WorldWideScience

Sample records for profile drag coefficient

  1. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  2. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Science.gov (United States)

    Bolzon, Michael; Kelso, Richard; Arjomandi, Maziar

    2016-03-01

    The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  3. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...

  4. Air Flows in Gravity Sewers - Determination of Wastewater Drag Coefficient

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Østertoft, Kristian; Vollertsen, Jes

    2016-01-01

    surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient...... of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water...

  5. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  6. The effect of non-equilibrium condensation on the drag coefficient in a transonic airfoil flow

    Science.gov (United States)

    Kim, I. W.; Alam, M. M. A.; Lee, S. J.; Kwon, Y. D.; Kwon, S. B.

    2012-12-01

    In this study, a transonic flow past NACA0012 profile at angle of attack α=00 whose aspect ratio AR is 1.0 with non-equilibrium condensation is analyzed by numerical analysis using a TVD scheme and is investigated using an intermittent indraft type supersonic wind tunnel. Transonic flows of 0.78-0.90 in free stream Mach number with the variations of the stagnation relative humidity(Φ0) are tested. For the same free stream Mach number, the increase in Φ0 causes decrease in the drag coefficient of profile which is composed of the drag components of form, viscous and wave. In the case of the same M∞ and T0, for more than Φ0=30%, despite the irreversibility of process in non-equilibrium condensation, the drag by shock wave decreases considerably with the increase of Φ0. On the other hand, it shows that the effect of condensation on the drag coefficients of form and viscous is negligible. As an example, the decreasing rate in the drag coefficient of profile caused by the influence of non-equilibrium condensation for the case of M∞=0.9 and Φ0 =50% amounts to 34%. Also, it were turned out that the size of supersonic bubble (that is, the maximum height of supersonic zone) and the deviation of pressure coefficient from the value for M=1 decrease with the increase of Φ0 for the same M∞.

  7. Drag power kite with very high lift coefficient

    NARCIS (Netherlands)

    Bauer, F.; Kennel, R.M.; Hackl, C.M.; Campagnolo, F.; Patt, M.; Schmehl, R.

    2018-01-01

    As an alternative to conventional wind turbines, this study considered kites with onboard wind turbines driven by a high airspeed due to crosswind flight (“drag power”). The hypothesis of this study was, that if the kite's lift coefficient is maximized, then the power, energy yield, allowed costs

  8. The influence of numerical models on determining the drag coefficient

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2014-03-01

    Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.

  9. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    Skin friction drag coefficients are determined for marine antifouling coatings in pristine condition by use of Constant Temperature Anemometry (CTA) with uni-directionalhot-wires. Mean flow behaviour for varying surface roughness is analysed in zero pressure gradient, flat plate, turbulentboundary...... drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... layers for Reynolds numbers from Rex =1:91x105 to Rex = 9:54x105. The measurements were conducted at the Technical University of Denmark in a closed-loop wind tunnel redesigned for investigations as this. Ensemble averages of the boundary layer velocity profiles allowed for determination of skin friction...

  10. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.

    2009-04-25

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  11. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    Science.gov (United States)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.; Morzel, J.

    2009-04-01

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10-3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm.

  12. Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Esau, I.N. [Nansen Environmental and Remote Sensing Center, Bergen (Norway)

    2004-07-01

    Modern large-scale models (LSMs) rely on surface drag coefficients to parameterize turbulent exchange between surface and the first computational level in the atmosphere. A classical parameterization in an Ekman boundary layer is rather simple. It is based on a robust concept of a layer of constant fluxes. In such a layer (log-layer), the mean velocity profile is logarithmic. It results in an universal dependence of the surface drag coefficient on a single internal non-dimensional parameter, namely the ratio of a height within this layer to a surface roughness length scale. A realistic near-neutral planetary boundary layer (PBL) is usually much more shallow than the idealized Ekman layer. The reason is that the PBL is developing against a stably stratified free atmosphere. The ambient atmospheric stratification reduces the PBL depth and simultaneously the depth of the log-layer. Therefore, the first computational level in the LSMs may be placed above the log-layer. In such a case, the classical parameterization is unjustified and inaccurate. The paper proposes several ways to improve the classical parameterization of the surface drag coefficient for momentum. The discussion is focused on a conventionally neutral PBL, i.e. on the neutrally stratified PBL under the stably stratified free atmosphere. The analysis is based on large eddy simulation (LES) data. This data reveals that discrepancy between drag coefficients predicted by the classical parameterization and the actual drag coefficients can be very large in the shallow PBL. The improved parameterizations provide a more accurate prediction. The inaccuracy is reduced to one-tenth of the actual values of the coefficients. (orig.)

  13. Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer

    Directory of Open Access Journals (Sweden)

    I. N. Esau

    2004-11-01

    Full Text Available Modern large-scale models (LSMs rely on surface drag coefficients to parameterize turbulent exchange between surface and the first computational level in the atmosphere. A classical parameterization in an Ekman boundary layer is rather simple. It is based on a robust concept of a layer of constant fluxes. In such a layer (log-layer, the mean velocity profile is logarithmic. It results in an universal dependence of the surface drag coefficient on a single internal non-dimensional parameter, namely the ratio of a height within this layer to a surface roughness length scale. A realistic near-neutral planetary boundary layer (PBL is usually much more shallow than the idealized Ekman layer. The reason is that the PBL is developing against a stably stratified free atmosphere. The ambient atmospheric stratification reduces the PBL depth and simultaneously the depth of the log-layer. Therefore, the first computational level in the LSMs may be placed above the log-layer. In such a case, the classical parameterization is unjustified and inaccurate.

    The paper proposes several ways to improve the classical parameterization of the surface drag coefficient for momentum. The discussion is focused on a conventionally neutral PBL, i.e. on the neutrally stratified PBL under the stably stratified free atmosphere. The analysis is based on large eddy simulation (LES data. This data reveals that discrepancy between drag coefficients predicted by the classical parameterization and the actual drag coefficients can be very large in the shallow PBL. The improved parameterizations provide a more accurate prediction. The inaccuracy is reduced to one-tenth of the actual values of the coefficients.

  14. Mars entry guidance based on an adaptive reference drag profile

    Science.gov (United States)

    Liang, Zixuan; Duan, Guangfei; Ren, Zhang

    2017-08-01

    The conventional Mars entry tracks a fixed reference drag profile (FRDP). To improve the landing precision, a novel guidance approach that utilizes an adaptive reference drag profile (ARDP) is presented. The entry flight is divided into two phases. For each phase, a family of drag profiles corresponding to various trajectory lengths is planned. Two update windows are investigated for the reference drag profile. At each window, the ARDP is selected online from the profile database according to the actual range-to-go. The tracking law for the selected drag profile is designed based on the feedback linearization. Guidance approaches using the ARDP and the FRDP are then tested and compared. Simulation results demonstrate that the proposed ARDP approach achieves much higher guidance precision than the conventional FRDP approach.

  15. Remarks about the apparent increasing of the drag coefficient on flexible submarine cables

    Energy Technology Data Exchange (ETDEWEB)

    Marichal, D. [Ecole Centrale de Nantes, 44 (France)

    2004-07-01

    A lot of elongated flexible underwater structures (towing and mooring cables, trawl lines, oil risers...) are used in exploitation of sea resources. All theoretical calculations require to know the hydrodynamic forces acting on these structures (especially the drag coefficient). It was usually assumed that the drag coefficient of a cylindrical element is a constant and takes the value of 1.2 as a rigid cylinder at the typical Reynolds numbers. But, if the cylindrical structure has transverse vibrations - as it is usual for submarine cables -, an important increase of the drag coefficient seems to appear Our purpose is to show that the first explanation of the drag coefficient increase comes partly from the problem formulation. It is usual to think that the towing speed is very important compared with the transverse motion velocity. But, in fact, the drag results in the combination of the normal component of the flow and this transverse motion velocity. (author)

  16. Drag coefficients of lattice masts from full-scale wind-tunnel tests

    DEFF Research Database (Denmark)

    Georgakis, Christos; Støttrup-Andersen, Ulrik; Johnsen, Marie

    2009-01-01

    In this paper, the drag coefficients obtained from a series of full-scale section model wind-tunnel tests of several lattice mast configurations are presented and compared to those provided in Eurocode 3 and ESDU. The drag coefficients provided in Eurocode are conservative interpretations of 1...... primarily of circular hollow sections, putting into question the validity of the scaled tests from the 70’s. The results of the full-scale tests show that the drag coefficients of the masts have lower values than those obtained from the scaled tests for turbulent wind and higher for winds with low......:5 scale section model tests performed at the National Physics Laboratory and the National Maritime Institute in the UK in the 1970´s. ESDU provides velocity-dependent drag coefficients equivalent to those obtained from the same series of tests. In all cases, the mast legs and diagonals are comprised...

  17. Drag coefficient for the air-sea exchange in hurricane conditions

    CERN Document Server

    Golbraikh, E

    2013-01-01

    The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.

  18. Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.

    2009-01-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…

  19. Influence of Particle Shape on Drag Coefficient for Commonly Occuring Sandy Particles in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Chitra Arora

    2010-06-01

    Full Text Available A well defined relationship connecting settling velocity with sediment geometry and ambient properties is an essential pre-requisite for coastal and hydraulic engineering studies. An established relationship for settling velocity of sandy particles assuming spherical shape geometry is available in the literature. In reality, the sediment particles need not be spherical at all times, which influences settling velocity that is strongly biased to the drag coefficient. Based on quantitative comparison with measured data collected at Oahu Islands located in the Hawaiian archipelago, USA this work provides a relationship between drag coefficient and particle shape factor for sand grains viz; sand, sandy loam and fine sandy loam typically found in coastal environment (typical size ranges from 0.05 to 2.0 mm. The particle Reynolds number and shape factor are evaluated for each grain. The drag coefficient evaluated as function of nominal diameter and Reynolds number show a positive correlation over a wide range of shape factors used in this study. A comprehensive correlation has been developed of the drag coefficient for non-spherical particles as a function of Reynolds number and particle shape. Further a regression analysis was performed on the functional dependence of drag coefficient on particle shape. Based on this study, it could be advocated the validity of Krumbien shape factor holds well for the above characterized grain size and various particle shapes considered. Hence, the settling velocity of particles has a functional dependence on estimated drag coefficient with important implications for modeling sediment transport and swash zone hydrodynamics.

  20. Air-ice drag coefficients in the western Weddell Sea: 2. A model based on form drag and drifting snow

    Science.gov (United States)

    Andreas, Edgar L.

    1995-03-01

    In part 1 (Andreas and Claffey, this issue) we observed some characteristics of the neutral stability air-ice drag coefficient at a reference height of 10 m (CDN10) that had not been documented before. Our main conclusion was that wind-driven snow continually alters the sea ice surface; the resulting snowdrifts determine how large CDN10 is. In particular, part 1 reported three observations that I would like to explain. (1) CDN10 is near 1.5×10-3 when the wind is well aligned with the drifted snow. (2) CDN10 is near 2.5×10-3 when the wind makes a large angle with the dominant orientation of the snowdrifts. (3) CDN10 can increase by 20% if, after being well aligned with the drift patterns, the mean wind direction shifts by as little as 20°. To investigate this behavior of CDN10 here I adapt a model developed by Raupach (1992) that partitions the total surface stress into contributions from form drag and skin friction. An essential part of this development was extending Raupach's model to the more complex geometry of sastrugi-like roughness elements. Assuming that 10-cm high sastrugi cover 15% of the surface, this physically based model reproduces the three main observations listed above. Thus the model seems to include the basic physics of air-ice momentum exchange. The main conclusion from this modeling is that 10-cm, sastrugilike snowdrifts, rather than pressure ridges, sustain most of the form drag over compact sea ice in the western Weddell Sea. Secondly, the modeling suggests that skin friction accounts for about 60% of the surface stress when the wind is well aligned with the sastrugi; but when the wind is not well aligned, form drag accounts for about 80% of the stress. The sastrugi are thus quite effective in streamlining the surface.

  1. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  2. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Science.gov (United States)

    Lávička, David; Matas, Richard

    2012-04-01

    The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped) pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  3. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Akbıyık Hürrem

    2016-01-01

    Full Text Available In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  4. Accurate Measurements of Free Flight Drag Coefficients with Amateur Doppler Radar

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2016-01-01

    In earlier papers, techniques have been described using optical chronographs to determine free flight drag coefficients with an accuracy of 1-2%, accomplished by measuring near and far velocities of projectiles in flight over a known distance. Until recently, Doppler radar has been prohibitively expensive for many users. This paper reports results of exploring potential applications and accuracy using a recently available, inexpensive (< $600 US) amateur Doppler radar system to determine drag coefficients for projectiles of various sizes (4.4 mm to 9 mm diameter) and speeds (M0.3 to M3.0). In many cases, drag coefficients can be determined with an accuracy of 1% or better if signal-to-noise ratio is sufficient and projectiles vary little between trials. It is also straightforward to design experiments for determining drag over a wide range of velocities. Experimental approaches and limitations are described. Overall, the amateur radar system shows greater accuracy, ease of use, and simplicity compared with...

  5. Investigation on terminal velocity and drag coefficient of particles with different shapes

    Science.gov (United States)

    Xu, Bin; Huang, Ning; He, Wei; Chen, Youxing

    2017-04-01

    Multiphase flow are involved in many fields in natural phenomenon as well as industrial applications. Drag coefficient is an important parameter in the modelling and simulation of multiphase flow. Non-sphere particles are usually simplified to sphere particles in multiphase flow simulation. However, non-sphere particles are more common in practice. Hence, it is significant to investigate shape effects on the drag coefficient of non-sphere particles. This article selects several typical shapes of particles as research objects. 3-D printers are used to build particle models. And high speed cameras are used in record the whole process of particle settling. Detailed information of particle path and speed are gotten through image processing of high speed cameras.

  6. The variation of aerofoil lift and drag coefficients with changes in size and speed

    Science.gov (United States)

    Diehl, Walter S

    1923-01-01

    This report contains the results of an investigation into the effect of changes in size and speed upon aerofoil lift and drag coefficients. Certain empirical limitations to the interchangeability of v and l in the general equation of fluid resistance are pointed out and the existing methods of correcting for scale are criticized. New methods of correcting for scale by means of simple formulae are derived and checked by comparison with test results.

  7. Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica

    Science.gov (United States)

    Amory, Charles; Gallée, Hubert; Naaim-Bouvet, Florence; Favier, Vincent; Vignon, Etienne; Picard, Ghislain; Trouvilliez, Alexandre; Piard, Luc; Genthon, Christophe; Bellot, Hervé

    2017-02-01

    The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m (C_{{ DN}10}) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high C_{{ DN}10} values (≥ 2 × 10^{-3}) and limited drifting snow (35% of the time) in summer (December-February) versus lower C_{{ DN}10} values (≈ 1.5 × 10^{-3}) associated with more frequent drifting snow (70% of the time) in winter (March-November). Without the seasonal distinction, there was no clear dependence of C_{{ DN}10} on friction velocity or wind direction, but observations revealed a general increase in C_{{ DN}10} with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce C_{{ DN}10} to 1 × 10^{-3} due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.

  8. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  9. Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder

    Directory of Open Access Journals (Sweden)

    Maziar Gholami Korzani

    2017-04-01

    Full Text Available Simulations of two-dimensional (2D flow past a circular cylinder with the smoothed particle hydrodynamics (SPH method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions, such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers (1–500 was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined.

  10. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  11. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Directory of Open Access Journals (Sweden)

    Carl Drews

    Full Text Available The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST modeling system and the the Regional Ocean Modeling System (ROMS. Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN. Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  12. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    Science.gov (United States)

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  13. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    National Research Council Canada - National Science Library

    Chu, Peter C; Fan, Chenwu; Gefken, Paul R

    2008-01-01

    Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...

  14. Flight Investigation at High Speeds of Profile Drag of Wing of a P-47D Airplane Having Production Surfaces Covered with Camouflage Paint

    Science.gov (United States)

    Daum, Fred L.; Zalovcik, John A.

    1946-01-01

    Wing section outboard of flap was tested by wake surveys in Mach range of 0.25 - 0.78 and lift coefficient range 0.06 - 0.69. Results indicated that minimum profile-drag coefficient of 0.0097 was attained for lift coefficients from 0.16 to 0.25 at Mach less than 0.67. Below Mach number at which compressibility shock occurred, variations in Mach of 0.2 had negligible effect on profile drag coefficient. Shock was not evident until critical Mach was exceeded by 0.025.

  15. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    Science.gov (United States)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  16. Calculation of drag and torque coefficients by time-independent lattice-Boltzmann method.

    Science.gov (United States)

    Ding, E J

    2014-09-01

    A method is developed to calculate the drag and torque coefficients of an isolated particle in a Stokes flow. The method is based on solving the time-independent lattice-Boltzmann equation. The advantage of this method is that the algorithm is easy to code, the method can be applied to any shape of the particle without complicated implementation, and the computational cost is independent of the shape of the particle. This method is validated and shown to be accurate by comparing with analytical solutions for certain problems.

  17. Drag and torque coefficients for plate and disk induced stokes flows with slip

    Science.gov (United States)

    Davis, Anthony M. J.

    2014-12-01

    A key purpose of this paper is to demonstrate that the introduction of slip changes the structure of viscous flow past plates and disks by precluding edge singularities in the stresses. It is well-known that the inviscid limit flow is not recovered by letting the viscosity tend to zero. Here it is demonstrated that, similarly, the no-slip limit flow is not recovered by letting the slip coefficient tend to zero. For each of the three cases involving a translating plate and a rotating or translating disk, the determination of the tangential stress is reduced to a linear system of equations with simple coefficients. Values of the drag or torque and edge stresses are displayed.

  18. Limiting Maximum Drag Reduction Asymptote for the Moment Coefficient of an Enclosed Rotating Disk with Fine Spiral Grooves

    Directory of Open Access Journals (Sweden)

    Budiarso Budiarso

    2010-10-01

    Full Text Available In this study, the limiting maximum drag reduction asymptote for the moment coefficient of an enclosed rotating disk with fine spiral grooves in turbulent flow region were obtained analytically. Analysis which were based on an assumption for a simple parabolic velocity distribution of turbulent pipe flow to represent relative tangential velocity, was carried out using momentum integral equations of the boundary layer. For a certain K- parameter the moment coefficient results agree well with experimental results for maximum drag reduction in an enclosed rotating disk with fine spiral grooves and drag reduction ratio approximately was 15 %. Additionally, the experimental results for drag reduction on a rotating disk can be explained well with the analytical results.

  19. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    Science.gov (United States)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  20. Estimation of the drag coefficient from the upper ocean response to a hurricane: A variational data assimilation approach

    KAUST Repository

    Zedler, Sarah

    2013-08-01

    We seek to determine whether a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach in an inverse problem setup using an ocean model and its adjoint, to assimilate data and to adjust the drag coefficient parameterization (here the free parameter) with wind speed that corresponds to the minimum of a model minus data misfit or cost function. Pseudo data are generated from a reference forward simulation, and are perturbed with different levels of Gaussian distributed noise. It is found that it is necessary to assimilate both surface current speed and temperature data to obtain improvement over previous estimates of the drag coefficient. When data is assimilated without any smoothing or constraints on the solution, the drag coefficient is overestimated at low wind speeds and there are unrealistic, high frequency oscillations in the adjusted drag coefficient curve. When second derivatives of the drag coefficient curve are penalized and the solution is constrained to experimental values at low wind speeds, the adjusted drag coefficient is within 10% of its target value. This result is robust to the addition of realistic random noise meant to represent turbulence due to the presence of mesoscale background features in the assimilated data, or to the wind speed time series to model its unsteady and gusty character. When an eddy is added to the background flow field in both the initial condition and the assimilated data time series, the target and adjusted drag coefficient are within 10% of one another, regardless of whether random noise is added to the assimilated data. However, when the eddy is present in the assimilated data but is not in the initial conditions, the drag coefficient is overestimated by as much as 30%. This carries the implication that when real data is assimilated, care needs to be taken in

  1. Measurements of Drag Coefficients and Rotation Rates of Free-Falling Helixes

    KAUST Repository

    Al-Omari, Abdulrhaman A.

    2016-05-01

    The motion of bacteria in the environment is relevant to several fields. At very small scales and with simple helical shapes, we are able to describe experimentally and mathematically the motion of solid spirals falling freely within a liquid pool. Using these shapes we intend to mimic the motion of bacteria called Spirochetes. We seek to experimentally investigate the linear and the rotational motion of such shapes. A better understanding of the dynamics of this process will be practical not only on engineering and physics, but the bioscience and environmental as well. In the following pages, we explore the role of the shape on the motion of passive solid helixes in different liquids. We fabricate three solid helical shapes and drop them under gravity in water, glycerol and a mixture of 30% glycerol in water. That generated rotation due to helical angle in water. However, we observe the rotation disappear in glycerol. The movement of the solid helical shapes is imaged using a high-speed video camera. Then, the images are analyzed using the supplied software and a computer. Using these simultaneous measurements, we examine the terminal velocity of solid helical shapes. Using this information we computed the drag coefficient and the drag force. We obtain the helical angular velocity and the torque applied to the solid. The results of this study will allow us to more accurately predict the motion of solid helical shape. This analysis will also shed light onto biological questions of bacteria movement.

  2. Drag coefficient for the air-sea exchange: foam impact in hurricane conditions

    CERN Document Server

    Golbraikh, Ephim

    2014-01-01

    A physical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, C_d, with reference to the wind speed U10 in stormy and hurricane conditions. In the present model C_d is approximated by partitioning the sea surface into foam-covered and foam-free areas. Based on the available optical and radiometric measurements of the fractional foam coverage and the characteristic roughness of the sea-surface in the saturation limit of the foam coverage, the model yields the resulting dependence of C_d vs U10. This dependence is in fair agreement with that evaluated from field measurements of the vertical variation of the mean wind speed.

  3. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  4. Experimental determination of drag coefficients in low-density polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M L

    2006-04-18

    We describe several experiments performed at the LLNL Site 300 firing range and on the LLNL 1/3 scale gun to investigate the deceleration of small projectiles (l {approx} 3-5 [mm]) in low-density foam ({rho} {approx} 0.08-0.32 [g/cm{sup 3}]). The experiments at the firing range researched a passive velocity diagnostic based on Faraday's law of induction, while experiments on the 1/3 scale gun investigated the effects of varying projectile surface area, projectile shape, and foam density on the drag coefficient c{sub d}. Analysis shows that the velocity diagnostic has an uncertainty on the order of 1 percent for projectiles with velocity v {approx} 0.8-1.2 [km/s]. The 1/3 scale gun experiments, dubbed the Krispy Kreme series, included nine shots considering the combinations of 3 projectile surface areas with 3 target densities. The experiments used Tantalum square surface area block projectiles (with an initial velocity v{sub 0} {approx} 1.2 [km/s], a common thickness T = 2.67 [mm], and square side lengths of 3, 4, and 5 [mm]) decelerating in polyurethane foams (with densities {rho}{sub f} of 0.08, 0.16 and 0.32 [g/cm{sup 3}]). Standard fluid models of the Krispy Kreme experiments predict Reynolds numbers Re {approx} 10{sup 5} - 10{sup 6}, Mach numbers Ma {approx} 0.5-2.0, and drag coefficients c{sub d} {approx} 2-3. However, the data indicate that c{sub d} = 1.1-1.2 (c{sub d} = 1.7) for all three block projectiles in the 0.08 and 0.16 [g/cm{sup 3}] targets (0.32 [g/cm{sup 3}] target). First, we conclude that the drag force on projectiles in solid polyurethane foam is less than in fluids with equivalent dimensionless parameters. This result is also supported by an additional Krispy Kreme experiment that used a disk projectile (with diameter d = 4.51 [mm] and thickness T = 2.67 [mm]) penetrating a target with density {rho} = 0.16 [g/cm{sup 3}], i.e., the fluid-like c{sub d} = 1.15 while the measured c{sub d} = 0.63. Second, we conclude that the measured drag

  5. On drag coefficient parameterization with post processed direct fluxes measurements over the ocean

    Science.gov (United States)

    Oh, Hyun-Mi; Ha, Kyung-Ja; Heo, Ki-Young; Kim, Kyung-Eak; Park, Sang-Jong; Shim, Jae-Seol; Mahrt, Larry

    2010-11-01

    This study presents an evaluation of the atmospheric factors influencing the post-processing for fast-response data of horizontal momentum, vertical wind component, temperature, and water vapor to measure turbulent fluxes. They are observed at the Ieodo ocean research station over the Yellow Sea during the period of October 2004 to February 2008. The post process methods employed here are composed of quality control and tilt correction for turbulent flux measurement. The present result of quality control on the fast-response data shows that total removal ratio of the data generally depends on the factors such as a wind speed, relative humidity, significant wave height, visibility, and stability parameter ( z/L). Especially, the removal ratio of water vapor data is significantly increased on light wind and strong stability conditions. The results show that the total removal ratio of water vapor data increases when wind speed is less than 3 m s-1 and wave height is less than 1 m. The total removal ratio of water vapor data also increases with the value of the stability parameter. Three different algorithms of tilt correction methods (double rotation, triple rotation, and planar fit) are applied to correct the tilt of the sonic anemometer used in the observation. Friction velocities in near neutral state are greater than friction velocity in other states. Drag coefficients are categorized in terms of stabilities and seasons.

  6. An investigation of the transonic viscous drag coefficient for axi-symmetric bodies

    OpenAIRE

    Fan, Yue Sang

    1995-01-01

    Viscous drag in the transonic regime over an axi-symmetric body with a unique aft contour surface is investigated. The forebody is composed of an arbitrary ellipsoid. The unique aft contour surface has been obtained by an exact solution of the small perturbation transonic equation, using guidelines and tools developed at the Naval Postgraduate School. This unique contour allows the delay of shock formation in the aft portion, hence delaying the onset of wave drag which results in a reduction ...

  7. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    Science.gov (United States)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  8. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    Science.gov (United States)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  9. Numerical derivation of the drag force coefficient in bubble swarms using a Front Tracking model

    NARCIS (Netherlands)

    Dijkhuizen, W.; Roghair, I.; van Sint Annaland, M.; Kuipers, J.A.M.

    2008-01-01

    Dispersed gas-liquid flows are often encountered in the chemical process industry. Large scale models which describe the overall behavior of these flows use closure relations to account for the interactions between the phases, such as the drag, lift and virtual mass forces. The closure relations for

  10. Determination of increased mean drag coefficients for a cylinder vibrating at low values of Keulegan-Carpenter number

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Riveros

    2014-06-01

    Full Text Available There is an increasing demand for the development of a reliable technology for wind turbines in deepwaters.Therefore, offshore wind turbine technology is receiving great amount of attention by the research community. Nevertheless, the dynamic response prediction of the support system for offshore wind turbines is still challenging due to the nonlinear and self-regulated nature of the Vortex Induced Vibration (VIV process. In this paper, the numerical implementation of a computational fluid dynamics-based approach for determination of increased mean drag coefficient is presented. The numerical study is conducted at low values of Keulegan-Carpenter number in order to predict the increment of drag force due to cross-flow motion. The simulation results are then compared with previously developed empirical formulations. Good agreement is observed in these comparisons.

  11. Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime.

    Science.gov (United States)

    Li, Zhigang; Wang, Hai

    2003-12-01

    The transport of small particles in the free-molecule regime is investigated on the basis of gas kinetic theory. Drag force formulations were derived in two limiting collision models-namely, specular and diffuse scattering-by considering the potential force of interactions between the particle and fluid molecules. A parametrized drag coefficient equation is proposed and accounts for the transition from specular to diffuse scattering as particle size exceeds a critical value. The resulting formulations are shown to be consistent with the Chapman-Enskog theory of molecular diffusion. In the limit of rigid-body interactions, these formulations can be simplified also to Epstein's solutions [P. S. Epstein, Phys. Rev. 23, 710 (1924)].

  12. Phonon-drag Contribution to Seebeck Coefficient of Ge-on-insulator Substrate Fabricated by Wafer Bonding Process

    Directory of Open Access Journals (Sweden)

    Veerappan Manimuthu

    2015-04-01

    Full Text Available In order to build high-sensitivity infrared photodetectors using SiGe nanowires, we investigate the thermoelectric characteristics of Ge-on-insulator (GOI layers as a reference for SiGe. We fabricate p-type GOI substrates with an impurity concentration of 1016-1018cm-3 by a wafer-bonding process using Ge and oxidized Si wafers. Annealing treatment is performed in order to further increase the bonding strength of Ge/SiO2 interface. We measure the Seebeck coefficient in the temperature range of 290-350 K. The Seebeck coefficient of the GOI layers is very close to the theoretical value for Ge, calculated on the basis of carrier transport. Hence, there is a small phonon-drag effect in GOI. On the other hand, the effect of phonon drag on the Seebeck coefficient of Si is usually significant. These results likely stem from the differences between phonon velocity, phonon mean-free-path, and hole mobility between Ge and Si.

  13. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application.

    Science.gov (United States)

    Li, Zhigang; Wang, Hai

    2003-12-01

    We propose a generalized treatment of the drag force of a spherical particle due to its motion in a laminar fluid media. The theory is equally applicable to analysis of particle diffusion and electric mobility. The focus of the current analysis is on the motion of spherical particles in low-density gases with Knudsen number Kn>1. The treatment is based on the gas-kinetic theory analysis of drag force in the specular and diffuse scattering limits obtained in a preceding paper [Z. Li and H. Wang, Phys. Rev. E., 68, 061206 (2003)]. Our analysis considers the influence of van der Waals interactions on the momentum transfer upon collision of a gas molecule with the particle and expresses this influence in terms of an effective, reduced collision integral. This influence is shown to be significant for nanosized particles. In the present paper, the reduced collision integral values are obtained for specular and diffuse scattering, using a Lennard-Jones-type potential energy function suitable for the interactions of a gas molecule with a particle. An empirical formula for the momentum accommodation function, used to determine the effective, reduced collision integral, is obtained from available experimental data. The resulting treatment is shown to be accurate for interpreting the mobility experiments for particles as small as approximately 1 nm in radius. The treatment is subsequently extended to the entire range of the Knudsen number, following a semiempirical, gas-kinetic theory analysis. We demonstrate that the proposed formula predicts very well Millikan's oil-droplet experiments [R. A. Millikan, Philos. Mag. 34, 1 (1917); Phys. Rev. 22, 1 (1923)]. The rigorous theoretical foundation of the proposed formula in the Kn>1 limit makes the current theory far more general than the semiempirical Stokes-Cunningham formula in terms of the particle size and condition of the fluid and, therefore, more attractive than the Stokes-Cunningham formula.

  14. NaCl reflection coefficients in proximal tubule apical and basolateral membrane vesicles. Measurement by induced osmosis and solvent drag.

    Science.gov (United States)

    Pearce, D; Verkman, A S

    1989-01-01

    Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl. PMID:2765660

  15. A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: A feasibility study

    KAUST Repository

    Zedler, Sarah

    2011-12-30

    We seek to determine if a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach using forward models of the ocean\\'s response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables is sought. Allowing the drag coefficient two parameters of freedom, namely the values at 35 and at 45 m/s, we found that the uncertainty in the optimal value is about 20% for levels of instrument noise up to 1 K for a misfit function based on temperature, or 1.0 m/s for a misfit function based on 15 m velocity components. This is within tolerable limits considering the spread of measurement-based drag coefficient estimates. The results are robust for several different instrument arrays; the noise levels do not decrease by much for arrays with more than 40 sensors when the sensor positions are random. Our results suggest that for an ideal case, having a small number of sensors (20-40) in a data assimilation problem would provide sufficient accuracy in the estimated drag coefficient. © 2011 The Oceanographic Society of Japan and Springer.

