Drosophila hunchback, was reported to confer early temporal identity in retinal progenitors and, more recently, the ortholog of Drosophila castor, Casz1, was found to function as a mid/late temporal identity factor that is negatively regulated by Ikzf1. The molecular mechanisms by which these temporal identity factors function in retinal progenitors, however, remain unknown. Here we briefly review previous work on the vertebrate temporal identity factors in the retina, and propose a model by which they might operate.

  13. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  14. Targeted Ablation of Crb1 and Crb2 in Retinal Progenitor Cells Mimics Leber Congenital Amaurosis

    Science.gov (United States)

    Pellissier, Lucie P.; Alves, Celso Henrique; Quinn, Peter M.; Vos, Rogier M.; Tanimoto, Naoyuki; Lundvig, Ditte M. S.; Dudok, Jacobus J.; Hooibrink, Berend; Richard, Fabrice; Beck, Susanne C.; Huber, Gesine; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Le Bivic, André; Seeliger, Mathias W.; Wijnholds, Jan

    2013-01-01

    Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways. PMID:24339791

  15. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis.

    Directory of Open Access Journals (Sweden)

    Lucie P Pellissier

    Full Text Available Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.

  16. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells.

    Science.gov (United States)

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro; Gomes, José Álvaro Pereira

    2013-01-01

    To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5'-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT-PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM.

  17. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dongxin Zhao

    Full Text Available The derivation of hepatic progenitor cells from human embryonic stem (hES cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  18. Inhibition of DNA methyltransferases and histone deacetylases induces astrocytic differentiation of neural progenitors.

    Science.gov (United States)

    Majumder, Anirban; Dhara, Sujoy K; Swetenburg, Raymond; Mithani, Miloni; Cao, Kaixiang; Medrzycki, Magdalena; Fan, Yuhong; Stice, Steven L

    2013-07-01

    Understanding how to specify rapid differentiation of human neural progenitor towards enriched non-transformed human astrocyte progenitors will provide a critical cell source to further our understanding of how astrocytes play a pivotal role in neural function and development. Human neural progenitors derived from pluripotent embryonic stem cells and propagated in adherent serum-free cultures provide a fate restricted renewable source for quick production of neural cells; however, such cells are highly refractive to astrocytogenesis and show a strong neurogenic bias, similar to neural progenitors from the early embryonic central nervous system (CNS). We found that several astrocytic genes are hypermethylated in such progenitors potentially preventing generation of astrocytes and leading to the proneuronal fate of these progenitors. However, epigenetic modification by Azacytidine (Aza-C) and Trichostatin A (TSA), with concomitant signaling from BMP2 and LIF in neural progenitor cultures shifts this bias, leading to expression of astrocytic markers as early as 5days of differentiation, with near complete suppression of neuronal differentiation. The resultant cells express major astrocytic markers, are amenable to co-culture with neurons, can be propagated as astrocyte progenitors and are cryopreservable. Although previous reports have generated astrocytes from pluripotent cells, the differentiation required extensive culture or selection based on cell surface antigens. The development of a label free and rapid differentiation process will expedite future derivation of astrocytes from various sources pluripotent cells including, but not limited to, human astrocytes associated with various neurological diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  20. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    Science.gov (United States)

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  1. MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells.

    Science.gov (United States)

    Zeng, Zhihong; Wang, Rui-Yu; Qiu, Yi Hua; Mak, Duncan H; Coombes, Kevin; Yoo, Suk Young; Zhang, Qi; Jessen, Katti; Liu, Yi; Rommel, Christian; Fruman, David A; Kantarjian, Hagop M; Kornblau, Steven M; Andreeff, Michael; Konopleva, Marina

    2016-08-23

    mTOR activation leads to enhanced survival signaling in acute myeloid leukemia (AML) cells. The active-site mTOR inhibitors (asTORi) represent a promising new approach to targeting mTOR in AKT/mTOR signaling. MLN0128 is an orally-administered, second-generation asTORi, currently in clinical development. We examined the anti-leukemic effects and the mechanisms of action of MLN0128 in AML cell lines and primary samples, with a particular focus on its effect in AML stem/progenitor cells. MLN0128 inhibited cell proliferation and induced apoptosis in AML by attenuating the activity of mTOR complex 1 and 2. Using time-of-flight mass cytometry, we demonstrated that MLN0128 selectively targeted and functionally inhibited AML stem/progenitor cells with high AKT/mTOR signaling activity. Using the reverse-phase protein array technique, we measured expression and phosphorylation changes in response to MLN0128 in 151 proteins from 24 primary AML samples and identified several pro-survival pathways that antagonize MLN0128-induced cellular stress. A combined blockade of AKT/mTOR signaling and these pro-survival pathways facilitated AML cell killing. Our findings provide a rationale for the clinical use of MLN0128 to target AML and AML stem/progenitor cells, and support the use of combinatorial multi-targeted approaches in AML therapy.

  2. Number and function of circulating endothelial progenitor cells in patients with primary Budd-Chiari syndrome.

    Science.gov (United States)

    Huang, Rui; Zhang, Qingqiao; Huang, Qianxin; Zu, Maoheng; Xu, Hao; Zeng, Lingyu

    2017-03-01

    Primary Budd-Chiari syndrome (BCS) is associated with vascular endothelial injury. Circulating endothelial progenitor cells (EPCs) provide an endogenous mechanism to repair endothelial injury. This study investigated the levels and functionality of EPCs in patients with primary BCS. EPCs (CD34+/CD133+/KDR+) were quantified in 82 patients with primary BCS (inferior vena cava type: n=19; hepatic vein type: n=22; and mixed type: n=41), 10 cirrhosis controls (CC group) and 10 age-matched healthy controls (HC group), using flow cytometry. EPCs proliferation was detected by MTT assay, adhesion by adhesion activity assay, and migration capacity by Transwell assay. EPCs levels were significantly lower in the BCS group (0.020±0.005%) than in the CC and HC groups (0.260±0.201%, 0.038±0.007%; PRMF), each PRMF, each P<0.001) than in the HC group. EPCs functionality did not significantly differ between the BCS and CC groups. The numbers and functions of EPCs did not significantly differ among patients with inferior vena cava type, hepatic vein type and mixed type of BCS. Patients with primary BCS had lower EPCs levels, with less proliferation, adhesion and migration activities. These findings suggest that lower levels of less functional EPCs may be associated with venous occlusion in primary BCS patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  4. Endothelial progenitor cells in vascular health: focus on lifestyle.

    Science.gov (United States)

    Van Craenenbroeck, Emeline M; Conraads, Viviane M

    2010-05-01

    Endothelial dysfunction, which is considered the functional equivalent of a disrupted balance between endothelial injury and repair, precedes overt atherosclerosis by many years. Although this phenomenon is part of the normal aging process, prevention of early and progressive endothelial dysfunction has become an important therapeutic target. Evidence has accumulated to show that endothelial progenitor cells (EPC), contribute substantially to preservation of a structurally and functionally intact endothelium. There has been considerable progress in our understanding of the various cell types that were in the past all covered by the term "EPC." EPC home to sites of endothelial injury and ischemia, where they proliferate, differentiate and integrate into the endothelial layer or exert a paracrine function by producing vascular growth factors. Although more emphasis has been put on the pharmacological approach of endothelial dysfunction, the effect of a healthy lifestyle, via mobilization and functional improvement of EPC, is increasingly recognized. This review will focus on successful lifestyle interventions that aim to maintain vascular health through beneficial actions on cell populations with vasculogenic potential ("EPC"). The role of physical activity and dietary recommendations, which are considered essential elements of a healthy lifestyle, will be particularly emphasized. A thorough understanding of the physiology of endothelial benefits, derived from such interventions, may help to implement these measures on top of classical drug therapy, but also provides a solid basis for primary prevention. The effects of additional elements of a comprehensive lifestyle advice, such as smoking cessation, weight and stress reduction, also comprise a modulation of EPC function and circulating numbers and are therefore included in this review as well. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Leucine-rich repeat-containing G-protein-coupled Receptor 5 marks short-term hematopoietic stem and progenitor cells during mouse embryonic development

    NARCIS (Netherlands)

    Liu, Donghua; He, Xi C; Qian, Pengxu; Barker, Nick; Trainor, Paul A; Clevers, Hans; Liu, Huiwen; Li, Linheng

    2014-01-01

    Lgr5 is a marker for proliferating stem cells in adult intestine, stomach, and hair follicle. However, Lgr5 is not expressed in adult hematopoietic stem and progenitor cells (HSPCs). Whether Lgr5 is expressed in the embryonic and fetal HSPCs that undergo rapid proliferation is unknown. Here we

  7. The poster as modernist progenitor

    OpenAIRE

    Katherine Hauser

    2015-01-01

    Ruth E. Iskin’s The Poster: Art, Advertising. Design, and Collecting, 1860s-1900s positions the late-nineteenth-century advertising poster as the progenitor of valued modernist practices typically attached solely to photography and film. Modernist biases separating high art from mass culture account for scholars ignoring posters, however the poster ushered in an innovative reductive graphic style as well as pioneered the notion of multiple originals.

  8. The poster as modernist progenitor

    Directory of Open Access Journals (Sweden)

    Katherine Hauser

    2015-12-01

    Full Text Available Ruth E. Iskin’s The Poster: Art, Advertising. Design, and Collecting, 1860s-1900s positions the late-nineteenth-century advertising poster as the progenitor of valued modernist practices typically attached solely to photography and film. Modernist biases separating high art from mass culture account for scholars ignoring posters, however the poster ushered in an innovative reductive graphic style as well as pioneered the notion of multiple originals.

  9. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells.

    Science.gov (United States)

    Lange, Christian; Mix, Eilhard; Frahm, Jana; Glass, Anne; Müller, Jana; Schmitt, Oliver; Schmöle, Anne-Caroline; Klemm, Kristin; Ortinau, Stefanie; Hübner, Rayk; Frech, Moritz J; Wree, Andreas; Rolfs, Arndt

    2011-01-13

    Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    Science.gov (United States)

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

  11. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process

    Directory of Open Access Journals (Sweden)

    Amanda LoGuidice

    2016-07-01

    Full Text Available Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in

  12. Seizure induces activation of multiple subtypes of neural progenitors and growth factors in hippocampus with neuronal maturation confined to dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Indulekha, Chandrasekharan L.; Sanalkumar, Rajendran [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India); Thekkuveettil, Anoopkumar [Molecular Medicine, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala (India); James, Jackson, E-mail: jjames@rgcb.res.in [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India)

    2010-03-19

    Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP{sup +ve}/nestin{sup +ve} radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP{sup -ve}/nestin{sup +ve} Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup +ve}) and Type-1b (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup -ve}). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP{sup -ve}/nestin{sup +ve}/BrdU{sup +ve}) progenitors were few compared to Type-1. Type-3 (DCX{sup +ve}) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.

  13. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues

    Science.gov (United States)

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.—Shan, T., Liu, W., Kuang, S. Fatty acid-binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. PMID:23047894

  14. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c.

    Science.gov (United States)

    Colasante, Gaia; Simonet, Jacqueline C; Calogero, Raffaele; Crispi, Stefania; Sessa, Alessandro; Cho, Ginam; Golden, Jeffrey A; Broccoli, Vania

    2015-02-01

    Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  16. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  17. Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available Acute myeloid leukemia (AML, caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.

  18. Establishment and characterization of a unique 1 {mu}m diameter liver-derived progenitor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: arava001@umn.edu [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Behnan Sahin, M. [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Cressman, Erik N.K. [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455 (United States)

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 {mu}m in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  19. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

    Science.gov (United States)

    Seehus, Corey R; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-06-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.

  20. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  1. Viral-mediated gene transfer to mouse primary neural progenitor cells.

    Science.gov (United States)

    Hughes, Stephanie M; Moussavi-Harami, Farid; Sauter, Sybille L; Davidson, Beverly L

    2002-01-01

    Neural progenitor cells may provide for cell replacement or gene delivery vehicles in neurodegen-erative disease therapies. The expression of therapeutic proteins by neural progenitors would be enhanced by viral-mediated gene transfer, but the effects of several common recombinant viruses on primary progenitor cell populations have not been tested. To address this issue, we cultured cells from embryonic day 16-18 mouse brain in serum-free medium containing epidermal growth factor or basic fibroblast growth factor, and investigated how transduction with recombinant viral vectors affected maintenance and differentiation properties of progenitor cells. Neurosphere cultures were incubated with feline immunodeficiency virus (FIV), adeno-associated virus (AAV) or ade-noviral (Ad) constructs expressing either beta-galactosidase or enhanced green fluorescent protein at low multiplicity of infection. Nestin-positive neurospheres were regenerated after incubation of single progenitor cells with FIV, indicating that FIV-mediated gene transfer did not inhibit progenitor cell self-renewal. In contrast, adenovirus induced differentiation into glial fibrillary acidic protein (GFAP)-positive astrocytes. The AAV serotypes tested did not effectively transduce progenitor cells. FIV-transduced progenitors retained the potential for differentiation into neurons and glia in vitro, and when transplanted into the striatum of normal adult C57BL/6 mice differentiated into glia, or remained undifferentiated. In the presence of tumor cells, FIV-transduced progenitors migrated significantly from the injection site. Our results suggest that FIV-based vectors can transduce progenitor cell populations in vitro, with maintenance of their ability to differentiate into multiple cell types or to respond to injury within the central nervous system. These results hold promise for the use of genetically manipulated stem cells for CNS therapies.

  2. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons.

    Science.gov (United States)

    Park, Thomas In-Hyeup; Monzo, Hector; Mee, Edward W; Bergin, Peter S; Teoh, Hoon H; Montgomery, Johanna M; Faull, Richard L M; Curtis, Maurice A; Dragunow, Mike

    2012-01-01

    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5-6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments.

  3. Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons

    Science.gov (United States)

    Park, Thomas In-Hyeup; Monzo, Hector; Mee, Edward W.; Bergin, Peter S.; Teoh, Hoon H.; Montgomery, Johanna M.; Faull, Richard L. M.; Curtis, Maurice A.; Dragunow, Mike

    2012-01-01

    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments. PMID

  4. Adult human brain neural progenitor cells (NPCs and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons.

    Directory of Open Access Journals (Sweden)

    Thomas In-Hyeup Park

    Full Text Available The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia, and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs. These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5-6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting Ah

  5. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation.

    Science.gov (United States)

    Tarulli, Gerard A; Laven-Law, Geraldine; Shakya, Reshma; Tilley, Wayne D; Hickey, Theresa E

    2015-06-01

    The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.

  6. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  7. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks

    Science.gov (United States)

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  8. On the Progenitor of Binary Neutron Star Merger GW170817

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimball, C.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ˜40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ˜2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older than 1 Gyr.

  9. Human cardiomyocyte progenitor cells: a short history of nearly everything.

    Science.gov (United States)

    van Vliet, Patrick; Goumans, Marie-José; Doevendans, Pieter A; Sluijter, Joost P G

    2012-08-01

    The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  10. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    Science.gov (United States)

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Márcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVÉRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  11. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    Directory of Open Access Journals (Sweden)

    Mayra Laino ALBIERO

    2015-04-01

    Full Text Available Periodontal ligament mesenchymal stem cells (PDLMSCs are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS. Material and Methods : Toll-like receptor 4 (TLR4 expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i cell viability using MTS; (ii expression of the interleukin-1 beta (IL-1β, interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor alpha (TNF-α genes; (iii osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2, alkaline phosphatase (ALP and osteocalcin (OCN determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities.

  12. Mature chief cells are cryptic progenitors for metaplasia in the stomach.

    Science.gov (United States)

    Nam, Ki Taek; Lee, Hyuk-Joon; Sousa, Josane F; Weis, Victoria G; O'Neal, Ryan L; Finke, Paul E; Romero-Gallo, Judith; Shi, Guanglu; Mills, Jason C; Peek, Richard M; Konieczny, Stephen F; Goldenring, James R

    2010-12-01

    Gastric cancer evolves in the setting of a pathologic mucosal milieu characterized by both loss of acid-secreting parietal cells and mucous cell metaplasias. Indeed, mucous cell metaplasia is considered the critical preneoplastic lesion for gastric cancer. Previous investigations have shown that infection of mice with Helicobacter felis or induction of acute parietal cell loss with the drug DMP-777 leads to the emergence of a type of metaplasia designated spasmolytic polypeptide-expressing metaplasia (SPEM). We have hypothesized that SPEM arises from proliferating cells in gland bases, either from a cryptic progenitor cell or by transdifferentiation of mature chief cells. Taking advantage of the chief cell-restricted expression of Mist1-Cre-ER(T2), we used lineage mapping to examine whether SPEM lineages were derived from chief cells in 3 independent models of induction by DMP-777 treatment, L-635 treatment, or H felis infection. Treatment of mice with L-635 for 3 days led to rapid parietal cell loss, induction of a prominent inflammatory infiltrate, and emergence of SPEM. In all 3 models, SPEM developed, at least in part, from transdifferentiation of chief cells. We further found that acute parietal cell loss in the setting of inflammation (L-635 treatment) led to more rapid induction and expansion of SPEM derived from transdifferentiation of chief cells. These studies provide direct evidence by lineage tracing that SPEM evolves from differentiated chief cells. Thus, mature gastric chief cells have the ability to act as cryptic progenitors and reacquire proliferative capacity within the context of mucosal injury and inflammation. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Jun is required in Isl1-expressing progenitor cells for cardiovascular development.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.