  16. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  17. Flicking-wire drag tensioner

    Science.gov (United States)

    Dassele, M. A.; Fairall, H.

    1978-01-01

    Wire-drag system improves wire profile and applies consistent drag to wire. Wire drag is continuously adjustable from zero drag to tensile strength of wire. No-sag wire drag is easier to thread than former system and requires minimal downtime for cleaning and maintenance.

  18. Vertical variations of coral reef drag forces

    Science.gov (United States)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration

    2017-11-01

    Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.

  19. DRAG COEFFICIENTS FOR IRREGULAR FRAGMENTS

    Science.gov (United States)

    1986-08-01

    regular fragments.were studied In the report, I.e., a sphere, a c-ibe and a bar. Th.a bar length, 1530) 77= pp. P width and thickness were. in the ratio...measurements for the 96 fragmento are contained in Tables A-1, A-2 and A-3 of Appendix A. The esiential aspects of the vertical wind tunnel are shown...THICKNESS L’ MAXIMUM LENGTH P ..UPS AVERAGE LENGTH W’ M AXIMUM WIDTH PLUS AVERAGE WIDTH T’ M I’XIX1MUM THICKNESS PLUS AVERAIE THICKNESS i -- STANDARO DEVIATION

  20. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles

    Science.gov (United States)

    Vladimir A Kovalev; Wei Min Hao; Cyle Wold

    2007-01-01

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...

  1. Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; Desa, B.A.E.

    This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...

  2. On the accuracy of the relativistic parameters beta, gamma, and the solar oblateness coefficient J2, as deduced from ranging data of a drag-free space probe

    Science.gov (United States)

    Roth, E. A.

    1971-01-01

    Motion in the general gravity field is described mathematically. A covariance analysis, based on two simple models, is presented. Two drag-free space probes were considered, for which the orbital elements are given.

  3. The Use of Cattell's Profile Similarity Coefficient in the Classification of Football Athletes.

    Science.gov (United States)

    Evans, Virden; Johnson, DeWayne

    Using Cattell's Profile Similarity Coefficient, 154 high school football players from 21 different public high schools were classified as being successful or unsuccessful. Seventeen physical and motor ability variables relating to athletic ability were administered to the football players. The variables included: (1) standard height; (2) body…

  4. Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method.

    Science.gov (United States)

    Pornsawad, Pornsarp; D'Amico, Giuseppe; Böckmann, Christine; Amodeo, Aldo; Pappalardo, Gelsomina

    2012-04-20

    We regard the problem of differentiation occurring in the retrieval of aerosol extinction coefficient profiles from inelastic Raman lidar signals by searching for a stable solution of the resulting Volterra integral equation. An algorithm based on a projection method and iterative regularization together with the L-curve method has been performed on synthetic and measured lidar signals. A strategy to choose a suitable range for the integration within the framework of the retrieval of optical properties is proposed here for the first time to our knowledge. The Monte Carlo procedure has been adapted to treat the uncertainty in the retrieval of extinction coefficients.

  5. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag

    Science.gov (United States)

    Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  6. Atmospheric and oceanic drag on sea ice

    Science.gov (United States)

    Tsamados, M.; Feltham, D. L.

    2012-12-01

    Pressure ridges, keels, floe edges and melt pond edges all introduce discrete obstructions to the flow of the air or ocean over the ice, and are a source of form drag. For typical ice covers the form drag contribution to the total drag is of comparable or greater magnitude to the surface or skin drag. In current climate models form drag is only accounted for by tuning of the air-ice and air-ocean drag coefficients, i.e. by altering the roughness length in a surface drag parameterization. The existing approach of skin drag parameter tuning, while numerically convenient, is poorly constrained by observations and fails to describe correctly the physics associated with the air-ice and ocean-ice drag. Here we combine recent theoretical developments to deduce the total neutral form drag coefficients from the key parameters of the ice cover such as ice concentration, size and area of the ridges and keels, freeboard and floe draft and size of melt ponds. We validate the assumptions of this parameterisation against remote sensing observations from airborne missions (IceBridge) and high resolution satellites. We incorporate the drag coefficients into the sea ice component of a climate model (the CICE model). This stage necessitates that the sea ice characteristics obtained locally from observations are mapped to the averaged sea ice quantities provided by the sea ice model at the larger grid cell length scale. We present results over the Arctic of a stand-alone version of the model and show the influence of the new drag parameterisation on the motion and mass of the ice cover. The new parameterisation allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. We test the predictions of the model against measured drag coefficients in several regions of the Arctic and find good agreement between model and observations.

  7. Accelerating activity coefficient calculations using multicore platforms, and profiling the energy use resulting from such calculations.

    Science.gov (United States)

    Topping, David; Alibay, Irfan; Bane, Michael

    2017-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method. Activity coefficients are often neglected with the largely untested hypothesis that they are simply too computationally expensive to include in dynamic frameworks. We present results demonstrating increased computational efficiency for a range of typical scenarios, including a profiling of the energy use resulting from reliance on such computations. As the landscape of HPC changes, the latter aspect is important to consider in future applications.

  8. A framework for understanding drag parameterizations for coral reefs

    Science.gov (United States)

    Rosman, Johanna H.; Hench, James L.

    2011-08-01

    In a hydrodynamic sense, a coral reef is a complex array of obstacles that exerts a net drag force on water moving over the reef. This drag is typically parameterized in ocean circulation models using drag coefficients (CD) or roughness length scales (z0); however, published CD for coral reefs span two orders of magnitude, posing a challenge to predictive modeling. Here we examine the reasons for the large range in reported CD and assess the limitations of using CD and z0 to parameterize drag on reefs. Using a formal framework based on the 3-D spatially averaged momentum equations, we show that CD and z0 are functions of canopy geometry and velocity profile shape. Using an idealized two-layer model, we illustrate that CD can vary by more than an order of magnitude for the same geometry and flow depending on the reference velocity selected and that differences in definition account for much of the range in reported CD values. Roughness length scales z0 are typically used in 3-D circulation models to adjust CD for reference height, but this relies on spatially averaged near-bottom velocity profiles being logarithmic. Measurements from a shallow backreef indicate that z0 determined from fits to point measurements of velocity profiles can be very different from z0 required to parameterize spatially averaged drag. More sophisticated parameterizations for drag and shear stresses are required to simulate 3-D velocity fields over shallow reefs; in the meantime, we urge caution when using published CD and z0 values for coral reefs.

  9. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    Science.gov (United States)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  10. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    Directory of Open Access Journals (Sweden)

    Sun Xuejin

    2016-01-01

    Full Text Available Aerosol extinction coefficient profile (ECP is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  11. Velocity and Drag Evolution From the Leading Edge of a Model Mangrove Forest

    Science.gov (United States)

    Maza, Maria; Adler, Katherine; Ramos, Diogo; Garcia, Adrian Mikhail; Nepf, Heidi

    2017-11-01

    An experimental study of unidirectional flow through a model mangrove forest measured both velocity and forces on individual trees. The individual trees were 1/12th scale models of mature Rhizophora, including 24 prop roots distributed in a three-dimensional layout. Thirty-two model trees were distributed in a staggered array producing a 2.5 m long forest. The velocity evolved from a boundary layer profile at the forest leading edge to a vertical profile determined by the vertical distribution of frontal area, with significantly higher velocity above the prop roots. Fully developed conditions were reached at the fifth tree row from the leading edge. Within the root zone the velocity was reduced by up to 50% and the TKE was increased by as much as fivefold, relative to the upstream conditions. TKE in the root zone was mainly produced by root and trunk wakes, and it agreed in magnitude with the estimation obtained using the Tanino and Nepf (2008) formulation. Maximum TKE occurred at the top of the roots, where a strong shear region was associated with the change in frontal area. The drag measured on individual trees decreased from the leading edge and reached a constant value at the fifth row and beyond, i.e., in the fully developed region. The drag exhibited a quadratic dependence on velocity, which justified the definition of a quadratic drag coefficient. Once the correct drag length-scale was defined, the measured drag coefficients collapsed to a single function of Reynolds number.

  12. Prediction of euphotic depths and diffuse attenuation coefficients from absorption profiles: a model based on comparisons between vertical profiles of spectral absorption, spectral irradiance, and P

    Science.gov (United States)

    Zaneveld, J. Ronald V.; Pegau, Scott; Barnard, Andrew H.; Mueller, James L.; Maske, Helmut; Valdez, Eduardo; Lara-Lara, Ruben; Alvarez-Borrego, Saul

    1997-02-01

    A model is presented which predicts the diffuse attenuation coefficient of downwelling irradiance as a function of depth and the depth of the euphotic zone as based on the one percent level of photosynthetically active radiation from vertical profiles of spectral absorption and attenuation. The model is tested using data obtained in the Gulf of California. The modeled diffuse attenuation coefficients and PAR levels ar shown to have average errors of less than five percent when compared to the measured values.

  13. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  14. Aerodynamic Drag and Gyroscopic Stability

    CERN Document Server

    Courtney, Elya R

    2013-01-01

    This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

  15. Drag reduction in nature

    Science.gov (United States)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  16. Suspended sediment profiles derived from spectral attenuation coefficients measurements using neural network method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, G.; Suresh, T.; Matondkar, S.G.P.; Desa, E.; Kamath, S.S.

    total suspended matter values from water samples obtained at discrete depths at the same location. An artificial neural network (ANN) model has been used to derive suspended matter from the spectral values of beam attenuation coefficients measured using...

  17. Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations

    Science.gov (United States)

    Spijker, Peter; Markvoort, Albert J.; Nedea, Silvia V.; Hilbers, Peter A. J.

    2010-01-01

    For understanding the behavior of a gas close to a channel wall it is important to model the gas-wall interactions as detailed as possible. When using molecular dynamics simulations these interactions can be modeled explicitly, but the computations are time consuming. Replacing the explicit wall with a wall model reduces the computational time but the same characteristics should still remain. Elaborate wall models, such as the Maxwell-Yamamoto model or the Cercignani-Lampis model need a phenomenological parameter (the accommodation coefficient) for the description of the gas-wall interaction as an input. Therefore, computing these accommodation coefficients in a reliable way is very important. In this paper, two systems (platinum walls with either argon or xenon gas confined between them) are investigated and are used for comparison of the accommodation coefficients for the wall models and the explicit molecular dynamics simulations. Velocity correlations between incoming and outgoing particles colliding with the wall have been used to compare explicit simulations and wall models even further. Furthermore, based on these velocity correlations, a method to compute the accommodation coefficients is presented, and these newly computed accommodation coefficients are used to show improved correlation behavior for the wall models.

  18. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals

    Science.gov (United States)

    Zhao, Gang; Zhao, Chunsheng; Kuang, Ye; Tao, Jiangchuan; Tan, Wangshu; Bian, Yuxuan; Li, Jing; Li, Chengcai

    2017-10-01

    Light detection and ranging (lidar) measurements have been widely used to profile the ambient aerosol extinction coefficient (σext). The particle extinction-to-backscatter ratio (lidar ratio, LR), which strongly depends on the aerosol dry particle number size distribution (PNSD) and aerosol hygroscopicity, is introduced to retrieve the σext profile from elastic-backscatter lidar signals. Conventionally, a constant column-integrated LR that is estimated from aerosol optical depth is used by the retrieving algorithms. In this paper, the influences of aerosol PNSD, aerosol hygroscopic growth and relative humidity (RH) profiles on the variation in LR are investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR has an enhancement factor of 2.2 when RH reaches 92 %. Simulation results indicate that both the magnitude and vertical structures of the σext profiles by using the column-related LR method are significantly biased from the original σext profile. The relative bias, which is mainly influenced by RH and PNSD, can reach up to 40 % when RH at the top of the mixed layer is above 90 %. A new algorithm for retrieving σext profiles and a new scheme of LR enhancement factor by RH in the NCP are proposed in this study. The relative bias between the σext profile retrieved with this new algorithm and the ideal true value is reduced to below 13 %.

  19. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  20. Evaluations on Profiles of the Eddy Diffusion Coefficients through Simulations of Super Typhoons in the Northwestern Pacific

    Directory of Open Access Journals (Sweden)

    Jimmy Chi Hung Fung

    2016-01-01

    Full Text Available The modeling of the eddy diffusion coefficients (also known as eddy diffusivity in the first-order turbulence closure schemes is important for the typhoon simulations, since the coefficients control the magnitude of the sensible heat flux and the latent heat flux, which are energy sources for the typhoon intensification. Profiles of the eddy diffusion coefficients in the YSU planetary boundary layer (PBL scheme are evaluated in the advanced research WRF (ARW system. Three versions of the YSU scheme (original, K025, and K200 are included in this study. The simulation results are compared with the observational data from track, center sea-level pressure (CSLP, and maximum surface wind speed (MWSP. Comparing with the original version, the K200 improves the averaged mean absolute errors (MAE of track, CSLP, and MWSP by 6.0%, 3.7%, and 23.1%, respectively, while the K025 deteriorates the averaged MAEs of track, CSLP, and MWSP by 25.1%, 19.0%, and 95.0%, respectively. Our results suggest that the enlarged eddy diffusion coefficients may be more suitable for super typhoon simulations.

  1. Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.

    Science.gov (United States)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-12-01

    Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and

  2. Effect of wearing a swimsuit on hydrodynamic drag of swimmer

    Directory of Open Access Journals (Sweden)

    Daniel Almeida Marinho

    2012-12-01

    Full Text Available The purpose of this study was to analyse the effect of wearing a swimsuit on swimmer's passive drag. A computational fluid dynamics analysis was carried out to determine the hydrodynamic drag of a female swimmer's model (i wearing a standard swimsuit; (ii wearing a last generation swimsuit and; (iii with no swimsuit, wearing light underwear. The three-dimensional surface geometry of a female swimmer's model with different swimsuit/underwear was acquired through standard commercial laser scanner. Passive drag force and drag coefficient were computed with the swimmer in a prone position. Higher hydrodynamic drag values were determined when the swimmer was with no swimsuit in comparison with the situation when the swimmer was wearing a swimsuit. The last generation swimsuit presented lower hydrodynamic drag values, although very similar to standard swimsuit. In conclusion, wearing a swimsuit could positively influence the swimmer's hydrodynamics, especially reducing the pressure drag component.

  3. Calculating the heat transfer coefficient of frame profiles with internal cavities

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2004-01-01

    Determining the energy performance of windows requires detailed knowledge of the thermal properties of their different elements. A series of standards and guidelines exist in this area. The thermal properties of the frame can be determined either by detailed two-dimensional numerical methods...... and measurements have been performed at two German research institutes. The internal cavities have a large influence on the overall thermal performance of the frame profiles and the investigation shows that the applied method for modelling the heat transfer by radiation exchange in the internal cavities...... of the profiles is critical. The simple radiation model described in the pre European standard (prEN ISO 10077-2) does not yield valid results compared to measured values. Applying a more detailed, viewfactor based, grey surfaces enclosure model as described in the ISO standard (ISO/DIS 15099) gives a better...

  4. Characteristics of aerosol size distribution and vertical backscattering coefficient profile during 2014 APEC in Beijing

    Science.gov (United States)

    Zhang, Jiaoshi; Chen, Zhenyi; Lu, Yihuai; Gui, Huaqiao; Liu, Jianguo; Liu, Wenqing; Wang, Jie; Yu, Tongzhu; Cheng, Yin; Chen, Yong; Ge, Baozhu; Fan, Yu; Luo, Xisheng

    2017-01-01

    During the 2014 Asia-Pacific Economic Cooperation (APEC) conference period, Beijing's air quality was greatly improved as a result of a series of tough emission control measures being implemented in Beijing and its surrounding provinces. However, a moderate haze occurred during the period of 4-5 November. In order to evaluate the emission control measures and study the formation mechanism of the haze, a comprehensive field observation based on a supersite and a lidar network was carried out from 25 October 2014 to 20 January 2015. By investigating the variations in aerosol number concentration and mean backscattering coefficient before, during and after the APEC period, it was found that number concentration of accumulation mode and coarse mode particles experienced the most significant decrease by 47% and 68%, and mean backscattering coefficient below 1 km decreased by 34% during the APEC period. Being characterized as "rapidly accumulating and rapidly dispersing", the moderate haze occurred during the APEC period was probably initiated by a wind direction change to south and an increase of wind speed to 4 m/s. Sulfur dioxide involved plume nucleation without growth in size as well as a burst of particles ranging between 100 and 300 nm were observed simultaneously during the haze episode. The elevation of sulfur dioxide concentration and particle number concentration was highly correlated with the southerly wind, signifying the contribution of regional transport. It was observed by the lidar network that the aerosol backscattering coefficient increased in sequence among three sites along the southwest pathway, suggesting that aerosols might be transported from the southwest to the northeast of Beijing with a speed of approximately 17 km/h, which agreed with the movement of air masses modeled by Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). The dual-wavelength lidar (355 and 532 nm) observation suggested that transportation of fine particles

  5. Measurement of the modulus and phase of the linear coupling coefficient by analysis of the transverse beam profile

    Directory of Open Access Journals (Sweden)

    P. F. Tavares

    1998-09-01

    Full Text Available We study the dynamics of transverse oscillations near the linear coupling resonance excited by a pair of skew quadrupoles at the Laboratório Nacional de Luz Síncrotron UVX electron storage ring through the analysis of the beam profile. Transverse coherent oscillations were excited with a fast kicker and the profile of the oscillating beam was observed by focusing visible synchrotron radiation from a bending magnet onto a fast charge-coupled device camera. Using a single resonance approximation, we calculated the border of the time-averaged transverse beam profile as a function of the complex coupling coefficient κ, which characterizes the distribution of coupling fields along the storage ring. A least-squares fit of the calculated beam profile border to the experimentally obtained isointensity contours provided a new method to determine both the modulus and the phase of κ. The values obtained for the modulus are in good agreement with those from the conventional normal mode tune separation technique, and the values obtained for the phase of κ agree with calculations based on the model lattice and the known skew quadrupole distribution.

  6. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько

    2006-02-01

    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  7. Determination of the radial profile of the photoelastic coefficient of polymer optical fibers

    Science.gov (United States)

    Acheroy, Sophie; Merken, Patrick; Geernaert, Thomas; Ottevaere, Heidi; Thienpont, Hugo; Berghmans, Francis

    2016-04-01

    We determine the radial profile of the photoelastic constant C(r) in two single mode and one multimode polymer optical fibers (POFs), all fabricated from polymethylmethacrylate (PMMA). To determine C(r) we first determine the retardance of the laterally illuminated fiber submitted to a known tensile stress uniformly distributed over the fiber cross-section. Then we determine the inverse Abel transform of the measured retardance to finally obtain C(r). We compare two algorithms based on the Fourier theory to perform the inverse transform. We obtain disparate distributions of C(r) in the three fibers. The mean value of C(r) varies from -7.6×10-14 to 5.4×10-12 Pa-1. This indicates that, in contrast to glass fibers, the radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, and hence the photoelastic constant should be measured for each type of POF.

  8. Some comments on trim drag

    Science.gov (United States)

    Roskam, J.

    1975-01-01

    A discussion of data of and methods for predicting trim drag is presented. Specifically the following subjects are discussed: (1) economic impact of trim drag; (2) the trim drag problem in propeller driven airplanes and the effect of propeller and nacelle location; (3) theoretical procedures for predicting trim drag; and (4) research needs in the area of trim drag.

  9. Some comments on fuselage drag

    Science.gov (United States)

    Roskam, J.

    1975-01-01

    The following areas relating to fuselage drag are considered: (1) fuselage fineness - ratio and why and how this can be selected during preliminary design; (2) windshield drag; (3) skin roughness; and (4) research needs in the area of fuselage drag.

  10. Characterization of aerodynamic drag force on single particles: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  11. An Exploratory Investigation of the Effects of a Thin Plastic Film Cover on the Profile Drag of an Aircraft Wing Panel

    Science.gov (United States)

    Beasley, W. D.; Mcghee, R. J.

    1977-01-01

    Exploratory wind tunnel tests were conducted on a large chord aircraft wing panel to evaluate the potential for drag reduction resulting from the application of a thin plastic film cover. The tests were conducted at a Mach number of 0.15 over a Reynolds number range from about 7 x 10 to the 6th power to 63 x 10 to the 6th power.

  12. A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears

    Directory of Open Access Journals (Sweden)

    Hammoudi Abderazek

    2015-09-01

    Full Text Available Profile shift has an immense effect on the sliding, load capacity, and stability of involute cylindrical gears. Available standards such as ISO/DIS 6336 and BS 436 DIN/3990 currently give the recommendation for the selection of profile shift coefficients. It is, however, very approximate and usually given in the form of implicit graphs or charts. In this article, the optimal selection values of profile shift coefficients for cylindrical involute spur and helical gears are described, using a differential evolution algorithm. The optimization procedure is developed specifically for exact balancing specific sliding coefficients at extremes of contact path and account for gear design constraints. The obtained results are compared with those of standards and research of other authors. They demonstrate the effectiveness and robustness of the applied method. A substantial improvement in balancing specific sliding coefficients is found in this work.

  13. Reconfiguration parameters for drag of flexible cylindrical elements

    Science.gov (United States)

    John, Chapman; Wilson, Bruce; Gulliver, John

    2015-11-01

    This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.

  14. A Study of Drag Force in Isothermal Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Li

    2009-12-01

    Full Text Available Driven by the extensive demands of simulating highly concentrated gas bubbly flows in many engineering fields, numerical studies have been performed to investigate the neighbouring effect of a swarm of bubbles on the interfacial drag forces. In this study, a novel drag coefficient correlation (Simonnet et al., 2007 in terms of local void fraction coupled with the population balance model based on average bubble number density (ABND has been implemented and compared with Ishii-Zuber densely distributed fluid particles drag model. The predicted local radial distributions of three primitive variables: gas void fraction, Sauter mean bubble diameter, and gas velocity, are validated against the experimental data of Hibiki et al. (2001. In general, satisfactory agreements between predicted and measured results are achieved by both drag force models. With additional consideration for closely packed bubbles, the latest coefficient model by Simonnet et al. (2007 shows considerably better performance in capturing the reduction of drag forces incurred by neighbouring bubbles.

  15. Experimental investigation of drag force, Magnus force and drag torque acting on rough sphere moving in calm water

    OpenAIRE

    Lukerchenko, Nikolay

    2010-01-01

    The paper describes the results of experiments with a rotating golf ball moving quasi-steadily in calm water. The motion of the ball was recorded on a digital video camera. The dimensionless drag force, Magnus force, and drag torque coefficients were determined from the comparison of the calculated translational and angular velocities and trajectory with experimental ones for the rough particle. The proper value of the correction coefficients were established from condition of the best fittin...

  16. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  17. That's a Drag: The Effects of Drag Forces

    Directory of Open Access Journals (Sweden)

    Shane Maxemow

    2009-01-01

    Full Text Available Drag is a force that opposes motion due to an object's shape, material, and speed. This project defined what drag force is, derived the governing equation for drag and listed some applications of drag forces. Derivation of the drag equation was achieved using the Buckingham π theorem, a dimensional analysis tool. Lastly, this project explored the problem of how long and how far a dragster takes to stop once its parachute is deployed.

  18. COMPRESSIBILITY EFFECTS ON DISTRIBUTIONS OF PRESSURE AND LIFT COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    AZZEDINE NAHOUI

    2015-06-01

    Full Text Available Reduce energy consumption of airplanes, or enhance the aerodynamic performance of compressors and turbines by reducing drag, or increasing lift is a major challenge for many institutions specializing in aerodynamics [1, 2]. One way to achievethis, isconsidered the study of compressible potential flow compared to incompressible potential flow [3], Outside the boundary layer, to study the effects of compressibility and the control parameters. And the pressure coefficient and lift distributions around the NACA 0012 profile, NACA 0015 and NACA 0018 were studied and presented in terms of the Mach number, angle of attack and the relative thickness of the profiles.

  19. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  20. Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min; Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook National Univeristy, Daegu (Korea, Republic of); Jeon, Heung Kyun [Daegu Health College, Daegu (Korea, Republic of)

    2014-12-15

    The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At T{sub 0}=298 K and α=3°, the lift coefficients for M{sub ∞}=0.78 and 0.81 decreased monotonically with increasing Φ{sub 0}. In contrast, for M{sub ∞} corresponding to the Mach number of the force break, CL increased with Φ{sub 0}. For α=3° and Φ{sub 0}=0%, CD increased markedly as M{sub ∞} increased. However, at Φ{sub 0}=60% and α=3°, which corresponded to the case of the condensation having a large influence, CD increased slightly as M{sub ∞} increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At Φ{sub 0}=0%, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When Φ{sub 0}>50%, the coefficient of the wave drag decreased as α and M{sub ∞} increased. Lowering Φ{sub 0} and increasing M{sub ∞} increased the maximum Mach number.

  1. Impact of atmospheric and oceanic form drag parameterization on simulations of Arctic sea ice

    Science.gov (United States)

    Tsamados, Michel; Feltham, Daniel L.; Schroeder, David. F.; Farrell, Sinead L.; Kurtz, Nathan T.; Laxon, Seymour W.

    2013-04-01

    Pressure ridges, keels, floe edges and melt pond edges all introduce discrete obstructions to the flow of the air or ocean over the ice, and are a source of form drag. For typical ice covers the form drag contribution to the total drag is of comparable or greater magnitude to the surface or skin drag. In current climate models form drag is only accounted for by tuning of the air-ice and air-ocean drag coefficients, i.e. by altering the roughness length in a surface drag parameterization. The existing approach of skin drag parameter tuning, while numerically convenient, is poorly constrained by observations and fails to describe correctly the physics associated with the air-ice and ocean-ice drag. Here we combine recent theoretical developments to deduce the total neutral form drag coefficients from the key parameters of the ice cover such as ice concentration, size and area of the ridges and keels, freeboard and floe draft and size of melt ponds. We incorporate the drag coefficients into the sea ice component of a climate model (the CICE model). This stage necessitates that the sea ice characteristics obtained locally from observations are mapped to the averaged sea ice quantities provided by the sea ice model at the larger grid cell length scale. We present results over the Arctic of a stand-alone version of the model and show the influence of the new drag parameterization on the motion and mass of the ice cover. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. We test the predictions of the model against measured drag coefficients in several regions of the Arctic and find good agreement between model and observations.

  2. MEASUREMENT OF WIND DRAG FORCES ON TREES

    OpenAIRE

    Hiroyoshi, SHI-IGAI; Toru, Maruyama; Professor, Institute of Engineering Mechanics, University of Tsukuba; Engineer, Nissei Jushi Kogyo

    1988-01-01

    Trees have a lot of effects on soil conservation at mountainous regions. However, they often trigger land slides or mud avalanches if they cannot resist against strong winds, since the fallen trees may dam up mud and water and that natural dam eventually collapses, which triggers landslides. We developed a technique to estimate the total mass of trees in vivo and evaluated the wind force which acts on trees under natural conditions. The evaluated wind drag coefficients of trees whose height i...

  3. Turbulent and Transitional Modeling of Drag on Oceanographic Measurement Devices

    Directory of Open Access Journals (Sweden)

    J. P. Abraham

    2012-01-01

    Full Text Available Computational fluid dynamic techniques have been applied to the determination of drag on oceanographic devices (expendable bathythermographs. Such devices, which are used to monitor changes in ocean heat content, provide information that is dependent on their drag coefficient. Inaccuracies in drag calculations can impact the estimation of ocean heating associated with global warming. Traditionally, ocean-heating information was based on experimental correlations which related the depth of the device to the fall time. The relation of time-depth is provided by a fall-rate equation (FRE. It is known that FRE depths are reasonably accurate for ocean environments that match the experiments from which the correlations were developed. For other situations, use of the FRE may lead to depth errors that preclude XBTs as accurate oceanographic devices. Here, a CFD approach has been taken which provides drag coefficients that are used to predict depths independent of an FRE.

  4. Drag force scaling for penetration into granular media.

    Science.gov (United States)

    Katsuragi, Hiroaki; Durian, Douglas J

    2013-05-01

    Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.

  5. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  6. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  7. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  8. A Comparison of Experimental and Analytical Procedures to Measure Passive Drag in Human Swimming.

    Directory of Open Access Journals (Sweden)

    Tiago M Barbosa

    Full Text Available The aim of this study was to compare the swimming hydrodynamics assessed with experimental and analytical procedures, as well as, to learn about the relative contributions of the friction drag and pressure drag to total passive drag. Sixty young talented swimmers (30 boys and 30 girls with 13.59±0.77 and 12.61±0.07 years-old, respectively were assessed. Passive drag was assessed with inverse dynamics of the gliding decay speed. The theoretical modeling included a set of analytical procedures based on naval architecture adapted to human swimming. Linear regression models between experimental and analytical procedures showed a high correlation for both passive drag (Dp = 0.777*Df+pr; R2 = 0.90; R2a = 0.90; SEE = 8.528; P<0.001 and passive drag coefficient (CDp = 1.918*CDf+pr; R2 = 0.96; R2a = 0.96; SEE = 0.029; P<0.001. On average the difference between methods was -7.002N (95%CI: -40.480; 26.475 for the passive drag and 0.127 (95%CI: 0.007; 0.247 for the passive drag coefficient. The partial contribution of friction drag and pressure drag to total passive drag was 14.12±9.33% and 85.88±9.33%, respectively. As a conclusion, there is a strong relationship between the passive drag and passive drag coefficient assessed with experimental and analytical procedures. The analytical method is a novel, feasible and valid way to gather insight about one's passive drag during training and competition. Analytical methods can be selected not only to perform race analysis during official competitions but also to monitor the swimmer's status on regular basis during training sessions without disrupting or time-consuming procedures.

  9. Wind-Tunnel Investigation of Effects of a Pusher Propeller on Lift, Profile Drag, Pressure Distribution, and Boundary-Layer Transition of a Flapped Wing

    Science.gov (United States)

    1945-04-01

    installed for these tests . Figure 2.- Conclude!. . e !2?. o . NACA ACR Iio. L! jC08 Fig. 3 . / Alud%g eq?e / k B&de pl~efmm (devev@ed) Spinner outJhe I...covered with fiber- board. For the tests to determine boundary-layer transi- tion, the wing was carefully sanded and waxed; however, for the other tests ...miles p6r hour. Tunnel s?eeds lowar then the mnxirnum were necessary in develo~ing the highar values of thrust coefficient of these tests . The range of

  10. Aerodynamic drag modeling of alpine skiers performing giant slalom turns.

    Science.gov (United States)

    Meyer, Frédéric; Le Pelley, David; Borrani, Fabio

    2012-06-01

    Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.

  11. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    Science.gov (United States)

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.

    2017-10-17

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  13. Navier slip model of drag reduction by Leidenfrost vapor layers

    Science.gov (United States)

    Berry, Joseph D.; Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2017-10-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (1 02≤Re≤4 ×1 04) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  14. Analytical Void Fraction Profile Near the Walls in Low Reynolds Number Bubbly Flows in Pipes: Experimental Comparison and Estimate of the Dispersion Coefficient

    Directory of Open Access Journals (Sweden)

    Marfaing Olivier

    2017-01-01

    Full Text Available In a recent paper, we derived an analytical expression for the void fraction profile in low Reynolds number bubbly pipe flows, based on a balance of hydrodynamic forces on bubbles. The objective of the present work is to perform a comparison of this analytical Bubble Force Balance Formula (BFBF with an experiment from the literature. We begin by simulating this experiment with the NEPTUNE_CFD code. In particular we show that using an Rij-ε model to account for the liquid velocity fluctuations yields reasonable results. In order to compare our analytical profile with experimental measurements, we restrict ourselves to the near-wall region. In this region, the void fraction profile results from a balance between dispersion and wall forces, and the dispersion coefficient can be considered as uniform. The analytical BFBF profile is seen to be in good agreement with the measurements. We are also capable to estimate the dispersion coefficient in this near-wall region.