  14. Jun is required in Isl1-expressing progenitor cells for cardiovascular development.

    Science.gov (United States)

    Zhang, Tao; Liu, Junchen; Zhang, Jue; Thekkethottiyil, Eldhose B; Macatee, Timothy L; Ismat, Fraz A; Wang, Fen; Stoller, Jason Z

    2013-01-01

    Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.

  15. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.

    Science.gov (United States)

    Xie, Weiliang; Fisher, John T; Lynch, Thomas J; Luo, Meihui; Evans, Turan I A; Neff, Traci L; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W; Russo, Andrew F; Goodheart, Michael J; Parekh, Kalpaj R; Liu, Xiaoming; Engelhardt, John F

    2011-08-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene-related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway.

  16. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Zhan, Xiao-Rong, E-mail: xiaorongzhan@sina.com [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yi, Ran [Department of Endocrinology, First Hospital of Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China); Yang, Baofeng [Department of Pharmacology, State Key Laboratory of Biomedicine and Pharmacology, Harbin Medical University, Harbin, Hei Long Jiang Province 150001 (China)

    2009-06-12

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing {beta}-cells. The functional mass of {beta}-cells is decreased in type 1 diabetes, so replacing missing {beta}-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the {beta}-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding {beta}-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet {beta}-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal

  17. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  18. Stem/progenitor cells in non-lactating versus lactating equine mammary gland

    OpenAIRE

    Spaas, Jan; Chiers, Koen; Bussche, Leen; Burvenich, Christian; Van de Walle, Gerlinde

    2012-01-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, impo...

  19. Transplanting oligodendrocyte progenitors into the adult CNS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, R.J.M.; Blakemore, W.F. [Medical Research Council, Cambridge (United Kingdom)]|[Cambridge Univ. (United Kingdom). Dept. of Clinical Veterinary Medicine

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author).

  20. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning.

    Science.gov (United States)

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation.

  1. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Drukker, Micha; Tang, Chad; Ardehali, Reza; Rinkevich, Yuval; Seita, Jun; Lee, Andrew S; Mosley, Adriane R; Weissman, Irving L; Soen, Yoav

    2012-05-27

    To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4(+) cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny, APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.

  2. Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors

    Directory of Open Access Journals (Sweden)

    Supreet Agarwal

    2015-12-01

    Full Text Available Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. Luminal cells, sorted directly from tumors or grown as organoids, initiated tumors of adenocarcinoma or multilineage histological phenotypes, which is consistent with luminal and multipotent differentiation potentials, respectively. Moreover, using organoids we show that the ability of luminal-committed progenitors to self-renew is a tumor-specific property, absent in benign luminal cells. Finally, a significant fraction of luminal progenitors survived in vivo castration. In all, these data reveal two luminal tumor populations with different stem/progenitor cell capacities, providing insight into prostate cancer cells that initiate tumors and can influence treatment response.

  3. Transcriptional pathways in cPGI2-induced adipocyte progenitor activation for browning

    Directory of Open Access Journals (Sweden)

    Irem eBayindir

    2015-08-01

    Full Text Available De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2 as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying beta-adrenergic stimulation to the progenitor level. Here we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation towards an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation.

  4. ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/β-catenin.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-03-18

    Proper orchestration of quiescence and activation of progenitor cells is crucial during embryonic development and adult homeostasis. We took advantage of the zebrafish sensory lateral line to define niche-progenitor interactions to understand how integration of diverse signaling pathways spatially and temporally regulates the coordination of these processes. Our previous studies demonstrated that Schwann cells play a crucial role in negatively regulating lateral line progenitor proliferation. Here we demonstrate that ErbB/Neuregulin signaling is not only required for Schwann cell migration but that it plays a continued role in postmigratory Schwann cells. ErbB expressing Schwann cells inhibit lateral line progenitor proliferation and differentiation through non-cell-autonomous inhibition of Wnt/β-catenin signaling. Subsequent activation of Fgf signaling controls sensory organ differentiation, but not progenitor proliferation. In addition to the lateral line, these findings have important implications for understanding how niche-progenitor cells segregate interactions during development, and how they may go wrong in disease states. DOI: http://dx.doi.org/10.7554/eLife.01832.001.

  5. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Myogenic capacity of muscle progenitor cells from head and limb muscles.

    Science.gov (United States)

    Grefte, Sander; Kuijpers, Mette A R; Kuijpers-Jagtman, Anne M; Torensma, Ruurd; Von den Hoff, Johannes W

    2012-02-01

    The restoration of muscles in the soft palate of patients with cleft lip and/or palate is accompanied by fibrosis, which leads to speech and feeding problems. Treatment strategies that improve muscle regeneration have only been tested in limb muscles. Therefore, in the present study the myogenic potential of muscle progenitor cells (MPCs) isolated from head muscles was compared with that of limb muscles. Muscle progenitor cells were isolated from the head muscles and limb muscles of rats and cultured. The proliferation of MPCs was analysed by DNA quantification. The differentiation capacity was analysed by quantifying the numbers of fused cells, and by measuring the mRNA levels of differentiation markers. Muscle progenitor cells were stained to quantify the expression of paired box protein Pax 7 (Pax-7), myoblast determination protein 1 (MyoD), and myogenin. Proliferation was similar in the head MPCs and the limb MPCs. Differentiating head and limb MPCs showed a comparable number of fused cells and mRNA expression levels of myosin-1 (Myh1), myosin-3 (Myh3), and myosin-4 (Myh4). During proliferation and differentiation, the number of Pax-7(+), MyoD(+), and myogenin(+) cells in head and limb MPCs was equal. It was concluded that head and limb MPCs show similar myogenic capacities in vitro. Therefore, in vivo myogenic differences between those muscles might rely on the local microenvironment. Thus, regenerative strategies for limb muscles might also be used for head muscles. © 2012 Eur J Oral Sci.

  7. Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter.

    Science.gov (United States)

    Li, Yanhui; Wen, Yan; Wang, Zhe; Wei, Yi; Wani, Prachi; Green, Morgaine; Swaminathan, Ganesh; Ramamurthi, Anand; Pera, Renee Reijo; Chen, Bertha

    2016-12-01

    : Data suggest that myoblasts from various sources, including bone marrow, skeletal muscle, and adipose tissue, can restore muscle function in patients with urinary incontinence. Animal data have indicated that these progenitor cells exert mostly a paracrine effect on the native tissues rather than cell regeneration. Limited knowledge is available on the in vivo effect of human stem cells or muscle progenitors on injured muscles. We examined in vivo integration of smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs). pSMCs were derived from a human embryonic stem cell line (H9-ESCs) and two induced pluripotent stem cell (iPSC) lines. pSMCs were injected periurethrally into urethral injury rat models (2 × 10(6) cells per rat) or intramuscularly into severe combined immunodeficiency mice. Histologic and quantitative image analysis revealed that the urethras in pSMC-treated rats contained abundant elastic fibers and thicker muscle layers compared with the control rats. Western blot confirmed increased elastin/collagen III content in the urethra and bladder of the H9-pSMC-treated rats compared with controls. iPSC-pSMC treatment also showed similar trends in elastin and collagen III. Human elastin gene expression was not detectable in rodent tissues, suggesting that the extracellular matrix synthesis resulted from the native rodent tissues rather than from the implanted human cells. Immunofluorescence staining and in vivo bioluminescence imaging confirmed long-term engraftment of pSMCs into the host urethra and the persistence of the smooth muscle phenotype. Taken together, the data suggest that hPSC-derived pSMCs facilitate restoration of urethral sphincter function by direct smooth muscle cell regeneration and by inducing native tissue elastin/collagen III remodeling. The present study provides evidence that a pure population of human smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs) (human

  8. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  9. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae

    Directory of Open Access Journals (Sweden)

    Marta E. Kalamarz

    2011-12-01

    How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9wt is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.

  10. Cell Proliferation and Cytotoxicity Assays.

    Science.gov (United States)

    Adan, Aysun; Kiraz, Yağmur; Baran, Yusuf

    Cell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.

  11. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Resende Rodrigo R

    2009-08-01

    Full Text Available Abstract Acetylcholine (ACh has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.

  12. Progenitors of Supernovae Type Ia

    Science.gov (United States)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  13. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  14. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  15. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  16. Irradiation selects for p53-deficient hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Andriy Marusyk

    2010-03-01

    Full Text Available Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies

  17. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis | Office of Cancer Genomics

    Science.gov (United States)

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation.

  18. Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-12-01

    Full Text Available Summary: A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an “interrupted reprogramming” strategy to generate “induced progenitor-like (iPL cells” using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine. : In this article Waddell, Nagy, and colleagues present an “interrupted reprogramming” strategy to produce highly specified functional “induced progenitor-like cells” from mature quiescent cells. They propose that careful control of the duration of transient expression of iPSC reprogramming factors (OSKM allows controlled expansion yet preservation of parental lineage without traversing the pluripotent state. Keywords: generation of induced progenitor-like cells

  19. Nestin expressing progenitor cells during establishment of the neural retina and its vasculature

    Science.gov (United States)

    Lee, Jong-Hyun; Park, Hyo-Suk; Shin, Ji Man; Chun, Myung-Hoon

    2012-01-01

    In order to test if nestin is a useful marker for various types of progenitor cells, we explored nestin expression in the retina during development. Nestin expression was co-evaluated with bromodeoxyuridine (BrdU) labeling and Griffonia simplicifolia isolectin B4 (GSIB4) histochemistry. Nestin immunoreactivity appears in cell soma of dividing neural progenitor cells and their leading processes in retinas from embryonic day (E) 13 to E20, in accordance with a BrdU-labeled pattern. At postnatal day (P) 5, it is restricted to the end feet of Müller cells. BrdU-labeled nuclei were mainly in the inner part of the inner nuclear layer in postnatal neonates. The retinal vessels demarcated with GSIB4-positive endothelial cells were first distributed in the nerve fiber layer from P3. Afterward the vascular branches sprouted and penetrated deeply into the retina. The endothelial cells positive for GSIB4 and the pericytes in the microvessels were additionally immunoreactive for nestin. Interestingly, the presumed migrating microglial cells showing only GSIB4 reactivity preceded the microvessels throughout the neuroblast layer during vascular sprouting and extension. These findings may suggest that nestin expression represents the proliferation and movement potential of the neural progenitor cells as well as the progenitor cells of the endothelial cell and the pericyte during retinal development. Thus, Müller glial cells might be potential neural progenitor cells of the retina, and the retinal microvasculature established by both the endothelial and the pericyte progenitor cells via vasculogenesis along microglia migrating routes sustains its angiogenic potential. PMID:22536550

  20. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow.

    Science.gov (United States)

    Brandt, J; Srour, E F; van Besien, K; Briddell, R A; Hoffman, R

    1990-09-01

    Human marrow cells positive for the CD34 antigen but not expressing HLA-DR, CD15, or CD71 antigens were isolated. In a liquid culture system supplemented with 48-hourly additions of recombinant interleukins IL-1 alpha, IL-3, IL-6, or granulocyte/macrophage colony-stimulating factor (GM-CSF), these cells were capable of sustaining in vitro hematopoiesis for up to eight weeks. The establishment of an adherent cell layer was never observed. Cultures containing no exogenous cytokine produced clonogenic cells for only 1 wk. IL-1 alpha and IL-6 were alone able to support hematopoiesis for 2 or 3 wk. Cells maintained with GM-CSF proliferated and contained assayable colony-forming cells for 3 or 4 wk, while maximal cellular expansion and generation of assayable progenitor cells occurred in the presence of IL-3 for 4-5 wk. When IL-3 was combined with IL-1 alpha or IL-6, hematopoiesis was sustained for 8 wks. Basophil numbers were markedly increased in the presence of IL-3. These studies indicate that marrow subpopulations can sustain hematopoiesis in vitro in the presence of repeated additions of cytokines. We conclude that a major function of marrow adherent cells in long-term cultures is that of providing cytokines which promote the proliferation and differentiation of primitive hematopoietic cells.

  1. Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia

    Science.gov (United States)

    2010-01-01

    Background Doublecortin and calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL1) is a candidate marker for progenitor cells in the gastrointestinal mucosa. Lineage cells in the gastric mucosa are derived from progenitor cells, but this process can be altered after injury. Therefore, we explored DCAMKL1 expression under pathological conditions. Methods An immunohistochemical analysis was performed in rat stomach with acute superficial injury, chronic ulcer, intestinal metaplasia and dysplasia. Results DCAMKL1 was exclusively expressed in immature quiescent cells in the isthmus of normal fundic glands, where putative progenitor cells are thought to reside. DCAMKL1-positive cells and proliferating cells shed into the lumen after superficial injury and re-appeared during the regenerative process, mainly in the superficial mucosa. In the marginal mucosa around the active ulcer, parietal and chief cells diminished, foveolar hyperplasia was evident, and trefoil factor family 2 (TFF2)/spasmolytic polypeptide-expressing metaplasia (SPEM) emerged at the gland base. DCAMKL1 cells re-emerged in the deep mucosa juxtaposed with SPEM and proliferating cells. In the healing ulcer, the TFF2 cell population expanded and seemed to redifferentiate to chief cells, while proliferating cells and DCAMKL1 cells appeared above and below the TFF2 cells to promote healing. SPEM appeared and PCNA cells increased in the intestinalized mucosa, and DCAMKL1 was expressed in the proximity of the PCNA cells in the deep mucosa. DCAMKL1, PCNA and TFF2 were expressed in different dysplastic cells lining dilated glands near SPEM. Conclusion The ultrastructural appearance of DCAMKL1-positive cells and the expression patterns of DCAMKL1 in normal and pathological states indicate that the cells belong to a progenitor cell population. DCAMKL1 expression is closely associated with TFF2/SPEM cells after injury. DCAMKL1 cells repopulate close to proliferating, hyperplastic, metaplastic and dysplastic

  2. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  3. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  4. Aging, progenitor cell exhaustion, and atherosclerosis.

    Science.gov (United States)

    Rauscher, Frederick M; Goldschmidt-Clermont, Pascal J; Davis, Bryce H; Wang, Tao; Gregg, David; Ramaswami, Priya; Pippen, Anne M; Annex, Brian H; Dong, Chunming; Taylor, Doris A

    2003-07-29

    Atherosclerosis is largely attributed to chronic vascular injury, as occurs with excess cholesterol; however, the effect of concomitant vascular aging remains unexplained. We hypothesize that the effect of time in atherosclerosis progression is related to obsolescence of endogenous progenitor cells that normally repair and rejuvenate the arteries. Here we show that chronic treatment with bone marrow-derived progenitor cells from young nonatherosclerotic ApoE-/- mice prevents atherosclerosis progression in ApoE-/- recipients despite persistent hypercholesterolemia. In contrast, treatment with bone marrow cells from older ApoE-/- mice with atherosclerosis is much less effective. Cells with vascular progenitor potential are decreased in the bone marrow of aging ApoE-/- mice, but cells injected from donor mice engraft on recipient arteries in areas at risk for atherosclerotic injury. Our data indicate that progressive progenitor cell deficits may contribute to the development of atherosclerosis.

  5. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications.

    Science.gov (United States)

    Harrill, Joshua A

    2018-01-01

    Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.

  6. Basal cell signaling by p63 controls luminal progenitor function and lactation via NRG1

    Science.gov (United States)

    Forster, Nicole; Saladi, Srinivas Vinod; van Bragt, Maaike; Sfondouris, Mary E.; Jones, Frank E.; Li, Zhe; Ellisen, Leif W.

    2014-01-01

    Summary The mammary epithelium is organized as a bi-layer of luminal and basal/myoepithelial cells. During pregnancy the luminal compartment expands for milk production, while basal cells are thought to provide structural and contractile support. Here we reveal an unanticipated, pregnancy-specific role of basal epithelia as a central coordinator of lactogenesis. We demonstrate that genetic deletion of the transcription factor p63 (Trp63) gene exclusively within basal cells of the adult gland during pregnancy leads to dramatic defects in luminal cell proliferation and differentiation, resulting in lactation failure. This phenotype is explained by direct transcriptional activation of the EGF-family ligand gene Nrg1 by p63 selectively in basal cells, which is required for luminal ERBB4/STAT5A activation and consequent luminal progenitor cell maturation. Thus, paracrine basal-to-luminal cell signaling, controlled by p63 via NRG1, orchestrates the entire lactation program. Collectively, these findings redefine the paradigm for cellular interactions specifying the functional maturation of the mammary gland. PMID:24412575

  7. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  8. Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia.