  15. Drag force and jet propulsion investigation of a swimming squid

    Directory of Open Access Journals (Sweden)

    Tabatabaei Mahdi

    2015-01-01

    Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.

  16. Shell selection of hermit crabs is influenced by fluid drag

    Science.gov (United States)

    Casillas, Barbara; Ledesma, Rene; Alcaraz, Guillermina; Zenit, Roberto

    2010-11-01

    The flow around gastropod shells used by hermit crabs (Calcinus californiensis) was visualized experimentally. These crabs choose their shells according to many factors; we found that the choice of shell (shape and weight) is directly related to the drag caused over them by the exposure to wave action. Tests were conducted in a wind tunnel to investigate flow differences for shells of various shapes. A particle image velocimetry (PIV) system was used to visualize the flow field. The images above show the flow field around two types of shells (Thais speciosa and Nerita scabircosta) for Reynolds numbers of O(10^5). Using a control volume analysis, the drag coefficient was inferred. Several shell geometries, orientations and mean flow velocities were tested. In this talk, the flow and drag force will be shown for the different arrangements. A discussion of the relation between drag and shape will be presented.

  17. The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

    NARCIS (Netherlands)

    Idarraga Alarcon, G.A.; Burgelman, N.D.M.; Meza Meza, J.; Toro, A.; Li, Z.

    2015-01-01

    This work investigates the energy dissipation in a wheel/rail system through friction work modeling. In order to identify the effect of the friction coefficient on the energy dissipation in the wheel/rail contact, several simulations were performed using a 3D multibody model of a railway vehicle

  18. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  19. Creating drag and lift curves from soccer trajectories

    Science.gov (United States)

    Goff, John Eric; Kelley, John; Hobson, Chad M.; Seo, Kazuya; Asai, Takeshi; Choppin, S. B.

    2017-07-01

    Trajectory analysis is an alternative to using wind tunnels to measure a soccer ball’s aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed-dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 to 29.9 m s-1. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. The average root mean square error between the measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively.

  20. Concentrated energy addition for active drag reduction in hypersonic flow regime

    Science.gov (United States)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  1. Effect of windshield shape of a pilot's canopy on the drag of an NACA RM-2 drag research model in flight at transonic speeds

    Science.gov (United States)

    ALEXANDER SIDNEY R

    1948-01-01

    Results of flight tests of an NACA RM-2 drag research model equipped with a pilot's canopy having a vee windshield are presented for a Mach number range from 0.75 to 1.43. Comparison is made with test results of a similar canopy having a flat windshield. The vee-windshield canopy produced lower drag-coefficient values than the flat-windshield canopy for Mach numbers from 0.85 to about 1.2. From M - 1.2 to 1.4 both canopies produced the same drag coefficient.

  2. Electron and phonon drag in thermoelectric transport through coherent molecular conductors

    DEFF Research Database (Denmark)

    Lü, Jing-Tao; Wang, Jian-Sheng; Hedegård, Per

    2016-01-01

    there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through...

  3. Drag reduction strategies

    Science.gov (United States)

    Hill, D. Christopher

    1994-12-01

    previously a description was given of an active control scheme using wall transpiration that leads to a 15% reduction in surface skin friction beneath a turbulent boundary layer, according to direct numerical simulation. In this research brief further details of that scheme and its variants are given together with some suggestions as to how sensor/actuator arrays could be configured to reduce surface drag. The research which is summarized here was performed during the first half of 1994. This research is motivated by the need to understand better how the dynamics of near-wall turbulent flow can be modified so that skin friction is reduced. The reduction of turbulent skin friction is highly desirable in many engineering applications. Experiments and direct numerical simulations have led to an increased understanding of the cycle of turbulence production and transport in the boundary layer and raised awareness of the possibility of disrupting the process with a subsequent reduction in turbulent skin friction. The implementation of active feedback control in a computational setting is a viable approach for the investigation of the modifications to the flow physics that can be achieved. Bewley et al. and Hill describe how ideas from optimal control theory are employed to give 'sub-optimal' drag reduction schemes. The objectives of the work reported here is to investigate in greater detail the assumptions implicit within such schemes and their limitations. It is also our objective to describe how an array of sensors and actuators could be arranged and interconnected to form a 'smart' surface which has low skin friction.

  4. Thermosphere Density Variability, Drag Coefficients, and Precision Satellite Orbits

    Science.gov (United States)

    2013-07-29

    Journal of Spacecraft and Rockets, 44 (6), 1220- 1225, 2007. Vallado, D. A., Fundamentals of Astrodynamics and Applications , Chap. 8, App. B, Microcosm...Nov 1998. 4. TITLE. Enter title and subtitle with volume number and part number, if applicable . On classified documents, enter the title...in space? How do these changes affect the motion of satellites? These are some of the fundamental questions that this research will address. 2

  5. Drag and lift forces on particles in a rotating flow

    NARCIS (Netherlands)

    Bluemink, J.J.; Lohse, Detlef; Prosperetti, Andrea; van Wijngaarden, L.; van Wijngaarden, L.

    2010-01-01

    A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is

  6. Pengaruh Luas Pengungkapan Csr Terhadap Earning Response Coefficient Pada Industri High Profile Yang Terdaftar Di Pasar Modal

    Directory of Open Access Journals (Sweden)

    Rizky Eriandani

    2010-04-01

    Full Text Available The study hypothesized that CSR disclosure strengthen the association between unexpected earning and abnormal return (ERC, since CSR disclosure provide more information to interpreting accounting earning. The sample of the study is annual report 2006 of the companies listed at the Indonesian Stock Exchange, and the company is the high profile industry. This finding raises the question of whether CSR information in annual report contain value-relevant about accounting earning or if investor are simply not capable of incorporating CSR information in the firm value estimates.

  7. DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Charlotte N [ORNL; D' Urso, Brian R [ORNL; Jenner, Elliot [University of Pittsburgh

    2012-01-01

    Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.

  8. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  9. LIMS/Nimbus-7 Level 3 Daily Vertical Profiles of O3, NO2, H2O, HNO3, Geopotential Height, and Temperature as 2deg Latitude Spaced Fourier Coefficients V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Limb Infrared Monitor of the Stratosphere (LIMS) version 6 Level-3 data product consists of daily, 2 degree zonal Fourier coefficients, of vertical profiles of...

  10. When superfluids are a drag

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David C [Los Alamos National Laboratory

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  11. Coulomb drag in quantum circuits.

    Science.gov (United States)

    Levchenko, Alex; Kamenev, Alex

    2008-11-21

    We study the drag effect in a system of two electrically isolated quantum point contacts, coupled by Coulomb interactions. Drag current exhibits maxima as a function of quantum point contacts gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.

  12. Quasi-Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity

    Science.gov (United States)

    2016-09-01

    drag coefficient lift coefficient roll- torque coefficient pitching-moment coefficient angle-of...11 Fig. 6 Roll- torque coefficient for BF comparing dα variation to steady-state results, CFL = 10 and N = 50...Fig. 8 Roll- torque coefficient for BF for varying number of inner iterations, CFL = 10 and dα = 0.25

  13. Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole x-ray diffraction profiles of galena

    Science.gov (United States)

    Ungár, T.; Martinetto, P.; Ribárik, G.; Dooryhée, E.; Walter, Ph.; Anne, M.

    2002-02-01

    Galena (PbS) is a major ingredient in ancient Egyptian eye makeup. The microstructure of PbS in Egyptian cosmetic powders is used as a fingerprint and is matched with the microstructures produced artificially in geological galena minerals. The microstructure of PbS is determined by x-ray diffraction peak profile analysis in terms of dislocation density, crystallite size, and size distribution. High-resolution powder diffractograms were measured at the ESRF Grenoble synchrotron source with high resolution and high peak-to-background ratios. The Fourier coefficients of the first nine measured reflections of galena are fitted using physically based Fourier coefficients of strain and size functions. Strain anisotropy is accounted for by the dislocation model of the mean square strain. The x-ray data are supplemented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs, and are compared with archæological documents. It enables us to describe the procedures of eye makeup manufacturing in the Middle and New Kingdoms of Egypt some 2000 years before Christ.

  14. Numerical analysis of drag and lift reduction of square cylinder

    Directory of Open Access Journals (Sweden)

    Prasenjit Dey

    2015-12-01

    Full Text Available Flow around an extended triangular solid (thorn attached to a square cylinder is investigated numerically. The numerical analysis is carried out at low Reynolds number, Re = 100 & 180 for different non-dimensional thorn lengths (l΄ = 0. 2, 0.4 & 0.6, different inclination angles (θ = 5°, 10°, 15° and 20° and two different thorn positions. It is found that drag and lift reduction can be achieved by attaching the thorn on a square cylinder. It is observed that the fluctuation of the drag force as well as the lift force is reduced and there is a comparatively large variation of drag and lift when the thorn is placed at the front stagnation point instead of placing at rear stagnation point. The reduction of drag and lift coefficient are directly proportional to thorn length and thorn inclination angle. It is found that the drag and lift are minimized by 16% & 46% for Re = 100 respectively, and 22% & 60% for Re = 180 compared to a square model (without thorn.

  15. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  16. Drag reduction properties of superhydrophobic mesh pipes

    Science.gov (United States)

    Geraldi, Nicasio R.; Dodd, Linzi E.; Xu, Ben B.; Wells, Gary G.; Wood, David; Newton, Michael I.; McHale, Glen

    2017-09-01

    Even with the recent extensive study into superhydrophobic surfaces, the fabrication of such surfaces on the inside walls of a pipe remains challenging. In this work we report a convenient bi-layered pipe design using a thin superhydrophobic metallic mesh formed into a tube, supported inside another pipe. A flow system was constructed to test the fabricated bi-layer pipeline, which allowed for different constant flow rates of water to be passed through the pipe, whilst the differential pressure was measured, from which the drag coefficient (ƒ) and Reynolds numbers (Re) were calculated. Expected values of ƒ were found for smooth glass pipes for the Reynolds number (Re) range 750-10 000, in both the laminar and part of the turbulent regimes. Flow through plain meshes without the superhydrophobic coating were also measured over a similar range (750  pipe of the same diameter. This demonstrates that a superhydrophobic mesh can support a plastron and provide a drag reduction compared to a plain mesh, however, the plastron is progressively destroyed with use and in particular at higher flow rates.

  17. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  18. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  19. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    Science.gov (United States)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  20. Viscous drag reduction in boundary layers

    Science.gov (United States)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  1. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  2. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  3. Drag on a slip spherical particle moving in a couple stress fluid

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2016-06-01

    Full Text Available The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is investigated. The linear slip boundary condition and the vanishing couple stress condition are applied on the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are concluded and compared with analogous results in the literature. The normalized drag force experienced by the fluid on the slip sphere is represented graphically and the effects of slip parameter and viscosity coefficients are discussed.

  4. Symmetry of the gradient profile as second experimental dimension in the short-time expansion of the apparent diffusion coefficient as measured with NMR diffusometry.

    Science.gov (United States)

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik

    2015-10-01

    The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 μm radius. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation

    Science.gov (United States)

    Greidanus, A. J.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-05-01

    A Taylor-Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the instantaneous flow field were obtained by tomographic PIV and indicate that the friction coefficients are strongly influenced by the flow regimes and structures. The riblet surface changes the friction at the inner-cylinder wall, which generates an average bulk fluid rotation. A simple model is proposed to distinguish drag changes due to the rotation effect and the riblet effect, as a function of the measured drag change and shear Reynolds number . An uncorrected maximum drag reduction of 5.3 % was found at that corresponds to riblet spacing Reynolds number . For these conditions, the model predicts an azimuthal bulk velocity shift of 1.4 %, which is confirmed by PIV measurements. This shift indicates a drag change due to a rotation effect of -1.9 %, resulting in a net maximum drag reduction of 3.4 %. The results correspond well with earlier reported results and demonstrate that the Taylor-Couette facility is a suitable and accurate measurement tool to characterize the drag performance of surfaces.

  6. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.K.; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-06-15

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  7. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  8. Measurements of turbulent velocity profiles in combined system of polymer additives and riblets; Kobunshi tenkazai to riblet tono fukugokei ni okeru ranryu sokudo bunpu no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Mizunuma, H. [Tokyo Metropolitan Univ., Tokyo (Japan); Ban, T. [Hino Motors, Ltd., Tokyo (Japan)

    2000-03-25

    In the combined system of polymer additives and riblets, the polymer additives expand the range of non-dimensionalized riblet width s{sup +} where the riblets reduce the frictional drag. Although in the higher region of s{sup +} the riblets increase the frictional drag as the rough surface, the polymer additives thicken the wall layer, which dumps the drag increase due to riblets and then gives the benefical combined effect in this higher region of s{sup +}. Based on this scinario, the velocity profile and the pipe frictional coefficient for the combined system were derived from the velocity profile of each system. The turbulent velocity profiles were measured for the combined system using a laser Doppler velocimetry. The measured results agreed well with the derived prediction for the combined system. (author)

  9. Ballistic Coefficient Prediction for Resident Space Objects

    Science.gov (United States)

    Russell, R.; Arora, N.; Vittaldev, V.; Gaylor, D.

    2012-09-01

    Recent improvements in atmospheric density modeling now provide more confidence in spacecraft ballistic coefficient (BC) estimations, which were previously corrupted by large errors in density. Without attitude knowledge, forecasting the true BC for accurate future state and uncertainty predictions remains elusive. In this paper, our objective is to improve this predictive capability for ballistic coefficients for Resident Space Objects (RSOs), thus improving the existing drag models and associated accuracy of the U.S. Space Object Catalog. To work towards this goal we implement a two-pronged strategy that includes elements of time series analysis and physics based simulations. State-of-the-art empirical time series prediction methods are applied and tested on BC time series in the context of both simulation data and actual data provided by the Air Force. An archive of simulated BC data is generated using custom 6DOF high fidelity simulations for RSOs using plate models for shapes. The simulator includes force and torque perturbations due to the nonspherical Earth, third-body perturbations, SRP, and atmospheric drag. The simulated BC profiles demonstrate significant variation over short time spans (due primarily to varying frontal areas), providing motivation to improve future BC estimation strategies. The 6DOF modeling is intended to provide a physics-based BC data set to complement the BC data set provided by the AF. For the ‘black-box' time series algorithms, a variety of approaches are considered, whereas two prediction models showed the most promising performance: a multi-tone harmonic model and an autoregressive (AR) model. Both the multi-tone harmonic model and the AR model are subjected to multiple levels of optimizations resulting in highly optimized final models that are tuned specifically with the 205 BC time series provided by the AF. Two versions of the AR model are developed based on the model prediction methodology. The second version of the AR

  10. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    Science.gov (United States)

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered.

  11. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  12. Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles.

    Science.gov (United States)

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2005-05-06

    Drag reduction by microbubbles is a promising engineering method for improving ship performance. A fundamental theory of the phenomenon is lacking, however, making actual design quite haphazard. We offer here a theory of drag reduction by microbubbles in the limit of very small bubbles, when the effect of the bubbles is mainly to normalize the density and the viscosity of the carrier fluid. The theory culminates with a prediction of the degree of drag reduction given the concentration profile of the bubbles. Comparisons with experiments are discussed and the road ahead is sketched.

  13. Investigation of drag reduction through a flapping mechanism on circular cylinder

    Science.gov (United States)

    Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan

    2016-07-01

    During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.

  14. Whose drag is it anyway? Drag kings and monarchy in the UK.

    Science.gov (United States)

    Willox, Annabelle

    2002-01-01

    This chapter will show that the term "drag" in drag queen has a different meaning, history and value to the term "drag" in drag king. By exposing this basic, yet fundamental, difference this paper will expose the problems inherent in the assumption of parity between the two forms of drag. An exposition of how camp has been used to comprehend and theorise drag queens will facilitating an understanding of the parasitic interrelationship between camp and drag queen performances, while a critique of "Towards a Butch-Femme Aesthetic," by Sue Ellen Case, will point out the problematic assumptions made about camp when attributed to a cultural location different to the drag queen. By interrogating the historical, cultural and theoretical similarities and differences between drag kings, butches, drag queens and femmes this paper will expose the flawed assumption that camp can be attributed to all of the above without proviso, and hence expose why drag has a fundamentally different contextual meaning for kings and queens. This chapter will conclude by examining the work of both Judith Halberstam and Biddy Martin and the practical examples of drag king and queen performances provided at the UK drag contest held at The Fridge in Brixton, London on 23 June 1999.

  15. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  16. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Directory of Open Access Journals (Sweden)

    Md. Jomir Hossain

    2013-12-01

    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  17. Dragging cylinders in slow viscous flows

    Science.gov (United States)

    Luca, Elena; Crowdy, Darren

    2015-11-01

    The so-called ``dragging problem'' in slow viscous fluids is an important basic flow with many applications. In two dimensions, the Stokes paradox means there is no solution to the dragging problem for a cylinder in free space. The presence of walls changes this; the solutions exist, but are not easy to find without purely numerical methods. This talk describes new ``transform methods'' that produce convenient, semi-analytical solutions to dragging problems for cylinders in various geometries. We apply the techniques to low-Reynolds-number swimming where dragging problem solutions can be combined with the reciprocal theorem to compute swimmer dynamics in confined domains.

  18. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannelsis known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices....... In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...... in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction...

  19. The effect of finger spreading on drag of the hand in human swimming

    CERN Document Server

    van Houwelingen, Josje; Kunnen, Rudie P J; van Heijst, GertJan F; Grift, Ernst Jan; Breugem, Wim Paul; Delfos, Rene; Westerweel, Jerry; Clercx, Herman J H; van de Water, Willem

    2016-01-01

    The effect of finger spreading on hydrodynamic drag in swimming is studied both with a numerical simulation and with laboratory experiments. Both approaches are based on the exact same 3D model of the hand with attached forearm. The virtual version of the hand with forearm was implemented in a numerical code by means of an immersed boundary method and the physical version was studied in a wind tunnel experiment. An enhancement of the drag coefficient of 2 and 5% compared to the case with closed fingers was found for the numerical simulation and experiment, respectively. A 5 and 8% favourable effect on the (dimensionless) force moment at an optimal finger spreading of 10 degrees was found, which indicates that the difference is more outspoken in the force moment. Also an analytical model is proposed, using scaling arguments similar to the Betz actuator disk model, to explain the drag coefficient as a function of finger spacing.

  20. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation

    Science.gov (United States)

    Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu

    2012-06-01

    This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.

  1. Measurements of drag and lift on smooth balls in flight

    Science.gov (United States)

    Cross, Rod; Lindsey, Crawford

    2017-07-01

    Measurements are presented on the drag and lift coefficients for three relatively smooth balls launched in air and tracked with two cameras separated horizontally by 6.4 m. The ball spin was varied in order to investigate whether the Magnus force would increase or decrease when the ball spin was increased. For one ball, the Magnus force increased. For another ball, the Magnus force decreased almost to zero after reaching a maximum. For the third ball, the Magnus force was negative at low ball spins and positive at high ball spins. For one of the balls, the ball spin increased with time as it travelled through the air.

  2. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...

  3. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  4. Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions

    Science.gov (United States)

    Hong, S. H.; Conklin, J. W.

    2016-12-01

    The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at

  5. Negative drag force on finite-size charged dust grain in strongly collisional plasma

    Science.gov (United States)

    Momot, A. I.

    2017-10-01

    The drag force on finite-size charged conductive spherical dust grain stationary moving in strongly collisional weakly ionized plasmas is studied numerically within the drift-diffusion approximation. It is assumed that the grain surface collects all encountered electrons and ions, i.e., the grain is at a floating potential. The velocity dependencies of the drag, stationary charging current and grain charge are obtained for various grain sizes for both isothermal and nonisothermal plasmas. The plasma density profiles were calculated and compared with those obtained earlier in a kinetic approach. The numerical results of the drag force are compared with known analytical expressions. A more simple expression is proposed, and its applicability is examined. Natural drag described by the Stokes' force is taken into consideration.

  6. Drag Reduction by Microvortexes in Transverse Microgrooves

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2014-07-01

    Full Text Available A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction was consistent with the main flow, which decreased the flow shear stress by declining the velocity gradient. The experiments were carried out in a high-speed water tunnel with flow velocity varying from 17 to 19 m/s. The experimental results showed that the drag reduction was about 13%. Therefore, the computational and experimental results were cross-checked and consistent with each other to prove that the presented approach achieved effective drag reduction underwater.

  7. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    Science.gov (United States)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  8. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  9. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  10. Application Research on Drag Reduced Conductors for Electric Power Transmission Lines in Strong Wind Areas

    Directory of Open Access Journals (Sweden)

    Li Dong Qing

    2016-01-01

    Full Text Available The breeze vibration duration of conductors is long, the vibration amplitude is strong and the frequency range is wide for electric power transmission lines in strong wind areas, which seriously affects the safe and stable operation of transmission lines. There are two design schemes of conductors which can achieve the purpose of reducing wind-induced disaster. One is enhancing the structural strength of conductors to withstand wind load, but the investment is enormous and the effect is limited. The other is developing drag reduced conductors to reduce wind load by changing conductor structure. This paper started from application feasibility analysis of drag reduced conductors and designed four drag reduced conductors by structure optimization of the conventional aluminium conductor steel reinforced JL/G1A-630/45-45/7, denoted as DFY630/45(45°-R3.5, DFY630/45(60°-R3.5, DFY630/45(45°–R3.2 and DFY630/45(60°-R3.2, respectively. The wind tunnel test was performed and the wind resistance coefficients in unit length of five conductors were compared. Result showed that the wind resistance coefficients in unit length of four drag reduced conductors were obviously lower than that of the conventional conductor. By controlling the manufacturing process, popularization and application of drag reduced conductors for transmission lines in strong wind areas can be realized.

  11. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  12. Front-crawl stroke-coordination and symmetry: a comparison between timing and net drag force protocols.

    Science.gov (United States)

    Formosa, Danielle P; Sayers, Mark G L; Burkett, Brendan

    2013-01-01

    This study compared stroke-coordination and symmetry using traditional timing methods and net drag force profiles. Twenty elite front-crawl swimmers Federation Internationale de Natation (FINA ranking 908 ± 59) were tested to identify the influence of both gender and breathing. A total of six randomised free-swimming trials were conducted: (i) three breathing, (ii) three non-breathing. Net drag forces were measured using an assisted towing device and the magnitude and location of minimum and maximum was determined to create a stroke symmetry index. Within the breathing condition, there were significant differences between the two symmetry index methods. Using the timing index, all 10 female participants, and seven males, illustrated symmetrical timing. For the net drag force profile, only three females and zero males exhibited a symmetrical minimum net drag force; and only four females and two males demonstrated a symmetrical maximum net drag force index. No differences existed within the non-breathing condition. There was a small (5.2%) difference in the location of maximum net drag force, when stratifying by gender. During the breathing condition, gender also influenced the percentage of overlap for the breathing stroke by 25.2%, and 14.6 % for the non-breathing stroke. A combination of the traditional timing based and net drag force based profile can guide future swimming technique intervention strategies.

  13. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  14. Air Drag Effects on the Missile Trajectories

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2011-01-01

    Full Text Available The equations of motion of a missile under the air drag effects are constructed. The modified TD88 is surveyed. Using Lagrange's planetary equations in Gauss form, the perturbations, due to the air drag in the orbital elements, are computed between the eccentric anomalies of the burn out and the reentry points [Ebo,2π−Ebo], respectively. The range equation is expressed as an infinite series in terms of the eccentricity e and the eccentric anomaly E. The different errors in the missile-free range due to the drag perturbations in the missile trajectory are obtained.

  15. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  16. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  17. Surface drag over the snow surface of the Antarctic Plateau. 1. Factors controlling surface drag over the Katabatic wind region

    Science.gov (United States)

    Inoue, Jiro

    1989-02-01

    The drag coefficient of the snow surface over the Antarctic Plateau is evaluated through direct measurement of Reynolds stress on the Mizuho Plateau, East Antarctica, in the austral summer. The estimated roughness height (Z0) varies from 10-l to 10-4 cm, even under near-neutral conditions. Large shear stress appears in light wind, followed by increased turbulent intensity. In the katabatic wind region of the plateau, Z0 shows symmetric changes with wind direction. The average value of Z0 in the smoothest direction is 0.0004 cm, which is the minimum value previously reported, and it increases to 0.015 cm for 40° rotation of wind direction toward the roughest direction. The directional dependence of Z0 is similar at three stations located nearly 100 km apart. Unlike the results of Jackson and Carroll at the south pole, the smoothest direction deviates 20° from the mean sastrugi axes and agrees with the direction of the prevailing high wind. The 4-m neutral drag coefficient is estimated to be 0.8 × 10-3 for the smoothest direction and 1.5 × 10-3 for the roughest direction. The effect of snow drift is unimportant. A generalized discussion of the results is given in a companion paper.

  18. Analytical Ballistic Trajectories with Approximately Linear Drag

    National Research Council Canada - National Science Library

    Giliam J. P. de Carpentier

    2014-01-01

      This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories...

  19. Satellite Formation Control Using Atmospheric Drag

    National Research Council Canada - National Science Library

    Hajovsky, Blake B

    2007-01-01

    This study investigates the use of a linear quadratic terminal controller to reconfigure satellite formations using atmospheric drag actuated control while minimizing the loss of energy of the formation...

  20. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  1. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  2. Methods of reducing vehicle aerodynamic drag

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  3. Drag Performance of Twist Morphing MAV Wing

    OpenAIRE

    Ismail N.I.; Zulkifli A.H.; Talib R.J.; Zaini H.; Yusoff H.

    2016-01-01

    Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analy...

  4. The Minimum Induced Drag of Aerofoils

    Science.gov (United States)

    Munk, M. M.

    1979-01-01

    Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.

  5. Drag reduction in riblet-lined pipes

    Energy Technology Data Exchange (ETDEWEB)

    Enyutin, G.V.; Lashkov, Yu.A.; Samoilova, N.V.

    1995-07-01

    The possibilities of reducing the drag in pipes with a circular cross section by lining them with riblets have been investigated experimentally for developed turbulent air flow. The maximum drag reduction of 6-7% in the riblet-lined as compared with the smooth pipe was obtained for a dimensionless riblet pitch, expressed in law-of-the-wall parameters, s{sup +} = 14-18.

  6. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  7. Seebeck Coefficient of SOI Layer Induced by Phonon Transport

    Directory of Open Access Journals (Sweden)

    Faiz Salleh

    2015-04-01

    Full Text Available The Seebeck coefficient of a patterned Si wire on P-doped SOI (Si-on-insulator layer with a carrier concentration of 1018 cm-3 was measured near room temperature. The Seebeck coefficient is found to be smaller than that in the SOI layer and to be closer to the calculated Seebeck coefficient including the electronic contribution. The decrease in the Seebeck coefficient of Si wire is likely to occur due to the elimination of the contribution of phonon drag part. From the theoretical calculation of scattering rates by considering the scattering processes in phonon system, it is considered that an increase in phonon-boundary scattering and simultaneously a decrease at the cross section of SOI layer are likely responsible for eliminating the phonon drag effect.

  8. Aerodynamic force coefficients of plain bridge cables in wet conditions

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos T.

    In this paper, the aerodynamic forces and force coefficients from preliminary static wind tunnel tests on a plain cable in wet conditions are presented. The presented results are for several different relative cable wind-angles. A comparison is made with tests in dry conditions. In dry conditions...... in the drag coefficient with increasing Reynolds number, accompanied by a near-zero lift coefficient, was observed. A theoretical evaluation of the aerodynamic damping assuming quasi-steady conditions reveals that changes in drag and lift coefficient are nonetheless not sufficient to generate negative...... aerodynamic damping. Analysis of the fluctuating lift component shows the presence of “enhanced” vortex shedding at specific wind velocities – similar to what might be observed in the presence of a tripping wire....

  9. Observations of tidal flow, waves and drag within a fringing coastal mangrove forest in the Mekong delta

    Science.gov (United States)

    Mullarney, J. C.; Bryan, K. R.; Henderson, S. M.; Norris, B. K.; Vo Luong, H. P.

    2016-02-01

    In recent years attention has focused on the ability of mangroves to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks enhancing vegetative drag. However, field measurements within these dynamic environments are limited. We report on field observations from the seaward side of Cù Lao Dung Island (Soc Trang Province) in the Mekong Delta, Vietnam. The island encompasses two contrasting environments from a sandy, prograding flat with gentle topographic slope on the southwest side to a steep, eroding and muddy fringe region on the northeast side. The data capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows to an orientation perpendicular to the vegetated/unvegetated boundary. The balances governing the large scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. We find drag coefficients of 10-30 times greater than the usual values associated with bottom friction, with values particularly elevated in the regions of dense pneumatophores that are important during the early stages of the tidal cycle. The field observations are used in the set-up of a simple one-dimensional process model. The model predicts the movement of the tide across the vegetated flat, associated sediment transport and evolution of the across flat profile. Preliminary results indicate that mangrove profiles may evolve towards a close to linear shape in contrast to systems with temperate species or no vegetation.

  10. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    Science.gov (United States)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  11. New Analysis of Solute Drag in AA5754 by Precise Determination of Point Defect Generation and the Orowan Relation

    Science.gov (United States)

    Diak, Brad J.; Penlington, Alex; Saimoto, Shig

    Serrated deformation in Al-Mg alloys creates problems that affect consumer product acceptability. This effect is usually attributed to the Portevin-LeChâtelier effect. In this study the inverse PLC effect due to solute drag on moving dislocations is examined in AA5754. The drag mechanism is dependent on the diffusivity of the solute which is in-turn dependent on the point defect evolution during deformation. Experimental determination of the parabolic James-Barnett drag profile by strain rate change experiments indicates the peak stress is centered at 1.5×10-9m/s, which requires a mechanical formation energy for vacancies of 0.4eV/at. A new slip-based constitutive relation was used to determine the evolution of vacancy volume fraction with deformation with strain, which is greater than the volume fraction of vacancies predicted by the solute drag profile.

  12. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  13. Micrometry combined with profile mapping for the absolute measurement of Integrated Column Density (ICD) and for accurate X-ray mass attenuation coefficients using XERT

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. Tauhidul; Rae, Nicholas A.; Glover, Jack L.; Barnea, Zwi [School of Physics, University of Melbourne, Victoria 3010 (Australia); Chantler, Christopher T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-07-21

    Absolute values of the column densities [{rho}t]{sub c} of four gold foils were measured using micrometry combined with the 2D X-ray attenuation profile. The absolute calibration of [{rho}t]{sub c} was made with a reference foil and the [{rho}t]{sub c} of other foils were determined following the thickness transfer method. By this method, we obtain absolute calibration to 0.1% or better which was not possible using only the X-ray map of a single foil over its central region.

  14. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows

    Science.gov (United States)

    Ozel, Ali; Gu, Yile; Milioli, Christian C.; Kolehmainen, Jari; Sundaresan, Sankaran

    2017-10-01

    Euler-Lagrange simulations of gas-solid flows in unbounded domains have been performed to study sub-grid modeling of the filtered drag force for non-cohesive and cohesive particles. The filtered drag forces under various microstructures and flow conditions were analyzed in terms of various sub-grid quantities: the sub-grid drift velocity, which stems from the sub-grid correlation between the local fluid velocity and the local particle volume fraction, and the scalar variance of solid volume fraction, which is a measure to identify the degree of local inhomogeneity of volume fraction within a filter volume. The results show that the drift velocity and the scalar variance exert systematic effects on the filtered drag force. Effects of particle and domain sizes, gravitational accelerations, and mass loadings on the filtered drag are also studied, and it is shown that these effects can be captured by both sub-grid quantities. Additionally, the effect of cohesion force through the van der Waals interaction on the filtered drag force is investigated, and it is found that there is no significant difference on the dependence of the filtered drag coefficient of cohesive and non-cohesive particles on the sub-grid drift velocity or the scalar variance of solid volume fraction. The assessment of predictabilities of sub-grid quantities was performed by correlation coefficient analyses in a priori manner, and it is found that the drift velocity is superior. However, the drift velocity is not available in "coarse-grid" simulations and a specific closure is needed. A dynamic scale-similarity approach was used to model drift velocity but the predictability of that model is not entirely satisfactory. It is concluded that one must develop a more elaborate model for estimating the drift velocity in "coarse-grid" simulations.

  15. Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV

    Science.gov (United States)

    Terra, W.; Sciacchitano, A.; Scarano, F.

    2017-07-01

    A method is introduced to measure the aerodynamic drag of moving objects such as ground vehicles or athletes in speed sports. Experiments are conducted as proof-of-concept that yield the aerodynamic drag of a sphere towed through a square duct in stagnant air. The drag force is evaluated using large-scale tomographic PIV and invoking the time-average momentum equation within a control volume in a frame of reference moving with the object. The sphere with 0.1 m diameter moves at a velocity of 1.45 m/s, corresponding to a Reynolds number of 10,000. The measurements in the wake of the sphere are conducted at a rate of 500 Hz within a thin volume of approximately 3 × 40 × 40 cubic centimeters. Neutrally buoyant helium-filled soap bubbles are used as flow tracers. The terms composing the drag are related to the flow momentum, the pressure and the velocity fluctuations and they are separately evaluated. The momentum and pressure terms dominate the momentum budget in the near wake up to 1.3 diameters downstream of the model. The pressure term decays rapidly and vanishes within 5 diameters. The term due to velocity fluctuations contributes up to 10% to the drag. The measurements yield a relatively constant value of the drag coefficient starting from 2 diameters downstream of the sphere. At 7 diameters the measurement interval terminates due to the finite length of the duct. Error sources that need to be accounted for are the sphere support wake and blockage effects. The above findings can provide practical criteria for the drag evaluation of generic bluff objects with this measurement technique.

  16. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using x-ray computed tomography.

    Science.gov (United States)

    Marashdeh, M W; Bauk, S; Tajuddin, A A; Hashim, R

    2012-04-01

    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Easy to use program “Simkine3” for simulating kinetic profiles of multi-step chemical Systems and optimisation of predictable rate coefficients therein

    Directory of Open Access Journals (Sweden)

    S.B. Jonnalagadda

    2012-08-01

    Full Text Available ‘Simkine3’, a Delphi based software is developed to simulate the kinetic schemes of complex reaction mechanisms involving multiple sequential and competitive elementary steps for homogeneous and heterogeneous chemical reactions. Simkine3 is designed to translate the user specified mechanism into chemical first-order differential equations (ODEs and optimise the estimated rate constants in such a way that simulated curves match the experimental kinetic profiles. TLSoda which uses backward differentiation method is utilised to solve resulting ODEs and Downhill Simplex method is used to optimise the estimated rate constants in a robotic way. An online help file is developed using HelpScrible Demo to guide the users of Simkine3. The versatility of the software is demonstrated by simulating the complex reaction between methylene violet and acidic bromate, a reaction which exhibits complex nonlinear kinetics. The new software is validated after testing it on a 19-step intricate mechanism involving 15 different species. The kinetic profiles of multiple simulated curves, illustrating the effect of initial concentrations of bromate, and bromide were matched with the corresponding experimental curves.DOI: http://dx.doi.org/10.4314/bcse.v26i2.10

  18. FUSELAGE SHAPE OPTIMIZATION AIMED AT WING-FUSELAGE CONFIGURATION DRAG REDUCTION AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The problem of fuselage shape optimization of the wing-body configuration is considered in the following three formulations. In the first one, the angle of attack is fixed and equal to zero, the wing has a symmetric airfoil, and the fuse- lage is based on circular cross sections. In the second one, the fuselage cross sections are elliptical. In the third one, the angle of attack is varied, the lifting force coefficient is fixed, the wing is preliminary optimized, the fuselage is designed by the cross sections that consist of upper and lower half-ellipses with a possibility of a shift along vertical axis. The configu- ration volume, fuselage length, shape and position of the wing are fixed. The drag coefficient is the objective function. The optimization is carried out by the Indirect Optimization based on Self-Organization (IOSO technology. Aerodynamic coef- ficients are obtained from the solution of the RANS equations with SST turbulence model by the ANSYS CFX software on the structured multiblock meshes. The results obtained by the optimization are compared with the configuration that is de- signed by traditional means. The fuselage of this configuration has a cylindrical part in the area of the wing-fuselage con- nection and nose part of the von Karman’s ogive shape. The solution of the optimization problem in the first formulation reduces drag coefficient at zero angle of attack by approximately 3 %. The use of the fuselage with elliptical cross sections makes it possible to reduce drag coefficient at zero angle of attack by 9 %. The solution of the optimization problem in first two formulations reduces drag coefficient at the wide range of angles of attack. When the lifting coefficient is selected for the third problem formulation as constraint the drag reduction is about 7 %. Additional drag reduction of about 2,5 % is obtained by the use of the fuselage asymmetric relative to the horizontal plane. The optimal fuselage design has a

  19. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  20. Evaluation of Rock Joint Coefficients

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  1. Frictional drag reduction by bubble injection

    Science.gov (United States)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  2. Drag Reduction by Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Nils Beck

    2018-01-01

    Full Text Available The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF and Hybrid Laminar Flow Control (HLFC to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS solver. The effect on total aircraft drag is estimated for a state-of-the-art mid-range aircraft configuration using preliminary aircraft design methods, showing that total cruise drag can be halved compared to today’s turbulent aircraft.

  3. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Philip McDonald

    2017-11-01

    Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.

  4. Plasmon drag effect in metal nanostructures

    Science.gov (United States)

    Noginova, N.; Rono, V.; Bezares, F. J.; Caldwell, J. D.

    2013-11-01

    In order to better understand the mechanism of the photon drag effect in plasmonic nanostructures, photo-induced electric signals have been studied in gold and silver films and various plasmonic nanostructures. The spectral dependence of the effect points to the primary role of individual localized plasmon resonances in the photo-induced electromotive force (emf) generation responsible for the photon drag effect. We demonstrate the potential to engineer both the magnitude and polarity of the emf with nanoscale geometry and provide a simple model based on the intrinsic nonlinearity of metal in defining this effect.

  5. ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.

    Science.gov (United States)

    Schilling, G

    2000-09-01

    A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal.

  6. New drag laws for flapping flight

    Science.gov (United States)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  7. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  8. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  9. Parameters of Drag Reducing Polymers and Drag Reduction Performance in Single-Phase Water Flow

    Directory of Open Access Journals (Sweden)

    A. Abubakar

    2014-07-01

    Full Text Available This study presents experimental investigation about the effect of polymer parameters on the performance of the drag reducing polymers in single-phase water flowing in a horizontal pipe of 30.6 mm ID. Master solutions (1000 ppm of ten high-molecular weight polymers were injected at different flow rates to achieve polymer concentrations in the range of 2–40 ppm in the test section. The drag reduction increased with polymer concentration up to 10 ppm, above which it reached a plateau value. While the drag reduction at the plateau value increases with polymer molecular weight, the maximum drag reduction was not affected by the increase in polymer charge density up to 13%. For instance, the maximum drag reduction for anionic polymers with molecular weight 6–8 million Da. and charge density between 5 and 13% was around 60%, which decreased to around 38% for the polymer with charge density of 25%. Ionic polymers provided more drag reduction than nonionic ones. The overall conclusion is that drag reduction depends on polymer ability to form intermolecular associations and/or its flexibility, which can be enhanced by increasing molecular weight, decreasing charge density, and selecting smaller side groups in the main polymer backbone.

  10. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements

    Science.gov (United States)

    Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441

  11. Drag of a growing bubble at rectilinear accelerated ascension in pure liquids and binary solutions

    Directory of Open Access Journals (Sweden)

    Ašković Radomir

    2003-01-01

    Full Text Available The problem of predicting the drag coefficient of a growing bubble at rectilinear accelerated ascension in uniformly super­heated pure liquids and in binary solutions with a non-volatile solute at large Reynolds and Peclet numbers is discussed. In the case of pure liquids, the general solution for the drag coefficient of an accelerated growing bubble from its inception at the critical radius and through the surface-tension-, inertia-, and heat-diffusion-controlled regimes is established, as well as some necessary adaptations in the case of binary solutions with a non-volatile solute. Two particular limiting regimes in the case of pure liquids, inertia-controlled and heat-diffusion-controlled regimes, respectively, are analyzed in details, with satisfactory results. .

  12. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    Full Text Available A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  13. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    Science.gov (United States)

    Yang, Mingzhi; Du, Juntao; Li, Zhiwei; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  14. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows

    Science.gov (United States)

    Kametani, Yukinori; Kotake, Ayane; Fukagata, Koji; Tokugawa, Naoko

    2017-12-01

    Drag reduction capability of uniform blowing in supersonic turbulent boundary layers is investigated by means of direct numerical simulation of channel flows with uniform blowing on one side and suction on the other. The bulk Reynolds number based on the bulk density, the bulk mean velocity, the channel half-width, and the viscosity on the wall is set to Reb=3000 . The bulk Mach number is set at 0.8 and 1.5 to investigate a subsonic and a supersonic condition, respectively. The amplitude of the blowing or suction is set to be 0.1%, 0.3%, or 0.5% of the bulk mass flow rate. At both Mach numbers, modifications of the mean streamwise velocity profiles with blowing and suction are found to be similar to those in an incompressible turbulent channel flow: The skin friction is reduced on the blowing side, while it is increased on the suction side. As for the drag reducing effect of blowing, the drag reduction rate and net-energy saving rate are hardly affected by the Mach number, while the control gain is increased with the increase of Mach number due to the increased density near the wall. The compressibility effect of drag reduction and enhancement is also examined using the physical decomposition of the skin friction drag. A noticeable Mach number effect is found only for the contribution terms containing the viscosity, which is increased by the increased temperature.

  15. Active disturbance rejection control for drag tracking in mars entry guidance

    Science.gov (United States)

    Xia, Yuanqing; Chen, Rongfang; Pu, Fan; Dai, Li

    2014-03-01

    Future Mars missions will require precision landing capability, which motivates the need for entry closed-loop guidance schemes. A new tracking law - active disturbance rejection control (ADRC) - is presented in this paper. The ability of the ADRC tracking law to handle the atmospheric models and the vehicle’s aerodynamic errors is investigated. Monte Carlo simulations with dispersions in entry state variables, drag and lift coefficients, and atmospheric density show effectiveness of the proposed algorithm.

  16. Design of Low Drag Bluff Road Vehicles

    NARCIS (Netherlands)

    Van Raemdonck, G.M.R.

    2012-01-01

    Low drag bluff road vehicle design can be obtained effectively and efficiently with a three phase approach that uses numerical simulations, scaled wind tunnel experiments and full-scale road testing. By applying this generalised method, SideWings were developed for an improved trailer underbody flow

  17. Judicial civil procedure dragging out in Kosovo

    Directory of Open Access Journals (Sweden)

    Rrustem Qehaja

    2016-03-01

    Full Text Available This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it also challenges the general principles related to human rights and freedoms sanctioned not only by the highest legal act of the country, but also with international treaties. The article tends to give a reflection to the most important reasons that effect and influence in these dragging outs of civil procedure, as well as, at the same time aims to give the necessary alternatives to pass through them by identifying dilemmas within the judicial practice. As a result, the motives of this scientific paper are exactly focused at the same time on identifying the dilemmas, as well as presenting ideas, to overstep them, including the judicial practice of the European Court of Human Rights on Article 6 of the European Convention on Human Rights, by which it is given the possibility to offering people efficient and within a reasonable time legal protection of their rights before national courts. For these reasons, the paper elaborates this issue based on both, the legal theory and judicial practice.

  18. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  19. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...

  20. Progress in Frictional Drag Reduction Summer 1971 to Summer 1972

    Science.gov (United States)

    1973-01-01

    additives, indicates equally significant drag reduction. One high polymer that shows extreme promise as a drag reducing additive in blood flow is okra ...1972. 9 Lindeman, L. F., "Polymer Injection for Drag Reduction," M.S. thesis , Department of Civil Engineering, Colorado State University, Fort Collins...K.-S., "Measurement of Complex Viscosity in Solutions at Finite Shear Strains," Ph.D. Thesis , University of Missouri - Rolla, 1971. 16 6. Drag

  1. 14 CFR 25.697 - Lift and drag devices, controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by an...

  2. Drag Analysis from PIV Data in Speed Sports

    NARCIS (Netherlands)

    Terra, W.; Sciacchitano, A.; Scarano, F.

    2016-01-01

    Aerodynamic drag is computed from velocity measurements obtained with particle image velocimetry (PIV). This allows determining the drag force in combination with the visualization of the flow structures responsible for drag generation. Two experiments are conducted to illustrate the working

  3. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  4. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  5. Innovative Flow Control Concepts for Drag Reduction

    Science.gov (United States)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  6. Self-determined shapes and velocities of giant near-zero drag gas cavities

    KAUST Repository

    Vakarelski, Ivan Uriev

    2017-09-09

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than Embedded Image those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  7. Miniaturized rotating disc rheometer test for rapid screening of drag reducing marine coatings

    Science.gov (United States)

    Dennington, Simon; Mekkhunthod, Ponkrit; Rides, Martin; Gibbs, David; Salta, Maria; Stoodley, Victoria; Wharton, Julian; Stoodley, Paul

    2015-09-01

    Frictional drag from the submerged hull surface of a ship is a major component of the resistance experienced when moving through water. Techniques for measuring frictional drag on test surfaces include towing tanks, flow tunnels and rotating discs. These large-scale methods present practical difficulties that hinder their widespread adoption and they are not conducive to rapid throughput. In this study a miniaturized benchtop rotating disc method is described that uses test discs 25 mm in diameter. A highly sensitive analytical rheometer is used to measure the torque acting on the discs rotating in water. Frictional resistance changes are estimated by comparing momentum coefficients. Model rough surfaces were prepared by attaching different grades of sandpaper to the disc surface. Discs with experimental antifouling coatings applied were exposed in the marine environment for the accumulation of microbial fouling, and the rotor was capable of detecting the increased drag due to biofilm formation. The drag due to biofilm was related to an equivalent sand roughness.

  8. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  9. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Science.gov (United States)

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd

  10. Delta method, an empirical drag buildup technique

    Science.gov (United States)

    Feagin, R. C.; Morrison, W. D.

    1978-01-01

    An empirical drag correlation technique was developed from analysis of 19 subsonic and supersonic military aircraft and 15 advanced or supercritical airfoil configurations which can be applied in conceptual and advanced aircraft design activities. The Delta Method may be used for estimating the clean wing drag polar for cruise and maneuver conditions up to buffet onset, and to approximately Mach 2.0. This technique incorporates a unique capability of predicting the off-design performance of advanced or supercritical airfoil sections. The buffet onset limit may also be estimated. The method is applicable to wind tunnel models as well as to full scale configurations. This technique has been converted into a computer code for use on the IBM 360 and CDC 7600 computer facilities at NASA AMES. Results obtained using this method to predict known aircraft characteristics are good and agreement can be obtained within a degree of accuracy judged to be sufficient for the initial processes of preliminary design.

  11. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  12. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species

    DEFF Research Database (Denmark)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2017-01-01

    than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from...... mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared (Plecotus auritus) and one small-eared (Glossophaga soricina), flying freely in a wind tunnel. We find that the body drag of both species is higher...

  13. Stokes’ and Lamb's viscous drag laws

    Science.gov (United States)

    Eames, I.; Klettner, C. A.

    2017-03-01

    Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.

  14. Drag and Drop API v HTML5

    OpenAIRE

    BARABÁŠ, Vít

    2013-01-01

    The work (the bachelor´s thesis) deals with a new way of web application management via the "drag and drop" technique in the HTML5 programming language. The work is divided into two parts. The first part consists of DND API description in HTML5. The support analysis within common web browsers is included as a part of this description. The second, practical part of the thesis focuses on a concept and the following realisation of a photogallery using DND API.

  15. Optimal Projectile Shapes for Minimum Total Drag

    Science.gov (United States)

    1977-05-01

    distribltion UnlciI. I?, DIST RIBUION STATEMENT (0I the 4betrAVI M.4f*4 #A Dilo &O 1C It it*,ent~ Ifea He1.lot) ill SUPPLEMENTARY 40166 It. KtY WORDS...Exterior Ballistics Division. Released by: It. A. NIFMANN. Head Warf are Analysis Department Ui TABLE OF CONTENTS ACKNOWLED.IGUEMENT...I ANALYSIS ........................................... 2 DRAG..........................................- OP’TIMIZATION MI’TH

  16. Drag Reduction of a Turbulent Boundary Layer over an Oscillating Wall and Its Variation with Reynolds Number

    Directory of Open Access Journals (Sweden)

    Martin Skote

    2015-01-01

    Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.

  17. Granular drag and the kinetics of jamming

    Science.gov (United States)

    Brzinski, Theodore A., III

    The first part of this thesis focuses on the study of the force exerted by a granular packing on an intruder. During impact, this force can be described by the linear combination of an inertial drag and a rate-independent frictional force that is proportional to depth. We measure the torque acting on a rod rotated perpendicular to its axis in a granular bed at steady state, and demonstrate that the resisting force is of the same form, though smaller. We then alter the hydrostatic loading on the bed by generating a homogenized airflow through the bed, and show that for horizontal motion the frictional force is due to friction acting at gravity-loaded contacts. Next we directly measure the force acting on quasistatically, vertically lowered intruders under two sets of varied conditions. First we vary the shape of the projectile in order to alter the fraction of the projectile surface that moves parallel vs perpendicular to the medium, and find that the frictional force acts primarily normal to the intruder surface. Second, we alter the hydrostatic loading as above, and confirm that gravity-loading of the grains sets the magnitude of the resisting force for quasi-static vertical motion as well. Finally, we consider the case of impact onto wet grains. We conduct conventional impact experiments wherein a spherical projectile impacts onto a granular packing with a known impact speed. We vary the liquid, impact speed, and degree of saturation, and find that the penetration depth is decreased for all wetting fractions, and that the penetration depth has a non-monotonic dependence on liquid saturation. In the fully saturated case, we recover the same scaling of penetration depth with geometry, impact speed and packing density as in the dry case, though the penetrations are shallower, suggesting a hydrodynamic contribution to the net stopping force. The second part of this thesis focuses on the kinetics of the jamming transition. In particular, we observe a dispersion of

  18. Drag-Free Control and Drag Force Recovery of Small Satellites

    Science.gov (United States)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag

  19. A computational study of drag reduction and vortex shedding suppression of flow past a square cylinder in presence of small control cylinders

    Directory of Open Access Journals (Sweden)

    Shams-Ul. Islam

    2017-04-01

    Full Text Available This article presents a two-dimensional numerical study of the unsteady laminar flow from a square cylinder in presence of multiple small control cylinders. The cylinders are placed in an unconfined medium at low Reynolds numbers (Re = 100 and 160. Different flow phenomena are captured for the gap spacings (g = s/D, where s is the surface-to-surface distance between the main cylinder and small control cylinders and D is the size of the main cylinder between 0.25 – 3 and angle of attack (θ ranging from 300 to 1800. Numerical calculations are performed by using a lattice Boltzmann method. In this paper, the important flow physics of different observed flow patterns in terms of instantaneous vorticity contours visualization, time-trace analysis of drag and lift coefficients and power spectra analysis of lift coefficient are presented and discussed. Drag reduction and suppression of vortex shedding is also discussed in detail and compared with the available experimental and numerical results qualitatively as well as quantitatively. In addition, the mean drag coefficient, Strouhal number, root-mean-square values of the drag and lift coefficients are determined and compared with a single square cylinder without small control cylinders. We found that the drag is reduced 99.8% and 97.6% for (θ, g = (300, 3 at Re = 100 and 160, respectively.

  20. Comparison of Blade Element Momentum Theory to Experimental Data Using Experimental Lift, Drag, and Power Data

    Science.gov (United States)

    Nealon, Tara; Miller, Mark; Kiefer, Janik; Hultmark, Marcus

    2016-11-01

    Blade Element Momentum (BEM) codes have often been used to simulate the power output and loads on wind turbine blades without performing CFD. When computing the lift and drag forces on the blades, the coefficients of lift and drag are normally calculated by interpolating values from standard airfoil data based on the angle of attack. However, there are several empirical corrections that are needed. Due to a lack of empirical data to compare against, the accuracy of these corrections and BEM in general is still not well known. For this presentation, results from an in-house written BEM code computed using experimental lift and drag coefficient data for the airfoils of the V27 wind turbine will be presented. The data is gathered in Princeton University's High Reynolds Number Testing Facility (HRTF) at full scale Reynolds numbers and over a large range of angles of attack. The BEM results are compared to experimental data of the same wind turbine, conducted at full scale Reynolds number and TSR, also in the HRTF. Conclusions will be drawn about the accuracy of the BEM code, and the corrections, regarding the usage of standard airfoil data versus the experimental data, as well as future applications to potentially improve large-eddy simulations of wind turbines in a similar manner.

  1. Effects of Polymer Parameters on Drag Reduction.

    Science.gov (United States)

    Safieddine, Abbas Mohammad

    The effects of polymer parameters on fluid drag reduction using polyethylene oxide (PEO), polyacrylamide (PAM), guar gum (GG) and hydroxyethyl cellulose (HEC) were investigated. Due to the unavailability of high molecular weight (MW) water-soluble polymers having narrow molecular weight distribution (MWD), an aqueous preparative size exclusion chromatography (SEC) system capable of fractionating over wide MW ranges was constructed. An online low shear viscometer, coupled to the SEC, measured the instantaneous intrinsic viscosity of the eluting polymer solution and, therefore, served as a MW detector since Mark-Houwink "K" and "a" values for all four polymers were known. With the aid of the viscometer, the SEC system was calibrated. The preparative nature of the chromatography system allowed the collection of large volumes of nearly monodisperse fractions (MWD daltons. Also, the preparative SEC approach allowed drag reduction (DR) experiments using well-characterized, narrowly dispersed polymer solutions under controlled tube flow conditions. Correlations of drag reduction performance with primary polymer parameters (i.e., concentration, intrinsic viscosity ((eta)), volume fraction (c(eta)), number of chain links (N), and combinations thereof) were used to test the validity of several theoretical DR models. Walsh's energy model, as well as the Deborah argument, did not completely account for drag reduction behavior under all experimental conditions. Within each of the flexible or rigid polymer groups, the extensional viscosity model was successful in correlating c(eta) N with DR under all turbulent conditions. However, it failed to account for the differences in chemical structure between the two polymer groups. However, when the cellulosic repeat unit was used instead of the carbon-carbon bond as the chain link for the rigid polymers (GG and HEC), all DR versus c (eta) N curves under all turbulent conditions collapsed into a single function. This has been predicted

  2. Numerical and experimental investigations of drag force on scaled car model

    Directory of Open Access Journals (Sweden)

    Ponnusamy Nallusamy Selvaraju

    2016-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were involved to observe the aerodynamic characteristics of car model. The investigation of aerodynamic characteristics on car model were difficult by using wind tunnel. It provides more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the pressures on various ports over the car model were measured by using pressure scanner (64 bit channels. The drag force was calculated based on experimental and computational results. The realizable k-e model was employed to compute the aerodynamic drag and surface pressure distribution over a car model simulated at various wind velocity. The tetrahedron mesh approach was used to discretize the computational domain for accuracy. The computational results showed a good agreement with the experimental data and the results revealed that the induced aerodynamic drag determines the best car shape. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, re-circulation length, position of vortex core, and velocity profile in the wake were investigated by numerical analysis.

  3. Development of a New Drag Coefficient Model for Oil and Gas ...

    African Journals Online (AJOL)

    Multiphase flows involving suspensions of solid particles are frequently encountered in many industrial processes including oil & gas production. In order to transport solid entrained multiphase fluids, especially through a pipeline, the fluids must be capable of suspending the entrained solid particles to prevent solid ...

  4. development of a new drag coefficient model for oil and gas

    African Journals Online (AJOL)

    eobe

    Multiphase flows involving suspensions of solid particles are frequently encountered in many industrial processes are frequently ... movement thus, depends on the properties of the solids such as solids density, particle size and particle shape. The gravitational force causing the particle to ..... Analysis clearly showed that. 0.

  5. On the determination of the neutral drag coefficient in the convective boundary layer

    DEFF Research Database (Denmark)

    Grachev, A.A.; Fairall, C.W.; Larsen, Søren Ejling

    1998-01-01

    (TOGA COARE) and the San Clemente Ocean Probing Experiment (SCOPE)) and over land (during the BOREX-95 experiment) are used to illustrate the difference between the new and traditional formulations. Compared to the new approach, the traditional formulation strongly overestimates C-Dn and z(o) in the CBL...

  6. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small Unmanned Aircraft

    DEFF Research Database (Denmark)

    Sørensen, Kim Lynge; Blanke, Mogens; Johansen, Tor Arne

    2015-01-01

    This paper address the issue of structural change, caused by ice accretion, on UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for the identification of structural changes of fixed wing UAV airfoils. A structural analysis is performed on the nonlinear aircraft...

  7. Drag Coefficient Comparisons Between Observed and Model Simulated Directional Wave Spectra Under Hurricane Conditions

    Science.gov (United States)

    2016-04-19

    T G w W W 2 s During Hurricane Ivan (SSHS category 4–5 in the Caribbean Sea and Gulf of Mexico ) in 2004, detailed scanning radar altimeter...Sea and at its maximum intensity of category 5. The third set of measurements was done from 2030 to 2353 UTC on September 14 when Ivan en- tered the...Gulf of Mexico . The SRA measurements covered the re- gion within about 2 ° of the hurricane eye. The SRA scanned a radar beam across the aircraft ground

  8. Parametric approximation of airfoil aerodynamic coefficients at high angles of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Zahle, Frederik; Bak, Christian

    2014-01-01

    Three methods for estimating the lift and drag curves in the 360° angle of attack (α) range with harmonic approximation functions were analyzed in the present work. The first method assumes aerodynamic response of a flat plate, the second utilizes even sine and even cosine approximation functions...... for the estimation of the lift and drag coefficients, and by using four independent harmonic approximations for the estimation of the moment coefficient. Further, it was determined that between α equal to 160° and -160°, the aerodynamic coefficients may be obtained with computationally inexpensive steady two......-dimensional Computational Fluid Dynamics (CFD) computations. This was done by a comparison of the results obtained with 2D steady CFD with 3D unsteady CFD. In the present work, reference aerodynamic coefficients were used directly in this α region. Reference aerodynamic coefficients were also used directly in the α region...

  9. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  10. Boundary layer thickness effect on boattail drag

    Science.gov (United States)

    Blaha, B. J.; Chamberlain, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program was conducted to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  11. Bionic Research on Bird Feather for Drag Reduction

    OpenAIRE

    Beibei Feng; Darong Chen; Jiadao Wang; Xingtuan Yang

    2015-01-01

    To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously d...

  12. Numerical Study of the Generic Sports Utility Vehicle Design with a Drag Reduction Add-On Device

    Directory of Open Access Journals (Sweden)

    Shubham Singh

    2014-01-01

    Full Text Available CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.

  13. Drag Reduction Using Polysaccharides in a Taylor–Couette Flow

    Directory of Open Access Journals (Sweden)

    Pallavi Bhambri

    2017-12-01

    Full Text Available Three different polysaccharides, aloe vera, Tamarind powder and pineapple fibers, are utilized as drag reducing agents in a turbulent flow. Using a Taylor–Couette setup, consisting of a rotating inner cylinder, for measuring the drag reduction, a range of Reynolds numbers from 4 × 104 to 3 × 105 has been explored in this study. The results are in good agreement with previous studies on polysaccharides conducted in a pipe/channel flow and a maximum drag reduction of 35% has been observed. Further, novel additives such as cellulose nanocrystals (CNC, surfactants and CNC grafted with surfactants are also examined in this study for drag reduction. CNC due to its rigid rod structure reduced the drag by 30%. Surfactant, due to its unique micelle formation showed maximum drag reduction of 80% at low Re. Further, surfactant was grafted on CNC and was examined for drag reduction. However, drag reduction property of surfactant was observed to be significantly reduced after grafting on CNC. The effect of Reynolds number on drag reduction is studied for all the additives investigated in this study.

  14. Bionic Research on Bird Feather for Drag Reduction

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2015-02-01

    Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.

  15. On the backreaction of frame dragging

    CERN Document Server

    Herdeiro, Carlos A R; Warnick, Claude M

    2009-01-01

    The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J^{BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j^2>1, which is related to the behaviour of the ring angular velocity. Using the `gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in b...

  16. Near-hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction

    Science.gov (United States)

    Ichikawa, Y.; Yamamoto, K.; Yamamoto, M.; Motosuke, M.

    2017-09-01

    This study reports the estimation of drag reduction effect, which is obtained from slip flow measurement in hydrophobic microchannels by direct measurement of near-wall velocity distribution. To reveal laminar drag reduction effect of hydrophobic surfaces, it is necessary to investigate near-microstructured-surface flow. In this study, we employed a hydrophobic surface, which has longitudinal microribs and microgrooves oriented parallel to the water flow direction in a microchannel, and measured a near-microstructured-surface flow by astigmatism particle tracking velocimetry (APTV) that enables to obtain the three-dimensional and three-component velocity profile. From the flow measurement results, the curvature and profile of liquid-gas interfaces formed at the microgrooves were obtained. Additionally, since the APTV has the ability to measure the three-dimensional velocity distribution near interfaces, it is possible to determine the shear stress on the interfaces if the interface position is known. Moreover, the procedure about a numerical simulation, which used the experimental results as a boundary condition was examined, and its verification in terms of the drag reduction effect estimation was conducted by comparing with experimental results.

  17. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 3. Coefficient estimates of negative powers and inverse coefficients for certain starlike functions. MD FIROZ ALI A ... Keywords. Univalent; starlike; meromorphic functions; subordination; coefficient bounds; inverse coefficient bounds ...

  18. Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics

    Science.gov (United States)

    Herwig, Heinz; Schmandt, Bastian

    2013-10-01

    Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach.

  19. Enhancing Heat Transfer of Drag-Reducing Surfactant Solution by an HEV Static Mixer with Low Pressure Drop

    Directory of Open Access Journals (Sweden)

    Haifeng Shi

    2011-01-01

    Full Text Available A novel high-efficiency vortex (HEV static mixer was used to locally enhance the heat transfer coefficient of a drag-reducing fluid, Ethoquad O/12 (EO12 (3 mM with sodium salicylate (NaSal (5 mM. Significant enhancement of heat transfer coefficients was observed. The Nusselt numbers were three to five times those of normal drag-reducing flow without mixer and were close to those of water at high Reynolds number with only modest energy penalty. In contrast, a Helix static mixer increased Nusselt number slightly with very high pressure loss. A performance number was used for comparisons among the HEV static mixer, the Helix static mixer, and water without mixer. The HEV static mixer had a performance number comparable to that of water. The enhanced heat transfer by the HEV static mixer resulted from streamwise vortices generated by the inclined tabs, which increased the convective heat transfer in the radial direction.