    Science.gov (United States)

    Rasmussen, M A; Hall, V J; Carter, T F; Hyttel, P

    2011-09-01

    Neural progenitor cells (NPCs) are promising candidates for cell-based therapy of neurodegenerative diseases; however, safety concerns must be addressed through transplantation studies in large animal models, such as the pig. The aim of this study was to derive NPCs from porcine blastocysts and evaluate their in-vitro differentiation potential. Epiblasts were manually isolated from expanded hatched blastocysts and cultured on MEF feeder cells. Outgrowth colonies were passaged to MS5 cells and rosettes were further passaged to Matrigel-coated dishes containing bFGF and EGF. Three NPC lines were established which showed expression of SOX2, NESTIN and VIMENTIN. One line was characterised in more detail, retaining a normal karyotype and proliferating for more than three months in culture. Following differentiation, TUJI was significantly up-regulated in protocol 2 (RA and SHH; 58% positive cells) as were NF and TH. In contrast, MBP was significantly up-regulated in protocol 3 (FGF8 and SHH; 63% positive cells), whereas, GFAP was significantly up-regulated in protocols 1-4 (33%, 25%, 43% and 22%). The present study provides the first report of a porcine blastocyst-derived NPC line capable of differentiating into both neurons and glia, which may be of paramount importance for future transplantation studies in large animal models of neurodegenerative diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel.

    Science.gov (United States)

    Liedmann, Andrea; Rolfs, Arndt; Frech, Moritz J

    2012-01-11

    The influence of 3-dimensional (3D) scaffolds on growth, proliferation and finally neuronal differentiation is of great interest in order to find new methods for cell-based and standardised therapies in neurological disorders or neurodegenerative diseases. 3D structures are expected to provide an environment much closer to the in vivo situation than 2D cultures. In the context of regenerative medicine, the combination of biomaterial scaffolds with neural stem and progenitor cells holds great promise as a therapeutic tool. Culture systems emulating a three dimensional environment have been shown to influence proliferation and differentiation in different types of stem and progenitor cells. Herein, the formation and functionalisation of the 3D-microenviroment is important to determine the survival and fate of the embedded cells. Here we used PuraMatrix (RADA16, PM), a peptide based hydrogel scaffold, which is well described and used to study the influence of a 3D-environment on different cell types. PuraMatrix can be customised easily and the synthetic fabrication of the nano-fibers provides a 3D-culture system of high reliability, which is in addition xeno-free. Recently we have studied the influence of the PM-concentration on the formation of the scaffold. In this study the used concentrations of PM had a direct impact on the formation of the 3D-structure, which was demonstrated by atomic force microscopy. A subsequent analysis of the survival and differentiation of the hNPCs revealed an influence of the used concentrations of PM on the fate of the embedded cells. However, the analysis of survival or neuronal differentiation by means of immunofluorescence techniques posses some hurdles. To gain reliable data, one has to determine the total number of cells within a matrix to obtain the relative number of e.g. neuronal cells marked by βIII-tubulin. This prerequisites a technique to analyse the scaffolds in all 3-dimensions by a confocal microscope or a comparable

  10. S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone.

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    Full Text Available The postnatal subventricular zone (SVZ contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2 receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.

  11. The Masses of Supernova Remnant Progenitors

    Science.gov (United States)

    Williams, Benjamin

    2012-10-01

    One of the key constraints on the production of supernovae {SNe} is the initial mass of the stars that eventually end in these cataclysmic events. Historically it has been very difficult to obtain estimates of the masses of SN progenitors because there have only been a few dozen nearby events, only a handful of which have high-quality precursor imaging.We propose dramatically increasing the number of SNe with progenitor mass estimates by applying an exciting new technique to HST archival data in M31 and M33. Through detailed modeling of the stellar populations surrounding the location of any known SNe, we can constrain the progenitor mass. Since supernova remnants {SNRs} mark the locations of SNe for the past 20,000 years and M31 and M33 contain hundreds of these objects, detailed studies of the stellar populations at these locations will constrain the progenitor masses of potentially hundreds of events. After correlating archival HST imaging with the SNR positions, there is useful data for 137 SNRs. We have already measured the progenitor masses for 65 SNRs in M31 and plan to apply our method to 72 SNRs in M33. This proposal will fund the publication of our M31 measurements, analysis of the M33 SNRs, and public release of our photometry. Ultimately, our work will increase the existing sample of SN progenitor masses in the literature by a factor of 20.

  12. Calcium signaling and cell proliferation.

    Science.gov (United States)

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    Science.gov (United States)

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  14. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease.

    Science.gov (United States)

    Zhou, Zhengfang; Wang, Jingying; Guo, Chaoshe; Chang, Weiting; Zhuang, Jian; Zhu, Ping; Li, Xue

    2017-01-24

    The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2+) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2+ progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2+ progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2+ progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Superluminous supernova progenitors have a half-solar metallicity threshold

    Science.gov (United States)

    Chen, Ting-Wan; Smartt, Stephen J.; Yates, Rob M.; Nicholl, Matt; Krühler, Thomas; Schady, Patricia; Dennefeld, Michel; Inserra, Cosimo

    2017-09-01

    Host galaxy properties provide strong constraints on the stellar progenitors of superluminous supernovae. By comparing a sample of 19 low-redshift (z explosion site is likely lower than the integrated host value. We found that superluminous supernova hosts do not always have star formation rates higher than typical star-forming galaxies of the same mass. However, we confirm that high absolute specific star formation rates are a feature of superluminous supernova host galaxies, but interpret this as simply a consequence of the anticorrelation between gas-phase metallicity and specific star formation rate and the requirement of on-going star formation to produce young, massive stars greater than ∼10-20 M⊙. Based on our sample, we propose an upper limit of ˜ 0.5 Z_{⊙} for forming superluminous supernova progenitors (assuming an N2 metallicity diagnostic and a solar oxygen abundance of 8.69). Finally, we show that if magnetar powering is the source of the extreme luminosity, then the required initial spins appear to be correlated with metallicity of the host galaxy. This correlation needs further work, but if it applies, it is a powerful link between the supernova parameters and nature of the progenitor population.

  16. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  17. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  18. Lymphoid Progenitor Cells from Childhood Acute Lymphoblastic Leukemia Are Functionally Deficient and Express High Levels of the Transcriptional Repressor Gfi-1

    Directory of Open Access Journals (Sweden)

    Jessica Purizaca

    2013-01-01

    Full Text Available Acute lymphoblastic leukemia (ALL is the most frequent malignancy of childhood. Substantial progress on understanding the cell hierarchy within ALL bone marrow (BM has been recorded in the last few years, suggesting that both primitive cell fractions and committed lymphoid blasts with immature stem cell-like properties contain leukemia-initiating cells. Nevertheless, the biology of the early progenitors that initiate the lymphoid program remains elusive. The aim of the present study was to investigate the ability of lymphoid progenitors from B-cell precursor ALL BM to proliferate and undergo multilineage differentiation. By phenotype analyses, in vitro proliferation assays, and controlled culture systems, the lymphoid differentiation potentials were evaluated in BM primitive populations from B-cell precursor ALL pediatric patients. When compared to their normal counterparts, functional stem and progenitor cell contents were substantially reduced in ALL BM. Moreover, neither B nor NK or dendritic lymphoid-cell populations developed recurrently from highly purified ALL-lymphoid progenitors, and their proliferation and cell cycle status revealed limited proliferative capacity. Interestingly, a number of quiescence-associated transcription factors were elevated, including the transcriptional repressor Gfi-1, which was highly expressed in primitive CD34+ cells. Together, our findings reveal major functional defects in the primitive hematopoietic component of ALL BM. A possible contribution of high levels of Gfi-1 expression in the regulation of the stem/progenitor cell biology is suggested.

  19. Teaching Activities on Horizontal Nuclear Proliferation.

    Science.gov (United States)

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  20. Comparison of the transcriptomes of long-term label-retaining-cells and control cells microdissected from mammary epithelium: An initial study to characterize potential stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    Ratan Kumar Choudhary

    2013-02-01

    Full Text Available Background: Previous molecular characterizations of mammary stem cells (MaSC have utilized fluorescence-activated cell sorting or in vitro cultivation of cells from enzymatically dissociated tissue to enrich for MaSC. These approaches result in the loss of all histological information pertaining to the in vivo locale of MaSC and progenitor cells. Instead, we used laser microdissection to excise putative progenitor cells and control cells from their in situ locations in cryosections and characterized the molecular properties of these cells. MaSC/progenitor cells were identified based on their ability to retain bromodeoxyuridine for an extended period. Results: We isolated four categories of cells from mammary epithelium of female calves: bromodeoxyuridine label retaining epithelial cells (LREC from basal (LRECb and embedded layers (LRECe, and epithelial control cells from basal and embedded layers. Enriched expression of genes in LRECb were associated with stem cell attributes and identified WNT, TGF-β and MAPK pathways of self renewal and proliferation. Genes expressed in LRECe revealed retention of some stem-like properties along with up-regulation of differentiation factors. Conclusions: Our data suggest that LREC in the basal epithelial layer are enriched for MaSC, as these cells showed increased expression of genes that reflect stem cell attributes; whereas LREC in suprabasal epithelial layers are enriched for more committed progenitor cells, expressing some genes that are associated with stem cell attributes along with those indicative of cell differentiation. Our results support the use of DNA-label retention to identify MaSC and also provide a molecular profile and novel candidate markers for these cells. Insights into the biology of stem cells will be gained by confirmation and characterization of candidate MaSC markers identified in this study.

  1. Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling

    Directory of Open Access Journals (Sweden)

    Sylvestre Chea

    2016-02-01

    Full Text Available T and innate lymphoid cells (ILCs share some aspects of their developmental programs. However, although Notch signaling is strictly required for T cell development, it is dispensable for fetal ILC development. Constitutive activation of Notch signaling, at the common lymphoid progenitor stage, drives T cell development and abrogates ILC development by preventing Id2 expression. By combining single-cell transcriptomics and clonal culture strategies, we characterize two heterogeneous α4β7-expressing lymphoid progenitor compartments. αLP1 (Flt3+ still retains T cell potential and comprises the global ILC progenitor, while αLP2 (Flt3− consists of ILC precursors that are primed toward the different ILC lineages. Only a subset of αLP2 precursors is sensitive to Notch signaling required for their proliferation. Our study identifies, in a refined manner, the diversity of transitional stages of ILC development, their transcriptional signatures, and their differential dependence on Notch signaling.

  2. Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    DEFF Research Database (Denmark)

    Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice

    2016-01-01

    Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed...... cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts...... vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years...

  3. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis.

    Science.gov (United States)

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-11-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila.

  4. A reversal of age-dependent proliferative capacity of endothelial progenitor cells from different species origin in in vitro condition.

    Science.gov (United States)

    Hassanpour, Mehdi; Cheraghi, Omid; Siavashi, Vahid; Rahbarghazi, Reza; Nouri, Mohammad

    2016-01-01

    Introduction: A large number of cardiovascular disorders and abnormalities, notably accelerated vascular deficiencies could be related to aging changes and increased length of life. During the past decades, the discovery of different stem cells facilitates ongoing attempts for attenuating many disorders, especially in vascular beds. Endothelial progenitor cells (EPCs) are a subtype of stem cells that have potent capacity to differentiate into mature endothelial cells (ECs). However, some documented studies reported an age-related decline in proliferation and function of many stem cells. There is no data on aging effect upon proliferation and morphological feature of EPCs. Methods: To show aging effect on EPCs proliferation and multipotentiality, bone marrow samples were provided from old and young cases in three different species; human, mouse and dog. After 7 days of culture, the cell morphology and clonogenic capacity were evaluated. We also calculated the mean number of colonies both in bone marrow samples from old and young subjects. To confirm the cell phenotype, isolated cells were immune-phenotyped by a panel of antibodies against Tie-2, CD133 and CD309 markers. Results: Our results showed that EPCs exhibited prominent spindle form in all bone marrow samples from young cases while the cell shape became more round by aging. Notably, the number of colonies was reduced in aged samples as compared to parallel young subject samples (P < 0.05). We also detected that the expression of endothelial related markers diminished by aging. Conclusion: The results of this study suggest that the age-related vascular abnormalities could be presumably related to the decline in stemness capacity of EPCs.

  5. Observational properties of massive black hole binary progenitors

    Science.gov (United States)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will

  6. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus.

    Science.gov (United States)

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Horita, Nobukatsu; Todisco, Andrea; Turgeon, D Kim; Siebel, Christian W; Samuelson, Linda C

    2017-02-01

    The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem

  7. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    DEFF Research Database (Denmark)

    Schuh, A.; Kroh, A.; Konschalla, S.

    2012-01-01

    Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal-cell derived factor-1a (SDF-1a) facilitates proliferation and migration of endogenous progenitor cells...... into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1a-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left...... anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF-1 infected EPCs...

  8. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis.

    Science.gov (United States)

    Barberán, Sara; Fraguas, Susanna; Cebrià, Francesc

    2016-06-15

    The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians. © 2016. Published by The Company of Biologists Ltd.

  9. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells.

    Science.gov (United States)

    Colmone, Angela; Amorim, Maria; Pontier, Andrea L; Wang, Sheng; Jablonski, Elizabeth; Sipkins, Dorothy A

    2008-12-19

    The host tissue microenvironment influences malignant cell proliferation and metastasis, but little is known about how tumor-induced changes in the microenvironment affect benign cellular ecosystems. Applying dynamic in vivo imaging to a mouse model, we show that leukemic cell growth disrupts normal hematopoietic progenitor cell (HPC) bone marrow niches and creates abnormal microenvironments that sequester transplanted human CD34+ (HPC-enriched) cells. CD34+ cells in leukemic mice declined in number over time and failed to mobilize into the peripheral circulation in response to cytokine stimulation. Neutralization of stem cell factor (SCF) secreted by leukemic cells inhibited CD34+ cell migration into malignant niches, normalized CD34+ cell numbers, and restored CD34+ cell mobilization in leukemic mice. These data suggest that the tumor microenvironment causes HPC dysfunction by usurping normal HPC niches and that therapeutic inhibition of HPC interaction with tumor niches may help maintain normal progenitor cell function in the setting of malignancy.

  10. Mast cell progenitor trafficking and maturation.

    Science.gov (United States)

    Hallgren, Jenny; Gurish, Michael F

    2011-01-01

    Mast cells are derived from the hematopoietic progenitors found in bone marrow and spleen. Committed mast cell progenitors are rare in bone marrow suggesting they are rapidly released into the blood where they circulate and move out into the peripheral tissues. This migration is controlled in a tissue specific manner. Basal trafficking to the intestine requires expression of α4β7 integrin and the chemokine receptor CXCR2 by the mast cell progenitors and expression of MAdCAM-1 and VCAM-1 in the intestinal endothelium; and is also controlled by dendritic cells expressing the transcriptional regulatory protein T-bet. None of these play a role in basal trafficking to the lung. With the induction of allergic inflammation in the lung, there is marked recruitment of committed mast cell progenitors to lung and these cells must express α4β7 and α4β1 integrins. Within the lung there is a requirement for expression of VCAM-1 on the endothelium that is regulated by CXCR2, also expressed on the endothelium. There is a further requirement for expression of the CCR2/CCL2 pathways for full recruitment of the mast cell progenitors to the antigen-inflamed lung.

  11. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    Science.gov (United States)

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  12. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19(INK4d) expression during odontogenesis.

    Science.gov (United States)

    Han, Jun; Ito, Yoshihiro; Yeo, Jae Yong; Sucov, Henry M; Maas, Richard; Chai, Yang

    2003-09-01

    Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.

  13. Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting `progenitor bias' using the Horizon-AGN simulation

    Science.gov (United States)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Pichon, C.; Laigle, C.

    2018-03-01

    As endpoints of the hierarchical mass-assembly process, the stellar populations of local early-type galaxies encode the assembly history of galaxies over cosmic time. We use Horizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating `progenitor bias' - the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early types attain their final morphology at relatively early epochs - by z ˜ 1, around 60 per cent of today's early types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at z > 1.5 and early-early mergers becoming significant only at z types is actually in progenitors with early-type morphology, while, at z ˜ 2, studying only early types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star formation rate, are progenitors of local early-type galaxies, as are lower mass (M⋆ types as long as they reside in high-density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how today's early-type galaxies have been built up over cosmic time.

  14. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Huixian [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Shi, Zhenqi [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Qiao, Ping [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Department of Pharmacology, Norman Bethune Medical College, Jilin University, Changchun, Jilin 130021 (China); Li, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); McCoy, Erin M. [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Mao, Ping [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Xu, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Feng, Xu [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Wang, Shunqing, E-mail: shqwang_cn@yahoo.com [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China)

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  15. Toxicity of inorganic arsenic and its metabolites on haematopoietic progenitors "in vitro": comparison between species and sexes.

    Science.gov (United States)

    Ferrario, Daniele; Croera, Cristina; Brustio, Roberta; Collotta, Angelo; Bowe, Gerard; Vahter, Marie; Gribaldo, Laura

    2008-07-30

    Inorganic arsenic (iAs) and its metabolites are transferred to the foetus through the placental barrier and this exposure can compromise the normal development of the unborn. For this reason, we assessed the toxicity of sodium arsenite (iAs(III)) and its metabolites dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) on human haematopoietic cord blood cells and murine bone marrow progenitors in vitro, looking at the effects induced at different concentrations in the two genders. The expression of two enzymes responsible for arsenic biotransformation arsenic methyltranferase (AS3MT) and glutathione S-transferase omega 1 (GSTO1) was evaluated in human cord blood cells. Cord blood and bone marrow cells were exposed in vitro to iAs(III) at a wide range of concentrations: from 0.0001 microM to 10 microM. The methylated arsenic metabolites were tested only on human cord blood cells at concentrations ranging from 0.00064 microM to 50 microM. The results showed that iAs(III) was toxic on male and female colony forming units to about the same extent both in human and in mouse. Surprisingly, very low concentrations of iAs(III) increased the proliferation rate of both human and murine female cells, while male cells showed no significant modulation. MMA(V) and DMA(V) did not exert detectable toxicity on the cord blood cells, while MMA(III) had a marked toxic effect both in male and female human progenitors. AS3MT mRNA expression was not induced in human cord blood cells after iAs(III) exposure. GSTO1 expression decreased after MMA(III) treatment. This study provides evidence that exposure to iAs(III) and MMA(III) at muM concentrations is associated with immunosuppression in vitro.