  20. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Science.gov (United States)

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  1. Spin-transfer mechanism for magnon-drag thermopower

    NARCIS (Netherlands)

    Lucassen, M.E.|info:eu-repo/dai/nl/314406913; Wong, C.H.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Tserkovnyak, Y.

    2011-01-01

    We point out a relation between the dissipative spin-transfer-torque parameter β and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result, we estimate β in iron at low temperatures, where magnon drag is believed to be the dominant contribution to

  2. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Directory of Open Access Journals (Sweden)

    Gu Yunqing

    2017-01-01

    Full Text Available Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  3. 14 CFR 25.699 - Lift and drag device indicator.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699 Section 25.699 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of...

  4. Drag reduction via micro bubble injection in boundary layer of channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A. [Texas A and M Univ., Dept. of Nuclear Engineering, College Station, Texas (United States)

    2004-07-01

    Full text of publication follows:Methods to reduce the drag in turbulent flows have been carried out for the past several decades. Reducing skin friction has obvious advantages through improvements in fuel economy, range (as in case of commercial ships and aircraft) or in peak speed (desirable in military or racing applications) and for less impact on the environment due to less fuel consumption. Recently, the reduction of turbulent friction between a solid surface and fluid by adding drag reducing additives has received increasing attention for saving power and reducing the pollution. Polymers and surfactants injections, wall oscillations, traveling waves, blowing and suction, and micro-bubble injection are examples among active additives. Riblets are an example of passive techniques to achieve drag reduction. However, a consensus about understanding the mechanism that governs this phenomenon has not been reached. In this paper, an investigation of turbulent structure modification of fully developed channel flow by micro-bubble injection close to the upper wall was studied. Two-dimensional velocity components at Reynolds number of 5128 based on the half height of the channel and bulk velocity were measured. The particle image velocimetry technique was utilized to obtain the two-dimensional velocity fields of the fluid and the micro-bubbles. Micro-bubbles with an average diameter of 30 {mu}m were injected into the buffer layer. Various values of void fractions were used to evaluate the effects of micro-bubbles concentration on the drag reduction. Modifications in the length and time scales were detected by calculating two-point correlation coefficients. Streamline length and time scales were increased. On the contrary, the normal length and time scales were decreased with the increase of the drag reduction. The presence of the micro-bubbles with low local concentration of 4% achieved 40% drag reduction. A decrease in the Reynolds stresses were achieved as the void

  5. Improving the calculation of interdiffusion coefficients

    Science.gov (United States)

    Kapoor, Rakesh R.; Eagar, Thomas W.

    1990-12-01

    Least-squares spline interpolation techniques are reviewed and presented as a mathematical tool for noise reduction and interpolation of diffusion profiles. Numerically simulated diffusion profiles were interpolated using a sixth-order spline. The spline fit data were successfully used in conjunction with the Boltzmann-Matano treatment to compute the interdiffusion coefficient, demonstrating the usefulness of splines as a numerical tool for such calculations. Simulations conducted on noisy data indicate that the technique can extract the correct diffusivity data given compositional data that contain only three digits of information and are contaminated with a noise level of 0.001. Splines offer a reproducible and reliable alternative to graphical evaluation of the slope of a diffusion profile, which is used in the Boltzmann-Matano treatment. Hence, use of splines reduces the numerical errors associated with calculation of interdiffusion coefficients from raw diffusion profile data.

  6. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  7. Investigation of vegetation-induced drag parameterizations for natural and nature-based extreme events coastal protection in the Chesapeake Bay

    Science.gov (United States)

    Maldonado, S.; Suckale, J.; Ferreira, C.; Arkema, K.

    2016-12-01

    Increasing intensity and frequency of extreme meteorological events around the world highlight the need for resilient coastal defenses. For more than a century, it has been recognized that coastal ecosystems such as marshes and mangroves may mitigate the damage caused by natural hazards such as storms. Aquatic vegetation can potentially attenuate waves and currents through drag forces, with strong implications for sediment transport processes and hence morphological evolution. However, although observations exist that support such a theory, an accurate quantification of the protective role of coastal ecosystems remains a standing challenge for the scientific community, which manifests itself in the large, diverse set of available empirical expressions for parameterizing the fluid-vegetation interaction. We propose a comparison of different state-of-the-art parameterizations for the effect of vegetation on hydrodynamics (particularly, the drag coefficient), with varying degrees of complexity and number of required input variables. The inter-comparison of such alternatives, when validated against field data, can lead to a modeling framework that optimizes the trade-offs between complexity, input requirements and uncertainty in the results. We focus our numerical study on storm events in the marshes and wetlands of Chesapeake Bay. We simulate the hydrodynamics via the Non-Linear Shallow Water Equations, which are in turn solved numerically through a Finite Volume scheme. The simulations are complemented by an ongoing 2-years field campaign, where we continuously collect hydrodynamic measurements such as free surface elevation and vertical velocity profiles, biophysical characteristics of the vegetation and high-resolution topo-bathymetric data of the site. Field measurements are used for calibration and validation purposes. We also investigate some implications on sediment transport processes. We expect that results from our study can support policy makers and

  8. Drag reduction of a miniature boat with superhydrophobic grille bottom

    Directory of Open Access Journals (Sweden)

    C. G. Jiang

    2011-09-01

    Full Text Available Water strider can slide on water surface with a very small drag force using its long superhydrophobic legs. Inspired by the water strider legs, we report here a novel design of superhydrophobic grille structure for drag reduction. A miniature boat covered with a superhydrophobic grille at the bottom is fabricated and compared with a normal boat with flat bottom in the same size, and a significant drag reduction is obtained by the former. Experiments also reveal that the grille structure exhibits a remarkable loading capacity supplied by the water surface tension. It is found that the optimal design of such a miniature boat with a considerable loading capacity and a small drag can be realized through controlling the length and the spacing of the grilles. This study shows a new idea to reduce the fluid drag in microfluidics, micro electromechanical system and other engineering areas.

  9. The Reduction in Drag of a Forward-sloping Windshield

    Science.gov (United States)

    Jacobs, Eastman N

    1933-01-01

    This paper gives results of a short investigation of the drag of a forward-sloping closed-cabin windshield. The drag of the windshield in both the original and a final modified form was determined from tests in the variable-density wind tunnel. The final form of the windshield was arrived at by modifying the original as the result of flow observations in the N.A.C.A. smoke tunnel. The investigation studied the utility of the N.A.C.A. smoke tunnel as applied to reducing the drag of objects for which the full dynamic scale could not be approached in the smoke tunnel, but designers should find the results of the flow observations and drag measurements of value. They show that most of the large drag added by the original windshield is eliminated by the modification of the windshield to the final form.

  10. Experiment Evaluation of Skin Friction Drag by Surface Tailoring

    Science.gov (United States)

    Manigandan, S.; Gopal krishna, K.; Gagan Kumar, K.; Gunasekar, P.; Nithya, S.

    2017-08-01

    Reduction of drag is an important role of aerodynamic specialist in real time world. The performance of forward moving object improved when the drag is reduced. Skin friction drag caused when the fluid tending to shear along the surface of the body and it is dependent on energy expenditure. Initial research concluded that nearly 20 to 40% of total drag is skin friction drag, based on flight forward velocity. This means a lot of fuel burned. In this paper we investigate a methodology to reduce the skin friction drag by implementing different kinds of exterior treatments. The ideology inspired from the world fastest moving oceanic creature. Structures are fabricated based on the replica of scales of the oceanic creature. The outer skin of the aerofoil NACA0012 is modified like shark scales. Then it is tested using open type sub sonic wind tunnel. In addition to that, the leading edge thickness effect also studied. The turbulent flow phenomenon is validated at different velocities and compared with numerical results using STAR CCM+. From the plots and graphical results, it is found that the skin friction drag is generated less due to reduction of transverse shear stress present in turbulent flow and skin friction drag depends on boundary layer thickness and on the percentage of chord of flow separation. In addition to this, the result delivers that the ordinary polished surface produces more drag than the modified scales. The outlook of this technology is excrescence for different applications. This open section wind tunnel testing produces 10-15% reduction in drag and can be turn to high values when the experiment is conducted in closed section wind tunnel with real time atmospheric conditions, which can be done as a future work.

  11. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    consequent breaking of short-lived, sail-like pieces of the water-surface film - "bags". On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events: their number and statistical distribution of geometrical parameters depending on wind speed. Basing on the developed statistics, we estimated the surface stress caused by bags as the average sum of stresses caused by individual bags depending on their eometrical parameters. The resulting stress is subjected to counteracting impacts of the increasing wind speed: the increasing number of bags, and their decreasing sizes and life times and the balance yields a peaking dependence of the bag resistance on the wind speed: the share of bag-stress peaks at U10  35 m/s and then reduces. Peaking of surface stress associated with the "bag-breakup" explains seemingly paradoxical non-monotonous wind-dependence of surface drag coefficient peaking at winds about 35 m/s. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025, 15-35-20953) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 Collaborative Project No. 612610.

  12. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Science.gov (United States)

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  13. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  14. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    Science.gov (United States)

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  15. Design and wind tunnel experimentation of a variable blade drag type vertical axis wind turbine

    Science.gov (United States)

    Mays, Samuel; Bahr, Behnam

    2012-04-01

    The primary purpose of this research effort is to propose a novel efficiency boosting design feature in a drag type vertical axis wind turbine (VAWT), explore practicality through design and fabrication, and test the viability of the design through wind tunnel experiments. Using adaptive control surface design and an improved blade shape can be very useful in harnessing the wind's energy in low wind speed areas. The new design is based on a series of smaller blade elements to make any shape, which changes to reduce a negative resistance as it rotates and thus maximizing the useful torque. As such, these blades were designed into a modified Savonius wind turbine with the goal of improving upon the power coefficient produced by a more conventional design. The experiment yielded some positive observations with regard to starting characteristics. Torque and angular velocity data was recorded for both the conventional configuration and the newly built configuration and the torque and power coefficient results were compared.

  16. Drag reduction for the combination of spike and counterflow jet on blunt body at high Mach number flow

    Science.gov (United States)

    Eghlima, Z.; Mansour, K.

    2017-04-01

    Drag reduction at high speed flows around blunt bodies is one of the major challenges in the field of aerodynamics. Using of spikes and counterflow jets each of them separately for reducing of drag force is well known. The present work is description of flow field around a hemispherical nose cylinder with a new combination of spike and counterflow jet at free stream of Mach number of 6.The air gas was injected through the nozzle at the nose of the hemispherical model at sonic speed. In this numerical analysis, axisymmetric Reynolds-averaged Navier-Stokes equations was solved by k-ω (SST) turbulence model. The results were validated with experimental results for spiked body without jet condition. Then the results presented for different lengths of spike and different pressures of counterflow jets. The results show a significant reduction in the drag coefficient about 86-90% compared to the spherical cylinder model without jet and spike for practical models (L/D=1.5 and 2). Furthermore also our results indicate that the drag reduction is increased even more with increasing of the length of the spike.

  17. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2.

    Science.gov (United States)

    Takahashi, H; Okazaki, R; Ishiwata, S; Taniguchi, H; Okutani, A; Hagiwara, M; Terasaki, I

    2016-09-06

    Phonon transport is an essential property of thermoelectric materials. Although the phonon carries heat, which reduces the thermoelectric efficiency, it contributes positively to the Seebeck coefficient S through the phonon-drag effect, as typified by the high-purity semiconductors, which show fairly large S at cryogenic temperatures. Although such a large S is attractive in terms of Peltier cooling, a clear guiding principle for designing thermoelectric materials enriched by the phonon-drag effect remains to be established. Here we demonstrate that a correlated semiconductor, FeSb2, is a promising thermoelectric material featuring quasi-ballistic phonons dragging d electrons with large effective mass. By changing the sample size within the sub-millimetre order for high-purity single crystals, we succeed in substantially increasing S to as much as -27 mV K(-1) at low temperatures. Our results exemplify a strategy for exploring phonon-drag-based thermoelectric materials, the performance of which can be maximized by combining heavy electrons with ballistic phonons.

  18. The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, K. J.

    2016-12-01

    The hydrodynamic drag of towed fishing gears leads to direct impacts on the benthic environment, and can play a major role in the overall economic efficiency of the fishing operation and emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we investigate some of the underpinning processes which govern these issues and make direct hydrodynamic drag measurements and calculate the hydrodynamic drag coefficients for a range of well-defined gear components that, when fished, are in contact with the seabed. We measure the concentration and particle size distribution of the sediment mobilised into the water column in the wake of these gear elements, at a range of towing speeds, and demonstrate that as the hydrodynamic drag increases the amount of sediment mobilised also increases. We also vary the weight of the elements and show that this does not influence the amount of sediment put into the water column. These results provide a better understanding of the physical and mechanical processes that take place when a towed fishing gear interacts with the seabed. They will permit the development of more fuel efficient gears and gears of reduced benthic impact and will improve the empirical modelling of the sediment mobilised into the turbulent wake behind towed fishing gears which will lead to better assessments of the environmental and ecological impact of fishing gears.

  19. Gas Drag on a Rotating Body with Gravity

    OpenAIRE

    Hidenori, TAKEDA; Yoshitsugu, NAKAGAWA; Department of Aeronautics and Astronautics, Faculty of Engineering Kyoto University; Department of Earth and Planetary Sciences, Faculty of Science Kobe University

    2000-01-01

    In growth processes of planetesimals and protoplanets, the gas drag on them plays important roles. It is interesting to study the gas flows around rotating celestial bodies with gravity, and it is important to evaluate the gas drag on those bodies from the viewpoint of planetary cosmogony. In order to understand the effects of the rotation and the gravity of such bodies on the gas drag and also to observe lift and torque, we performed three-dimensional numerical simulations for the flows arou...

  20. Surface modification of clutch plates to reduce disengaged drag torque

    Science.gov (United States)

    Aphale, Chinar R.

    2005-11-01

    Viscous drag torque in disengaged clutches is a significant source of power loss in modern transportation. The main way to reduce this drag torque is to introduce air between the plates when disengaged without reducing the transmission fluid flow eventually needed for reengagement. Six different groove patterns are tested experimentally to determine which have the lowest drag characteristics. Our computations using Fluent showed that the contact angle made by oil with the stationary plate is critical in determining aeration initiation. Experiments coating the stationary plate with an oleophobic substance like Teflon, confirmed these simulations. We will show torque comparisons and visualization through a quartz disk acting as one of the clutch plates.

  1. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1998-01-01

    lattice imperfections or electronic excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free path l(ph) smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(l(ph)/d) over many orders of magnitude of the layer separation......We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...

  2. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Qasim

    2012-04-01

    Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane

  3. Drag Reduction Properties of Nanofluids in Microchannels

    Directory of Open Access Journals (Sweden)

    H.A. Abdulbari

    2015-12-01

    Full Text Available An experimental investigation of the drag reduction (DR individualities in different sized micro channels was carried out with nanopowder additives (NAs (bismuth(III oxide, iron(II/III oxide, silica, and titanium(IV oxide water suspensions/fluids. The primary objective was to evaluate the effects of various concentrations of NAs with different microchannel sizes (50, 100, and 200 µm on the pressure drop of a system in a single phase. A critical concentration was observed with all the NAs, above which increasing the concentration was not effective. Based on the experimental results, the optimum DR percentages were calculated. The optimum percentages were found to be as follows: bismuth III oxides: ~65% DR, 200 ppm and a microchannel size of 100 µm; iron II/III oxides: ~57% DR, 300 ppm, and a microchannel size of 50 µm; titanium IV oxides: ~57% DR, 200 ppm, and a microchannel size of 50 µm, and silica: 55% DR, 200 ppm, and a microchannel size of 50 µm.

  4. Turbulent drag reduction through oscillating discs

    CERN Document Server

    Wise, Daniel J

    2014-01-01

    The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...

  5. The 'W' prawn-trawl with emphasised drag-force transfer to its centre line to reduce overall system drag.

    Directory of Open Access Journals (Sweden)

    Cheslav Balash

    Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.

  6. Cg/Stability Map for the Reference H Cycle 3 Supersonic Transport Concept Along the High Speed Research Baseline Mission Profile

    Science.gov (United States)

    Giesy, Daniel P.; Christhilf, David M.

    1999-01-01

    A comparison is made between the results of trimming a High Speed Civil Transport (HSCT) concept along a reference mission profile using two trim modes. One mode uses the stabilator. The other mode uses fore and aft placement of the center of gravity. A comparison is make of the throttle settings (cruise segments) or the total acceleration (ascent and descent segments) and of the drag coefficient. The comparative stability of trimming using the two modes is also assessed by comparing the stability margins and the placement of the lateral and longitudinal eigenvalues.

  7. Boundary layer thickness effect on boattail drag. [wind tunnel tests for drag reduction

    Science.gov (United States)

    Blaha, B. J.; Chamberlin, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program has been conducted at the NASA Lewis Research Center, to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  8. Dizziness Can Be a Drag: Coping with Balance Disorders

    Science.gov (United States)

    ... Issues Subscribe August 2012 Print this issue Dizziness Can Be a Drag Coping with Balance Disorders Send ... enough to send them to a doctor. Dizziness can range from feeling lightheaded to woozy to disoriented. ...

  9. Drag Force in a Gas Fluidized Granular Bed

    Science.gov (United States)

    Brzinski, T. A.; Durian, D. J.

    2008-03-01

    We use a rheometer to measure the torque acting on a rotating bar in a bed of gas-fluidized glass beads. We vary rotation rate from .001-10rps, vary depth from 1-10 cm, and increase the fluidizing gas flow from no flow well into the fluidized regime. We observe that at high rotation rates the drag is roughly proportional to velocity squared. At low rates we can rescale the measured torque by depth, and observe a collapse of the data. These results agree with the predictions of a granular drag force model which has proven effective in predicting granular impact dynamics. The model consists of an inertial drag term, which is depth-independent and scales as velocity squared, and a frictional drag term, which is independent of rate and varies linearly with depth. We find, as expected, that while the frictional term is airflow-dependent the inertial term is uncoupled from the fluidization.

  10. Rotating cylinder drag balance with application to riblets

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T.; Joseph, D. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Aerospace Engineering and Mechanics

    2000-09-01

    Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5

  11. Experimental study of drag reduction in flumes and spillway tunnels

    Directory of Open Access Journals (Sweden)

    Ying-kui Wang

    2010-06-01

    Full Text Available Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques. Two drag reduction techniques were adopted in the experiments: polymer addition and coating. The drag reduction effect of a polyacrylamide (PAM solution and dimethyl silicone oil coating were studied in the flume model experiments, and the results were analyzed. Experiments were then carried out with a model of the Xiluodu Hydropower Station, the second largest dam in China. In order to reduce the resistance, the spillway tunnels were internally coated with dimethyl silicone oil. This is the first time that these drag reduction techniques have been applied to so large a hydraulic model. The experimental results show that the coating technique can effectively increase flood discharge. The outlet velocity and the jet trajectory distance are also increased, which enhances the energy dissipation of the spillway tunnel.

  12. Prestarlike functions with negative coefficients

    Directory of Open Access Journals (Sweden)

    H. Silverman

    1979-01-01

    Full Text Available The extreme points for prestarlike functions having negative coefficients are determined. Coefficient, distortion and radii of univalence, starlikeness, and convexity theorems are also obtained.

  13. Frame dragging in black hole-pulsar binaries

    OpenAIRE

    Wex, N.

    1999-01-01

    The discovery of frame-dragging effects in binary pulsar timing experiments requires a compact companion with sufficiently large spin. A pulsar orbiting a fast rotating black hole could provide an appropriate test system. In this paper we address questions concerning the identification of a black hole companion in such a system, the measurability of the frame dragging caused by the rotation of the black hole, and the measurability of the quadrupole moment, which would prove the presence of a ...

  14. Sensitivity analysis of factors affecting torque and drag modelling

    OpenAIRE

    Hashmi, Muhammad Jahanzeb

    2014-01-01

    Master's thesis in Petroleum engineering *KAR OK KONF 2016* As the modern day extended reached wells are getting longer and more complex, the torque and drag is one of the restraining aspects for achieving the target depth. Torque and drag becomes a precarious issue, for example it can be difficult to land the long completion string. Therefore, understanding the friction in the wellbore and how it affects hook load and torque is essential for well path design in planning phase as well ...

  15. Drag force in a charged N = 4 SYM plasma

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Autonoma de Mexico, Apdo. Postal 70-543, D.F. 04510 (Mexico)

    2006-11-15

    Following recent developments, we employ the AdS/CFT correspondence to determine the drag force exerted on an external quark that moves through an N = 4 super-Yang-Mills plasma with a non-zero R-charge density (or, equivalently, a non-zero chemical potential). We find that the drag force is larger than in the case where the plasma is neutral, but the dependence on the charge is non-monotonic.

  16. Progress towards a Drag-free SmallSat

    Science.gov (United States)

    Saraf, Shailendhar

    The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.

  17. Low Cost, Low Profile Steerable SATCOM Antenna Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The small size of Unmanned Aerial Vehicle (UAV) platforms along with the need to reduce drag to increase flight time creates a need for low-profile antennas. The...

  18. Experimental evaluation of the drag torque, drag force and Magnus force acting on a rotating prolate spheroid

    OpenAIRE

    Lukerchenko, Nikolay

    2010-01-01

    The drag torque, drag force and Magnus force acting on a spheroid rotating around its axis of symmetry and moving perpendicularly to this axis in initially quiescent water were studied using experimental data and numerical simulation. The prolate spheroid with ratio of the axes 4/3 was speeded up in special device, which ensured the required rotational and translational velocity in the given plane. A video system was used to record the spheroid motion in water. Using the video records the sph...

  19. A concept design of three rudders-shaped like body in columns for low-drag USV

    Science.gov (United States)

    Azzeri, M. N.; Adnan, F. A.; Adi, M.; Zain, M. Z. Md

    2016-06-01

    This paper presented a new design for the unmanned surface vessel (USV) platform with a self-manoeuvring system which is capable of collecting the same data as a hydrography boat. This platform was designed with three hulls that were placed in triangle position. The hulls designed were in the form of rudders-shape and were vertically placed as a slender body shape using NACA 64-0012 profile. This provides the USV with low-drag characteristic. The application of stability and resistance theories investigated the effect of the configuration position of the three hulls for this platform. The results revealed that a larger configuration distance between the three hulls will lead to a reduction in resistance and the platform will be in highly stable condition. The relationships derived from these findings should produce a stable and low-drag platform to accomplish the design concept of three rudders-shaped like body in columns for low-drag USV. This concept may help us to accomplish the design requirements that are related to low-drag and minimum power operation.

  20. Prediction of drag reduction performance of actual L-shaped riblets with a modified k-{epsilon} model

    Energy Technology Data Exchange (ETDEWEB)

    Myong, H.K. [Kookmin University, Seoul (Korea, Republic of)

    1998-10-01

    A low-Reynolds-number k-{epsilon} turbulence model is applied to predict drag reduction performance for actual L-shaped (blade-type) riblets with finite-thickness in fully-developed flows between infinite parallel planes. The present turbulence model is a modified version of the Launder & Sharma`s k-{epsilon} model (LS model), in which the gradient production term in {epsilon}-equation is modeled to have only the normal derivative terms. The present predictions for drag reduction behavior such as the maximum drag reduction and effects of riblets on turbulence quantities are in good agreement with both the experiments and the recent DNS results: differences in the mean velocity profile and turbulent quantities are found to be limited to the riblet cavity region. Turbulence quantities are also reduced in drag-reducing configurations. Possible shortcomings in the present model using an isotropic turbulent viscosity are also discussed particularly with reference to the absence of any turbulence-driven secondary motions. (author). 14 refs., 9 figs.

  1. Modelling the effect of changing design fineness ratio of an airship on its aerodynamic lift and drag performance

    Science.gov (United States)

    Jalasabri, J.; Romli, F. I.; Harmin, M. Y.

    2017-12-01

    In developing successful airship designs, it is important to fully understand the effect of the design on the performance of the airship. The aim of this research work is to establish the trend for effects of design fineness ratio of an airship towards its aerodynamic performance. An approximate computer-aided design (CAD) model of the Atlant-100 airship is constructed using CATIA software and it is applied in the computational fluid dynamics (CFD) simulation analysis using Star-CCM+ software. In total, 36 simulation runs are executed with different combinations of values for design fineness ratio, altitude and velocity. The obtained simulation results are analyzed using MINITAB to capture the effects relationship on lift and drag coefficients. Based on the results, it is concluded that the design fineness ratio does have a significant impact on the generated aerodynamic lift and drag forces on the airship.

  2. Nation Drag: Uses of the Exotic

    Directory of Open Access Journals (Sweden)

    Micol Seigel

    2009-02-01

    Full Text Available In Uneven Encounters, the forthcoming book from which this article is excerpted, Micol Seigel chronicles the exchange of popular culture between Brazil and the United States in the years between the World Wars, and she demonstrates how that exchange affected ideas of race and nation in both countries. From Americans interpreting advertisements for Brazilian coffee or dancing the Brazilian maxixe, to Rio musicians embracing the “foreign” qualities of jazz, Seigel traces a lively, cultural back-and-forth. Along the way, she shows how race and nation are constructed together, by both non-elites and elites, and gleaned from global cultural and intellectual currents as well as local, regional, and national ones. Seigel explores the circulation of images of Brazilian coffee and of maxixe in the United States during the period just after the imperial expansions of the early twentieth century. Exoticist interpretations structured North Americans’ paradoxical sense of self as productive “consumer citizens.” Some people, however, could not simply assume the privileges of citizenship. In their struggles against racism, Afro-descended citizens living in the cities of Rio de Janeiro, São Paulo, New York, and Chicago encountered images and notions of each other, and found them useful. Seigel introduces readers to cosmopolitan Afro-Brazilians and African Americans who rarely traveled far but who absorbed ideas from abroad nonetheless. African American vaudeville artists saw the utility of pretending to “be” Brazilian to cross the color line on stage. Putting on “nation drag,” they passed not from one race to another but out of familiar racial categories entirely. Afro-Brazilian journalists reported intensively on foreign, particularly North American, news and eventually entered into conversation with the U.S. black press in a collaborative but still conflictual dialogue. Seigel suggests that projects comparing U.S. and Brazilian racial

  3. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...... behaviors, noise emission as well as wind turbine service life. To show the performance of the new design technique, a new airfoil with relative thickness of 18% is designed. Comparisons with a wind turbine airfoil (NACA 63418) at Re=2×106 and Re=6×106 for free and fixed transitions show that the new...... airfoil has a higher power efficiency, better designed lift at off-design condition, better stall behavior, less sensitivity to leading edge roughness and lower noise emission. © 2010 Journal of Mechanical Engineering....

  4. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  5. The Overall Drag Losses For A Combination of Bodies

    Directory of Open Access Journals (Sweden)

    Sabah Al-Janabi

    2013-05-01

    Full Text Available The objective of this work is to obtain better understanding of the flow over a combination of bluff bodies in close enough proximity to strongly interact with each other. This interaction is often beneficial in that the drag of the overall system is reduced. Proto-types for this problem come from tractor- trailer and missiles, and from various add-on devices designed to reduce their drag. Thus, an experimental investigation was carried out by placing  conical frontal bodies having a base diameter of 0.65 cylinder diameter with different vertex angles (30°, 50°, 70°, and 90°. It was found that, the bluffer cone with 90° vertex angle gives the best minimum drag, which is 31% lower than the drag of the isolated cylinder. Also an interesting phenomenon was observed in that, the minimum drags for all combinations are obtained at the same gap ratio (i.e.at g/d2= 0.365.

  6. Why fibers are better turbulent drag reducing agents than polymers

    Science.gov (United States)

    Boelens, Arnout; Muthukumar, Murugappan

    2016-11-01

    It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.

  7. Measuring the Coefficient of Restitution and More: A Simple Experiment to Promote Students' Critical Thinking and Autonomous Work

    Science.gov (United States)

    González, Manuel Á.; González, Miguel Á.; Vegas, Jesús; Llamas, César

    2017-01-01

    A simple experiment on the determination of the coefficient of restitution of different materials is taken as the basis of an extendable work that can be done by students in an autonomous way. On the whole, the work described in this paper would involve concepts of kinematics, materials science, air drag and buoyancy, and would help students to…

  8. Particle drag history in a subcritical post-shock flow - data analysis method and uncertainty

    Science.gov (United States)

    Ding, Liuyang; Bordoloi, Ankur; Adrian, Ronald; Prestridge, Kathy; Arizona State University Team; Los Alamos National Laboratory Team

    2017-11-01

    A novel data analysis method for measuring particle drag in an 8-pulse particle tracking velocimetry-accelerometry (PTVA) experiment is described. We represented the particle drag history, CD(t) , using polynomials up to the third order. An analytical model for continuous particle position history was derived by integrating an equation relating CD(t) with particle velocity and acceleration. The coefficients of CD(t) were then calculated by fitting the position history model to eight measured particle locations in the sense of least squares. A preliminary test with experimental data showed that the new method yielded physically more reasonable particle velocity and acceleration history compared to conventionally adopted polynomial fitting. To fully assess and optimize the performance of the new method, we performed a PTVA simulation by assuming a ground truth of particle motion based on an ensemble of experimental data. The results indicated a significant reduction in the RMS error of CD. We also found that for particle locating noise between 0.1 and 3 pixels, a range encountered in our experiment, the lowest RMS error was achieved by using the quadratic CD(t) model. Furthermore, we will also discuss the optimization of the pulse timing configuration.

  9. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    Science.gov (United States)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  10. Differential Drag Analysis to Infer the Geometrical Configuration of a Cubesat

    Science.gov (United States)

    Bussy-Virat, C.; Ridley, A. J.; Cutler, J.; Sharma, S.; Judd, E.

    2016-12-01

    On May 16th, 2016, the Miniature X-ray Solar Spectrometer (MinXSS) and the CubeSat investigating Atmospheric Density Response to Extreme driving (CADRE) were deployed from the International Space Station. While communication with MinXSS was quickly established, it has been impossible to interact with CADRE thus far. A likely reason could be that its solar panels did not open, preventing the antenna from fully functioning and eliminating communication with the ground stations. An orbit propagator that was developed for mission design and analysis was used to model the trajectories of the satellites. By comparing the drag accelerations on the two CubeSats, we are attempting to infer the number of solar panels that CADRE deployed. Ensemble simulations allow the modeling of uncertainties on its attitude, as it is likely to tumble if no solar panel was deployed. This technique introduces many challenges, as there are many unknowns, including the drag coefficient, the attitude, and the thermospheric density. We present results of this study, as well as these challenges that were encountered.

  11. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  12. On the energy economics of air lubrication drag reduction

    Directory of Open Access Journals (Sweden)

    Simo A. Mäkiharju

    2012-12-01

    Full Text Available Air lubrication techniques for frictional drag reduction on ships have been proposed by numerous researchers since the 19th century. However, these techniques have not been widely adopted as questions persist about their drag reduction performance beyond the laboratory, as well as energy and economic cost-benefit. This paper draws on data from the literature to consider the suitability of air lubrication for large ocean going and U.S. Great Lakes ships, by establishing the basic energy economic calculations and presenting results for a hypothetical air lubricated ship. All the assumptions made in the course of the analysis are clearly stated so that they can be refined when considering application of air lubrication to a specific ship. The analysis suggests that, if successfully implemented, both air layer and partial cavity drag reduction could lead to net energy savings of 10 to 20%, with corresponding reductions in emissions.