  16. Thy-1 (CD90)-Positive Hepatic Progenitor Cells, Hepatoctyes, and Non-parenchymal Liver Cells Isolated from Human Livers.

    Science.gov (United States)

    Weiss, Thomas S; Dayoub, Rania

    2017-01-01

    In response to liver injury, hepatic cells, especially hepatocytes, can rapidly proliferate to repair liver damage. Additionally, it was shown that under certain circumstances liver resident cells with progenitor capabilities are involved in liver cell proliferation and differentiation. These hepatic progenitor cells (HPCs), known as oval cells in rodents, are derived from the canals of Hering, which are located in the periportal region of the liver. Regarding to different cell niches, which were defined for human HPCs, several markers have been used to identify these cells such as CD34, c-kit, OV-6, and Thy-1 (CD90). The latter was shown to be expressed on HPCs in human liver tissue with histological signs of regeneration. In this chapter we describe a detailed method for the isolation of Thy-1 positive cells from human resected liver tissue. Based on a procedure for isolating primary human hepatocytes and non-parenchymal cells (NPCs) we expanded this protocol to additional enzymatic dissociation, filtration, and centrifugation steps. This results in a bile duct cell enriched fraction of NPCs from which Thy-1 (CD90) positive cells were purified by Thy-1 positivity selection using MACS technique. Bipotential progenitor cells from human liver resections can be isolated using Thy-1 and was shown to be a suitable tool for the enrichment of liver resident progenitor cells for xenotransplantation.

  17. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Science.gov (United States)

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  18. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    2009-12-01

    Full Text Available The adult subventricular zone (SVZ contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair.We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS. In our search for motile progenitor cells, we uncovered a population of motile betaIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr. This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFr(low neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-alpha, an EGFr-selective agonist. Indeed, acute exposure to TGF-alpha decreased the percentage of motile cells by approximately 40%.In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.

  19. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  20. Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells.

    Directory of Open Access Journals (Sweden)

    Vladislav M Sandler

    Full Text Available Experiments with somatic cell nuclear transfer, inter-cellular hybrid formation_ENREF_3, and ectopic expression of transcription factors have clearly demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cell nuclei. Here we demonstrate, using chemical fusion, direct reprogramming of the genome of human embryonic fibroblasts (HEF into the state of human fetal liver hFL CD34+ (hFL hematopoietic progenitors capable of proliferating and differentiating into multiple hematopoietic lineages. We show that hybrid cells retain their ploidy and can differentiate into several hematopoietic lineages. Hybrid cells follow transcription program of differentiating hFL cells as shown by genome-wide transcription profiling. Using whole-genome single nucleotide polymorphism (SNP profiling of both donor genomes we demonstrate reprogramming of HEF genome into the state of hFL hematopoietic progenitors. Our results prove that it is possible to convert the fetal somatic cell genome into the state of fetal hematopoietic progenitors by fusion. This suggests a possibility of direct reprogramming of human somatic cells into tissue specific progenitors/stem cells without going all the way back to the embryonic state. Direct reprogramming of terminally differentiated cells into the tissue specific progenitors will likely prove useful for the development of novel cell therapies.

  1. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool

    Directory of Open Access Journals (Sweden)

    Ksenija Zega

    2017-11-01

    Full Text Available Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16, which is known to negatively regulate mitogen-activated protein kinases (MAPKs and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/− developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.

  2. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  3. Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen; Tao, Zui; Xue, Langyue; Zeng, Yuxiao [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Wang, Yi, E-mail: wangyieye@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@163.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Yin, Zheng Qin, E-mail: qinzyin@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China)

    2017-03-01

    In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors. - Highlights: • Lin28b reprograms Müller glia to retinal progenitors. • Let-7 micrRNAs are suppressed by Lin28b. • Transplantation of reprogrammed Müller glia restores retinal function.

  4. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  5. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  6. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  7. Isolation, Culture, and Differentiation of Fibro/Adipogenic Progenitors (FAPs) from Skeletal Muscle.

    Science.gov (United States)

    Judson, Robert N; Low, Marcela; Eisner, Christine; Rossi, Fabio M

    2017-01-01

    Fibro/Adipogenic Progenitors (FAPs) are a multipotent progenitor population resident in skeletal muscle. During development and regeneration, FAPs provide trophic support to myogenic progenitors that is required for muscle fiber maturation and specification. FAPs also represent a major cellular source of fibrosis in degenerative disease states, highlighting them as a potential cellular target for anti-fibrotic muscle therapies. Effective and reproducible methods to isolate and culture highly purified FAP populations are therefore critical to further understand their biology. Here, we describe a fluorescent activated cell sorting (FACS) based protocol to isolate CD31-/CD45-/Integrin-α7-/Sca1+ FAPs from murine skeletal muscle including details of tissue collection and enzymatic muscle digestion. We also incorporate optimized methods of expanding and differentiated FAPs in vitro. Together, this protocol provides a complete workflow to study skeletal muscle derived FAPs and compliments downstream analytical, drug screening, and disease modeling applications.

  8. Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A

    NARCIS (Netherlands)

    Pérez-Rendón, B.; Garcia-Segura, G.; Langer, N.|info:eu-repo/dai/nl/304829498

    2009-01-01

    Context. Multi wavelength observations of Cassiopeia A (Cas A) have provided us with strong evidence of circumstellar material surrounding the progenitor star. It has been suggested that its progenitor was a massive star with strong mass loss. But, despite the large amount of observational data from

  9. Proliferation Security Initiative (PSI)

    National Research Council Canada - National Science Library

    Squassoni, Sharon

    2005-01-01

    President Bush announced the Proliferation Security Initiative (PSI) on May 31, 2003. Since then, 16 nations have pledged their cooperation in interdicting shipments of weapons of mass destruction-related...

  10. Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+ Progenitors in Collagen Gels

    Directory of Open Access Journals (Sweden)

    Daniele Avitabile

    2013-01-01

    Full Text Available Various reports have indicated low survival of injected progenitors into unfavorable environments such as the ischemic myocardium or lower limb tissues. This represents a major bottleneck in stem-cell-based cardiovascular regenerative medicine. Strategies to enhance survival of these cells in recipient tissues have been therefore sought to improve stem cell survival and ensure long-term engraftment. In the present contribution, we show that embedding human cord blood-derived CD34+ cells into a collagen I-based hydrogel containing cytokines is a suitable strategy to promote stem cell proliferation and protect these cells from anoxia-induced apoptosis.

  11. Endothelial progenitor cell dysfunction in diabetes mellitus

    NARCIS (Netherlands)

    Loomans, Cindy Johanna Maria

    2007-01-01

    Postnatally, Endothelial Progenitor Cells are needed to maintain the integrity of the endothelium (re-endothelialization) and to augment wound healing or vascularize hypoxic areas (neovascularization). Complex networks of different signals and regulators have been identified to be involved in these

  12. Binary progenitor models of type IIb supernovae

    NARCIS (Netherlands)

    Claeys, J.S.W.A.|info:eu-repo/dai/nl/326158707; de Mink, S.E.|info:eu-repo/dai/nl/304833231; Pols, O.R.|info:eu-repo/dai/nl/111811155; Eldridge, J.J.; Baes, M.|info:eu-repo/dai/nl/304824739

    2011-01-01

    Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose

  13. Human pancreatic islet progenitor cells demonstrate phenotypic ...

    Indian Academy of Sciences (India)

    Prakash

    exploring alternative sources of insulin-producing cells for cell based therapy in diabetes. Since in vitro culture of islet β-cells demonstrates loss in insulin (Beattie et al. 1999), several attempts have been made to identify stem / progenitor cells capable of differentiation into insulin-producing cells. Embryonic stem cells, which ...

  14. Cataclysmic Variables as Supernova Ia Progenitors

    Directory of Open Access Journals (Sweden)

    Stella Kafka

    2012-06-01

    Full Text Available Although the identification of the progenitors of type Ia supernovae (SNeIa remains controversial, it is generally accepted that they originate from binary star systems in which at least one component is a carbon-oxygen white dwarf (WD; those systems are grouped under the wide umbrella of cataclysmic variables. Current theories for SNeIa progenitors hold that, either via Roche lobe overflow of the companion or via a wind, the WD accumulates hydrogen or helium rich material which is then burned to C and O onto the WD’s surface. However, the specifics of this scenario are far from being understood or defined, allowing for a wealth of theories fighting for attention and a dearth of observations to support them. I discuss the latest attempts to identify and study those controversial SNeIa progenitors. I also introduce the most promising progenitor in hand and I present observational diagnostics that can reveal more members of the category.

  15. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors

    Directory of Open Access Journals (Sweden)

    Julian Pulecio

    2016-10-01

    Full Text Available Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41+, display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  16. Human pancreatic islet progenitor cells demonstrate phenotypic ...

    Indian Academy of Sciences (India)

    2009-04-24

    Apr 24, 2009 ... Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in ...

  17. Proteomic profiling reveals dopaminergic regulation of progenitor cell functions of goldfish radial glial cells in vitro.

    Science.gov (United States)

    Xing, Lei; Martyniuk, Christopher J; Esau, Crystal; Da Fonte, Dillon F; Trudeau, Vance L

    2016-07-20

    Radial glial cells (RGCs) are stem-like cells found in the developing and adult central nervous system. They function as both a scaffold to guide neuron migration and as progenitor cells that support neurogenesis. Our previous study revealed a close anatomical relationship between dopamine neurons and RGCs in the telencephalon of female goldfish. In this study, label-free proteomics was used to identify the proteins in a primary RGC culture and to determine the proteome response to the selective dopamine D1 receptor agonist SKF 38393 (10μM), in order to better understand dopaminergic regulation of RGCs. A total of 689 unique proteins were identified in the RGCs and these were classified into biological and pathological pathways. Proteins such as nucleolin (6.9-fold) and ependymin related protein 1 (4.9-fold) were increased in abundance while proteins triosephosphate isomerase (10-fold) and phosphoglycerate dehydrogenase (5-fold) were decreased in abundance. Pathway analysis revealed that proteins that consistently changed in abundance across biological replicates were related to small molecules such as ATP, lipids and steroids, hormones, glucose, cyclic AMP and Ca(2+). Sub-network enrichment analysis suggested that estrogen receptor signaling, among other transcription factors, is regulated by D1 receptor activation. This suggests that these signaling pathways are correlated to dopaminergic regulation of radial glial cell functions. Most proteins down-regulated by SKF 38393 were involved in cell cycle/proliferation, growth, death, and survival, which suggests that dopamine inhibits the progenitor-related processes of radial glial cells. Examples of differently expressed proteins including triosephosphate isomerase, nucleolin, phosphoglycerate dehydrogenase and capping protein (actin filament) muscle Z-line beta were validated by qPCR and western blot, which were consistent with MS/MS data in the direction of change. This is the first study to characterize the RGC

  18. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  19. Finding the Progenitors to Today's Fossil Systems

    Science.gov (United States)

    Johnson, Lucas Edward; Irwin, Jimmy; White, Raymond; Wong, Ka-Wah; Maksym, Walter Peter; Dupke, Renato; Miller, Eric; Carrasco, Eleazar

    2018-01-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group and cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z fossil progenitors are expected to be systems with imminent or ongoing major merging near the brightest group galaxy (BGG) that, when concluded, will meet the fossil criteria within the look back time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong lensing events with the goal of determining if lensing systems have any predisposition to being fossil systems or progenitors. We present an analysis of 53 systems from the CASSOWARY catalog of strong lenses with redshifts ranging from 0.1 fossils while only 3% of non-lensing control groups are. We also find that 23% of the lensing groups are traditional fossil progenitors compared to 17% for the control sample. This suggests that searching for groups that exhibit strong gravitational lensing may be a more efficient way of finding fossil and pre-fossil systems. Cumulative galaxy luminosity functions of the lensing and non-lensing groups also indicate there may be, on average, a fundamental difference between the initial conditions of strong lensing and non-lensing systems for fossils, fossil progenitors, and even normal galaxy systems. This could point to not fossils but lensing systems as possibly having different initial group conditions than non-lensing systems. Future work will involve studying recently obtained Chandra and HST snapshots of eight previously unobserved fossil progenitors in the CASSOWARY catalog to see how the hot gas evolves as a function of time until fossil BGG formation.

  20. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  1. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  2. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions.

    Science.gov (United States)

    Alvarez-Bolado, Gonzalo; Paul, Fabian A; Blaess, Sandra

    2012-01-20

    The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains and that there is little or no

  3. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Science.gov (United States)

    2012-01-01

    Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains

  4. Mouse ESC Differentiation to Nkx2.1+ Lung and Thyroid Progenitors.

    Science.gov (United States)

    Longmire, Tyler A; Ikonomou, Laertis; Kotton, Darrell N

    2012-11-20

    The de novo derivation of lung progenitors from pluripotent stem cells provides the opportunity to model early lung development in vitro and allows easy access to cells for tissue engineering or basic cell biology studies. This detailed protocol allows the generation of lung and thyroid progenitors from mouse embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC) lines. When used together with a published Nkx2.1-GFP knock-in ESC line, the protocol allows tracking and purification of lung and thyroid progenitors by sorting on the GFP reporter based on the induction of the earliest known marker of lung and thyroid cell fate, Nkx2.1. After sorting, a pure population of Nkx2.1+ cells can then be replated for further expansion, differentiation, and maturation in culture in serum-free conditions.

  5. From here to there, progenitor cells and stem cells are everywhere in lung vascular remodeling

    Directory of Open Access Journals (Sweden)

    Rebecca L. Heise

    2016-08-01

    Full Text Available The field of stem cell biology, cell therapy and regenerative medicine has expanded almost exponentially in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD, chronic obstructive pulmonary disease (COPD, idiopathic pulmonary fibrosis (IPF or pulmonary arterial hypertension (PAH. Extensive research activity is exploring lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.

  6. Enrichment of oral mucosa and skin keratinocyte progenitor/stem cells.

    Science.gov (United States)

    Izumi, Kenji; Marcelo, Cynthia L; Feinberg, Stephen E

    2013-01-01

    The isolation of human oral mucosa/skin keratinocytes progenitor/stem cells is clinically important to regenerate epithelial tissues for the treatment of oral mucosa/skin defects. Researchers have attempted to isolate a keratinocyte progenitor/stem cell population using cell markers, rapid adherence to collagen type IV, and other methods. In this regard, one of the specific characteristics of keratinocyte progenitor/stem cells is that these cells have a smaller diameter than differentiated cells. This chapter describes methods used in our laboratory to set up primary human oral mucosa and skin keratinocytes in a chemically defined culture system devoid of animal derived products. We utilized the cells in a FDA-approved human clinical trial that involved the intraoral grafting of an ex vivo produced oral mucosa equivalent to increase keratinized tissue around teeth. We also provide two protocols on how to sort keratinocytes using physical criterion, cell size, using a cell sorter and a serial filtration system.

  7. The homeobox gene Gsx2 regulates the self-renewal and differentiation of neural stem cells and the cell fate of postnatal progenitors.

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available The Genetic screened homeobox 2 (Gsx2 transcription factor is required for the development of olfactory bulb (OB and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE, as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.

  8. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  9. Defective hematopoietic stem cell and lymphoid progenitor development in the Ts65Dn mouse model of Down syndrome: potential role of oxidative stress.

    Science.gov (United States)

    Lorenzo, Laureanne Pilar E; Chen, Haiyan; Shatynski, Kristen E; Clark, Sarah; Yuan, Rong; Harrison, David E; Yarowsky, Paul J; Williams, Mark S

    2011-10-15

    Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice.

  10. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors.

    Directory of Open Access Journals (Sweden)

    Akira Niwa

    Full Text Available Elucidating the in vitro differentiation of human embryonic stem (ES and induced pluripotent stem (iPS cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.

  11. Endogenous Proliferation after Spinal Cord Injury in Animal Models

    Science.gov (United States)

    McDonough, Ashley; Martínez-Cerdeño, Verónica

    2012-01-01

    Spinal cord injury (SCI) results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI. PMID:23316243

  12. Endogenous Proliferation after Spinal Cord Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Ashley McDonough

    2012-01-01

    Full Text Available Spinal cord injury (SCI results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI.

  13. Engraftment of enteric neural progenitor cells into the injured adult brain.

    Science.gov (United States)

    Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg

    2016-01-25

    A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.

  14. interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration.

    Science.gov (United States)

    Tsujioka, Hiroshi; Kunieda, Takekazu; Katou, Yuki; Shirahige, Katsuhiko; Fukazawa, Taro; Kubo, Takeo

    2017-09-08

    Unlike mammals, Xenopus laevis tadpoles possess high ability to regenerate their lost organs. In amphibians, the main source of regenerated tissues is lineage-restricted tissue stem cells, but the mechanisms underlying induction, maintenance and differentiation of these stem/progenitor cells in the regenerating organs are poorly understood. We previously reported that interleukin-11 (il-11) is highly expressed in the proliferating cells of regenerating Xenopus tadpole tails. Here, we show that il-11 knockdown (KD) shortens the regenerated tail length, and the phenotype is rescued by forced-il-11-expression in the KD tadpoles. Moreover, marker genes for undifferentiated notochord, muscle, and sensory neurons are downregulated in the KD tadpoles, and the forced-il-11-expression in intact tadpole tails induces expression of these marker genes. Our findings demonstrate that il-11 is necessary for organ regeneration, and suggest that IL-11 plays a key role in the induction and maintenance of undifferentiated progenitors across cell lineages during Xenopus tail regeneration. Xenopus laevis tadpoles have maintained their ability to regenerate various organs. Here, the authors show that interleukin-11 is necessary for organ regeneration, by inducing and maintaining undifferentiated progenitors across cell lineages during Xenopus tail regeneration.

  15. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de [Department of Neurosurgery, University Hospital, Leipzig (Germany); Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany); Glien, Anja; Groba, Claudia; Schlichting, Nadine [Department of Neurosurgery, University Hospital, Leipzig (Germany); Kamprad, Manja [Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig (Germany); Meixensberger, Juergen [Department of Neurosurgery, University Hospital, Leipzig (Germany); Milosevic, Javorina [Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany)

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  16. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells.

    Science.gov (United States)

    Zhang, Lianghui; Jambusaria, Ankit; Hong, Zhigang; Marsboom, Glenn; Toth, Peter T; Herbert, Brittney-Shea; Malik, Asrar B; Rehman, Jalees

    2017-06-20

    The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and

  17. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration.

    Science.gov (United States)

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Comparative transcriptomic analysis identifies genes differentially expressed in human epicardial progenitors and hiPSC-derived cardiac progenitors.

    Science.gov (United States)

    Synnergren, Jane; Drowley, Lauren; Plowright, Alleyn T; Brolén, Gabriella; Goumans, Marie-José; Gittenberger-de Groot, Adriana C; Sartipy, Peter; Wang, Qing-Dong

    2016-11-01

    Regenerative therapies hold great potential to change the treatment paradigm for cardiac diseases. Human cardiac progenitor cells can be used for drug discovery in this area and also provide a renewable source of cardiomyocytes. However, a better understanding of their characteristics is critical for interpreting data obtained from drug screening using these cells. In the present study, we performed global transcriptional analysis of two important sources of cardiac progenitors, i.e., patient epicardium-derived cells (EPDCs) and cardiac progenitor cells (CPCs) derived from human induced pluripotent stem cells. In addition, we also compared the gene expression profiles of these cells when they were cultured under normoxic and hypoxic conditions. We identified 3,289 mRNAs that were differentially expressed between EPDCs and CPCs. Gene ontology annotation and pathway enrichment analyses further revealed possible unique functions of these two cell populations. Notably, the impact of hypoxia vs normoxia on gene expression was modest and only a few genes (e.g., AK4, ALDOC, BNIP3P1, PGK1, and SLC2A1) were upregulated in EPDCs and CPCs after the cells were exposed to low oxygen for 24 h. Finally, we also performed a focused analysis of the gene expression patterns of a predefined set of 92 paracrine factors. We identified 30 of these genes as differentially expressed, and 29 were expressed at higher levels in EPDCs compared with CPCs. Taken together, the results of the present study advance our understanding of the transcriptional programs in EPDCs and CPCs and highlights important differences and similarities between these cell populations. Copyright © 2016 the American Physiological Society.

  19. Cell proliferation in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.M.; Ellwein, L.B. (Univ. of Nebraska Medical Center, Omaha (USA))

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  20. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  1. The Progenitors of Local Ultra-massive Galaxies Across Cosmic Time

    DEFF Research Database (Denmark)

    Marchesini, Danilo; Muzzin, Adam; Stefanon, Mauro

    2014-01-01

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4~Gyr since $z=3$ of the progenitors of local ultra-massive galaxies ($\\log{(M_{\\rm star}/M_{\\odot})}\\approx11.8$; UMGs), providing a complete and consistent picture of how the most massive galaxies at $z=0$ have assembled...

  2. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro

    Directory of Open Access Journals (Sweden)

    Tomoko Funakoshi

    2018-03-01

    Full Text Available Muscle satellite cells are committed myogenic progenitors capable of contributing to myogenesis to maintain adult muscle mass and function. Several experiments have demonstrated that muscle satellite cells can differentiate into adipocytes in vitro, supporting the mesenchymal differentiation potential of these cells. Moreover, muscle satellite cells may be a source of ectopic muscle adipocytes, explaining the lipid accumulation often observed in aged skeletal muscle (sarcopenia and in muscles of patients` with diabetes. Quercetin, a polyphenol, is one of the most abundant flavonoids distributed in edible plants, such as onions and apples, and possesses antioxidant, anticancer, and anti-inflammatory properties. In this study, we examined whether quercetin inhibited the adipogenesis of muscle satellite cells in vitro with primary cells from rat limbs by culture in the presence of quercetin under adipogenic conditions. Morphological observations, Oil Red-O staining results, triglyceride content analysis, and quantitative reverse transcription polymerase chain reaction revealed that quercetin was capable of inhibiting the adipogenic induction of muscle satellite cells into adipocytes in a dose-dependent manner by suppressing the transcript levels of adipogenic markers, such as peroxisome proliferator-activated receptor-γ and fatty acid binding protein 4. Our results suggested that quercetin inhibited the adipogenesis of muscle satellite cells in vitro by suppressing the transcription of adipogenic markers.

  3. Neural progenitors, patterning and ecology in neocortical origins

    Science.gov (United States)

    Aboitiz, Francisco; Zamorano, Francisco

    2013-01-01

    The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex. PMID:24273496

  4. Endothelial progenitor cells in sudden sensorineural hearing loss.

    Science.gov (United States)

    Quaranta, Nicola; Ramunni, Alfonso; De Luca, Concetta; Brescia, Paola; Dambra, Porzia; De Tullio, Giacomina; Vacca, Angelo; Quaranta, Antonio

    2011-04-01

    Endothelial progenitor cells (EPCs) are a unique subtype of circulating cells with properties similar to those of embryonal angioblasts. They have the potential to proliferate and to differentiate into mature endothelial cells. EPCs are reduced in patients with vascular risk factors due to a decreased mobilization, an increased consumption at the site of damage or a reduced half-life. The results of this study confirm the existence of an endothelial dysfunction in patients with sudden sensorineural hearing loss (SSHL) and support the vascular involvement in the pathogenesis of the disease. The aim of this study was to evaluate the concentration of EPCs in patients affected by SSHL. Twenty-one patients affected by SSHL were evaluated. The number of EPCs was analyzed by flow cytometry analysis of peripheral blood CD34+KDR+CD133+ cells. Circulating levels of EPCs were significantly lower in SSHL patients compared with controls. In particular, CD34+KDR+ cells and CD34+CD133+KDR+ cells were significantly reduced (p < 0.05).

  5. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  6. In Situ Malignant Transformation and Progenitor-Mediated Cell Budding: Two Different Pathways for Breast Ductal and Lobular Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Mina Izadjoo, Guohong Song, Alexander Stojadinovic

    2011-01-01

    Full Text Available The human breast lobular and ductal structures and the derived tumors from these structures differ substantial in their morphology, microenvironment, biological presentation, functions, and clinical prognosis. Based on these differences, we have proposed that pre-invasive lobular tumors may progress to invasive lesions through “in situ malignant transformation”, in which the entire myoepithelial cell layer within a given lobule or lobular clusters undergoes extensive degeneration and disruptions, which allows the entire epithelial cell population associated with these myoepithelial cell layers directly invade the stroma or vascular structures. In contrast, pre-invasive ductal tumors may invade the stroma or vascular structures through “progenitor-mediated cell budding”, in which focal myoepithelial cell degeneration-induced aberrant leukocyte infiltration causes focal disruptions in the tumor capsules, which selectively favor monoclonal proliferation of the overlying tumor stem cells or a biologically more aggressive cell clone. Our current study attempted to provide more direct morphological and immunohistochemical data that are consistent with our hypotheses.

  7. MRI of auto-transplantation of bone marrow-derived stem-progenitor cells for potential repair of injured arteries.

    Directory of Open Access Journals (Sweden)

    Yanfeng Meng

    Full Text Available This study was to validate the feasibility of using clinical 3.0T MRI to monitor the migration of autotransplanted bone marrow (BM-derived stem-progenitor cells (SPC to the injured arteries of near-human sized swine for potential cell-based arterial repair.The study was divided into two phases. For in vitro evaluation, BM cells were extracted from the iliac crests of 13 domestic pigs and then labeled with a T2 contrast agent, Feridex, and/or a fluorescent tissue marker, PKH26. The viability, the proliferation efficiency and the efficacies of Feridex and/or PKH26 labeling were determined. For in vivo validation, the 13 pigs underwent endovascular balloon-mediated intimal damages of the iliofemoral arteries. The labeled or un-labeled BM cells were autotransplanted back to the same pig from which the BM cells were extracted. Approximately three weeks post-cell transplantation, 3.0T T2-weighted MRI was performed to detect Feridex-created signal voids of the transplanted BM cells in the injured iliofemoral arteries, which was confirmed by subsequent histologic correlation.Of the in vitro study, the viability of dual-labeled BM cells was 95-98%. The proliferation efficiencies of dual-labeled BM cells were not significantly different compared to those of non-labeled cells. The efficacies of Feridex- and PKH26 labeling were 90% and 100%, respectively. Of the in vivo study, 3.0T MRI detected the auto-transplanted BM cells migrated to the injured arteries, which was confirmed by histologic examinations.This study demonstrates the capability of using clinical 3.0T MRI to monitor the auto-transplantation of BM cells that migrate to the injured arteries of large animals, which may provide a useful MRI technique to monitor cell-based arterial repair.

  8. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    Directory of Open Access Journals (Sweden)

    Shinobu Tsuzuki

    2007-05-01

    Full Text Available AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood

  9. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  10. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  11. Could Cancer Initiate From Bone Marrow Progenitors?

    OpenAIRE

    Ben Nasr, Hmed; Hammami, Serria Turky; Zeghal, Khaled

    2013-01-01

    Background Defining cancer stem cells and their origins is of much controversy,and constitutes a challenged knockout for cell targeting- anticancer drugs. Herein,we put forward a hypothetic model for cancer stem cells initiation from bone marrow stem cells. These later, will differentiate into an ancestral progenitor that activates a memorial program - the black box cassette- that is responsible of abnormal neo-organogenesis in the form of tumors and metastases. To approve this model, we assu...

  12. Endothelial progenitor cell biology in ankylosing spondylitis.

    Science.gov (United States)

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  13. Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Florian Hartmut Seeger

    Full Text Available Transplantation of vasculogenic progenitor cells (VPC improves neovascularization after ischemia. However, patients with type 2 diabetes mellitus show a reduced VPC number and impaired functional activity. Previously, we demonstrated that p38 kinase inhibition prevents the negative effects of glucose on VPC number by increasing proliferation and differentiation towards the endothelial lineage in vitro. Moreover, the functional capacity of progenitor cells is reduced in a mouse model of metabolic syndrome including type 2 diabetes (Lepr(db in vivo.The aim of this study was to elucidate the underlying signalling mechanisms in vitro and in vivo. Therefore, we performed DNA-protein binding arrays in the bone marrow of mice with metabolic syndrome, in blood-derived progenitor cells of diabetic patients as well as in VPC ex vivo treated with high levels of glucose. The transcriptional activation of ETS transcription factors was increased in all samples analyzed. Downregulation of ETS1 expression by siRNA abrogated the reduction of VPC number induced by high-glucose treatment. In addition, we observed a concomitant suppression of the non-endothelial ETS-target genes matrix metalloproteinase 9 (MMP9 and CD115 upon short term lentiviral delivery of ETS-specific shRNAs. Long term inhibition of ETS expression by lentiviral infection increased the number of cells with the endothelial markers CD144 and CD105.These data demonstrate that diabetes leads to dysregulated activation of ETS, which blocks the functional activity of progenitor cells and their commitment towards the endothelial cell lineage.

  14. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture.

    Science.gov (United States)

    Hosoyama, Tohru; McGivern, Jered V; Van Dyke, Jonathan M; Ebert, Allison D; Suzuki, Masatoshi

    2014-05-01

    Using stem cells to replace degenerating muscle cells and restore lost skeletal muscle function is an attractive therapeutic strategy for treating neuromuscular diseases. Myogenic progenitors are a valuable cell type for cell-based therapy and also provide a platform for studying normal muscle development and disease mechanisms in vitro. Human pluripotent stem cells represent a valuable source of tissue for generating myogenic progenitors. Here, we present a novel protocol for deriving myogenic progenitors from human embryonic stem (hES) and induced pluripotent stem (iPS) cells using free-floating spherical culture (EZ spheres) in a defined culture medium. hES cell colonies and human iPS cell colonies were expanded in medium supplemented with high concentrations (100 ng/ml) of fibroblast growth factor-2 (FGF-2) and epidermal growth factor in which they formed EZ spheres and were passaged using a mechanical chopping method. We found myogenic progenitors in the spheres after 6 weeks of culture and multinucleated myotubes following sphere dissociation and 2 weeks of terminal differentiation. A high concentration of FGF-2 plays a critical role for myogenic differentiation and is necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres. Importantly, EZ sphere culture produced myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker's muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis). Taken together, this study demonstrates a simple method for generating myogenic cells from pluripotent sources under defined conditions for potential use in disease modeling or cell-based therapies targeting skeletal muscle.

  15. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  16. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  17. Ex vivo expansion of hematopoietic progenitor cells and mature cells.

    Science.gov (United States)

    McNiece, I; Briddell, R

    2001-01-01

    Hematopoietic cells have the potential for providing benefit in a variety of clinical settings. These include cells for support of patients undergoing high-dose chemotherapy, as a target for replacement gene therapy, and as a source of cells for immunotherapy. The limitation to many of these applications has been the total absolute number of defined target cells. Therefore many investigators have explored methods to culture hematopoietic cells in vitro to increase the numbers of these cells. Studies attempting to expand hematopoietic stem cells, progenitor cells, and mature cells in vitro have become possible over the past decade due to the availability of recombinant growth factors and cell selection technologies. To date, no studies have demonstrated convincing data on the expansion of true stem cells, and so the focus of this review is the expansion of committed progenitor cells and mature cells. A number of clinical studies have been preformed using a variety of culture conditions, and several studies are currently in progress that explore the use of ex vivo expanded cells. These studies will be discussed in this review. There are evolving data that suggest that there are real clinical benefits associated with the use of the expanded cells; however, we are still at the early stages of understanding how to optimally culture different cell populations. The next decade should determine what culture conditions and what cell populations are needed for a range of clinical applications.

  18. E-cadherin Controls Bronchiolar Progenitor Cells and Onset of Preneoplastic Lesions in Mice

    Directory of Open Access Journals (Sweden)

    Fatih Ceteci

    2012-12-01

    Full Text Available Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body.associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.

  19. CD318/CUB-domain-containing protein 1 expression on cord blood hematopoietic progenitors.

    Science.gov (United States)

    Takeda, Hiromi; Fujimori, Yoshihiro; Kai, Shunro; Ogawa, Hiroyasu; Nakano, Takashi

    2010-05-01

    CUB-domain-containing protein 1 (CDCP1)/CD318 is a single transmembrane molecule highly expressed in colorectal cancer and leukemia. It has also been shown to be expressed in hematopoietic progenitor cells. In this study, we analyzed the expression of CD318 on cord blood hematopoietic stem and progenitor cells. Cord blood mononuclear cells were depleted of mature blood cell linage (Lin)-positive cells and then Lin-negative cells were sorted by flow cytometry based on the expression of CD34 and CD318. Analysis of sorted cells by colony-forming assay showed that CD34(+)CD318(+) cells produced more mixed colony forming units and erythroid burst forming unit-derived colonies than CD34(+)CD318(-) cells. These colonies were also produced by CD34(-)CD318(+) and CD34(-)CD318(-) cells, but were generally fewer in number. When sorted cells were cultured on a monolayer of human mesenchymal stem cells, CD34(+)CD318(+) cells proliferated more abundantly than CD34(+)CD318(-) cells, while CD34(-)CD318(+) and CD34(-)CD318(-) cells failed to proliferate. Transplantation of CD34(+)CD318(+) cells into non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice resulted in efficient reconstitution of human cells, indicating that CD34(+)CD318(+) cells possess strong SCID-repopulating cell activity. These findings suggest that the co-expression of CD34 and CD318 identifies the immature character of hematopoietic stem cells.

  20. 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model.