  13. Separability of drag and thrust in undulatory animals and machines

    CERN Document Server

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal- istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation fram...

  14. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  15. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  16. A Novel Method to Determine the Hydrodynamic Coefficients of an Eyeball ROV

    Science.gov (United States)

    Yh, Eng; Ws, Lau; Low, E.; Ggl, Seet; Cs, Chin

    2009-01-01

    A good dynamics model is essential and critical for the successful design of navigation and control system of an underwater vehicle. However, it is difficult to determine from the hydrodynamic forces, the inertial added mass terms and the drag coefficients. In this paper, a new experimental method has been used to find the hydrodynamic forces for the ROV II, a remotely operated underwater vehicle. The proposed method is based on the classical free decay test, but with the spring oscillation replaced by a pendulum motion. The experiment results determined from the free decay test of a scaled model compared well with the simulation results obtained from well-established computational fluid dynamics (CFD) program. Thus, the proposed approach can be used to find the added mass and drag coefficients for other underwater vehicles.

  17. A Novel Method to Determine the Hydrodynamic Coefficients of an Eyeball ROV

    Energy Technology Data Exchange (ETDEWEB)

    Yh, Eng; Ws, Lau; Low, E.; Ggl, Seet; Cs, Chin [Robotic Research Center, School of Mechanical & Aerospace Engineering (MAE), Nanyang Technological University, 50 Nanyang Ave, 639798 Singapore (Singapore)

    2009-01-12

    A good dynamics model is essential and critical for the successful design of navigation and control system of an underwater vehicle. However, it is difficult to determine from the hydrodynamic forces, the inertial added mass terms and the drag coefficients. In this paper, a new experimental method has been used to find the hydrodynamic forces for the ROV II, a remotely operated underwater vehicle. The proposed method is based on the classical free decay test, but with the spring oscillation replaced by a pendulum motion. The experiment results determined from the free decay test of a scaled model compared well with the simulation results obtained from well‐established computational fluid dynamics (CFD) program. Thus, the proposed approach can be used to find the added mass and drag coefficients for other underwater vehicles.

  18. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    Science.gov (United States)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  19. On the Kendall Correlation Coefficient

    OpenAIRE

    Stepanov, Alexei

    2015-01-01

    In the present paper, we first discuss the Kendall rank correlation coefficient. In continuous case, we define the Kendall rank correlation coefficient in terms of the concomitants of order statistics, find the expected value of the Kendall rank correlation coefficient and show that the later is free of n. We also prove that in continuous case the Kendall correlation coefficient converges in probability to its expected value. We then propose to consider the expected value of the Kendall rank ...

  20. Onset and universality of turbulent drag reduction in von Karman swirling flow

    Science.gov (United States)

    Burnishev, Yuri; Steinberg, Victor

    2012-10-01

    We report the results of experiments on turbulent drag reduction (TDR) in swirling flow of water and water-sucrose polymer solutions, where Re and Wi as well as polymer concentration ϕ are varied. The friction coefficients Cf and Cp defined through average torque \\bar {\\Gamma } and rms of pressure fluctuations prms for different elasticity El = Wi/Re and ϕ vs. Re/Rec collapse onto universal curves in accord with theory, where Rec is Re at TDR onset. The transition lines to the TDR state, Rec - El and Rec - ϕ, are measured and relevant physics is discussed. Power spectra for Γ and p at Re/Rec > 1 show a drastic reduction of low-frequency noise and the emergence of a peak corresponding to the main vortex frequency in accord with TDR.

  1. Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow

    Science.gov (United States)

    Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.

    2017-10-01

    Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.

  2. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  3. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  4. ForeCAT: Using CME Deflections to Constrain their Mass and the Drag

    Science.gov (United States)

    Kay, C.; dos Santos, L. F. G.; Opher, M.

    2014-12-01

    Observations show that CMEs can deflect from a purely radial trajectory yet no consensus exists as to the cause of these deflections. The majority of the deflection motion occurs in the corona at distances where the magnetic energy dominates. Accordingly, many theories attribute the CME deflection to magnetic forces. In Kay et al. (2013) we presented ForeCAT, a model for CME deflections based on the magnetic forces (magnetic tension and magnetic pressure gradients). Kay et al. (2014) introduced an improved three-dimensional version of ForeCAT. Here we study the 2008 December 12 CME which occurred during solar minimum of Solar Cycle 24 (Byrne et al 2010, Gui et al. 2011, Liu et al 2010a,b). This CME erupted from high latitudes, and, despite the weak background magnetic field, deflected to the ecliptic, impacting Earth. From the observations, we are able to constrain all of the ForeCAT input parameters except for the CME mass and the drag coefficient that affects the CME motion. The reduced chi-square best fit to the observations constrains the CME mass range to 3e14 to 7e14 g and the drag coefficient range to 1.9 to 2.4. We explore the effects of a different magnetic background which decreases less rapidly than our standard Potential Field Source Surface (PFSS) model, as type II radio bursts suggest that the PFSS magnetic field decays too rapidly above active regions. For the case of the filament eruption of 2008 December 12 we find that the quiet sun coronal magnetic field should behave similar to the PFSS model. Finally, we present our current work exploring the case of the 2008 April 9 CME.

  5. Shape optimization of active and passive drag-reducing devices on a D-shaped bluff body

    CERN Document Server

    Semaan, Richard

    2016-01-01

    Shape optimization of an active and a passive drag-reducing device on a two-dimensional D-shaped bluff body is performed. The two devices are: Coanda actuator, and randomly-shaped trailing-edge flap. The optimization sequence is performed by coupling the genetic algorithm software DAKOTA to the mesh generator Pointwise and to the CFD solver OpenFOAM. For the the active device the cost functional is the power ratio, whereas for the passive device it is the drag coefficient. The optimization leads to total power savings of $\\approx 70\\%$ for the optimal Coanda actuator, and a 40\\% drag reduction for the optimal flap. This reduction is mainly achieved through streamlining the base flow and suppressing the vortex shedding. The addition of either an active or a passive device creates two additional smaller recirculation regions in the base cavity that shifts the larger recirculation region away from the body and increases the base pressure. The results are validated against more refined URANS simulations for selec...

  6. Influence of particles shape on the vertical profile of blowing snow concentration

    Science.gov (United States)

    Vionnet, Vincent; Trouvilliez, Alexandre; Naaim-Bouvet, Florence; Guyomarc'h, Gilbert

    2013-04-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow cover throughout the winter season. In Antarctica, blowing snow is an essential surface mass balance process and plays a non-negligible role in the annual accumulation. The vertical profile of blowing snow concentration determines the quantity of snow transported in turbulent suspension. A power law is often used to represent this vertical profile. It serves as an analytical solution representing an equilibrium between vertical turbulent diffusion and gravitational settling. In this work, we study how the exponent of the power law depends on the type of transported particles. Vertical profiles of blowing snow concentration have been collected at the experimental site of Col du Lac Blanc (French Alps) in 2011 and 2012 and near the research station of Cap Prud'homme (Antarctica) in 2010 and 2011. We used mechanical gauges (butterfly nets) and optical devices (Snow Particles Counters). Profiles collected during blowing snow events with precipitation have been corrected to account for the contribution of snowfall. Results show that profiles collected during blowing snow without snowfall differ from the corrected profiles collected during snowfall. At a given wind speed, particles transported during snowfall have a lower settling velocity than particles transported without snowfall. This difference confirms earlier observations (Takahashi, 1985) and can be explained by the change of drag coefficient between dendritic and rounded particles. This difference pertains several hours after the end of the snowfall illustrating the fragmentation of snow grains during blowing snow events.

  7. Impact of the Microstructure of Polymer Drag Reducer on Slick-Water Fracturing

    Directory of Open Access Journals (Sweden)

    Zhi-yu Liu

    2017-01-01

    Full Text Available Many studies have focused on the drag reduction performance of slick-water, but the microdrag reduction mechanism remains unclear since the microstructure of the drag reducer and its effect on this mechanism have not been well studied. In this study, the microstructure of the drag reducer in slick-water was effectively characterized by transmission electron microscopy. The viscoelasticity and drag reduction performance of the drag reducer with different microstructures were then investigated. Further, the effects of the microstructure of the drag reducer on the viscoelasticity and drag reduction performance of slick-water were analyzed. The results demonstrated that the viscoelasticity of slick-water is governed by the microstructure of the drag reducer, which exhibits a network structure. In addition, the drag reduction performance is related to the viscoelasticity. At low flow rates, the drag reduction performance is dominantly influenced by viscosity, whereas, at high flow rates, it is governed mainly by elasticity. Furthermore, the drag reducer with a uniformly distributed network structure exhibits the most stable drag reduction performance. This drag reducer was used in a field test and the obtained results were consistent with those of a laboratory experiment.

  8. Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation (ADONIS mission proposal

    Directory of Open Access Journals (Sweden)

    Hettrich Sebastian

    2015-01-01

    Full Text Available The Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation mission (ADONIS studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO. The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG, the European Space Agency (ESA, the International Space Science Institute (ISSI and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of “Space Weather: Science, Missions and Systems”, supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams’ efforts.

  9. Atmospheric Drag, Occultation `N' Ionospheric Scintillation (ADONIS) mission proposal. Alpbach Summer School 2013 Team Orange

    Science.gov (United States)

    Hettrich, Sebastian; Kempf, Yann; Perakis, Nikolaos; Górski, Jędrzej; Edl, Martina; Urbář, Jaroslav; Dósa, Melinda; Gini, Francesco; Roberts, Owen W.; Schindler, Stefan; Schemmer, Maximilian; Steenari, David; Joldžić, Nina; Glesnes Ødegaard, Linn-Kristine; Sarria, David; Volwerk, Martin; Praks, Jaan

    2015-02-01

    The Atmospheric Drag, Occultation `N' Ionospheric Scintillation mission (ADONIS) studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO). The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT) about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG), the European Space Agency (ESA), the International Space Science Institute (ISSI) and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of "Space Weather: Science, Missions and Systems", supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams' efforts.

  10. Experimental investigation of drag reduction by forward facing high ...

    Indian Academy of Sciences (India)

    Josyula et al. 2001; Hayashi & Asoy 2003; Balla Venukumar et al 2006). Drag reduction by counterflowing supersonic jet for a 60. ◦ apex angle blunt cone is investigated in the HST2 shock tunnel at a flow Mach number of 8. Some of the results ...

  11. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  12. Towards unified drag laws for inertial flow through fibrous materials

    NARCIS (Netherlands)

    Yazdchi, K.; Luding, Stefan

    2012-01-01

    We give a comprehensive survey of published experimental, numerical and theoretical work on the drag law correlations for fluidized beds and flow through porous media, together with an attempt of systematization. Ranges of validity as well as limitations of commonly used relations (i.e. the Ergun

  13. A coating of passively oscillating flexible cilia to reduce drag

    Science.gov (United States)

    Revell, Alistair; Harwood, Adrian; O'Connor, Joseph; Sanchez, Jonathan; Favier, Julien

    2016-11-01

    We present results related to the reduction of wake drag by the coordinated action of a layer of passively oscillating flexible cilia. Inspired by the pop-up of bird feathers, this configuration is shown to self-adapt to the surrounding flow, leading to a stabilization of the wake, a reduction of the mean drag and of lift oscillations. The study is performed using Lattice Boltzmann method, coupled to a recent version of the immersed boundary method. We will present the physical analysis of the coupling between multiple beating cilia and an incoming fluid flow. The modal behaviour of the cilia dynamics will be discussed, as well as their effect on an archetype of unsteady separated boundary layer (first the oscillating channel flow and then the circular cylinder). In the latter case results demonstrate an optimal drag occurs for a particular stiffness, compared to the control case where the same cilia are fixed. It appears that the optimal results are due to a reconfiguration of the elastic coating according to the local vorticity of the flow, and a frequency lock-in, which leads to more stable wake and reduced drag. The structural parameters of the layer will be varied. Results from the PEL-SKIN project: funded by EU Grant #334954.

  14. Drag reduction in bubbly Taylor-Couette turbulence

    NARCIS (Netherlands)

    van den Berg, Th.H.; Luther, S.; Lathrop, Daniel P.; Lohse, Detlef

    2005-01-01

    In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7×104 and Re=106 after having injected (i) small bubbles (R=1  mm) up to a volume concentration of α=5% and (ii) buoyant

  15. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved...

  16. Separability of drag and thrust in undulatory animals and machines

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  17. The compressibility rule for drag of airfoil noses

    Science.gov (United States)

    Jones, R. T.; Vandyke, M. D.

    1976-01-01

    It is shown that the drag of any semi-infinite airfoil section in purely subsonic inviscid flow follows precisely the Prandtl-Glauert compressibility rule. The result for the parabola has application to leading edge corrections in thin airfoil theory.

  18. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  19. Exploring the Aerodynamic Drag of a Moving Cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  20. Drag force in a cold or hot granular medium

    Science.gov (United States)

    Seguin, A.; Gondret, P.

    2017-09-01

    We measure experimentally and analyze the resisting force exerted by a bidimensional packing of small disks on a larger intruder disk dragged horizontally at constant velocity V0. Depending on the vibration level of the packing that leads to a granular "cold" or "hot" packing, two force regimes are observed. At low vibration level ("cold" granular medium), the drag force F does not depend on V0, whereas for high vibrations ("hot" granular medium), the drag force increases linearly with V0. Both regimes can be understood by the balance of two "granular temperatures" that can be defined in the system: a bulk temperature Tb imposed by the external vibration to the overall packing and a local temperature T0 induced by the own motion of the intruder disk in its vicinity. All experimental data obtained for different sizes and velocities of the intruder disk are shown to be governed by the temperature ratio T0/Tb . A critical velocity V0 c, above which the system switches from "hot" to "cold," can be obtained in this frame. Finally, we discuss how these two "viscous" regimes should be followed by an inertial regime where the drag force F should increase as V0 2 at high enough velocity values, for V0 greater than a critical value V0 i corresponding to high enough Reynolds or Froude number.

  1. Drag reduction by applying speedstrips on rowing oars

    NARCIS (Netherlands)

    Kuyt, C. B.; Greidanus, A.J.; Westerweel, J.; Jansen, A.J.

    2016-01-01

    The objective of this study was to determine the advantage of the application of speedstrips to rowing oars for a lightweight single sculler. The research method comprehended three steps: (1) the analysis of the rowing oar movement, (2) the determination of the change in drag and (3) the

  2. Experimental investigation of drag reduction by forward facing high ...

    Indian Academy of Sciences (India)

    ... a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a flow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock ...

  3. Shear-rate-dependent transport coefficients in granular suspensions

    Science.gov (United States)

    Garzó, Vicente

    2017-06-01

    A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.

  4. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods......Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a specimen and non-uniform intensity in the test chamber. In this study, several methods that convert Sabine absorption coefficients...

  5. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  6. Roles of size and kinematics in drag reduction for two tandem flexible foils

    Science.gov (United States)

    Chao, Li-Ming; Zhang, Dong; Pan, Guang

    2017-11-01

    The effect of size and kinematics difference between two tandem flexible foils on drag reduction have been numerically studied. Compared with single foil, it is found that the kinematics difference between two foils would not play a significant role in reducing drag, while the size difference between two foils significantly affects the drag reduction in this two foil system. For leading foil, it always enjoys drag reduction and the highest drag reduction can be observed at bigger size difference and gap distance between two foil as 22%. For trailing foil, it suffers drag increase when the gap distance between two foils is smaller, while it enjoys drag decrease when the size difference between two foils is bigger enough. The hydrodynamic interaction between such actively undulated foils also has been uncovered and used to explain the mechanisms of drag reduction.

  7. Effects of Outboard Thickened and Blunted Leading Edges on the Wave Drag of a 45 Degree Swept-Wing and Body Combination

    Science.gov (United States)

    Holdaway, George H.; Lazzeroni, Frank A.; Hatfield, Elaine W.

    1959-01-01

    An investigation to evaluate the effects of thickened and blunted leading-edge modifications on the wave drag of a swept wing has been made at Mach numbers from 0.65 to 2.20 and at a Reynolds number of 2,580,000 based on the mean aerodynamic chord of the basic wing. Two leading-edge designs were investigated and they are referred to as the thickened and the blunted modifications although both sections had equally large leading-edge radii. The thickened leading edge was formed by increasing the thickness over the forward 40 percent of the basic wing section. The blunted modification was formed by reducing the wing chords about 1 percent and by increasing the section thickness slightly over the forward 6 percent of the basic section in a manner to keep the wing sweep and volume essentially equal to the respective values for the basic wing. The basic wing had an aspect ratio of 3, a leading-edge sweep of 45 deg., a taper ratio of 0.4, and NACA 64AO06 sections perpendicular to a line swept back 39.45 deg., the quarter-chord line of these sections. Test results indicated that the thickened modification resulted in an increase in zero-lift drag coefficient of from 0.0040 to 0.0060 over values for the basic model at Mach numbers at which the wing leading edge was sonic or supersonic. Although drag coefficients of both the basic and thickened models were reduced at all test Mach numbers by body indentations designed for the range of Mach numbers from 1.00 to 2.00, the greater drag of the thickened model relative to that of the basic model was not reduced. The blunted model, however, had less than one quarter of the drag penalty of the thickened model relative to the basic model at supersonic leading-edge conditions (M greater or equal to root-2).

  8. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  9. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  10. 76 FR 34859 - Safety Zone; Augusta Southern Nationals Drag Boat Race, Savannah River, Augusta, GA

    Science.gov (United States)

    2011-06-15

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Augusta Southern Nationals Drag Boat Race... during the Augusta Southern Nationals Drag Boat Race. The Augusta Southern Nationals Drag Boat Race will consist of a series of high-speed boat races. The event is scheduled to take place from Thursday, July 14...

  11. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  12. Graph characterization via Ihara coefficients.

    Science.gov (United States)

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  13. Investigation at Mach Numbers of 0.20 to 3.50 of a Blended Diamond Wing and Body Combination of Sonic Design but with Low Wave-Drag Increase with Increasing Mach Number

    Science.gov (United States)

    Holdaway, George H.; Mellenthin, Jack A.; Hatfield, Elaine W.

    1959-01-01

    A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds.

  14. Gulf of Mexico hurricane wave simulations using SWAN : Bulk formula-based drag coefficient sensitivity for Hurricane Ike

    NARCIS (Netherlands)

    Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M.

    2013-01-01

    The effects of wind input parameterizations on wave estimations under hurricane conditions are examined using the unstructured grid, third-generation wave model, Simulating WAves Nearshore (SWAN). Experiments using Hurricane Ike wind forcing, which impacted the Gulf of Mexico in 2008, illustrate

  15. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Brotherton D.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is reported. The Fresnel "drag" in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the consequence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  16. Drag and Torque on Clusters of N Arbitrary Spheres at Low Reynolds Number.

    Science.gov (United States)

    Filippov

    2000-09-01

    Hydrodynamics of particle clusters suspended in viscous fluids is a subject of considerable theoretical and practical importance. Using a multipole expansion of the flow velocity in a series of spherical harmonics, Lamb's fundamental solution of the Stokes flow outside a single sphere is generalized in this work to the case of N nonoverlapping spheres of arbitrary size with slip boundary conditions. The expansion coefficients are found by transforming the boundary conditions to the Lamb form and by transforming the spherical coordinates and solid spherical harmonics centered at different spheres. The problem is reduced to the solution of the linear system of equations for the expansion coefficients, which is carried out numerically. Based on the developed theory, the relation between the hydrodynamic and gyration radius of fractal-like aggregates with different structure is established. In another application, an asymptotic slip-regime dependence of the aggregate hydrodynamic radius on the Knudsen number and the number of particles is found by performing calculations of drag forces acting on the gas-borne fractal-like and straight chain aggregates. A good agreement is shown in comparing predictions of the described theory with available experimental and theoretical results on motion of various small sphere clusters in viscous fluid. Copyright 2000 Academic Press.

  17. Drag of the cytosol as a transport mechanism in neurons.

    Science.gov (United States)

    Mussel, Matan; Zeevy, Keren; Diamant, Haim; Nevo, Uri

    2014-06-17

    Axonal transport is typically divided into two components, which can be distinguished by their mean velocity. The fast component includes steady trafficking of different organelles and vesicles actively transported by motor proteins. The slow component comprises nonmembranous materials that undergo infrequent bidirectional motion. The underlying mechanism of slow axonal transport has been under debate during the past three decades. We propose a simple displacement mechanism that may be central for the distribution of molecules not carried by vesicles. It relies on the cytoplasmic drag induced by organelle movement and readily accounts for key experimental observations pertaining to slow-component transport. The induced cytoplasmic drag is predicted to depend mainly on the distribution of microtubules in the axon and the organelle transport rate. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Measuring the Effects of Lift and Drag on Projectile Motion

    Science.gov (United States)

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  19. Numerical study on aerodynamic drag reduction of passenger cars

    OpenAIRE

    Sanchez Martinez, Javier

    2015-01-01

    The scope of this work is to identify potential improvements on Passenger cars Aerodynimcs (Drag reduction and Downforce increase) to help to minimize fuel consumption and hence reduce exhaust emisions. The Ahmed body (Bluff body) is representative of a passenger car under aerodynamical point of view. A lot of studies and literature exists as far as test reports of the Ahmed body on wind tunel tests. This work can be divided onto 2 steps. First step is to perform qualitative numerical simulat...

  20. Alleviation of fuselage form drag using vortex flows: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  1. Geometry Mediated Drag Reduction in Taylor-Couette Flows

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2015-11-01

    Micro-scale ribbed surfaces have been shown to be able to modify surface properties such as skin friction on both natural and fabricated surfaces. Previous experiments have shown that ribbed surfaces can reduce skin friction in turbulent flow by up to 4-8% in the presence of zero or mild pressure gradients. Our previous computations have shown a substantial reduction in skin friction using micro-scaled ribs of sinusoidal form in high Reynolds number laminar boundary layer flow. The mechanism of this reduction is purely viscous, through a geometrically-controlled retardation of the flow in the grooves of the surface. The drag reduction achieved depends on the ratio of the amplitude to the wavelength of the surface features and can be presented as a function of the wavelength expressed in dimensionless wall units. Here we extend this work, both experimentally and numerically, to consider the effect of similar ribs on steady viscous flow between concentric cylinders (Taylor-Couette flow). For the experimental work, the inner rotating cylinder (rotor) is machined with stream-wise V-groove structures and experiments are performed with fluids of different viscosity to compare the measured frictional torques to the corresponding values on a smooth flat rotor as a measure of drag reduction. The numerical work is performed using the OpenFOAM®open source software to compare the results and understand the physical mechanisms underlying this drag reduction phenomenon.

  2. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  3. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.

    Science.gov (United States)

    Bhushan, Bharat

    2011-01-01

    The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  4. Frictional Drag Reduction by Bubbles in Taylor-Couette Flow

    Science.gov (United States)

    Murai, Yuichi; Oiwa, Hiroshi; Takeda, Yasushi

    2006-11-01

    Frictional drag reduction provided with small bubbles is investigated experimentally using a Couette-Taylor flow system, i.e. shear flow between concentric cylinders. Torque and bubble behavior are measured up to Re=4500 when air bubbles are injected constantly and rise through the cells. Silicone oil is used for avoiding uncertain interfacial property of bubbles as well as for keeping nearly mono-sized bubbles. We assess the effect of drag reduction with two types of evaluation factors, i.e. sensitivity and power gain. The sensitivity exceeds unity at Redrag is reduced more than the drop of mixture density. This originates from accumulation of bubbles into the rotating inner cylinder, which is little affected by turbulence. The power gain, which is defined by drag reduction power per bubble injection power, takes the highest value of O(10) at higher Re numbers around 2500. The image processing measurement finds this reason to be disappearance of azimuthal waves when the organized bubbles distribution transits from toroidal to spiral modes. Moreover, the axial spacing of bubble clouds expands during the transition, enforcing the reduction of momentum exchange.

  5. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  6. 5th Drag Reduction in Engineering Flows Meeting

    CERN Document Server

    1991-01-01

    The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...

  7. Frame-dragging Effect in Strong Gravity Regime

    CERN Document Server

    Chakraborty, Chandrachur

    2016-01-01

    The exact frame-dragging (or Lense-Thirring (LT) precession) rates for Kerr, Kerr-Taub-NUT (KTN) and Taub-NUT spacetimes have been derived. Remarkably, in the case of the `zero angular momentum' Taub-NUT spacetime, the frame-dragging effect is shown not to vanish, when considered for spinning test gyroscope. In the case of the interior of the pulsars, the exact frame-dragging rate monotonically decreases from the center to the surface along the pole and but it shows an `anomaly' along the equator. Moving from the equator to the pole, it is observed that this `anomaly' disappears after crossing a critical angle. The `same' anomaly can also be found in the KTN spacetime. The resemblance of the anomalous LT precessions in the KTN spacetimes and the spacetime of the pulsars could be used to identify a role of Taub-NUT solutions in the astrophysical observations or equivalently, a signature of the existence of NUT charge in the pulsars.

  8. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  9. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  10. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    between the lift induced drag (wingtip vortices) and parasite drag (free shear layer) can have a significant impact. Particle Image Velocimetry (PIV) experiments were performed at a) a water tunnel at ILR Aachen, Germany, and b) at the University of Dayton Low Speed Wind Tunnel in the near wake of an AR 6 wing with a Clark-Y airfoil to investigate the characteristics of the wingtip vortex and free shear layer at angles of attack in the vicinity of maximum aerodynamic efficiency for the wing. The data was taken 1.5 and 3 chord lengths downstream of the wing at varying free-stream velocities. A unique exergy-based technique was introduced to quantify distinct changes in the wingtip vortex axial core flow. The existence of wingtip vortex axial core flow transformation from wake-like (velocity less-than the freestream) to jet-like (velocity greater-than the freestream) behavior in the vicinity of the maximum (L/D) angles was observed. The exergy-based technique was able to identify the change in the out of plane profile and corresponding changes in the L/D performance. The resulting velocity components in and around the free shear layer in the wing wake showed counter flow in the cross-flow plane presumably corresponding to behavior associated with the flow over the upper and lower surfaces of the wing. Even though the velocity magnitudes in the free shear layer in cross-flow plane are a small fraction of the freestream velocity ( 10%), significant directional flow was observed. An indication of the possibility of the transfer of momentum (from inboard to outboard of the wing) was identified through spanwise flow corresponding to the upper and lower surfaces through the free shear layer in the wake. A transition from minimal cross flow in the free shear layer to a well-established shear flow in the spanwise direction occurs in the vicinity of maximum lift-to-drag ratio (max L/D) angle of attack. A distinctive balance between the lift induced drag and parasite drag was

  11. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    Science.gov (United States)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  12. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  13. Recursive calculation of Hansen coefficients

    Science.gov (United States)

    Branham, Richard L., Jr.

    1990-06-01

    Hansen coefficients are used in expansions of the elliptic motion. Three methods for calculating the coefficients are studied: Tisserand's method, the Von Zeipel-Andoyer (VZA) method with explicit representation of the polynomials required to compute the Hansen coefficients, and the VZA method with the values of the polynomials calculated recursively. The VZA method with explicit polynomials is by far the most rapid, but the tabulation of the polynomials only extends to 12th order in powers of the eccentricity, and unless one has access to the polynomials in machine-readable form their entry is laborious and error-prone. The recursive calculation of the VZA polynomials, needed to compute the Hansen coefficients, while slower, is faster than the calculation of the Hansen coefficients by Tisserand's method, up to 10th order in the eccentricity and is still relatively efficient for higher orders. The main advantages of the recursive calculation are the simplicity of the program and one's being able to extend the expansions to any order of eccentricity with ease. Because FORTRAN does not implement recursive procedures, this paper used C for all of the calculations. The most important conclusion is recursion's genuine usefulness in scientific computing.

  14. Collisions and drag in debris discs with eccentric parent belts

    Science.gov (United States)

    Löhne, T.; Krivov, A. V.; Kirchschlager, F.; Sende, J. A.; Wolf, S.

    2017-08-01

    Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces creates new asymmetries and strengthens or overrides existing ones. Methods: We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral energy distributions and images. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.

  15. Experimental analysis for aerodynamic drag of the electric locomotives

    Directory of Open Access Journals (Sweden)

    Ioan SEBESAN

    2013-09-01

    Full Text Available The purpose of this paper is to make a comparative analysis on the influence of the aerodynamic drag, in case of the electric rail vehicles for a series of situations encountered in exploitation. The article presents experimental results obtained following a geometric modelling at scale 1: 12, on a modular model for the electric locomotives LE 060EA 5100kW and LE-MA 060 TransMontana 6000kW. Tests were made at INCAS (National Institute for Aerospace Research “ElieCarafoli” in the subsonic wind tunnel.

  16. Superhydrophobic copper tubes with possible flow enhancement and drag reduction

    OpenAIRE

    Shirtcliffe, NJ; McHale, G; Newton, MI; Zhang, Y.

    2009-01-01

    The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require...

  17. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    1 an(−λ, f )zn for z ∈ D. (1.4). One of the well-known extremal problems in the theory of univalent functions is to esti- mate the modulus of the Taylor coefficients an(−λ, f ) given by (1.4). This problem has been extensively studied in the literature ...

  18. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J; Hong, Y J; Li, Q; Huang, H, E-mail: fangjuan314@163.com [Academy of Equipment Command and Technology, Post Box 3380-86, Huairou Dis. Beijing 101416 (China)

    2011-02-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  19. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  20. Ad/dressing the nation: drag and authenticity in post-apartheid South Africa.

    Science.gov (United States)

    Spruill, Jennifer

    2004-01-01

    This paper examines a style of drag in South Africa that features "traditional African" clothing. In a region in which homosexuality is denigrated as a colonial, European import and "unAfrican," the meaning of "traditional drag" is deeply inflected by the question of cultural authenticity. This dragging practice fits within a distinctly post-colonial production of tradition and its self-conscious display--in the form of attire--of a decidedly "gay" one. Traditional drag also responds to ongoing politics within and between lesbian and gay communities about racial "representivity" and "transformation." The paper focuses on displays of traditional drag at Johannesburg's Gay and Lesbian Pride Parade but also explores the complex politics of publicity and address suggested by varying contexts in which traditional dress and drag are mobilized.

  1. An aerodynamic study of scramjet fuel injectors. [effect of injector thickness ratio on aerodynamic drag

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The aerodynamic drag and fuel distribution patterns of injectors designed for a supersonic combustion ramjet were measured at Mach numbers of 2, 2.5, and 3. The most significant parameter effecting the drag was found to be the injector thickness ratio. A two-fold reduction in the thickness ratio caused a 65 percent decrease in drag. Changing the injector sweep angle a factor of 2 resulted in only a small change in drag. A reversal of injector sweep, from sweepback to sweepforward, did not change the measured drag. Helium gas was injected through the struts to simulate the penetration and spreading patterns of hydrogen. Sampling measurements were made at approximately 2 duct heights downstream of the combustor. The spacing required between fuel injectors was found to be about 10 jet diameters. The effect of gas injection on the measured drag was found to be minor.

  2. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  3. Algebraic polynomials with random coefficients

    Directory of Open Access Journals (Sweden)

    K. Farahmand

    2002-01-01

    Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.

  4. Harmonic functions with varying coefficients

    Directory of Open Access Journals (Sweden)

    Jacek Dziok

    2016-05-01

    Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.

  5. The research on the drag reduction of a transport aircraft with upswept afterbody using long fins

    Science.gov (United States)

    2016-03-30

    software FLUENT using pressure based coupled solver. The advection term is discretized by second order upwind scheme. The SST k-ω two equation...Undergraduate Student Paper Postgraduate Student Paper The research on the drag reduction of a transport aircraft with upswept afterbody using...height, location and yaw angle of the fins are the sensitive factors of drag reduction . Drag reduction of 21 counts is achieved in wind tunnel test

  6. Torque and Drag Friction Model: Implemented Friction Factor Dependency of Temperature

    OpenAIRE

    Brekke, Alexander

    2016-01-01

    Master's thesis in Petroleum engineering We investigated the friction factor dependency of temperature. “Friction factor” is a parameter in the calculations of torque and drag. Increased well reach is dependent on accurate torque and drag modeling. We proposed that the friction factor can be dependent on temperature other than linear approximations as studied by Kaarstad et al. [2009]. The results was implemented in the work of Aadnoy [2006] torque and drag 3D model. The local friction fac...

  7. Experimental Investigation of the Fresnel Drag Effect in RF Coaxial Cables

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re- ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been well established. An explanation for this formalism is given, and it is shown that there is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse- quence of a simplified description of EM scattering within a dielectric in motion wrt the dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various light-speed anisotropy detectors.

  8. Drag Reduction for Turbulent Boundary Layer Flows Using an Oscillating Wall

    National Research Council Canada - National Science Library

    Bogard, David

    2000-01-01

    This research program used experimental measurements and computational simulations to study the drag reduction, and the resulting effects on turbulence structure, for a turbulent wall flow subjected...

  9. Modelling of Structural Loads in Drag Augmented Space Debris Removal Concepts

    DEFF Research Database (Denmark)

    Kristensen, Anders Schmidt; Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm

    2017-01-01

    A Self-deployable Deorbiting Space Structure (SDSS) is used for drag augmented space debris removal. A highly flexible frame allows for a folding of the structure by bifurcation. This research models the structural loads during the deployment and unfolding of the drag sail in Low Earth Orbit (LEO......). The Spacecraft travels with 7.8 km/s at deployment. As the drag sail unfolds instantaneously the structure must withstand the loads from the unfolding and the drag. Thermal loads are included in the FEA as the temperature varies from -80°C to +80°C during deorbit. The results are used to verify the structural...

  10. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  11. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species.

    Science.gov (United States)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders; Johansson, L Christoffer

    2017-10-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared (Plecotus auritus) and one small-eared (Glossophaga soricina), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies. © 2017 The Author(s).

  12. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    Science.gov (United States)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  13. Horseshoe Drag in Three-dimensional Globally Isothermal Disks

    Science.gov (United States)

    Masset, F. S.; Benítez-Llambay, P.

    2016-01-01

    We study the horseshoe dynamics of a low-mass planet in a three-dimensional, globally isothermal, inviscid disk. We find, as reported in previous work, that the boundaries of the horseshoe region (separatrix sheets) have cylindrical symmetry about the disk’s rotation axis. We interpret this feature as arising from the fact that the whole separatrix sheets have a unique value of Bernoulli’s constant, and that this constant does not depend on altitude, but only on the cylindrical radius, in barotropic disks. We next derive an expression for the torque exerted by the horseshoe region on the planet, or horseshoe drag. Potential vorticity is not materially conserved as in two-dimensional flows, but it obeys a slightly more general conservation law (Ertel’s theorem) that allows an expression for the horseshoe drag identical to the expression in a two-dimensional disk to be obtained. Our results are illustrated and validated by three-dimensional numerical simulations. The horseshoe region is found to be slightly narrower than previously extrapolated from two-dimensional analyses with a suitable softening length of the potential. We discuss the implications of our results for the saturation of the corotation torque, and the possible connection to the flow at the Bondi scale, which the present analysis does not resolve.

  14. REVIEW OF PASSIVE DRAG REDUCTION TECHNIQUES FOR BLUFF ROAD VEHICLES

    Directory of Open Access Journals (Sweden)

    Alaman Altaf

    2014-05-01

    Full Text Available ABSTRACT:This paper presents a review of the techniques used to reduce aerodynamic drag over bluff bodies such as cylinders, spheres, 2D bodies with blunt backs and their application to commercial road vehicles.  The recent research carried out on the drag reduction is presented and categorised. A new classification of the techniques is introduced and major contributions under them are shown. It can be concluded that there is not much work done with realistic 3D bluff bodies, especially using passive methods.ABSTRAK: Kertas kerja ini membentangkan kaji selidik semula teknik yang digunakan untuk mengurangkan seret aerodinamik ke atas jasad tubir seperti silinder, sfera, jasad 2D dengan belakang tumpul dan aplikasinya terhadap kenderaan jalan raya komersial. Pengurangan seretan dibentangkan dan dikategorikan dengan kajian terkini. Klasifikasi teknik terkini diperkenalkan dan sumbangan utamanya diperbentangkan.  Secara kesimpulannya terdapat banyak tugasan yang tidak yang dapat dijalankan dengan menggunakan jasad tubir 3D sebenar, terutamanya dengan penggunaan kaedah pasif.

  15. Riblets show most promise for reducing drag in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    May, R. [HR Wallingford, Oxfordshire (United Kingdom)

    1996-08-01

    Flow resistance in pipes and conduits is a fundamental factor governing the design of any pipeline system and the economics of its operation. If the hydraulic resistance can be reduced, savings can be made in the size of pipes used, in pumping costs or in the gradients at which gravity pipes need to be laid. According to the well-established Colebrook-White equation, the drag exerted by pipe walls consists of two components: that due to the viscosity of the fluid, which tends to dominate at low velocity; and that due to the surface texture of walls which is dominant at high velocity. For this reason, most manufacturers aim to maximize the flow capacity of their pipes by producing the smoothest possible surface finish consistent with the materials and manufacturing techniques being used. The paper describes hydraulic roughness in pipes and reducing drag resistance with the use of riblets, which are small, longitudinal grooves formed on the internal walls of the pipe.

  16. Drag reduction of a rapid vehicle in supercavitating flow

    Directory of Open Access Journals (Sweden)

    D. Yang

    2017-01-01

    Full Text Available Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

  17. Incorporating modelled subglacial hydrology into inversions for basal drag

    Directory of Open Access Journals (Sweden)

    C. P. Koziol

    2017-12-01

    Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.

  18. Irrational "Coefficients" in Renaissance Algebra.

    Science.gov (United States)

    Oaks, Jeffrey A

    2017-06-01

    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  19. Kuznetsov equation with variable coefficients

    Indian Academy of Sciences (India)

    Travelling wave-like solutions of the Zakharov–Kuznetsov equation with vari- able coefficients are studied using the ... exact solutions of nonlinear partial differential equations. Some of the most impor- tant methods are the ... In general, there is no standard method for solving nonlinear. PDEs and more so for PDEs in 2+1 ...

  20. Particle mobilization in porous media: Temperature effects on competing electrostatic and drag forces

    Science.gov (United States)

    You, Zhenjiang; Bedrikovetsky, Pavel; Badalyan, Alexander; Hand, Martin

    2015-04-01

    The fluid flow in natural reservoirs mobilizes fine particles. Subsequent migration and straining of the mobilized particles in rocks greatly reduce reservoir permeability and well productivity. This chain of events typically occurs over the temperature ranges of 20-40°C for aquifers and 120-300°C for geothermal reservoirs. However, the present study might be the first to present a quantitative analysis of temperature effects on the forces exerted on particles and of the resultant fines migration. Based on torque balance between electrostatic and drag forces acting on attached fine particles, we derived a model for the maximum retention concentration and used it to characterize the detachment of multisized particles from rock surfaces. Results showed that electrostatic force is far more affected than water viscosity by temperature variation. An analytical model for flow toward wellbore that is subject to fines migration was derived. The experiment-based predictive modeling of the well impedance for a field case showed high agreement with field historical data (coefficient of determination R2 = 0.99). It was found that the geothermal reservoirs are more susceptible to fine particle migration than are conventional oilfields and aquifers.

  1. Robust correlation coefficient based on Qn estimator

    Science.gov (United States)

    Zakaria, Nur Amira; Abdullah, Suhaida; Ahad, Nor Aishah

    2017-11-01

    This paper presents a new robust correlation coefficient called Qn correlation coefficient. This coefficient is developed as an alternative for classical correlation coefficient as the performance of classical correlation coefficient is nasty under contamination data. This study applied robust scale estimator called Qn because this estimator have high breakdown point. Simulation studies are carried out in determining the performances of the new robust correlation coefficient. Clean and contamination data are generated in assessing the performance of these coefficient. The performances of the Qn correlation coefficient is compared with classical correlation coefficient based on the value of coefficient, average bias and standard error. The outcome of the simulation studies shows that the performance of Qn correlation coefficient is superior compared to the classical and existing robust correlation coefficient.

  2. Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min [GyeongBuk Technopark, Gyeongsan (Korea, Republic of); Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2016-12-15

    In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same α, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in Φ{sub 0}. For the same M{sub ∞}, Φ{sub 0}, and T{sub 0}, the length of the non-equilibrium condensation zone Δ{sub z} decreases with increasing Φ{sub 0}. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient C{sub D} decreases with an increase in Φ{sub 0} for the same M{sub ∞} and α. For the same α, M{sub D} increases with increasing Φ{sub 0}, while M{sub D} decreases with an increase in α.

  3. Sedimentation coefficient distributions of large particles.

    Science.gov (United States)

    Schuck, Peter

    2016-07-21

    The spatial and temporal evolution of concentration boundaries in sedimentation velocity analytical ultracentrifugation reports on the size distribution of particles with high hydrodynamic resolution. For large particles such as large protein complexes, fibrils, viral particles, or nanoparticles, sedimentation conditions usually allow migration from diffusion to be neglected relative to sedimentation. In this case, the shape of the sedimentation boundaries of polydisperse mixtures relates directly to the underlying size-distributions. Integral and derivative methods for calculating sedimentation coefficient distributions g*(s) of large particles from experimental boundary profiles have been developed previously, and are recapitulated here in a common theoretical framework. This leads to a previously unrecognized relationship between g*(s) and the time-derivative of concentration profiles. Of closed analytical form, it is analogous to the well-known Bridgman relationship for the radial derivative. It provides a quantitative description of the effect of substituting the time-derivative by scan differences with finite time intervals, which appears as a skewed box average of the true distribution. This helps to theoretically clarify the differences between results from time-derivative method and the approach of directly fitting the integral definition of g*(s) to the entirety of experimental boundary data.

  4. The viscous slip coefficient for a binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Knackfuss, Rosenei F. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas. Dept. de Matematica], e-mail: rfknackfuss@gmail.com

    2009-07-01

    For a moderately small rarefaction, the Navier-Stokes equations are associated with of the slip boundary condition, i e the velocity of the gas on the surface is different from zero at the surface, but its tangential component, depends on the profile distribution of velocity and temperature near the surface. The slip for the velocity profile near the surface is determined by the viscous slip coefficient. The viscous slip coefficient can be determined solving the equation of the Boltzmann or the kinetic equations which are simplified forms of Boltzmann equation with respect to the operator of collision. For this reason, in this work is presented the derivation of the solution of the viscous-slip problem for the mixtures of two noble gases, based on the McCormack model that is developed in terms of an analytical version of the discrete ordinates method has been applied with excellent results, to derive solutions to several problems in rarefied gas dynamics. To complete the problem, include the gas-surface interaction, based on the model of Cercignani-Lampis, which, unlike the model of Maxwell, has two accommodation coefficients: the coefficient of accommodation of tangential moment and the energy accommodation coefficient kinetics due to normal component of velocity. (author)

  5. Modelling of Structural Loads in Drag Augmented Space Debris Removal Concepts

    DEFF Research Database (Denmark)

    Kristensen, Anders Schmidt; Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm

    2017-01-01

    A Self-deployable Deorbiting Space Structure (SDSS) is used for drag augmented space debris removal. A highly flexible frame allows for a folding of the structure by bifurcation. This research models the structural loads during the deployment and unfolding of the drag sail in Low Earth Orbit (LEO...

  6. 76 FR 52263 - Special Local Regulation for Marine Events; Mattaponi Madness Drag Boat Race, Mattaponi River...

    Science.gov (United States)

    2011-08-22

    ... Madness Drag Boat Race, Mattaponi River, Wakema, VA AGENCY: Coast Guard, DHS. ACTION: Temporary Final rule. SUMMARY: The Coast Guard will establish special local regulations during the Mattaponi Madness Drag ] Boat Event, a series of power boat races to be held on the waters of the Mattaponi River, near Wakema...

  7. Turbulent Taylor–Couette flow over riblets : Drag reduction and the effect of bulk fluid rotation

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-01-01

    A Taylor–Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the

  8. Effect of structure height on the drag reduction performance using rotating disk apparatus

    Science.gov (United States)

    Rashed, Musaab K.; Abdulbari, Hayder A.; Amran Mohd Salleh, Mohamad; Halim Shah Ismail, M.

    2017-02-01

    The drag reduction characteristics in a rotating disk apparatus were investigated by using structured disks with different riblet types and dimensions. Two disk types were fabricated with right angle triangular (RAT) grooves and space v-shape (SV) grooves, with six dimensions for each type. A high-accuracy rotating disk apparatus was fabricated and then used to investigate the turbulent drag reduction characterization of the disk in diesel fuel. In this work, the effects of several parameters are investigated; riblet types, riblet dimensions, and rotational disk speed (rpm) on the drag reduction performance. It was found that the surface structure of the disk reduced the drag, this was clearly seen from the comparison of torque values of smooth and structured disks. Drag reduction for structured disks was higher than that for smooth disks, and SV-grooves showed better drag reduction performance than RAT-grooves. In addition, it was observed that the drag reduction performance increased with decreasing groove height for both groove types. The maximum drag reduction achieved in this study was 37.368% for SV-groove at 1000 rpm, compared with 30% for RAT-groove, at the same rotational speed.

  9. Factors affecting dustcake drag in a hot-gas filter system collecting coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, R.S.; Landham, E.C. [Power Systems Development Facility, Wilsonville, AL (United States)

    2008-01-15

    This paper discusses the use of laboratory drag measurements and filter operating data to analyze factors affecting dustcake flow resistance in a hot-gas filter at the Power Systems Development Facility (PSDF). The hot-gas filter is a Siemens-Westinghouse two-tier candle filter system that is collecting coal gasification ash from a KBR Transport Gasifier. Operating experience with this system has shown that the flow resistance of the dustcake is responsible for most of the pressure drop across the hot-gas filter, and the pressure drop varies substantially with the type of coal being gasified and the operating conditions of the gasifier and filter systems. To analyze factors affecting dustcake drag, samples of gasification ash from various coals and various operating conditions were resuspended in a laboratory test apparatus, and the drag was measured as the dust was collected on a sintered metal filter. The lab-measured drag values were compared to actual values of transient drag determined from the increase in pressure drop, the inlet dust loading, and the face velocity in the hot-gas filter. After correcting the lab drag data to hot-gas filter conditions, good agreement was achieved between the lab measurements and the hot-gas filter transient drag values. Both types of measurements showed that drag was strongly influenced by coal type and carbon content.

  10. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  11. Stratified flow over complex topography: A model study of the bottom drag and associated mixing

    Science.gov (United States)

    Seim, Knut S.; Fer, Ilker; Avlesen, Helge

    2012-02-01

    The flow of stratified fluid over complex topography may lead to a significant drag on the fluid, exerted by the bottom obstacles. Using a 2-m resolution, three-dimensional, non-hydrostatic numerical ocean model, the drag and associated mixing on a stratified flow over real, 1-m resolution topography (interpolated to model resolution) is studied. With a typical mountain height of 12 m in 174 m water and buoyancy frequencies ranging from 0.6×10-2s-1 to 1.2×10-2s-1, resolving the topographic features leads to extensive drag exerted on the flow manifested through three different processes: (i) gravity wave drag, (ii) aerodynamic or blocked flow drag, and (iii) hydraulic drag. A parameterization of the internal wave drag based on linear, two-dimensional, hydrostatic wave solutions provides satisfactory results in terms of the turbulent kinetic energy levels. The depth of the layer where the vertical momentum flux is deposited, however, is underestimated, leading to an overestimated gravity wave drag in the layer.

  12. Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow

    NARCIS (Netherlands)

    Benschop, H.O.G.; Breugem, W.P.

    2017-01-01

    A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength Λf. The aim is to quantify the drag change for this texture as compared to a smooth wall

  13. Aerodynamic drag of transiting objects by large-scale tomographic-PIV

    NARCIS (Netherlands)

    Terra, W.; Sciacchitano, A.; Scarano, F.

    Experiments are conducted that obtain the aerodynamic drag of a sphere towed within a rectangular duct from PIV. The drag force is obtained invoking the time-average momentum equation within a control volume in a frame of reference moving with the object. The sphere with 0.1 m diameter is towed at

  14. Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang

    1994-01-01

    parameters. The acoustic mode causes a sharp upturn in the scaled drag rate with increasing temperature at T≈0.2TF. Other experimental signatures of the plasmon-dominated drag rate are a d-3 dependence on the well separation d and a peak as a function of relative densities at matched Fermi velocities....

  15. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Olsen, Kenneth N.; Christoffersen, Martin W.

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...

  16. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...

  17. Lateral-drag Casimir forces induced by anisotropy

    CERN Document Server

    Nefedov, Igor S

    2016-01-01

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement or in quantum noncontact friction where it is caused by the mutual motion of the bodies, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  18. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  19. Thermal design of AOTV heatshields for a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    Results are presented from an on-going study of the thermal performance of thermal protection systems for a conical drag brake type AOTV. Three types of heatshield are considered: rigid ceramic insulation, flexible ceramic blankets, and ceramic cloths. The results for the rigid insulation apply to other types of AOTV as well. Charts are presented in parametric form so that they may be applied to a variety of missions and vehicle configurations. The parameters considered include: braking maneuver heat flux and total heat load, heatshield material and thickness, heatshield thermal mass and conductivity, absorptivity and emissivity of surfaces, thermal mass of support structure, and radiation transmission through thin heatshields. Results of temperature calculations presented show trends with and sensitivities to these parameters. The emphasis is on providing information that will be useful in estimating the minimum required mass of these heatshield materials.

  20. Thermal design of AOTV heatshields for a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-06-01

    Results are presented from an on-going study of the thermal performance of thermal protection systems for a conical drag brake type AOTV. Three types of heatshield are considered: rigid ceramic insulation, flexible ceramic blankets, and ceramic cloths. The results for the rigid insulation apply to other types of AOTV as well. Charts are presented in parametric form so that they may be applied to a variety of missions and vehicle configurations. The parameters considered include: braking maneuver heat flux and total heat load, heatshield material and thickness, heatshield thermal mass and conductivity, absorptivity and emissivity of surfaces, thermal mass of support structure, and radiation transmission through thin heatshields. Results of temperature calculations presented show trends with and sensitivities to these parameters. The emphasis is on providing information that will be useful in estimating the minimum required mass of these heatshield materials.

  1. Position sensors for LISA drag-free control

    CERN Document Server

    Weber, W J; Dolesi, R; Fontana, G; Hüller, M; Vitale, S

    2002-01-01

    The extreme level of isolation from stray forces required for LISA makes the development of 'drag-free control' technologies essential to the mission. We report here on the progress in the development of a capacitive, six degree-of-freedom, position sensor designed to meet the required low levels of position read-out noise (1 nm Hz sup - sup 1 sup / sup 2) and stray force noise (3x10 sup - sup 1 sup 5 N Hz sup - sup 1 sup / sup 2) across the LISA bandwidth of 0.1 mHz to 0.1 Hz. In this paper we briefly discuss sensor design and expected performance before presenting preliminary noise measurements made with a prototype sensor.

  2. Intertial Frame Dragging in an Acoustic Analogue spacetime

    CERN Document Server

    Chakraborty, Chandrachur; Majumdar, Parthasarathi

    2015-01-01

    We report an incipient exploration of the Lense-Thirring precession effect in a rotating {\\it acoustic analogue black hole} spacetime. An exact formula is deduced for the precession frequency of a gyroscope due to inertial frame dragging, close to the ergosphere of a `Draining Bathtub' acoustic spacetime which has been studied extensively for acoustic Hawking radiation of phonons and also for `superresonance'. The formula is verified by embedding the two dimensional spatial (acoustic) geometry into a three dimensional one where the similarity with standard Lense-Thirring precession results within a strong gravity framework is well known. Prospects of experimental detection of this new `fixed-metric' effect in acoustic geometries, are briefly discussed.

  3. Drag Reduction of an Airfoil Using Deep Learning

    Science.gov (United States)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  4. Ontogeny of lift and drag production in ground birds.

    Science.gov (United States)

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  5. Capture of Planetesimals by Gas Drag from Circumplanetary Disks

    Science.gov (United States)

    Fujita, Tetsuya; Ohtsuki, K.; Tanigawa, T.

    2012-10-01

    The regular satellites of the giant planets (e.g. Galilean satellites) have nearly circular and coplanar prograde orbits, and are thought to have formed by accretion of solid particles in the circumplanetary disk. Because a significant amount of gas and solids are likely to be supplied to growing giant planets through the circumplanetary disk, the amount of solid material in circumplanetary disks is important not only for satellite formation but also for the growth and the origin of the heavy element content of giant planets. Solid particles smaller than meter-scale are strongly coupled with the gas flow from the protoplanetary disk and delivered into the disk with the gas. On the other hand, trajectories of large planetesimals are decoupled from the gas. When these large planetesimals approach a growing giant planet, their orbits can be perturbed by gas drag from the circumplanetary disk depending on their size and random velocity, and some of them would be captured by the disk. In the present work, we examine orbital evolution of planetesimals approaching a growing giant planet with a circumplanetary disks by integrating Hill’s equation including the gas drag term. We assume that the gas in the disk rotates in circular orbits around the planet. We found that the condition for capture of planetesimals approaching in the prograde direction (i.e., trajectory in the same direction as the circular motion of the gas) is different from that for those approaching in the retrograde trajectories. We obtained analytic expressions for energy dissipation, critical approach distance from the planet for capture, and capture probability for prograde and retrograde orbits in the coplanar case. We will discuss results of orbital integration for capture rates, including the cases of inclined orbits of planetesimals.

  6. Partially linear varying coefficient models stratified by a functional covariate

    KAUST Repository

    Maity, Arnab

    2012-10-01

    We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.

  7. Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2016-02-01

    Full Text Available We propose and demonstrate reduction of aerodynamic drag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph and over 10% at 31.3 m/s (70 mph opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.

  8. Oseen's correction to stokes drag on axially symmetric arbitrary particle in transverse flow: A new approach

    Directory of Open Access Journals (Sweden)

    Srivastava Deepak Kumar

    2014-01-01

    Full Text Available In this paper, Oseen’s correction to Stokes drag experienced by axially symmetric particle placed in a uniform stream perpendicular to axis of symmetry(i.e. transverse flow is obtained. For this, the linear relationship between axial and transverse Stokes drag is utilized to extend the Brenner’s formula for axial flow to transverse flow. General expression of Oseen’s correction to Stokes drag on axially symmetric particle placed in transverse flow is found to be new. This general expression is applied to some known axially symmetric bodies and obtained values of Oseen’s drag, up to first order terms in Reynolds number ‘R’, are also claimed to be new and never exist in the literature. Numerical values of Oseen drag are also evaluated and their variations with respect to Reynolds number, eccentricity and deformation parameter are depicted in figures and compared with some known values. Some important applications are also highlighted.

  9. Importance of Variable Density and Non-Boussinesq Effects on the Drag of Spherical Particles

    Science.gov (United States)

    Ganguli, Swetava; Lele, Sanjiva

    2017-11-01

    What are the forces that act on a particle as it moves in a fluid? How do they change in the presence of significant heat transfer from the particle, a variable density fluid or gravity? Last year, using particle-resolved simulations we quantified these effects on a single spherical particle and on particles in periodic lattices when O(10-3) 50%) in the absolute drag are observed as λ approaches unity. Oppenheimer, et al. (2016) [1] have proposed a theoretical formula for the drag of a heated sphere at extremely low Re. We show that when Re >O(10), inertial effects completely dominate the drag while when Re zero volumetric dilation rate. In the limit of λ approaching 0 (Stokes' limit), the drag modification can also be captured as a correction to Stokes' drag using a suitable scaling based on the dilation rate. Stanford University - Predictive Science Academic Alliance Program (PSSAP II).

  10. Effect of Polymer Type and Mixing of Polymers on Drag Reduction in Turbulent Pipe Flow

    Directory of Open Access Journals (Sweden)

    Salam Hadi Hussein

    2017-05-01

    Full Text Available The paper reports on studies on effect of the type of polymer on drag reduction. The study conducted through circular pipe using Carboxy Methyl Cellulose (CMC, Xanthan gum (XG and their mixing in equal ratios as additives in pipe of diameter 0.0381m. The study covered range of parameters like concentration, mean velocity and angle of inclination of pipe. The maximum drag reduction observed was about 58%, 46% and 46% for the three polymers respectively. It is found that the drag reduction for the mixture is close to the drag reduction for XG polymer. The SPSS program has been used for correlate the data that have been obtained. The drag reduction percentage is correlated in terms of Reynolds number Re, additive concentration C (ppm and angle of inclination of pipe (deg, and the relations obtained is mentioned.

  11. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  12. Supervisor control strategy of synchronizer for wet DCT based on online estimation of clutch drag torque

    Science.gov (United States)

    Lu, Tongli; Li, Hongkui; Zhang, Jianwu; Hao, Hongtao

    2016-01-01

    The objective of this paper is to improve the performance of the synchronizer control strategy by considering the effect of clutch drag torque. The research of synchronization process in wet dual clutch transmission is performed in this paper. The significant effect of clutch drag torque is analyzed by adding a complex clutch drag torque module to synchronizer model. This paper focuses on the development of original estimation method of clutch drag torque. The estimation method offers an effective way to obtain accurate clutch drag torque, and it is applied to develop a new supervisor control strategy. Results have demonstrated that the estimation method has satisfied efficiency and accuracy and the control strategy improves the performance of the synchronizer mechanism significantly.

  13. Influence of hydrodynamic stress on the frictional drag of biofouling communities.

    Science.gov (United States)

    Hunsucker, J Travis; Hunsucker, Kelli Z; Gardner, Harrison; Swain, Geoffrey

    2016-11-01

    The role of hydrodynamic wall shear stresses on the development of the fouling community structure and resulting frictional drag were examined using a commercially available fouling release coating. Immersed test panels were exposed to three different hydrodynamic treatments, one static and two dynamic (corresponding to an estimated wall shear stress of 7.0  and 25.5 Pa). The drag of the panels was measured in a hydrodynamic test chamber at discrete time intervals over 35 days. The fouling community composition on the static panels was significantly different from the organisms observed on the dynamic panels. Despite different fouling community composition, the drag forces measured on the panels were very similar. This suggests that the frictional drag of low form and soft fouling communities are similar and that there may be a stepwise increase in frictional drag associated with the presence of mature calcareous organisms.

  14. Drag Effect of Kompsat-1 During Strong Solar and Geomagnetic Activity

    Directory of Open Access Journals (Sweden)

    J. Park

    2007-06-01

    Full Text Available In this paper, we analyze the orbital variation of the KOrea Multi-Purpose SATellite-1(KOMPSAT-1 in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs. Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmosphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92 for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day variations is governed by geomagnetic storms.

  15. The Use of Biobased Surfactant Obtained by Enzymatic Syntheses for Wax Deposition Inhibition and Drag Reduction in Crude Oil Pipelines

    National Research Council Canada - National Science Library

    Zhihua Wang; Xueying Yu; Jiaxu Li; Jigang Wang; Lei Zhang

    2016-01-01

    .... In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines...

  16. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  17. Performing simulation study on drill string mechanics, Torque and Drag.

    OpenAIRE

    Chakraborty, Tanmoy

    2012-01-01

    Master's thesis in Petroleum engineering In this thesis work, a simulation and monitoring study was carried based on operational data obtained from two wells. These are South Sangu-4 and Sangu-11, which are situated in block 16. From the study it was found out that: Comparing the simulation data and real time data, the tripping in and tripping out coefficient of friction were back calculated .The coefficient of frictions derived from Sangu-4 were used for planning of drilling in Sa...

  18. On Vertical Drag Defects Formation During Direct Chill (DC) Casting of Aluminum Billets

    Science.gov (United States)

    Carlberg, Torbjörn; Jarfors, Anders E. W.

    2013-12-01

    During air-slip direct chill casting of aluminum billets, one of the major defects occurring includes traces along the billet called vertical drags (VDs). If the VDs are too deep or too many, then they cause scraping of the billets. As in the subsequent extrusion process, the surface quality is known to impair both the productivity and quality of the profiles. In cast-house practice, many theories circulate about the causes of VD defects and how to avoid them, but in the literature, no thorough treatments have been made to explain this phenomenon. In the current study, the outer appearance, structure around, and compositions at the defects are analyzed. A theory for the formation of the defects, their cause, and how their appearance is coupled to different alloy types is presented. The segregation in the vicinity of the defects is discussed based on deformation of semisolid materials and coupled to Reynolds dilatancy in granular materials. The theory can explain differences between 6063 and 6005 alloys.

  19. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  20. Drag and Lift Estimation from 3-D Velocity Field Data Measured by Multi-Plane Stereo PIV

    OpenAIRE

    加藤, 裕之; 松島, 紀佐; 上野, 真; 小池, 俊輔; 渡辺, 重哉; Kato, Hiroyuki; Matsushima, Kisa; Ueno, Makoto; Koike, Shunsuke; Watanabe, Shigeya

    2013-01-01

    For airplane design, it is crucial to have tools that can accurately predict airplane drag and lift. Usually drag and lift prediction methods are force measurement using wind tunnel balance. Unfortunately, balance data do not provide information contribution of airplane to components to drag and lift for more precise and competitive airplane design. To obtain such information, a wake integration method for use drag and lift estimation was developed for use in wake survey data analysis. Wake s...

  1. Measurements of thermal accommodation coefficients.

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  2. Measuring Absolute Thermospheric Densities And Accommodation Coefficients Using Paddlewheel Satellites: Past Findings, Present Uses, And Future Mission Concepts

    Science.gov (United States)

    Pilinski, Marcin D.; Moe, Kenneth; Palo, Scott E.; Argrow, Brian M.

    2011-07-01

    The first absolute measurement of thermospheric density was made by combining simultaneous observations of spin and semimajor axis decay of Explorer VI. Providing two independent measures of the interaction with the airstream enabled the determination of both air density and drag coefficient. Then by using a realistic model of the gas-surface interaction, the energy accommodation coefficient was determined. Only four such measurements were made prior to the time of writing. In this paper, we review the history of paddlewheel measurements and explain their importance to ongoing work in satellite drag. Next, a novel concept for paddlewheel satellites based on the CubeSat platform is discussed along with the relevant design parameters. A rudimentary error analysis for paddlewheel measurements evaluated the feasibility of these designs and it was found that the drag torques generated on a three-kilogram paddlewheel are within the measurement capabilities of today's technologies. For certain types of paddlewheel configurations, the use of direct simulation methods is important for accurately analyzing the data. This is because a paddlewheel with the spin axis oriented in the orbit normal direction undergoes significant flow-shadowing and this is not easily represented by analytical methods. Increasing the availability of accommodation measurements via the paddlewheel method represents an improvement in the accuracy of Earth's total density models as well as the understanding of gas-surface interactions in low Earth orbit. This is of profound importance in the prediction of satellite orbits as well as the understanding of atmospheric phenomena.