    Science.gov (United States)

    Brenner, Winfried; Aicher, Alexandra; Eckey, Thomas; Massoudi, Schirin; Zuhayra, Maaz; Koehl, Ulrike; Heeschen, Christopher; Kampen, Willm U; Zeiher, Andreas M; Dimmeler, Stefanie; Henze, Eberhard

    2004-03-01

    Transplantation of progenitor cells (PCs) has been shown to improve neovascularization and left ventricular function after myocardial ischemia. The fate of transplanted PCs has been monitored by fluorescence labeling or by genetic modifications introducing reporter genes. However, these techniques are limited by the need to kill the experimental animal. The aim of this study was to radiolabel CD34(+) hematopoietic PCs (HPCs) with (111)In-oxine and to evaluate the feasibility of this in vivo method for monitoring myocardial homing of transplanted cells in a rat myocardial infarction model. Human HPCs were isolated from mobilized peripheral blood and labeled with (111)In-oxine. Labeled HPCs were injected into the cavity of the left ventricle in nude rats 24 h after induction of myocardial infarction (n = 4) or sham operation (n = 4). Scintigraphic images were acquired up to 96 h after HPC injection. After animals were killed, tissue samples of various organs were harvested to calculate tissue-specific activity and for immunostaining. Labeling efficiency of HPCs was 32% +/- 11%. According to trypan-blue staining, viability of radiolabeled HPCs was impaired by 30% after 48 and 96 h in comparison with unlabeled cells, whereas proliferation and differentiation of HPCs was nullified after 7 d, as assessed by colony-forming assays. After injection of HPCs, the specific activity ratio of heart to peripheral muscle tissue increased from 1.10 +/- 0.32 in sham-operated rats to 2.47 +/- 0.92 (P = 0.020) in infarcted rats. However, the overall radioactivity detected in the heart was only about 1%. A transient high lung uptake of 17% +/- 6% was observed within the first hour after infusion of HPCs. At 24 h after injection, the initial lung activity had shifted toward liver, kidneys, and spleen, resulting in an increase of radioactivity in these organs from 37% +/- 6% to 57% +/- 5%. Radiolabeling with (111)In-oxine is a feasible in vivo method for monitoring transplanted HPCs in a

  1. Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation.

    Science.gov (United States)

    Souidi, Naima; Stolk, Meaghan; Rudeck, Juliane; Strunk, Dirk; Schallmoser, Katharina; Volk, Hans-Dieter; Seifert, Martina

    2017-05-01

    Regeneration of injured tissues requires effective therapeutic strategies supporting vasculogenesis. The lack of instantly available autologous cell sources and immunogenicity of allogeneic endothelial (progenitor) cells limits clinical progress. Based on the immunosuppressive potency of mesenchymal stem/progenitor cells (MSCs), we investigated whether crosstalk between endothelial colony-forming progenitor cells (ECFCs) and MSCs during vasculogenesis could lower allogeneic T cell responses against ECFCs allowing long-term engraftment in vivo. Immunodeficient mice received subcutaneous grafts containing human ECFCs alone, or pairs of human ECFCs/MSCs from the same umbilical cord (UC) to study vasculogenesis in the presence of human leukocyte antigen (HLA)-mismatched human peripheral blood mononuclear cells (PBMCs). In vitro, cell surface marker changes due to interferon gamma (IFNγ) stimulation during ECFC/MSC coculture were determined and further effects on allostimulated T cell proliferation and cytotoxic lysis were measured. IFNγ-induced HLA-DR expression on ECFCs and MSCs, but both cell types had significantly less HLA-DR in cocultures. ECFC-induced T cell proliferation was abolished after MSC coculture as a result of HLA-DR downregulation and indolamin-2,3-dioxygenase activation. Additionally, allospecific CD8 + T cell-mediated lysis of ECFCs was reduced in cocultures. ECFC/MSC coapplication in immunodeficient mice not only promoted the generation of improved blood vessel architecture after 6 weeks, but also reduced intragraft immune cell infiltration and endothelial HLA-DR expression following PBMC reconstitution. Crosstalk between UC-derived ECFCs and MSCs after combined transplantation can lower the risk of ECFC rejection, thus enabling their coapplication for therapeutic vasculogenesis. Stem Cells 2017;35:1233-1245. © 2017 AlphaMed Press.

  2. Overexpression of Angiopoietin-1 Potentiates Endothelial Progenitor Cells for the Treatment of Aneurysm.

    Science.gov (United States)

    Lu, Ziming; Wang, Qiujing; Chen, Chengwei; Gao, Yuyuan; He, Jian; Liu, Wenchao; Li, Zhenjun; Zhao, Zhenghui

    2017-11-29

    To investigate whether angiopoietin-1 (Ang-1) could regulate the endothelial progenitor cells (EPCs) survival and the effect of accelerating intra-aneurysmal organization and occlusion of the aneurysm neck. EPCs were isolated from Wistar rats. EPCs were cultured and transfected with lentivirus-Ang-1-endothelial progenitor cells (Ang-1-EPCs) and lentivirus-NC-endothelial progenitor cells (NC-EPCs). The effects of Ang-1 on viability and functioning of EPCs were explored via tube formation, migration, and MTT (3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide) assays. Eighteen Wistar rats were randomly allocated into 3 groups. Eighteen bare coils were inserted into the ligated external carotid artery (ECA) sacs of rats. The ECA sacs were removed 2 weeks after the coils were implanted and examined by histology assay. Ang-1 significantly promoted EPCs tube formation, migration, and proliferation ability in vitro. Histology analyses revealed that the organized areas in the ECA sacs in the Ang-1-EPCs group are higher than NC-EPCs group and control group at 2 weeks. Immunofluorescence revealed that organized tissues were characterized by an accumulation of cells positive for α-smooth muscle actin-positive cells in aneurysm sacs. Overexpression of Ang-1 enhanced the tube formation, migration, and proliferation ability of EPCs. Ang-1 gene-modified EPCs accelerated organization within the aneurysms and occlusion of aneurysm neck. Transplantation of Ang-1-transfected EPCs may be a new method for the treatment of aneurysm. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Positron Emission Tomography with [18F]FLT Revealed Sevoflurane-induced Inhibition of Neural Progenitor Cell Expansion in vivo

    Directory of Open Access Journals (Sweden)

    Shuliang eLiu

    2014-11-01

    Full Text Available Neural progenitor cell expansion is critical for normal brain development and an appropriate response to injury. During the brain growth spurt, exposures to general anesthetics which either block the N-methyl D-aspartate receptor or enhance the γ-aminobutyric acid receptor type A can disturb neuronal transduction. This effect can be detrimental to brain development. Until now, the effects of anesthetic exposure on neural progenitor cell expansion in vivo had seldom been reported. Here, minimally invasive micro positron emission tomography (microPET coupled with 3'-deoxy-3' [18F] fluoro-L-thymidine ([18F]FLT was utilized to assess the effects of sevoflurane exposure on neural progenitor cell proliferation. FLT, a thymidine analogue, is taken up by proliferating cells and phosphorylated in the cytoplasm, leading to its intracellular trapping. Intracellular retention of [18F]FLT, thus, represents an observable in vivo marker of cell proliferation. Here, postnatal day (PND 7 rats (n = 11/ group were exposed to 2.5% sevoflurane or room air for 9 hr. For up to two weeks following the exposure, standard uptake values (SUVs for [18F]-FLT in the hippocampal formation were significantly attenuated in the sevoflurane-exposed rats (p <0.0001, suggesting decreased uptake and retention of [18F]FLT (decreased proliferation in these regions. Four weeks following exposure, SUVs for [18F]FLT were comparable in the sevoflurane-exposed rats and in controls. Co-administration of 7-nitroindazole (7-NI, 30 mg/kg, n = 5, a selective inhibitor of neuronal nitric oxide synthase, significantly attenuated the SUVs for [18F]FLT in both the air-exposed (p = 0.00006 and sevoflurane-exposed rats (p = 0.0427 in the first week following the exposure. These findings suggested that microPET in couple with [18F]FLT as cell proliferation marker could be used as a non-invasive modality to monitor the sevoflurane-induced inhibition of neural progenitor cell proliferation in vivo.

  4. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  5. Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart.

    Science.gov (United States)

    Rana, M Sameer; Théveniau-Ruissy, Magali; De Bono, Christopher; Mesbah, Karim; Francou, Alexandre; Rammah, Mayyasa; Domínguez, Jorge N; Roux, Marine; Laforest, Brigitte; Anderson, Robert H; Mohun, Timothy; Zaffran, Stephane; Christoffels, Vincent M; Kelly, Robert G

    2014-10-10

    Cardiac progenitor cells from the second heart field (SHF) contribute to rapid growth of the embryonic heart, giving rise to right ventricular and outflow tract (OFT) myocardium at the arterial pole of the heart, and atrial myocardium at the venous pole. Recent clonal analysis and cell-tracing experiments indicate that a common progenitor pool in the posterior region of the SHF gives rise to both OFT and atrial myocytes. The mechanisms regulating deployment of this progenitor pool remain unknown. To evaluate the role of TBX1, the major gene implicated in congenital heart defects in 22q11.2 deletion syndrome patients, in posterior SHF development. Using transcriptome analysis, genetic tracing, and fluorescent dye-labeling experiments, we show that Tbx1-dependent OFT myocardium originates in Hox-expressing cells in the posterior SHF. In Tbx1 null embryos, OFT progenitor cells fail to segregate from this progenitor cell pool, leading to failure to expand the dorsal pericardial wall and altered positioning of the cardiac poles. Unexpectedly, addition of SHF cells to the venous pole of the heart is also impaired, resulting in abnormal development of the dorsal mesenchymal protrusion, and partially penetrant atrioventricular septal defects, including ostium primum defects. Tbx1 is required for inflow as well as OFT morphogenesis by regulating the segregation and deployment of progenitor cells in the posterior SHF. Our results provide new insights into the pathogenesis of congenital heart defects and 22q11.2 deletion syndrome phenotypes. © 2014 American Heart Association, Inc.

  6. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  7. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  8. The Influence of Physical Forces on Progenitor Cell Migration, Proliferation and Differentiation in Fracture Repair

    Science.gov (United States)

    2009-11-01

    the knee has also been shown to accelerate healing in defects in the tibial diaphysis [25]. The presence of GFP positive cells confirmed that donor MSC...van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect...Am 1990;72:1374-8. [25] Zhang P, Sun Q, Turner CH, Yokota H. Knee loading accelerates bone healing in mice. J Bone Miner Res 2007;22:1979-87. [26

  9. Further examination of the effects of recombinant cytokines on the proliferation of human megakaryocyte progenitor cells.

    Science.gov (United States)

    Bruno, E; Cooper, R J; Briddell, R A; Hoffman, R

    1991-06-01

    The effect of several recombinant cytokines, including interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, and IL-1 alpha, on megakaryocyte (MK) colony formation by a normal human bone marrow subpopulation (CD34+ DR+), enriched for the MK colony-forming unit (CFU-MK), was studied using a serum-depleted, fibrin clot culture system. IL-3 and GM-CSF, but not IL-6 or IL-1 alpha, stimulated MK colony formation by CD34+ DR+ cells. However, the addition of IL-1 alpha to CD34+ DR+ cultures containing IL-6 resulted in the appearance of CFU-MK-derived colonies, suggesting that IL-6 requires the presence of IL-1 alpha to exhibit its MK colony-stimulating activity (MK-CSA). Addition of neutralizing antibodies to IL-3 and GM-CSF, but not to IL-6 and IL-1 alpha, specifically inhibited the MK-CSA of IL-3 and GM-CSF, respectively. The addition of either anti-IL-6, anti-IL-1 alpha, or anti-IL-3 antisera to cultures containing both IL-6 and IL-1 alpha totally abolished the MK-CSA of the IL-6/IL-1 alpha combination. However, neither anti-IL-3 nor anti-GM-CSF antisera could totally neutralize the additive effect of the combination of IL-3 and GM-CSF on MK colony formation, indicating that these two cytokines act by affecting distinct effector pathways. These results suggest that while IL-3 and GM-CSF can directly affect CFU-MK-derived colony formation, IL-1 alpha and IL-6 act in concert to promote de novo elaboration of IL-3 and thereby promote CFU-MK proliferative capacity.

  10. Gadolinium chloride suppresses hepatic oval cell proliferation in rats with biliary obstruction.

    OpenAIRE

    Olynyk, J. K.; Yeoh, G. C.; Ramm, G. A.; Clarke, S. L.; Hall, P. M.; Britton, R. S.; Bacon, B. R.; Tracy, T. F.

    1998-01-01

    Liver injury due to bile duct ligation (BDL) is histologically characterized by cholestasis, bile ductular proliferation, hepatocellular damage, portal fibrosis, and ultimately biliary cirrhosis. Stem cells within the liver may act as progenitor cells for small epithelial cells termed oval cells that can differentiate into bile duct cells or hepatocytes, whereas myofibroblasts are the principal source of collagen production in fibrosis. The aims of this study were to determine 1) whether BDL ...

  11. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Joshua T. Maxwell

    2016-01-01

    Full Text Available For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs. It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology.

  12. Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    Science.gov (United States)

    Bachstetter, Adam D.; Jernberg, Jennifer; Schlunk, Andrea; Vila, Jennifer L.; Hudson, Charles; Cole, Michael J.; Shytle, R. Douglas; Tan, Jun; Sanberg, Paul R.; Sanberg, Cyndy D.; Borlongan, Cesario; Kaneko, Yuji; Tajiri, Naoki; Gemma, Carmelina; Bickford, Paula C.

    2010-01-01

    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1β in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative

  13. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  14. SPOT14-Positive Neural Stem/Progenitor Cells in the Hippocampus Respond Dynamically to Neurogenic Regulators

    Directory of Open Access Journals (Sweden)

    Marlen Knobloch

    2014-11-01

    Full Text Available Proliferation of neural stem/progenitor cells (NSPCs in the adult brain is tightly controlled to prevent exhaustion and to ensure proper neurogenesis. Several extrinsic stimuli affect NSPC regulation. However, the lack of unique markers led to controversial results regarding the in vivo behavior of NSPCs to different stimuli. We recently identified SPOT14, which controls NSPC proliferation through regulation of de novo lipogenesis, selectively in low-proliferating NSPCs. Whether SPOT14-expressing (SPOT14+ NSPCs react in vivo to neurogenic regulators is not known. We show that aging is accompanied by a marked disappearance of SPOT14+ NSPCs, whereas running, a positive neurogenic stimulus, increases proliferation of SPOT14+ NSPCs. Furthermore, transient depletion of highly proliferative cells recruits SPOT14+ NSPCs into the proliferative pool. Additionally, we have established endogenous SPOT14 protein staining, reflecting transgenic SPOT14-GFP expression. Thus, our data identify SPOT14 as a potent marker for adult NSPCs that react dynamically to positive and negative neurogenic regulators.

  15. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Science.gov (United States)

    Franco, Paula G; Pasquini, Juana M; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  16. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Shogo [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan); Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara [Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo (Japan); Ozaki, Yukio [Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi (Japan); Moriyama, Takanori, E-mail: moriyama@hs.hokuda.ac.jp [Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  17. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  18. Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

    Science.gov (United States)

    Ordoñez, Cristina; Moreno-Murciano, Paz; Hernandez, Maria; Di Caudo, Carla; Mundiñano, Iñaki-Carril; Carril-Mundiñano, Iñaki; Vazquez, Nerea; Garcia-Verdugo, Jose Manuel; Sanchez-Pernaute, Rosario; Luquin, Maria-Rosario

    2013-01-01

    The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2(+) cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2(+) cells, in control conditions and at two time points after MPTP administration. We found Sox-2(+) cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2(+) was expressed in some calretinin(+) neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2(+) cells and to an acute, concomitant decrease in the percentage of Sox-2(+)/calretinin(+) neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2(+) cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease.

  19. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury.

    Science.gov (United States)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F; Soendergaard, Christoffer; Madgwick, Alison; Schweiger, Pawel J; Nielsen, Ole H; Vallier, Ludovic; Pedersen, Roger A; Nakamura, Tetsuya; Watanabe, Mamoru; Jensen, Kim B

    2013-12-05

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region-specific differentiation markers. This work provides insight into mechanisms underlying development of the mammalian intestine and points to future opportunities for patient-specific regeneration of the digestive tract. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Identification of a Bipotent Epithelial Progenitor Population in the Adult Thymus

    Directory of Open Access Journals (Sweden)

    Svetlana Ulyanchenko

    2016-03-01

    Full Text Available Thymic epithelial cells (TECs are critically required for T cell development, but the cellular mechanisms that maintain adult TECs are poorly understood. Here, we show that a previously unidentified subpopulation, EpCam+UEA1−Ly-51+PLET1+MHC class IIhi, which comprises <0.5% of adult TECs, contains bipotent TEC progenitors that can efficiently generate both cortical (c TECs and medullary (m TECs. No other adult TEC population tested in this study contains this activity. We demonstrate persistence of PLET1+Ly-51+ TEC-derived cells for 9 months in vivo, suggesting the presence of thymic epithelial stem cells. Additionally, we identify cTEC-restricted short-term progenitor activity but fail to detect high efficiency mTEC-restricted progenitors in the adult thymus. Our data provide a phenotypically defined adult thymic epithelial progenitor/stem cell that is able to generate both cTECs and mTECs, opening avenues for improving thymus function in patients.

  1. Global transcriptome analysis of T-competent progenitors in the bone marrow

    Directory of Open Access Journals (Sweden)

    Vionnie W.C. Yu

    2015-09-01

    Full Text Available T cells are known to develop in the thymus. However, molecular events that control the transition from hematopoietic progenitor cells in the bone marrow to T precursor cells seeded in the thymus remained poorly defined. Our recent report showed that osteocalcin (Ocn-expressing bone cells in the bone marrow have major impact on T cell immunity by regulating T progenitor development in the bone marrow (Yu et al., 2015 [1]. Selective endogenous depletion of Ocn+ cells by inducible diphtheria toxin receptor expression (OcnCre;iDTR led to reduction of T-competent common lymphoid progenitors (Ly6D− CLPs in the bone marrow and loss of T cells in the thymus. Expression of the Notch ligand DLL4 by Ocn+ cells in the bone marrow ensures the production of Ly6D− CLPs, and expression of chemotactic molecules CCR7 and PSGL1 to enable subsequent thymic seeding. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell based adaptive immunity. Here we present the transcriptome profiles of Ly6D− CLPs derived from Ocn+ cells deleted mice (OcnCre+;iDTR compared to those derived from control littermates (OcnCre−;iDTR. These data are publically available from NCBI Gene Expression Omnibus (GEO with the accession number GSE66102.

  2. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  3. Wt1, the mesothelium and the origins and heterogeneity of visceral fat progenitors.

    Science.gov (United States)

    Chau, You-Ying; Hastie, Nick

    2015-01-01

    One major gap in adipocyte biology has been a lack of understanding of the developmental origins of the different visceral white adipose tissue (WAT) depots and subcutaneous WAT. In a recent study we showed that most visceral WAT but no subcutaneous WAT arises from cells expressing the Wilms' tumor 1 (Wt1) gene late in mouse gestation.(1) Wt1 continues to be expressed in visceral WAT progenitors into adult life. We also showed that visceral WAT is lined by a mesothelium and provided evidence that this structure is the source of adipocytes. Our study also adds to the growing body of evidence that there is heterogeneity in the visceral progenitors, such that there are Wt1-expressing and non-expressing subsets, the relative proportions of which vary between depots. This raises the enticing prospect that the adipocytes arising from these progenitor subsets may have different properties and our preliminary data support this notion. Finally, evidence from our study and one from Spiegelman's group(2) suggests that Wt1 is not just a marker but regulates visceral WAT identity and the progenitor population. We discuss the implications of this work and some of the questions and future directions that arise from it.

  4. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition.

    Science.gov (United States)

    Chen, C L; Chou, K J; Fang, H C; Hsu, C Y; Huang, W C; Huang, C W; Huang, C K; Chen, H Y; Lee, P T

    2015-12-02

    Pathophysiological changes associated with chronic kidney disease impair angiogenic processes and increase renal fibrosis. Progenitor-like cells derived from adult kidney have been previously used to promote regeneration in acute kidney injury, even though it remained unclear whether the cells could be beneficial in chronic kidney disease (CKD). In this study, we established a CKD model by five-sixths nephrectomy and mouse kidney progenitor-like cells (MKPCs) were intravenously administered weekly for 5 weeks after establishing CKD. We examined the impact of MKPCs on the progression of renal fibrosis and the potential of MKPCs to preserve the angiogenic process and prevent endothelial mesenchymal transition in vivo and in vitro. Our results demonstrate that the MKPCs delayed interstitial fibrosis and the progression of glomerular sclerosis and ameliorated the decline of kidney function. At 17 weeks, the treated mice exhibited lower blood pressures, higher hematocrit levels, and larger kidney sizes than the control mice. In addition, the MKPC treatment prolonged the survival of the mice with chronic kidney injuries. We observed a decreased recruitment of macrophages and myofibroblasts in the interstitium and the increased tubular proliferation. Notably, MKPC both decreased the level of vascular rarefaction and prevented endothelial mesenchymal transition (EndoMT) in the remnant kidneys. Moreover, the conditioned medium from the MKPCs ameliorated endothelial cell death under hypoxic culture conditions and prevented TGF-β-induced EndoMT through downregulation of phosphorylated Smad 3 in vitro. MKPCs may be a beneficial treatment for kidney diseases characterized by progressive renal fibrosis. The enhanced preservation of angiogenic processes following MKPC injections may be associated with decreased fibrosis in the remnant kidney. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell

  5. Activated Notch signaling cascade is correlated with stem cell differentiation toward absorptive progenitors after massive small bowel resection in a rat.

    Science.gov (United States)

    Sukhotnik, Igor; Coran, Arnold G; Pollak, Yulia; Kuhnreich, Eviatar; Berkowitz, Drora; Saxena, Amulya K

    2017-09-01

    Notch signaling is thought to act to drive cell versification in the lining of the small intestine. The purpose of the present study was to evaluate the role of the Notch signaling pathway in stem cell differentiation in the late stages of intestinal adaptation after massive small bowel resection in a rat. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups of eight rats each: Sham rats underwent bowel transection and reanastomosis, while SBS rats underwent 75% small bowel resection. Rats were euthanized on day 14 Illumina's Digital Gene Expression (DGE) analysis was used to determine Notch signaling gene expression profiling. Notch-related gene and protein expression was determined using real-time PCR, Western blot analysis, and immunohistochemistry. From seven investigated Notch-related (by DGE analysis) genes, six genes were upregulated in SBS vs. control animals with a relative change in gene expression level of 20% or more. A significant upregulation of Notch signaling-related genes in resected animals was accompanied by a significant increase in Notch-1 protein levels (Western blot analysis) and a significant increase in the number of Notch1 and Hes1 (target gene)-positive cells (immunohistochemistry) compared with sham animals. Evaluation of cell differentiation has shown a strong increase in total number of absorptive cells (unchanged secretory cells) compared with control rats. In conclusion, 2 wk after bowel resection in rats, stimulated Notch signaling directs the crypt cell population toward absorptive progenitors.NEW & NOTEWORTHY This study provides novel insight into the mechanisms of cell proliferation following massive small bowel resection. We show that 2 wk after bowel resection in rats, enhanced stem cell activity was associated with stimulated Notch signaling pathway. We demonstrate that activated Notch signaling cascade directs the crypt cell population toward absorptive progenitors. Copyright © 2017 the American

  6. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Barker Jeffery L

    2009-08-01

    Full Text Available Abstract Background Cortical development is a complex process that includes sequential generation of neuronal progenitors, which proliferate and migrate to form the stratified layers of the developing cortex. To identify the individual microRNAs (miRNAs and mRNAs that may regulate the genetic network guiding the earliest phase of cortical development, the expression profiles of rat neuronal progenitors obtained at embryonic day 11 (E11, E12 and E13 were analyzed. Results Neuronal progenitors were purified from telencephalic dissociates by a positive-selection strategy featuring surface labeling with tetanus-toxin and cholera-toxin followed by fluorescence-activated cell sorting. Microarray analyses revealed the fractions of miRNAs and mRNAs that were up-regulated or down-regulated in these neuronal progenitors at the beginning of cortical development. Nearly half of the dynamically expressed miRNAs were negatively correlated with the expression of their predicted target mRNAs. Conclusion These data support a regulatory role for miRNAs during the transition from neuronal progenitors into the earliest differentiating cortical neurons. In addition, by supplying a robust data set in which miRNA and mRNA profiles originate from the same purified cell type, this empirical study may facilitate the development of new algorithms to integrate various "-omics" data sets.

  7. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.

    Science.gov (United States)

    Song, Dongzhe; Zhang, Fugui; Reid, Russell R; Ye, Jixing; Wei, Qiang; Liao, Junyi; Zou, Yulong; Fan, Jiaming; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Li, Li; Yu, Yichun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Wang, Jia; Lee, Michael J; Wolf, Jennifer Moriatis; Huang, Dingming; He, Tong-Chuan

    2017-11-01

    The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes

    Science.gov (United States)

    Yovchev, Mladen I.; Xue, Yuhua; Shafritz, David A.; Locker, Joseph; Oertel, Michael

    2013-01-01

    Background & Aim Considerable progress has been made in developing anti-fibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Methods Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV+ F344 rats were transplanted into DPPIV− rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, RT-PCR, and immunohistochemistry. Results After chronic TAA administration, DPPIV− F344 rats exhibited progressive fibrosis, cirrhosis and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1+, AFP+, CD133+, Sox-9+, FoxJ1+) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of α-SMA, PDGFRβ, desmin, vimentin, TIMP1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than FLSPCs. Conclusions This study is a Proof of Principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit anti-fibrotic effects. PMID:23840008

  9. Obesity reversibly depletes the basal cell population and enhances mammary epithelial cell estrogen receptor alpha expression and progenitor activity.

    Science.gov (United States)

    Chamberlin, Tamara; D'Amato, Joseph V; Arendt, Lisa M

    2017-11-29

    Obesity is correlated with an increased risk for developing postmenopausal breast cancer. Since obesity rates continue to rise worldwide, it is important to understand how the obese microenvironment influences normal mammary tissue to increase breast cancer risk. We hypothesized that obesity increases the proportion of luminal progenitor cells, which are thought to be the cells of origin for the most common types of breast cancer, potentially leading to an increased risk for breast cancer. To study the obese microenvironment within the mammary gland, we used a high-fat diet mouse model of obesity and human breast tissue from reduction mammoplasty surgery. We identified changes in breast epithelial cell populations using flow cytometry for cell surface markers, in vitro functional assays and expression of markers on breast tissue sections. In both obese female mice and women, mammary epithelial cell populations demonstrated significant decreases in basal/myoepithelial cells, using either flow cytometry or cell-type-specific markers (SMA and p63). Estrogen receptor alpha (ERα) expression was significantly increased in luminal cells in obese mammary tissue, compared with control mice or breast tissue from lean women. Functional assays demonstrated significantly enhanced mammary epithelial progenitor activity in obese mammary epithelial cells and elevated numbers of ERα-positive epithelial cells that were co-labeled with markers of proliferation. Weight loss in a group of obese mice reversed increases in progenitor activity and ERα expression observed in obese mammary tissue. Obesity enhances ERα-positive epithelial cells, reduces the number of basal/myoepithelial cells, and increases stem/progenitor activity within normal mammary tissue in both women and female mice. These changes in epithelial cell populations induced by obesity are reversible with weight loss. Our findings support further studies to examine how obesity-induced changes in stem/progenitor cells

  10. The development of zebrafish tendon and ligament progenitors

    Science.gov (United States)

    Chen, Jessica W.; Galloway, Jenna L.

    2014-01-01

    Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system. PMID:24803652

  11. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    Science.gov (United States)

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  12. Membrane Biophysics Define Neuron and Astrocyte Progenitors in the Neural Lineage

    National Research Council Canada - National Science Library

    Nourse, J.L; Prieto, J.L; Dickson, A.R; Lu, J; Pathak, M.M; Tombola, F; Demetriou, M; Lee, A.P; Flanagan, L.A

    2014-01-01

    Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self‐renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes...

  13. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  14. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Evan Manuel

    2014-01-01

    the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature...

  15. JPRS Report, Proliferation Issues

    Science.gov (United States)

    1992-05-27

    JPRS-TND-92-016 27 MAY 1992 JPRS Repor Proliferation Issues ÄBpxovea tcz pursue ieiaaM| Ipfe. fötmbuasa OsüoaÜBd .^L ■ — —— au »** 19980112...6 MOROCCO Berrada on Proposed Nuclear Power Plant [ MAROC SOIR 22 Apr] 6 JPRS-TND-92-016 27 May 1992 2 CENTRAL EURASIA Proposals on...three days of talks here on normalizing relations with Japan, which were largely stalemated over Tokyo’s demand for Pyongyang’s assurance that it did

  16. Predicting the nature of supernova progenitors

    Science.gov (United States)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  17. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  18. Mast cell progenitors: origin, development and migration to tissues.

    Science.gov (United States)

    Dahlin, Joakim S; Hallgren, Jenny

    2015-01-01

    Mast cells in tissues are developed from mast cell progenitors emerging from the bone marrow in a process highly regulated by transcription factors. Through the advancement of the multicolor flow cytometry technique, the mast cell progenitor population in the mouse has been characterized in terms of surface markers. However, only cell populations with enriched mast cell capability have been described in human. In naïve mice, the peripheral tissues have a constitutive pool of mast cell progenitors. Upon infections in the gut and in allergic inflammation in the lung, the local mast cell progenitor numbers increase tremendously. This review focuses on the origin and development of mast cell progenitors. Furthermore, the evidences for cells and molecules that govern the migration of these cells in mice in vivo are described. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. A Non-Cell-Autonomous Role of BEC-1/BECN1/Beclin1 in Coordinating Cell-Cycle Progression and Stem Cell Proliferation during Germline Development.

    Science.gov (United States)

    Ames, Kristina; Da Cunha, Dayse S; Gonzalez, Brenda; Konta, Marina; Lin, Feng; Shechter, Gabriel; Starikov, Lev; Wong, Sara; Bülow, Hannes E; Meléndez, Alicia

    2017-03-20

    The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell proliferation remains poorly understood. Here, we describe a function for autophagy in germline stem cell proliferation. We found that autophagy genes such as bec-1/BECN1/Beclin1, atg-16.2/ATG16L, atg-18/WIPI1/2, and atg-7/ATG7 are required for the late larval expansion of germline stem cell progenitors in the C. elegans gonad. We further show that BEC-1/BECN1/Beclin1 acts independently of the GLP-1/Notch or DAF-7/TGF-β pathways but together with the DAF-2/insulin IGF-1 receptor (IIR) signaling pathway to promote germline stem cell proliferation. Similar to DAF-2/IIR, BEC-1/BECN1/Beclin1, ATG-18/WIPI1/2, and ATG-16.2/ATG16L all promote cell-cycle progression and are negatively regulated by the phosphatase and tensin homolog DAF-18/PTEN. However, whereas BEC-1/BECN1/Beclin1 acts through the transcriptional regulator SKN-1/Nrf1, ATG-18/WIPI1/2 and ATG-16.2/ATG16L exert their function through the DAF-16/FOXO transcription factor. In contrast, ATG-7 functions in concert with the DAF-7/TGF-β pathway to promote germline proliferation and is not required for cell-cycle progression. Finally, we report that BEC-1/BECN1/Beclin1 functions non-cell-autonomously to facilitate cell-cycle progression and stem cell proliferation. Our findings demonstrate a novel non-autonomous role for BEC-1/BECN1/Beclin1 in the control of stem cell proliferation and cell-cycle progression, which may have implications for the understanding and development of therapies against malignant cell growth in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Proliferation and recapitulation of developmental patterning associated with regulative regeneration of the spinal cord neural tube.

    Science.gov (United States)

    Halasi, Gabor; Søviknes, Anne Mette; Sigurjonsson, Olafur; Glover, Joel C

    2012-05-01

    Developmental patterning during regulative regeneration of the chicken embryo spinal neural tube was characterized by assessing proliferation and the expression of transcription factors specific to neural progenitor and postmitotic neuron populations. One to several segments of the thoracolumbar neural tube were selectively excised unilaterally to initiate regeneration. The capacity for regeneration depended on the stage when ablation was performed and the extent of tissue removed. 20% of surviving embryos exhibited complete regulative regeneration, wherein the missing hemi-neural tube was reconstituted to normal size and morphology. Fate-mapping of proliferative adjacent tissue indicated contributions from the opposite side of the neural tube and potentially from the ipsilateral neural tube rostral and caudal to the lesion. Application of the thymidine analog EdU (5-ethynyl-2'-deoxyuridine) demonstrated a moderate increase in cell proliferation in lesioned relative to control embryos, and quantitative PCR demonstrated a parallel moderate increase in transcription of proliferation-related genes. Mathematical calculation showed that such modest increases are sufficient to account for the amount of regenerated tissue. Within the regenerated neural tube the expression pattern of progenitor-specific transcription factors was recapitulated in the separate advancing ventral and dorsal fronts of regeneration, with no evidence of abnormal mixing of progenitor subpopulations, indicating that graded patterning mechanisms do not require continuity of neural tube tissue along the dorsoventral axis and do not involve a sorting out of committed progenitors. Upon completion of the regeneration process, the pattern of neuron-specific transcription factor expression was essentially normal. Modest deficits in the numbers of transcription factor-defined neuron types were evident in the regenerated tissue, increasing particularly in dorsal neuron types with later lesions. These

  1. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  2. HDAC3 but not HDAC2 mediates visual experience-dependent radial glia proliferation in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Juanmei Gao

    2016-09-01

    Full Text Available Radial glial cells (RGs are one of the important progenitor cells that can differentiate into neurons or glia to form functional neural circuits in the developing central nervous system (CNS. Histone deacetylases (HDACs has been associated with visual activity dependent changes in BrdU-positive progenitor cells in the developing brain. We previously have shown that HDAC1 is involved in the experience-dependent proliferation of RGs. However, it is less clear whether two other members of class I HDACs, HDAC2 and HDAC3, are involved in the regulation of radial glia proliferation. Here, we reported that HDAC2 and HDAC3 expression were developmentally regulated in tectal cells, especially in the ventricular layer of the BLBP-positive RGs. Pharmacological blockade using an inhibitor of class I HDACs, MS-275 decreased the number of BrdU-positive dividing progenitor cells. Specific knockdown of HDAC3 but not HDAC2 decreased the number of BrdU- and BLBP-labeled cells, suggesting that the proliferation of radial glia was selectively mediated by HDAC3. Visual deprivation induced selective augmentation of histone H4 acetylation at lysine 16 in BLBP-positive cells. Furthermore, the visual deprivation-induced increase in BrdU-positive cells was partially blocked by HDAC3 downregulation but not by HDAC2 knockdown at stage 49 tadpoles. These data revealed a specific role of HDAC3 in experience-dependent radial glia proliferation during the development of Xenopus tectum.