  3. 76 FR 49666 - Safety Zone; East Coast Drag Boat Bucksport Blowout Boat Race, Waccamaw River, Bucksport, SC

    Science.gov (United States)

    2011-08-11

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; East Coast Drag Boat Bucksport Blowout Boat... East Coast Drag Boat Bucksport Blowout in Bucksport, South Carolina. The East Coast Drag Boat Bucksport Blowout will consist of a series of high-speed boat races. The event is scheduled to take place on...

  4. 78 FR 60698 - Safety Zone, Lucas Oil Drag Boat Racing Series; Thompson Bay, Lake Havasu City, AZ.

    Science.gov (United States)

    2013-10-02

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone, Lucas Oil Drag Boat Racing Series; Thompson..., AZ for the Lucas Oil Drag Boat Racing Series. This temporary safety zone is necessary to provide... rulemaking (NPRM) with respect to this rule because the logistical details of the Lucas Oil Drag Boat Racing...

  5. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    Science.gov (United States)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  6. On the Minimum Induced Drag of Wings -or- Thinking Outside the Box

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  7. DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.

    Energy Technology Data Exchange (ETDEWEB)

    Salari, Kambiz (Lawrence Livermore National Laboratory); Browand, Fred (University of Southern California); Sreenivas, Kidambi (University of Tennessee, Chattanooga); Pointer, W. David (Argonne National Laboratory); Taylor, Lafayette (University of Tennessee, Chattanooga); Pankajakshan, Ramesh (University of Tennessee, Chattanooga); Whitfield, David (University of Tennessee, Chattanooga); Plocher, Dennis (University of Southern California); Ortega, Jason M. (Lawrence Livermore National Laboratory); Merzel, Tai (University of Southern California); McCallen, Rose (Lawrence Livermore National Laboratory); Walker, Stephen M (NASA Ames Research Center); Heineck, James T (NASA Ames Research Center); Hassan, Basil; Roy, Christopher John (Auburn University); Storms, B. (NASA Ames Research Center); Ross, James (NASA Ames Research Center); Englar, Robert (Georgia Tech Research Institute); Rubel, Mike (Caltech); Leonard, Anthony (Caltech); Radovich, Charles (University of Southern California); Eastwood, Craig (Lawrence Livermore National Laboratory); Paschkewitz, John (Lawrence Livermore National Laboratory); Castellucci, Paul (Lawrence Livermore National Laboratory); DeChant, Lawrence Justin.

    2005-08-01

    Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.

  8. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  9. Effect of wetted surface area on friction, pressure, wave and total drag of a kayak.

    Science.gov (United States)

    Gomes, Beatriz B; Machado, Leandro; Ramos, Nuno V; Conceição, Filipe A V; Sanders, Ross H; Vaz, Mário A P; Vilas-Boas, João Paulo; Pendergast, David R

    2017-11-21

    Using theoretical principles, the components of drag (friction DF, pressure DPR and wave DW) of a single-seat kayak were analysed. The purpose was to examine the effect of changes in wetted surface area due to changes in kayaker's weight and the relative contribution of DF, DPR and DW to the total passive drag as function of velocity. The total passive drag values were based on experimental data collected in a single-seat kayak. Three different kayaker simulated weights were tested - 65, 75 and 85 kg. DF was the drag component that contributed the greatest percentage (between 60 and 68% at 5.56 m/s the top velocity tested) to the total passive drag for all the velocities tested and simulated weights. DW was the most affected by the increase in kayaker's simulated weight, mainly when comparing 65/75 to 85 kg. Results support the importance of a kayak design selection that minimises the kayak's drag for the individual weight of the kayaker. Also, the results suggest that the path for better hydrodynamic kayak performance should seek changes that can reduce DF, DPR and DW with DF offering the most potential to reduce passive drag.

  10. RESEARCH ON THE AERODYNAMICS OF BLADE PROFILES OF WIND TURBINES

    Directory of Open Access Journals (Sweden)

    POP E.S.

    2016-09-01

    Full Text Available Small capacity wind turbine performance is influenced in a large extent by the blade profiles aerodynamics. By this point of view, the paper presents the most important aspects of aerodynamic profiles, and aspects concerning their optimization in order to increase performance. The study of blade profiles polar led to the identification of a reference profile, NACA4418, for which the best aerodynamic lift drag ratio is obtained on a big range of attack angles. A flow analysis on the reference profile is performed, using a CFD model of numerical simulations in order to obtain performance for different wind speeds.

  11. The Berlin oil channel for drag reduction research

    Science.gov (United States)

    Bechert, D. W.; Hoppe, G.; van der Hoeven, J. G. Th.; Makris, R.

    1992-03-01

    For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer ( y += 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs (“riblets”), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 mm, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of ±0.2%. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a “bubble trap” to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 × 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2×10-5 m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between

  12. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer

    2016-10-01

    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  13. On the horseshoe drag of a low-mass planet. I - Migration in isothermal disks

    OpenAIRE

    Casoli, J.; Masset, F. S.

    2009-01-01

    We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formal- ism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and that extends the torque estimate to a region wider than the horse- shoe region. We find a result that is strictly identical to the standard horseshoe drag. This shows that the horseshoe drag accounts for the torque of the whole corotation region, ...

  14. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  15. Mathematical Model and Experimental Evaluation of Drag Torque in Disengaged Wet Clutches

    OpenAIRE

    IQBAL, Shoaib; Al-Bender, Farid; Pluymers, Bert; Desmet, Wim

    2013-01-01

    When the clutch is in disengaged condition, ideally no torque should be transmitted. However, in reality, the relative motion between the disks causes viscous shearing of fluids in the gap. This results in a drag torque which is considered as a loss. The objective of the present study is to formulate a drag torque model as well as to experimentally evaluate the effect of several parameters on the drag torque. A model based on continuity and Navier-Stokes equations, considering laminar flow, i...

  16. Anomalous Coulomb drag between bilayer graphene and a GaAs electron gas

    Science.gov (United States)

    Simonet, Pauline; Hennel, Szymon; Overweg, Hiske; Steinacher, Richard; Eich, Marius; Pisoni, Riccardo; Lee, Yongjin; Märki, Peter; Ihn, Thomas; Ensslin, Klaus; Beck, Mattias; Faist, Jérôme

    2017-10-01

    We report on Coulomb drag experiments between a bilayer graphene flake and a GaAs two-dimensional electron gas, where the charge-carrier densities of both systems can be tuned independently. For both p- and n-type graphene charge carriers, we observe that the Coulomb drag unexpectedly changes direction when the temperature is lowered. We find this phenomenon to be dominant when the Fermi wave vector in graphene is larger than in GaAs. At temperatures above ≈ 70 {{K}}, the drag signal is consistent with momentum exchange. In all discussed regimes, the Onsager relation is respected.

  17. Drag force in strongly coupled { N }=4 supersymmetric Yang–Mills plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Ma, Ke; Hou, De-fu

    2018-02-01

    Applying AdS/CFT correspondence, we study the effect of a constant magnetic field { B } on the drag force associated with a heavy quark moving through a strongly-coupled { N }=4 supersymmetric Yang–Mills plasma. The quark is considered moving transverse and parallel to { B }. It is shown that for transverse case, the drag force is linearly dependent on { B } in all regions, while for parallel case, the drag force increases monotonously with increasing { B } and also reveals a linear behavior in the regions of strong { B }. In addition, we find that { B } has a more important effect in the transverse case than for the parallel.

  18. Higher Order Macro Coefficients in Periodic Homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Conca, Carlos; San Martin, Jorge [Departamento de IngenierIa Matematica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile and Centro de Modelamiento Matematico, UMR 2071 CNRS-UChile, Casilla 170/3 - Correo 3, Santiago (Chile); Smaranda, Loredana [Department of Mathematics, Faculty of Mathematics and Computer Science, University of Pitesti, 110040 Pitesti, Str. Targu din Vale Nr.1, Arges (Romania); Vanninathan, Muthusamy, E-mail: cconca@dim.uchile.cl, E-mail: jorge@dim.uchile.cl, E-mail: smaranda@dim.uchile.cl, E-mail: vanni@math.tifrbng.res.in [TIFR-CAM, Post Bag 6503, GKVK Post, Bangalore - 560065 (India)

    2011-09-15

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  19. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, A.; Glowka, D.A.

    1982-06-01

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  20. Studies on fluid drag measurement and fluid drag reduction of woman athlete swimming suit; Kyoeiyo mizugi no teiko sokutei ni kansuru kenkyu. Jintai mokei oyobi mizugi no ryutai teiko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Mie University, Mie (Japan). Faculty of Engineering; Suzuki, T.; Suzuki, K. [Mie University, Mie (Japan); Kiyokawa, H. [Mizuno Corp., Osaka (Japan)

    1997-12-25

    Sport science progresses step by step in the world. This work is a challenge to develop the athlete woman swimming suit with low fluid drag. To begin with, the fluid drag of the woman swimming suit is very small. It is very difficult to measure the several percent difference in the fluid drag of the swimming suit. Special experimental apparatus is developed to measure the fluid drag, precisely. It can successfully measure the fluid drag of athlete woman swimming suits at the precision 1-2%. As a result, the cloth with low fluid drag is found. It is worked water repellent into every other stripe on the cloth. The cloth is woven of thin threads (polyester 80% and polyurethane 20%). Also, the relationship between fluid drag for the model body and the water depth from the water surface to the model body is investigated in details. 2 refs., 16 figs.

  1. Octopus-inspired drag cancelation by added mass pumping

    Science.gov (United States)

    Weymouth, Gabriel; Giorgio-Serchi, Francesco

    2016-11-01

    Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.

  2. Nan Goldin: da Fotografia do Cotidiano à Visibilidade Drag Queen

    Directory of Open Access Journals (Sweden)

    Vivian Castro de Miranda

    2017-09-01

    Full Text Available Este trabalho tem como objetivo apresentar a biografia da fotógrafa americana Nan Goldin, a partir do recorte de sua produção datada entre as décadas de 1970 e 1990, em que ela fotografou a comunidade drag queen. A partir do cruzamento de informações vigentes em documentário (Série, 2004 e fontes relevantes (Guggenheim Museum, EUA; The Guardian, UK a quem a fotógrafa concedeu entrevistas ou foi notícia, procura-se explorar nesse texto a importância de uma produção que se insere no âmbito de questões caras ao contexto contemporâneo, que é a temática de gênero. Com a perspectiva teórica adotada, baseada principalmente nos apontamentos de Barthes (1984, é possível compreender o corpus analisado como resultante de um olhar sensível para o aspecto humano, com impacto para a discussão e aceitação do grupo social.

  3. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  4. Characterization of the LISA Pathfinder Drag Reduction System

    Science.gov (United States)

    Slutsky, Jacob; LISA Pathfinder Team

    2016-03-01

    The LISA Pathfinder (LPF) mission launched in December 2015 with operations beginning March 2016. LPF is a technology demonstration mission built to prove and fully characterize the performance of the use of drag free test masses as Gravitational Reference Sensors (GRS) for future space based gravitational-wave observatories. As a joint ESA-NASA mission, LPF is comprised of both European and NASA payloads, the LISA Technology Package (LTP) and Disturbance Reduction System (DRS), respectively. DRS includes Colloid Micro-Newton Thruster (CMNT) systems, to precisely maneuver the spacecraft without disturbing the GRS, and a control system that directs spacecraft and test mass actuation. In order to fully characterize DRS/CMNT performance, we have developed a series of experiments, to take place during DRS operations beginning later this year. We have built analysis pipelines, validated on simulated data, to rapidly process experimental data and to identify any performance issues as they occur. European partners have developed the LTP Data Analysis (LTPDA) Matlab extension, and we have adapted and expanded this to DRS missions as the basis of our analysis pipelines. I will discuss the anticipated DRS performance and measurement accuracy, illustrated on simulated data.

  5. Quantum Hall drag of exciton condensate in graphene

    Science.gov (United States)

    Liu, Xiaomeng; Watanabe, Kenji; Taniguchi, Takashi; Halperin, Bertrand I.; Kim, Philip

    2017-08-01

    An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.

  6. Phonon-drag thermopower in 3D Dirac semimetals.

    Science.gov (United States)

    Kubakaddi, S S

    2015-11-18

    A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T  Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T  >  0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.

  7. Long-Term Thermospheric Trends Based on Satellite Drag Analysis

    Science.gov (United States)

    Marcos, F. A.; Grossbard, N. J.

    2004-05-01

    A new database of thermospheric densities has been derived for the period 1970 - 2000 from satellite orbital decay analysis. The data are generated from actual radar tracking observations, rather than from the less accurate historical element sets, to form precise orbit and drag/density data with improved accuracy and one-day resolution. Satellites with high eccentricities were used to achieve long lifetimes and relatively localized latitude and local time resolution. Data are compared to three empirical models (Jacchia, NRLMSIS and NASA MET). The data were normalized to remove systematic model errors vs solar activity detected in all three models. A linear regression through the normalized data was obtained for each satellite. The weighted average of these fits show, at 400 km altitude, a downward trend of about 5% over 30 years with a 95% confidence interval of about 25%. The data are also analyzed as a function of altitude, solar flux and geomagnetic activity, and compared to theoretical predictions. Assuming a linear fit, these results tend to agree with other recent studies indicating a long-term cooling trend in the thermosphere.

  8. Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level.

    Science.gov (United States)

    Supej, M; Saetran, L; Oggiano, L; Ettema, G; Šarabon, N; Nemec, B; Holmberg, H-C

    2013-02-01

    This investigation was designed to (a) develop an individualized mechanical model for measuring aerodynamic drag (F(d) ) while ski racing through multiple gates, (b) estimate energy dissipation (E(d) ) caused by F(d) and compare this to the total energy loss (E(t) ), and (c) investigate the relative contribution of E(d) /E(t) to performance during giant slalom skiing (GS). Nine elite skiers were monitored in different positions and with different wind velocities in a wind tunnel, as well as during GS and straight downhill skiing employing a Global Navigation Satellite System. On the basis of the wind tunnel measurements, a linear regression model of drag coefficient multiplied by cross-sectional area as a function of shoulder height was established for each skier (r > 0.94, all P Skiing velocity, F(d) , E(t) , and E(d) per GS turn were 15-21 m/s, 20-60 N, -11 to -5 kJ, and -2.3 to -0.5 kJ, respectively. E(d) /E(t) ranged from ∼5% to 28% and the relationship between E(t) /v(in) and E(d) was r = -0.12 (all NS). In conclusion, (a) F(d) during alpine skiing was calculated by mechanical modeling, (b) E(d) made a relatively small contribution to E(t) , and (c) higher relative E(d) was correlated to better performance in elite GS skiers, suggesting that reducing ski-snow friction can improve this performance. © 2012 John Wiley & Sons A/S.

  9. Complexos de inclusão de indometacina com hidroxipropil-beta-ciclodextrina: estudos de dissolução e coeficiente de partição Inclusion compounds of indomethacin with hydroxypropyl-beta-cyclodextrin: dissolution profile and partition coefficient evaluation

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ribeiro Rama

    2006-03-01

    has a better time needed to dissolve 50% and 90% - 1 and 1.8 minutes then other products. The same happens with percentage of indomethacin dissolved at 5, 30 and 60 minutes - 92.6±1.8%; 98.9±1.2% e 100.01±0.1% and also with dissolution efficiency and dissolution profile. Partition coefficient results with the complexes obtained by both methods corroborate the theory that there are several intervenient strengths on this process and not only drug's free fraction that regulates transport to organic phase, reinforcing the environmental pH significance. With phosphate buffer pH 7.0, variations on transport grade by cyclodextrin addition are very small, showing no significant changes on log P*. With phosphate buffer pH 5.5, although not significant, variations are slightly higher. We can conclude that complexation enhances dissolution capacities of lipophylic drugs without changing the characteristics that give them a good ability for membrane diffusion.

  10. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    National Research Council Canada - National Science Library

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks...

  11. An improved Cauchy number approach for predicting the drag and reconfiguration of flexible vegetation

    Science.gov (United States)

    Whittaker, Peter; Wilson, Catherine A. M. E.; Aberle, Jochen

    2015-09-01

    An improved model to describe the drag and reconfiguration of flexible riparian vegetation is proposed. The key improvement over previous models is the use of a refined 'vegetative' Cauchy number to explicitly determine the magnitude and rate of the vegetation's reconfiguration. After being derived from dimensional consideration, the model is applied to two experimental data sets. The first contains high-resolution drag force and physical property measurements for twenty-one foliated and defoliated full-scale trees, including specimens of Alnus glutinosa, Populus nigra and Salix alba. The second data set is independent and of a different scale, consisting of drag force and physical property measurements for natural and artificial branches of willow and poplar, under partially and fully submerged flow conditions. Good agreement between the measured and predicted drag forces is observed for both data sets, especially when compared to a more typical 'rigid' approximation, where the effects of reconfiguration are neglected.

  12. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  13. Drag Reduction of a Pipe Flow Using Nata de Coco Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2014-08-01

    Full Text Available The addition of drag-reducing agents to reduce pipe friction loss has attracted attention as a method to conserve energy. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. Therefore, naturally occurring biopolymer additives, which are considered to have a low environmental load, have recently received much attention. Here we focused on nata de coco, a type of biopolymer that exhibits low mechanical degradation, and found that it reduced drag by up to 25% at a concentration of 50 ppm. With respect to the drag reduction (DR mechanism, we investigated the relation between DR phenomena and the fiber structure of nata de coco by visualization. As a result, we found that the DR effect appeared only when a network of nata de coco fibers was formed in the suspension. In addition, DR increased as the size of the network of nata de coco fibers increased.

  14. Scalable, Lightweight, Low-Cost Aero/Electrodynamic Drag Deorbit Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop the "Terminator Tape Deorbit Module", a lightweight, low-cost, scalable de-orbit module that will utilize both aerodynamic drag...

  15. Particle mobilization in porous media: Temperature effects on competing electrostatic and drag forces

    National Research Council Canada - National Science Library

    You, Zhenjiang; Bedrikovetsky, Pavel; Badalyan, Alexander; Hand, Martin

    2015-01-01

    .... Based on torque balance between electrostatic and drag forces acting on attached fine particles, we derived a model for the maximum retention concentration and used it to characterize the detachment...

  16. The Combination of Polymer, Compliant Wall, and Microbubble Drag Reduction Schemes

    Directory of Open Access Journals (Sweden)

    Boris N. Semenov

    2011-01-01

    Full Text Available The promising study of turbulence management by joint use of compliant coatings with other drag reduction means is proposed. Its outlooks are conditioned by different considered factors and confirmed by the first experimental and theoretical results.

  17. EXPERIMENTAL STUDY ON THE COLLABORATIVE DRAG REDUCTION PERFORMANCE OF A SURFACTANT SOLUTION IN GROOVED CHANNELS

    Directory of Open Access Journals (Sweden)

    Chonghai Huang

    Full Text Available Abstract Turbulence with a relatively larger vortex is obtained in drag-reducing surfactant solution, which provides an excellent condition for the application of small scale grooves. In this work, the coupling drag reduction performance of surfactant solution and grooves was experimentally investigated to explore the complementary possibility between their drag reduction mechanisms. The cationic surfactant cetyltrimethyl ammonium chloride (CTAC mixed with the counterion salt sodium salicylate (NaSal was experimented in smooth or grooved channel, respectively, at the mass concentrations of 50-150 ppm. It was found that the surfactant solutions gave more effective drag reduction in the grooved channel by the interaction between the "restriction effect" and "peak effect" of grooves. Moreover, the critical temperature and critical Reynolds number of the surfactant solution were smaller in the grooved channel, and the friction factor in the grooved channel increased much more rapidly than that in the smooth channel when Re is larger than a critical value.

  18. Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques

    Directory of Open Access Journals (Sweden)

    Ying-kui WANG

    2010-06-01

    Full Text Available The experiments in an open flume model and in the spillway tunnel models were carried out by using drag reduction technique. The drag reduction experiments in open channel model adopted two techniques: polymer addition and coating. The drag reduction effect of polyacrylamide (PAM solution and the dimethyl silicone oil coating were studied by the flume model experiments, and the results were satisfied. Then the experiments were carried out in the model of a Hydropower station, which is the second largest dam in China. In order to reduce the resistance, the spillway tunnel models were coated inside with the dimethyl silicone oil. It is the first time that applying the drag reduction technique in the large hydraulic model. The experimental results show that the coating technique can effectively increase the ability of flood discharge. The outlet velocity and the jet trajectory distance were also increased, which is beneficial to the energy dissipation of the spillway tunnel.

  19. A Limited Evaluation of Full Scale Control Surface Deflection Drag (Have FUN)

    National Research Council Canada - National Science Library

    Reinhardt, R. B; Celi, Sean A; Geraghty, Jeffrey T; Stahl, James W; Glover, Victor J; Bowman, Geoffrey G

    2007-01-01

    The Have FUN (FUll Scale Numbers) Test Management Project was conducted at the request of the USAF TPS as an investigation into the drag caused by control surface deflection during dynamic soaring techniques...

  20. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  1. Drag &Drop, Multiphysics & Neural Net-based Lab-on-Chip Optimization Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this project is to develop a drag and drop, component library (fluidic lego) based, system simulation and optimization software for entire...

  2. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested in custom made microchannel simulating human heart blood vessels. The performance of different types of additives was evaluated using pressure measurements. The maximum drag reduction up to 63.48% is achieved using 300 ppm of hibiscus mucilage at operating pressure of 50 mbar. In this present work, hibiscus showed the best drag reduction performance, giving the highest %FI in most of the cases. This experimental results proved that these natural polymeric additives could be utilized as DRA in enhancing the blood flow in semiclogged blood streams.

  3. A Novel Drag-Free Design for a Geostationary Gravitational Wave Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Given the large volume and additional mass available for scientific use on planned commercial geostationary platforms, we have conceived an alternative drag-free...

  4. Assessments of Bubble Dynamics Model and Influential Parameters in Microbubble Drag Reduction

    National Research Council Canada - National Science Library

    Skudarnov, P. V; Lin, C. X

    2006-01-01

    .... The effects of mixture density variation, free stream turbulence intensity, free stream velocity, and surface roughness on the microbubble drag reduction were studied using a single phase model based...

  5. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  6. M-Bonomial Coefficients and Their Identities

    Science.gov (United States)

    Asiru, Muniru A.

    2010-01-01

    In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.

  7. Pressure loss in natural gas pipelines: Experimental studies of gas-particle flow, wall roughness and drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Strupstad, Andre

    2009-05-15

    Laboratory experiments on air-particle flow were performed in a horizontal once-through flow rig, with internal pipe diameters of 24 mm. Reynolds number was 40000 - 180000, temperatures 20 deg. Celsius and pressure below 2 bara. Spherical polystyrene and magnetite particles with mean diameters from 64 mum to 175 mum were used. The pressure loss in the experiments was best expressed in terms of friction factor. Differential pressure drop gave limited information because reduction in this value was due to change in the gas properties during particle injection. The reduction in the differential pressure was due to the increase in the absolute pressure, which resulted in an increased gas density. This increased density, which with an approximately constant gas mass flow, resulted in a lower volume flow, and thereby a lower gas velocity. A lower gas velocity results in a lower differential pressure. A calculation of the friction factors, which increased, showed that these reductions in the differential pressures were not drag reductions. Roughness measurements were made on three types of surfaces with a stylus instrument: 47 epoxy coated steel surfaces as used in natural gas pipelines, 5 plexiglass surfaces used in our flow experiments, and 9 steel surfaces. The roughness profiles obtained were used to calculate amplitude roughness parameters and texture roughness parameters. Theory of gas-particle drag reduction in pipes was reviewed. Turbulence attenuation was a necessary but not a sufficient condition for drag reduction to occur. Small particle diameter was identified as an important condition for achieving drag reduction. Also, relevant parameters for achieving turbulence attenuation were identified, including the Stokes number, ratio between particle diameter and pipe diameter and the particle Reynolds number. In the flow experiments the gas friction factor increased by up to 16 % with injection of particles as compared to particle free flow. The increase depended

  8. Influence of drag force upon the shortest time trajectory of an aircraft

    OpenAIRE

    Andrei CRAIFALEANU; Roxana Alexandra PETRE

    2015-01-01

    The shortest time trajectory of an aircraft between two given locations is determined using a simple mathematical model. By taking into account the drag force (viscous friction force with the air), a problem of variational calculus is obtained which consists in determining two functions that minimize a functional, subject to a non-holonomic constraint. The trajectory is determined directly, by numerical integration of Euler equations with multipliers. Three types of drag forces were considere...

  9. Drag and heat flux reduction mechanism of blunted cone with aerodisks

    Science.gov (United States)

    Huang, Wei; Li, Lang-quan; Yan, Li; Zhang, Tian-tian

    2017-09-01

    The major challenge among a number of design requirements for hypersonic vehicles is the reduction of drag and aerodynamic heating. Of all these techniques of drag and heat flux reduction, application of forward facing aerospike conceived in 1950s is an effective and simpler technique to reduce the drag as well as the heat transfer rate for blunt nosed bodies at hypersonic Mach numbers. In this paper, the flow fields around a blunt cone with and without aerodisk flying at hypersonic Mach numbers are computed numerically, and the numerical simulations are conducted by specifying the freestream velocity, static pressure and static temperatures at the inlet of the computational domain with a three-dimensional, steady, Reynolds-averaged Navier-Stokes equation. An aerodisk is attached to the tip of the rod to reduce the drag and heat flux further. The influences of the length of rod and the diameter of aerodisk on the drag and heat flux reduction mechanism are analyzed comprehensively, and eight configurations are taken into consideration in the current study. The obtained results show that for all aerodisks, the reduction in drag of the blunt body is proportional to the extent of the recirculation dead air region. For long rods, the aerodisk is found not that beneficial in reducing the drag, and an aerodisk is more effective than an aerospike. The spike produces a region of recirculation separated flow that shields the blunt-nosed body from the incoming flow, and the recirculation region is formed around the root of the spike up to the reattachment point of the flow at the shoulder of the blunt body. The dynamic pressure in the recirculation area is highly reduced and thus leads to the decrease in drag and heat load on the surface of the blunt body. Because of the reattachment of the shear layer on the shoulder of the blunt body, the pressure near that point becomes large.

  10. Inserting Tides and Topographic Wave Drag into High-resolution Eddying Simulations

    Science.gov (United States)

    2014-07-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...using a 25-hour running boxcar filter. Presently, the scalar approximation (Ray, 1998) is used for the self-attraction and loading term (Hendershott...breaking. Maps of energy dissipation by quadratic bottom drag and by the parameterised topographic lee wave drag, both averaged over one year, are

  11. Discovery of riblets in a bird beak (Rynchops) for low fluid drag

    OpenAIRE

    Martin, Samuel; Bhushan, Bharat

    2016-01-01

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, ...

  12. Torque & drag analyses of North Sea Wells using new 3D model.

    OpenAIRE

    Tveitdal, Terje

    2011-01-01

    Master's thesis in Petroleum engineering Excessive drill string torque and drag is one of the major limitations of extended-reach and horizontal drilling. The torque and drag models are used in the planning phase and during the drilling of a well, as a tool used for monitoring developing hole problems. The models used throughout the industry today are mostly based on equations presented more than two decades ago, little work have been done to improve upon these. The thesis gives a general ...

  13. Hydrodynamic Drag Force Measurement Of A Functionalized Surface Exhibiting Superhydrophobic Properties

    Science.gov (United States)

    2016-12-01

    resiliency of this surface treatment . 14. SUBJECT TERMS superhydrophobic, superhydrophilic, Femto-second laser surface processing , skin friction drag...and Y. Kunitake, Frictional drag reduction with air lubricant over a super- water -repellent surface, Journal of Marine Science and Technology , vol...properties being extended to a variety of metallic substrates through the process of ablation due to femto-second laser surface processing (FLSP), it is

  14. Contact Issues on a Highly Flexible Frame for a Satellite Drag Sail

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Kristensen, Anders Schmidt

    2017-01-01

    This processes the highly flexible frame for a drag sail in FEA with contacts and compared with experiments to get a better understanding of how well ANSYS can describe highly non-linear systems.......This processes the highly flexible frame for a drag sail in FEA with contacts and compared with experiments to get a better understanding of how well ANSYS can describe highly non-linear systems....

  15. Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

    Directory of Open Access Journals (Sweden)

    Andrey V. Boiko

    2011-12-01

    Full Text Available Skin frictional drag reduction efficiency of “stiff” compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties during half a year was documented as well. A design procedure proposed by Kulik et al. (2008 was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4∼5% drag reduction within a velocity range 30∼40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

  16. Analysis and design of planar and non-planar wings for induced drag minimization

    Science.gov (United States)

    Mortara, Karl W.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1992-01-01

    The goal of the work reported herein is to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a free wake has been coupled with a panel method. The induced drag prediction technique is based on the application of the Kutta-Joukowski law at the trailing edge. Until now, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more commonly used techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these methods, it is demonstrated that a reduction in induced drag can be achieved through non-planar wing geometries. It remains to determine what overall drag reductions are possible when the induced drag reduction is traded-off against increased wetted area. With the design methodology that is described herein, such trade studies can be performed in which the non-linear effects of the free wake are taken into account.

  17. Numerical simulation for the influence of injected laser power on plasma drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Fang, J [Department of Postgraduates, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China); Dou, Z G; Huang, H, E-mail: liuzhun0@gmail.com [Department of Basic Theories, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China)

    2011-02-01

    Laser plasma drag reduction is a new method to reduce the wave drag of hypersonic flight. Inject laser power is an important parameter. An appropriate laser power should be chosen when laser power was injected to achieve the best drag reduction effect via the minimum laser power. The effect of inject laser power on the performance of laser plasma drag reduction when incoming flight Mach number is 6.5 and at 30km altitude was simulated numerically. The result indicates that the drag can be effectively reduced by energy injection in the upstream flow. The larger the inject power is, the smaller the drag of the blunt body obtained. The energy injection can also influence the pressure and temperature on the surface of blunt body. When laser energy injected, high pressure region on the surface moves to the back of the hemisphere, the pressure of stagnation point decreased. There are two peaks of temperature on the blunt surface, one is the stagnation point and the other is the high pressure region. Temperature of the surface after high pressure region is lower comparison to the condition that no energy injected.

  18. Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow

    Directory of Open Access Journals (Sweden)

    Weiguo Gu

    2011-01-01

    Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.

  19. On the effect of drag forces in mooring system restoring forces

    Directory of Open Access Journals (Sweden)

    Ullah Zahid

    2017-01-01

    Full Text Available Mooring line is a major source of stability and plays a key role in the global response of offshore floating wind turbine. In the current state of the research, a formulation based on the analytical catenary equation is most commonly used for the analysis of mooring lines. However, due to the inability of catenary equations to consider the ocean current drag forces on mooring lines, the effect of drag forces on fairlead restoring forces has not been investigated yet. In this study, we have investigated the influence of drag forces on fairlead forces using discrete catenary formulation for modeling mooring line. The discrete catenary formulation has the ability to incorporate ocean current drag forces. Three types of elements; fully suspended, touchdown and seabed element are formulated to model the suspended, touchdown and seabed portion of a slack mooring line, respectively. The influence of viscous drag on the fairlead restoring forces is demonstrated through the analysis of OC3-Hywind mooring system subjected to ocean currents. It was found that the viscous drag significantly influences the fairlead forces.

  20. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....