  3. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  4. Toward Realistic Progenitors of Core-collapse Supernovae

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2011-06-01

    Two-dimensional (2D) hydrodynamical simulations of progenitor evolution of a 23 M sun star, close to core collapse (in ~1 hr in one dimension (1D)), with simultaneously active C, Ne, O, and Si burning shells, are presented and contrasted to existing 1D models (which are forced to be quasi-static). Pronounced asymmetries and strong dynamical interactions between shells are seen in 2D. Although instigated by turbulence, the dynamic behavior proceeds to sufficiently large amplitudes that it couples to the nuclear burning. Dramatic growth of low-order modes is seen as well as large deviations from spherical symmetry in the burning shells. The vigorous dynamics is more violent than that seen in earlier burning stages in the three-dimensional (3D) simulations of a single cell in the oxygen burning shell, or in 2D simulations not including an active Si shell. Linear perturbative analysis does not capture the chaotic behavior of turbulence (e.g., strange attractors such as that discovered by Lorenz), and therefore badly underestimates the vigor of the instability. The limitations of 1D and 2D models are discussed in detail. The 2D models, although flawed geometrically, represent a more realistic treatment of the relevant dynamics than existing 1D models, and present a dramatically different view of the stages of evolution prior to collapse. Implications for interpretation of SN1987A, abundances in young supernova remnants, pre-collapse outbursts, progenitor structure, neutron star kicks, and fallback are outlined. While 2D simulations provide new qualitative insight, fully 3D simulations are needed for a quantitative understanding of this stage of stellar evolution. The necessary properties of such simulations are delineated.

  5. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    Science.gov (United States)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  6. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers.

    Science.gov (United States)

    Wang, Jing-Hua; Wang, Qiao-Jing; Wang, Chao; Reinholt, Brad; Grant, Alan L; Gerrard, David E; Kuang, Shihuan

    2015-06-01

    Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  8. Proliferation: myth or reality?; La proliferation: mythe ou realite?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This article analyzes the proliferation approach, its technical condition and political motivation, and the share between the myth (political deception, assumptions and extrapolations) and the reality of proliferation. Its appreciation is complicated by the irrational behaviour of some political actors and by the significant loss of the non-use taboo. The control of technologies is an important element for proliferation slowing down but an efficient and autonomous intelligence system remains indispensable. (J.S.)

  9. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  10. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2006-03-01

    WNT, FGF and Hedgehog signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. FGF16, FGF18, and FGF20 genes are targets of WNT-mediated TCF/LEF-beta-catenin-BCL9/BCL9L-PYGO transcriptional complex. SPROUTY (SPRY) and SPRED family genes encode inhibitors for receptor tyrosine kinase signaling cascades, such as those of FGF receptor family members and EGF receptor family members. Here, transcriptional regulation of SPRY1, SPRY2, SPRY3, SPRY4, SPRED1, SPRED2, and SPRED3 genes by WNT/beta-catenin signaling cascade was investigated by using bioinformatics and human intelligence (humint). Because double TCF/LEF-binding sites were identified within the 5'-promoter region of human SPRY4 gene, comparative genomics analyses on SPRY4 orthologs were further performed. SPRY4-FGF1 locus at human chromosome 5q31.3 and FGF2-NUDT6-SPATA5-SPRY1 locus at human chromosome 4q27-q28.1 were paralogous regions within the human genome. Chimpanzee SPRY4 gene was identified within NW_107083.1 genome sequence. Human, chimpanzee, rat and mouse SPRY4 orthologs, consisting of three exons, were well conserved. SPRY4 gene was identified as the evolutionarily conserved target of WNT/beta-catenin signaling pathway based on the conservation of double TCF/LEF-binding sites within 5'-promoter region of mammalian SPRY4 orthologs. Human SPRY4 mRNA was expressed in embryonic stem (ES) cells, brain, pancreatic islet, colon cancer, head and neck tumor, melanoma, and pancreatic cancer. WNT signaling activation in progenitor cells leads to the growth regulation of progenitor cells themselves through SPRY4 induction, and also to the growth stimulation of proliferating cells through FGF secretion. Epigenetic silencing and loss-of-function mutations of SPRY4 gene in progenitor cells could lead to carcinogenesis. SPRY4 is the pharmacogenomics target in the fields of oncology and regenerative medicine.

  11. AKT signaling mediates IGF-I survival actions on otic neural progenitors.

    Directory of Open Access Journals (Sweden)

    Maria R Aburto

    Full Text Available BACKGROUND: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I, through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K. Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of organotypic cultures of chicken (Gallus gallus otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1 transcription factor. By contrast, our results indicate that post-mitotic p27(Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.

  12. Chromosome-Encoded Ambler Class A β-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M Extended-Spectrum β-Lactamases

    OpenAIRE

    Poirel, Laurent; Kämpfer, Peter; Nordmann, Patrice

    2002-01-01

    A chromosome-encoded β-lactamase gene, cloned and expressed in Escherichia coli from Kluyvera georgiana reference strain CUETM 4246-74 (DSM 9408), encoded the extended-spectrum β-lactamase KLUG-1, which shared 99% amino acid identity with the plasmid-mediated β-lactamase CTX-M-8. This work provides further evidence that Kluyvera spp. may be the progenitor(s) of CTX-M-type β-lactamases.

  13. Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases.

    Science.gov (United States)

    Poirel, Laurent; Kämpfer, Peter; Nordmann, Patrice

    2002-12-01

    A chromosome-encoded beta-lactamase gene, cloned and expressed in Escherichia coli from Kluyvera georgiana reference strain CUETM 4246-74 (DSM 9408), encoded the extended-spectrum beta-lactamase KLUG-1, which shared 99% amino acid identity with the plasmid-mediated beta-lactamase CTX-M-8. This work provides further evidence that Kluyvera spp. may be the progenitor(s) of CTX-M-type beta-lactamases.

  14. Chromosome-Encoded Ambler Class A β-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M Extended-Spectrum β-Lactamases

    Science.gov (United States)

    Poirel, Laurent; Kämpfer, Peter; Nordmann, Patrice

    2002-01-01

    A chromosome-encoded β-lactamase gene, cloned and expressed in Escherichia coli from Kluyvera georgiana reference strain CUETM 4246-74 (DSM 9408), encoded the extended-spectrum β-lactamase KLUG-1, which shared 99% amino acid identity with the plasmid-mediated β-lactamase CTX-M-8. This work provides further evidence that Kluyvera spp. may be the progenitor(s) of CTX-M-type β-lactamases. PMID:12435721

  15. Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors.

    Science.gov (United States)

    Tehranchi, Ramin; Fadeel, Bengt; Forsblom, Ann-Mari; Christensson, Birger; Samuelsson, Jan; Zhivotovsky, Boris; Hellstrom-Lindberg, Eva

    2003-02-01

    Low-risk myelodysplastic syndromes (MDS), including refractory anemia and sideroblastic anemia, are characterized by increased apoptotic death of erythroid progenitors. The signaling pathways that elicit this pathologic cell death in MDS have, however, remained unclear. Treatment with erythropoietin in combination with granulocyte colony-stimulating factor (G-CSF) may synergistically improve the anemia in patients with MDS, with a concomitant decrease in the number of apoptotic bone marrow precursors. Moreover, we have previously reported that G-CSF inhibits Fas-induced caspase activation in sideroblastic anemia (RARS). The present data demonstrate that almost 50% of erythroid progenitor cells derived from patients with MDS exhibit spontaneous release of cytochrome c from mitochondria with ensuing activation of caspase-9, whereas normal erythroid progenitors display neither of these features. G-CSF significantly inhibited cytochrome c release and suppressed apoptosis, most noticeably in cells from patients with sideroblastic anemia. Furthermore, inhibition of caspase-9 suppressed both spontaneous and Fas-mediated apoptosis of erythroid progenitors in all low-risk MDS cases studied. We propose that the increased sensitivity of MDS progenitor cells to death receptor stimulation is due to a constitutive activation of the mitochondrial axis of the apoptotic signaling pathway in these cells. These studies yield a mechanistic explanation for the beneficial clinical effects of growth factor administration in patients with MDS, and provide a model for the study of growth factor-mediated suppression of apoptosis in other bone marrow disorders.

  16. Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes.

    Science.gov (United States)

    Chesnais, Virginie; Arcangeli, Marie-Laure; Delette, Caroline; Rousseau, Alice; Guermouche, Hélène; Lefevre, Carine; Bondu, Sabrina; Diop, M'boyba; Cheok, Meyling; Chapuis, Nicolas; Legros, Laurence; Raynaud, Sophie; Willems, Lise; Bouscary, Didier; Lauret, Evelyne; Bernard, Olivier A; Kosmider, Olivier; Pflumio, Françoise; Fontenay, Michaela

    2017-01-26

    Myelodysplastic syndromes (MDSs) are hematopoietic stem cell disorders in which recurrent mutations define clonal hematopoiesis. The origin of the phenotypic diversity of non-del(5q) MDS remains unclear. Here, we investigated the clonal architecture of the CD34+CD38- hematopoietic stem/progenitor cell (HSPC) compartment and interrogated dominant clones for MDS-initiating cells. We found that clones mainly accumulate mutations in a linear succession with retention of a dominant subclone. The clone detected in the long-term culture-initiating cell compartment that reconstitutes short-term human hematopoiesis in xenotransplantation models is usually the dominant clone, which gives rise to the myeloid and to a lesser extent to the lymphoid lineage. The pattern of mutations may differ between common myeloid progenitors (CMPs), granulomonocytic progenitors (GMPs), and megakaryocytic-erythroid progenitors (MEPs). Rare STAG2 mutations can amplify at the level of GMPs, from which it may drive the transformation to acute myeloid leukemia. We report that major truncating BCOR gene mutation affecting HSPC and CMP was beneath the threshold of detection in GMP or MEP. Consistently, BCOR knock-down (KD) in normal CD34+ progenitors modifies their granulocytic and erythroid differentiation. Clonal architecture of the HSPC compartment and mutations selected during differentiation contribute to the phenotypic heterogeneity of MDS. Defining the hierarchy of driver mutations provides insights into the process of transformation and may guide the search for novel therapeutic strategies. © 2017 by The American Society of Hematology.

  17. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    Science.gov (United States)

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  19. Stem/Progenitor cells in vascular regeneration.

    Science.gov (United States)

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  20. Local density maxima: Progenitors of structure

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Y.; Shaham, J.

    1985-10-01

    Assuming structure is formed hierarchically from small to large scales, local density extrema are assumed to be the progenitors of structure. The density contrast profile around local maxima is given, to a good approximation, by the primordial two-point correlation function. The mean number density of objects of a given core mass is calculated as a function of the primordial power spectrum, p(k). Assuming p(k)proportionalk/sup n/, virialized halos in an 0 = 1.0 universe should follow pproportionalr/sup(-9 + 3n/)/(4 + n) for -1< or =n and pproportionalr S for -3< or =n< or =-1. In an open universe, rich clusters should have halos steeper than galactic halos. The observed structure is found to be consistent with 0 < 1.0 and n = -1.

  1. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia

    DEFF Research Database (Denmark)

    Garbe, James C; Pepin, Francois; Pelissier, Fanny A

    2012-01-01

    Women older than 50 years account for 75% of new breast cancer diagnoses, and the majority of these tumors are of a luminal subtype. Although age-associated changes, including endocrine profiles and alterations within the breast microenvironment, increase cancer risk, an understanding of the cell...... and to changes in the functional spectrum of multipotent progenitors, which together increase the potential for malignant transformation. Together, our findings provide a cellular basis to explain the observed vulnerability to breast cancer that increases with age....

  2. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering.

    Science.gov (United States)

    Oda, Tomoyuki; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Ono, Yohei; Nakashima, Motoshige; Ishizuka, Shinya; Matsukawa, Tetsuya; Yamashita, Satoshi; Tsuchiya, Saho; Ishiguro, Naoki

    2016-10-21

    The natural healing capacity of damaged articular cartilage is poor, rendering joint surface injuries a prime target for regenerative medicine. While autologous chondrocyte or mesenchymal stem cell (MSC) implantation can be applied to repair cartilage defects in young patients, no appropriate long-lasting treatment alternative is available for elderly patients with osteoarthritis (OA). Multipotent progenitor cells are reported to present in adult human articular cartilage, with a preponderance in OA cartilage. These facts led us to hypothesize the possible use of osteoarthritis-derived chondrocytes as a cell source for cartilage tissue engineering. We therefore analyzed chondrocyte- and stem cell-related markers, cell growth rate, and multipotency in OA chondrocytes (OACs) and bone marrow-derived MSCs, along with normal articular chondrocytes (ACs) as a control. OACs demonstrated similar phenotype and proliferation rate to MSCs. Furthermore, OACs exhibited multilineage differentiation ability with a greater chondrogenic differentiation ability than MSCs, which was equivalent to ACs. We conclude that chondrogenic capacity is not significantly affected by OA, and OACs could be a potential source of multipotent progenitor cells for cartilage tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus.

    Science.gov (United States)

    Wen, C M; Chen, M M; Nan, F H; Wang, C S

    2017-01-01

    In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP(+) or DARPP-32(+) fibre and neurons exhibiting a significant acetyl-tubulin(+) process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs. © 2016 The Fisheries Society of the British Isles.

  4. Stress, Glucocorticoid Hormones and Hippocampal Neural Progenitor Cells: Implications to Mood Disorders

    Directory of Open Access Journals (Sweden)

    Tomoshige eKino

    2015-08-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  5. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors

    Science.gov (United States)

    Lizarraga, Sofia B.; Margossian, Steven P.; Harris, Marian H.; Campagna, Dean R.; Han, An-Ping; Blevins, Sherika; Mudbhary, Raksha; Barker, Jane E.; Walsh, Christopher A.; Fleming, Mark D.

    2010-01-01

    Microcephaly affects ∼1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwig's anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors. We found that the an mutation is a genomic inversion of exon 4 of Cdk5rap2, resulting in an in-frame deletion of exon 4 from the mRNA. The finding that CDK5RAP2 human mutations cause microcephaly prompted further analysis of Cdk5rap2an/an mice and we demonstrated that these mice exhibit microcephaly comparable to that of the human disease, resulting from striking neurogenic defects that include proliferative and survival defects in neuronal progenitors. Cdk5rap2an/an neuronal precursors exit the cell cycle prematurely and many undergo apoptosis. These defects are associated with impaired mitotic progression coupled with abnormal mitotic spindle pole number and mitotic orientation. Our findings suggest that the reduction in brain size observed in humans with mutations in CDK5RAP2 is associated with impaired centrosomal function and with changes in mitotic spindle orientation during progenitor proliferation. PMID:20460369

  6. Hepatocellular Carcinomas Originate Predominantly from Hepatocytes and Benign Lesions from Hepatic Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Krishna S. Tummala

    2017-04-01

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive primary liver cancer. However, its origin remains a debated question. Using human data and various hepatocarcinogenesis mouse models, we show that, in early stages, transformed hepatocytes, independent of their proliferation status, activate hepatic progenitor cell (HPC expansion. Genetic lineage tracing of HPCs and hepatocytes reveals that, in all models, HCC originates from hepatocytes. However, whereas in various models tumors do not emanate from HPCs, tracking of progenitors in a model mimicking human hepatocarcinogenesis indicates that HPCs can generate benign lesions (regenerative nodules and adenomas and aggressive HCCs. Mechanistically, galectin-3 and α-ketoglutarate paracrine signals emanating from oncogene-expressing hepatocytes instruct HPCs toward HCCs. α-Ketoglutarate preserves an HPC undifferentiated state, and galectin-3 maintains HPC stemness, expansion, and aggressiveness. Pharmacological or genetic blockage of galectin-3 reduces HCC, and its expression in human HCC correlates with poor survival. Our findings may have clinical implications for liver regeneration and HCC therapy.

  7. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila.

    Science.gov (United States)

    Dey, Nidhi Sharma; Ramesh, Parvathy; Chugh, Mayank; Mandal, Sudip; Mandal, Lolitika

    2016-10-26

    Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

  8. Live imaging reveals the progenitors and cell dynamics of limb regeneration

    Science.gov (United States)

    Alwes, Frederike; Enjolras, Camille; Averof, Michalis

    2016-01-01

    Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg. DOI: http://dx.doi.org/10.7554/eLife.19766.001 PMID:27776632

  9. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells

    DEFF Research Database (Denmark)

    Vincent, P.; Benedikz, Eirikur; Uhlén, Per

    2017-01-01

    cells (CD133+/CD24lo), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology......Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast...... to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem...

  10. Integrin-associated protein promotes neuronal differentiation of neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujimura

    Full Text Available Neural stem/progenitor cells (NSPCs proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47 mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs.