WorldWideScience

Sample records for professor experimental condensed

  1. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  2. Computations for a condenser. Experimental results

    International Nuclear Information System (INIS)

    Walden, Jean.

    1975-01-01

    Computations for condensers are presented with experimental results. The computations are concerned with the steam flux at the condenser input, and inside the tube bundle. Experimental results are given for the flux inside the condenser sleeve and the flow passing through the tube bundle [fr

  3. Professor

    DEFF Research Database (Denmark)

    Hansen, Henrik

    2014-01-01

    DEBAT: Danske bistandskroner skal øge den interregionale handel i Afrika - det skaber vækst i Afrika og indirekte handel med danske virksomheder, mener Henrik Hansen, professor ved Økonomisk Institut på KU.......DEBAT: Danske bistandskroner skal øge den interregionale handel i Afrika - det skaber vækst i Afrika og indirekte handel med danske virksomheder, mener Henrik Hansen, professor ved Økonomisk Institut på KU....

  4. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  5. Experimental and theoretical study of reflux condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Knut

    1997-12-31

    This thesis studies the separation of gas mixtures in a reflux condenser. also called a dephlegmator. Reflux condensation is separation of a gas mixture, in reflux flow with condensing liquid, under continuous heat removal. A numerical model of a dephlegmator for binary mixtures was developed. The model may readily be extended to multi-component mixtures, as the solution method is based on a matrix solver. Separation of a binary mixture in a reflux condenser test rig is demonstrated. The test facility contains a single-tube test section that was designed and built as part of the project. Test mixtures of propane and n-butane were used, and a total of 15 experiments are reported. Limited degree of separation was achieved due to limited heat transfer area and narrow boiling point range of the test mixture. The numerical model reproduces the experimental data within reasonable accuracy. Deviation between calculated and measured properties is less than 6% of the measured temperature and less than 5% of the measured flow rate. The model is based on mechanistic models of physical processes and is not calibrated or tuned to fit the experimental data. The numerical model is applied to a number of separation processes. These case studies show that the required heat transfer area increases rapidly with increments in top product composition (light component). Flooding limits the amount of reflux liquid. The dephlegmator is suitable for separation of feed mixtures that are rich in light components. The gliding temperature in the dephlegmation process enables utilization of top product as refrigerant, with subsequent energy saving as a result. 61 refs., 50 figs., 34 tabs.

  6. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    NARCIS (Netherlands)

    Knol, M.H.; in 't Veld, R.; Vorst, H.C.M.; van Driel, J.H.; Mellenbergh, G.J.

    2013-01-01

    This experimental study concerned the effects of repeated students’ evaluations of teaching coupled with collaborative consultation on professors’ instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental

  7. Experimental study on the unstable direct contact condensation regimes

    International Nuclear Information System (INIS)

    Damasio, C.; Del Tin, G.; Fiegna, G.; Malandrone, M.

    1985-01-01

    Vapour-liquid interface fluctuation frequencies have been measured by means of electrical resistive probes. Frequency data from these probes have been compared with measured frequencies from a Kistler piezoelectric pressure transducer in the pool near the steam-water interaction region. An attempt has been made to correlate measured frequencies to the observed condensation regimes. Experimental data concerning ''steam chugging'' and condensation oscillation regimes have been correlated in terms of dimensionless parameters

  8. Experimental study of EHD pseudo-dropwise condensation

    International Nuclear Information System (INIS)

    Yabe, A.; Taketani, T.; Yoshizawa, Y.; Sunada, K.

    1991-01-01

    This paper reports that in order to realize a higher performance heat pump, an electrohydrodynamical (EHD) condenser utilizing a combination of two kinds of EHD phenomena has been researched. In this study, to maximize the augmentation effect, an experimental study has been carried out to clarify the details of an EHD pseudo-dropwise condensation. The diameter of the drops has decreased with the increase of the electric field. The condensation heat transfer coefficients have increased in proportion to the electric field strength, realizing the maximum local heat transfer coefficients of over 9000 W/m 2 K for CFC113 and over 11000W/m 2 K for HCFC123. Furthermore, the heat transfer coefficients have become the same for the same electric field strength, independent of the surface temperature of the heat transfer plate, if the amount of the falling condensate is the same

  9. Experimental study on external condensation heat transfer characteristics of bellows

    International Nuclear Information System (INIS)

    Feng Dianyi; Hu Jiansheng

    2008-01-01

    Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)

  10. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  11. Experimental study of steam condensation regime map for simplified spargers

    International Nuclear Information System (INIS)

    Kim, Y. S.; Yoon, Y. J.; Song, C. H.; Park, C. K.; Kang, H. S.; Jun, H. K.

    2003-01-01

    An experimental study was conducted to produce a condensation regime map for single-hole and 4-hole steam spargers using GIRLS facility. The regime map for a single-hole sparger was derived using parameters such as the frequency and magnitude of the dynamic pressure. For 4-hole sparager, the regime map was derived using the trends of sound and dynamic pressure. Using the single-hole and 4-hole data, a steam jet condensation regime map was suggested with respect to pool temperature and steam mass flux

  12. An experimental study of high pressure steam condensation in a vertical tube of passive secondary condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [KAIST, Taejon (Korea, Republic of)

    1998-07-01

    To investigate the physical parameters of PSCS (Passive Secondary Condensation System) which is a passive residual heat removal system of CP-1300, the high pressure condensation experiments are performed in a small scale experimental facility. The experimental parameters are the local heat flux and the transfer coefficient and the pressure drop in a condensation heat trasnfer. The film condensation heat transfer coefficients in a vertical tube are calculated from the measured wall temperature difference and compared with the analytical models. A new analytical condensation model is developed based on the annular film flow model. The present model gives marginally better results than those from the Shah model in comparison with the experimental data in the database. Also, experimental data are compared with the results of the RELAP5/MOD3.2 thermal hydraulic code. The RELAP5/MOD3.2 underpredicts the condensation heat transfer coefficients of the present experiment by 50 %.

  13. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  14. EXPERIMENTAL PERFORMANCE OF R134a AND R152a USING MICROCHANNEL CONDENSER

    OpenAIRE

    Bhatkar, V. W.

    2018-01-01

    An experimental performance study on vapour compression refrigeration system with R134a and drop in substitute R152a with aluminium microchannel condenser was carried out for condensation temperature of 48°C while evaporation temperature varied from -10 to 15°C. Refrigerant charge of R152a was reduced by 40% over R134a with the microchannel condenser. Performance parameters like work input to the compressor, coefficient of performance, refrigerating capacity, condenser capacity and the produc...

  15. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  16. Experimental investigation of non-condensable gases effect on operation of VVER steam generator in condensation mode

    International Nuclear Information System (INIS)

    Efanov, A. D.; Kalyakin, S. G.; Morozov, A. V.; Remizov, O. V.; Tsyganok, A. A.; Generalov, V. N.; Berkovich, V. M.; Taranov, G. S.

    2008-01-01

    To provide the safety in new Russian NPP designs, protection passive systems which don't depend upon human errors are widely used. In terms of safety, the design of NPP of new generation (NPP-2006) falls into the class of advanced NPPs. In the event of an beyond design basis accident with the rupture of the reactor primary circuit and accompanied by the loss of ac sources, the use of passive safety systems are provided for necessary core cooling. Among these is passive heat removal system (PHRS). In the case of leakage in the primary circuit this system ensures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam coming to SG piping from the reactor. As a result, the condensate from steam generators arrives at the core providing its additional cooling. The SG condensation capacity can be adversely affected by the presence of non-condensable gases in the primary circuit of the reactor. Their main sources are nitrogen arriving at the circuit, as hydro accumulators actuate, products of radiolysis of water and air drawn in from the containment through the pipeline rupture. The accumulation of non-condensable gases in SG piping can result in degradation of its condensation capacity to the extent that condensation completely terminates. In this case, the core cooling conditions may be impaired. To experimental investigation of the condensation mode of operation of WER steam generator, a large scale HA2M-SG test rig was constructed at the SSC RF IPPE. The test rig incorporates: buffer tank, equipped by steam supply system; SG model with volumetric-power scale is 1:46; PHRS heat exchanger imitator, cooling by process water. The rig main equipment connected by pipelines and equipped by valves. The elevations of the main equipment correspond to those of reactor project. The rig maximum operating parameters: steam pressure - 1.6 MPa, temperature - 200 Celsius degrees. Experiments at the HA2M-SG test rig have been

  17. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    Science.gov (United States)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  18. Experimental and computational analysis of steam condensation in the presence of air and helium

    International Nuclear Information System (INIS)

    Bucci, M.

    2010-01-01

    Among the different phenomena expected to occur within nuclear reactor containments during a postulated loss of coolant accident, condensation on containment walls plays a major role, since it represents an important heat sink for evacuating the energy released by the discharge of the primary water. Nevertheless, condensation strongly affects other relevant phenomena, like containment atmosphere mixing, that influences the distribution of non-condensable gases hypothetically delivered in severe accident conditions. In this scenario, the role of condensation is not obvious, since it can locally aid the hydrogen produced by the oxidation of the core claddings to concentrate and reach flammability limits, providing a dangerous effect instead of a positive one. The understanding of condensation in the presence of air and hydrogen is therefore a fundamental task for the safety analyses of reactor containments. This research has been carried out with the aim to contribute to the understanding of these phenomena. A double strategy has been adopted, including complementary experimental and computational activities. Novel data have been made available by the CONAN facility, investigating the effects induced by light non-condensable gases in experimental configurations that were scarcely investigated in past studies. Computational fluid dynamics (CFD) condensation models have been developed and validated. The suitability of helium as a substitute for hydrogen in experimental activities has been investigated by theoretical and computational analyses allowing to establish simple criteria for the scaling of condensation tests in the presence of a light non-condensable gas. (authors)

  19. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  20. Experimental investigation of tunneling times using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ciampini, Donatella; Arimondo, Ennio; Morsch, Oliver

    2011-01-01

    The time it takes a quantum system to complete a tunneling event (which in the case of cross-barrier tunneling can be viewed as the time spent in a classically forbidden area) is related to the time required for a state to evolve to an orthogonal state, and an observation, i.e., a quantum mechanical projection on a particular basis, is required to distinguish one state from another. We have performed time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. The use of different protocols enabled us to access the tunneling probability, in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the eigenstates of the lattice, and the diabatic one to the free-particle momentum eigenstates. Our findings pave the way towards more quantitative studies of the tunneling time for LZ transitions, which are of current interest in the context of optimal quantum control and the quantum speed limit.

  1. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  2. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-01-01

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to: (1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, (2) assess the RELAP5 and TRACE computer code against the experimental data, and (3) develop mathematical model and heat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal-hydraulic codes assessment

  3. The numerical and experimental study of two passes power plant condenser

    Directory of Open Access Journals (Sweden)

    Rusowicz Artur

    2017-01-01

    Full Text Available The steam condenser is one of the most important element in whole power plant installation. Their proper design and operation makes a significant contribution to the efficiency of electricity production. The purpose of this article is to propose a two-dimensional mathematical model that allows modeling condenser work. In the model, the tube bundle is treated as a porous bed. The analysis has been subjected to a two passes power condenser with a capacity of 50 MW. The mathematical analysis was compared with the results of experimental studies. The average error between the model and the experiment for difference of cooling water temperatures was 5.15% and 11.60% for the first and second pass respectively. This allows to conclude that the proposed model is good enough to optimize future work of the condenser.

  4. An experimental and numerical study into turbulent condensing steam jets in air

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S. [Faculty of Applied Physics Eindhoven, Univ. of Technology Eindhoven (Netherlands); Badie, R. [Philips Research Laboratories Eindhoven (Netherlands); Dongen, M.E.H. van [Faculty of Applied Physics, Eindhoven Univ. of Technology (Netherlands)

    2001-07-01

    Temperatures, velocities, and droplet sizes are measured in turbulent condensing steam jets produced by a facial sauna, for varying nozzle diameters and varying initial velocities (Re=3,600-9,200). The release of latent heat due to droplet condensation causes the temperature in the two-phase jet to be significantly higher than in a single-phase jet. At some distance from the nozzle, droplets reach a maximum size and start to evaporate again, which results in a change in sign of latent heat release. The distance of maximum size is determined from droplet size measurements. The experimental results are compared with semi-analytical expressions and with a fully coupled numerical model of the turbulent condensing steam jet. The increase in centreline temperature due to droplet condensation is successfully predicted. (orig.)

  5. Experimental and theoretical investigations on condensation heat transfer at very low pressure to improve power plant efficiency

    International Nuclear Information System (INIS)

    Berrichon, J.D.; Louahlia-Gualous, H.; Bandelier, Ph.; Bariteau, N.

    2014-01-01

    Highlights: • Theoretical model for condensation heat transfer at very low pressure is developed using only one iterative loop. • Experimental results on steam and air steam condensation heat transfer at very low pressure are presented. • The developed model gives the good predictions for local condensation heat transfer at low pressure. • A maximal deterioration of 50% in condensation heat transfer is obtained at low pressure for air fraction of 4%. • A new correlation including effect of a wavy film surface for steam condensation at low pressure is suggested. - Abstract: This paper presents experimental investigation on the influence of very low pressure on local and average condensation heat transfer in a vertical tube. Furthermore, this paper develops an analytical study for film condensation heat transfer coefficient in the presence of non-condensable gas inside a vertical tube. The condensate film thickness is calculated for each location in a tube using mass and heat transfer analogy. The effects of interfacial shear stress and waves on condensate film surface are included in the model. The comparative studies show that the present model well predicts the experimental data of Khun et al. [1]for local condensation of steam air mixture at high pressure. Different correlations defined for condensation heat transfer are evaluated. It is found that the correlations of Cavallini and Zecchin [2] and Shah [3] are the closest to the calculated steam condensation local heat transfer coefficient. The model gives a satisfactory accuracy with the experimental results for condensation heat transfer at very low pressure. The mean deviation between the predictions of the theoretical model with the measurements for pure saturated vapor is 12%. Experimental data show that the increase of air fraction to 4% deteriorates condensation heat transfer at low pressure up to 50%

  6. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  7. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Omara, Z.M.; Essa, F.A.

    2014-01-01

    Highlights: • The effect of using nanofluids on the solar still performance is investigated. • The solar still with external condenser increases the productivity by about 53.2%. • Using nanofluids improves the solar still water productivity by about 116%. - Abstract: The distilled water productivity of the single basin solar still is very limited. In this context, the design modification of a single basin solar still has been investigated to improve the solar still performance through increasing the productivity of distilled water. The experimental attempts are made to enhance the solar still productivity by using nanofluids and also by integrating the still basin with external condenser. The used nanofluid is the suspended nanosized solid particles of aluminum-oxide in water. Nanofluids change the transport properties, heat transfer characteristics and evaporative properties of the water. Nanofluids are expected to exhibit superior evaporation rate compared with conventional water. The effect of adding external condenser to the still basin is to decrease the heat loss by convection from water to glass as the condenser acts as an additional and effective heat and mass sink. So, the effect of drawn vapor at different speeds was investigated. The results show that integrating the solar still with external condenser increases the distillate water yield by about 53.2%. And using nanofluids improves the solar still water productivity by about 116%, when the still integrated with the external condenser

  8. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach.

    Science.gov (United States)

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2017-01-24

    We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.

  9. The Condensate Saga: From London's proposal to a convincing experimental answer

    International Nuclear Information System (INIS)

    Svensson, E.G.

    1983-01-01

    The Condensate Sata, which began with Fritz London's intriguing proposal of 1938, is summarized with particular emphasis on the study of Sears, Svensson, Martel and Woods of 1982 which gave the first convincing experimental evidence for a macroscopic occupation of the zero-momentum state in superfluid /sup 4/He

  10. Experimental phase behavior study of a five-component model gas condensate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Straver, E.J.M.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    In this work, the bubble points and dew points of a multicomponent mixture of methane, butane, heptane, decane and tetradecane as a model mixture representative of a gas condensate, have been measured experimentally. Ten samples with approximately the same composition were prepared and their

  11. Experimental determination of droplet size and density field in condensing flows

    NARCIS (Netherlands)

    Lamanna, G.; van Poppel, J.; Dongen, van M.E.H.

    2002-01-01

    We report a detailed experimental characterization of the process of homogeneous condensation in supersonic expanding flow. In our experiments, the supersaturated mixture expands in a Laval nozzle, where, depending on the initial conditions, a steady or periodically oscillating flow may evolve due

  12. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  13. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  14. To the generalization of experimental data on heat and mass transfer in evaporation and condensation

    International Nuclear Information System (INIS)

    Berman, L.D.

    1980-01-01

    Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation

  15. Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)

    2016-11-15

    The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.

  16. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  17. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  18. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  19. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-06-01

    Full Text Available A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter of 6 nm, 11 nm, and 15 nm at temperature differences (ΔT between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C to evaporate H2SO4-H2O particles of 11 nm<dp<200 nm at pressures between 70 and 300 hPa. An instrumental in-flight inter-comparison of the different COPAS CPCs yields correlation coefficients of 0.996 and 0.985. The particle emission index for the M-55 in the range of 1.4–8.4×1016 kg−1 fuel burned has been estimated based on measurements of the Geophysika's own exhaust.

  20. Experimental Investigation of Sulfuric Acid Condensation and Corrosion Rate in Motored Bukh DV24 Diesel Engine

    DEFF Research Database (Denmark)

    Kjemtrup, Lars; Cordtz, Rasmus Faurskov; Meyer, Martin

    2017-01-01

    The work conducted in this paper presents a novel experimental setup to study sulfuric acid cold corrosion of cylinder liners in large two-stroke marine diesel engines. The process is simulated in a motored light duty BUKH DV24 diesel engine where the charge air contain known amounts of H2SO4 and H......2O vapor. Liner corrosion is measured as iron accumulation in the lubeoil. Similarly sulfuric acid condensation is assessed by measuring the accumulation of sulfur in the lube oil. To clarify the corrosive effect of sulfuric acid the lube oil utilized for experiments is a sulfur free neutral oil...... without alkaline additives (Chevron Neutral Oil 600R). Iron and sulfur accumulation in the lube oil is analyzed withan Energy Dispersive X-Ray Fluorescence (ED-XRF) apparatus. Three test cases with different H2SO4 concentrations are run. Results reveal good agreement between sulfuric acid injection flow...

  1. Experimental determination of the heat transfer coefficient in shell-and-tube condensers using the Wilson plot method

    Directory of Open Access Journals (Sweden)

    Havlik Jan

    2017-01-01

    Full Text Available This article deals with the experimental determination of heat transfer coefficients. The calculation of heat transfer coefficients constitutes a crucial issue in design and sizing of heat exchangers. The Wilson plot method and its modifications based on measured experimental data utilization provide an appropriate tool for the analysis of convection heat transfer processes and the determination of convection coefficients in complex cases. A modification of the Wilson plot method for shell-and-tube condensers is proposed. The original Wilson plot method considers a constant value of thermal resistance on the condensation side. The heat transfer coefficient on the cooling side is determined based on the change in thermal resistance for different conditions (fluid velocity and temperature. The modification is based on the validation of the Nusselt theory for calculating the heat transfer coefficient on the condensation side. A change of thermal resistance on the condensation side is expected and the value is part of the calculation. It is possible to improve the determination accuracy of the criterion equation for calculation of the heat transfer coefficient using the proposed modification. The criterion equation proposed by this modification for the tested shell-and-tube condenser achieves good agreement with the experimental results and also with commonly used theoretical methods.

  2. Experimental investigation of reflux condensation heat transfer in PWR steam generator tubes in the presence of noncondensible gases

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Wu, Tiejun [Purdue Univ., West Lafayette (United States); Nagae, Takashi [Institute of Nuclear Safety System, Tokyo (Japan)

    2003-07-01

    Under certain circumstances in a Pressurized Water Reactor (PWR), the coolant system may be in a partially drained state and reflux condensation in the steam generator U-tubes can be the major heat removal mechanism. Noncondensable gases may be present and would degrade the heat transfer rate. If heat removal rates are insufficient, this situation could lead to core boil-off, fuel rod heatup, and eventually core damage. The Institute of Nuclear Safety System, Inc. (INSS) and the Nuclear Heat Transfer Systems Laboratory at Purdue University have begun a cooperative research program to investigate the effectiveness of reflux condensation in PWR steam generator U-tubes in the presence of noncondensable gases. The final objectives are to provide local heat transfer data for development of methods to analyze reflux condensation in PWR steam generator U-tubes and to investigate the potential for flooding. Key features of the experimental data reported herein are that they are local data under laminar steam/gas mixture and condensate film flow and they are taken from a test section with dimensions similar to an actual steam generator tube. Steady state data were obtained under various steam and air inlet flow rates and pressures. The data show the significant degrading effect of noncondensable gas on heat transfer coefficients. From the data, correlations for the reflux condensation local heat transfer coefficient and the local Nusselt number under laminar conditions were derived. These experiments are providing essential and unique fundamental data for development of methods to analyze reflux condensation.

  3. Experimental and theoretical study of steam condensation induced water hammer phenomena

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Baranyai, Gabor; Ezsoel, Gyoergy

    2009-01-01

    We investigate steam condensation induced water hammer (waha) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side waha is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. Experimentally measured and theoretically calculated waha pressure peaks are in qualitative agreement. (author)

  4. Experimental research on in-tube condensation in the presence of air

    International Nuclear Information System (INIS)

    Tanrikut, A.; Yesin, O.

    2000-01-01

    In this research work, in-tube condensation in the presence of air is investigated experimentally for different operating conditions, and inhibiting effect of air is analyzed by comparing the experimental data of air/steam mixture with the data of corresponding pure steam cases, with respect to temperature, heat flux, and heat transfer coefficient. The test matrix covers the range of; P=2-6 bar, Re v =45000-94000, and X i =0%-52%. The inhibiting effect of air manifests itself as a remarkable decrease in centerline temperature (10 deg. C - 50 deg. C), depending on inlet air mass fraction. However, the measured centerline temperature is suppressed compared to the predicted one, from the Gibbs-Dalton Law, which indicates that the centerline temperature measurements are highly affected by inner wall thermal conditions, possibly due to narrow channel and high vapor Reynolds number. Even at the lowest air quality (10%) the reduction of the heat flux is 20% while it reaches up to 50% for the quality of 40%. Maximum percent decrease of the heat transfer coefficient was observed in runs with the system pressure of 2 bar; 45% and 65%, for the air mass fraction of 10% and 28%, respectively. (author)

  5. Experimental determinations of the turbine condenser operation at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Romascu, Gabriel; Dragusin, Dumitru; Rogociu, Ioan; Macodean, Luminita; Marciulescu, George

    1999-01-01

    The condenser system represents one of the most important BOP (balance of plant) systems of the CANDU 700 MW Unit at Cernavoda NPP. The paper presents theoretical calculation elements, mathematical model for simulation of condenser operation and the results obtained by model implementation as compared to operation data. The model could be adapted to other turbine and operation regime types. (authors)

  6. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  7. The modelling of condensation in horizontal tubes and the comparison with experimental data

    Directory of Open Access Journals (Sweden)

    Bryk Rafał

    2017-01-01

    Full Text Available The condensation in horizontal tubes plays an important role in determining the operation mode of passive safety systems of modern nuclear power plants. In this paper, two different approaches for modelling of this phenomenon are compared and verified against experimental data. The first approach is based on the flow regime map developed by Tandon. Depending on the regime, the heat transfer coefficient is calculated according to corresponding semi-empirical correlation. The second approach uses a general, fully empirical correlation proposed by Shah. Both models are developed with utilization of the object-oriented, equation-based Modelica language and the open-source Open-Modelica environment. The results are compared with data obtained during a large scale integral test, simulating a Loss of Coolant Accident scenario performed at the dedicated Integral Test Facility Karlstein (INKA which was built at the Components Testing Department of AREVA in Karlstein, Germany. The INKA facility was designed to test the performance of the passive safety systems of KERENA, the new AREVA boiling water reactor design. INKA represents the KERENA containment with a volume scaling of 1:24. Components heights and levels over the ground are in the full scale. The comparison of simulations results shows a good agreement.

  8. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  9. Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

    CERN Document Server

    2002-01-01

    Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

  10. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Chen, Xueqing; Chen, Ying; Deng, Lisheng; Mo, Songping; Zhang, Haiyan

    2013-01-01

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  11. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    Science.gov (United States)

    Kivisalu, Michael Toomas

    Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies

  12. Experimental investigation of CO{sub 2} condensation process using cryogen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-01-29

    Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.

  13. Experimental study of air-cooled water condensation in slightly inclined circular tube using infrared temperature measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2016-11-15

    Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two

  14. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process

    International Nuclear Information System (INIS)

    Förster, Henning; Wolfrum, Christian; Peukert, Wolfgang

    2012-01-01

    The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.

  15. Experimental results for an experimental condensation heat exchanger with a spiral minichanel tube. Comparison to numerical imulations

    Directory of Open Access Journals (Sweden)

    Hrubý J.

    2013-04-01

    Full Text Available The paper describes new results for an experimental heat exchanger equipped with a single corrugated capillary tube, basic information about the measurements and the experimental setup. Some of the results were compared with numerical simulations.

  16. A theoretical and experimental study of turbulent thermal conductivity of water in direct contact condensation

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.; Focardi, G.

    1988-01-01

    An experimental investigation related to the interaction between saturated and superheated steam in quasi-stagnant conditions, and subcooled water in horizontal flow within a rectangular duct test section is presented. A mathematical model for the description of the phenomenon has been developed and tested with the experimental data. The comparison is acceptable and well within the uncertainty band of the experimental measurements

  17. Experimental investigation of condensation and mixing during venting of a steam / non-condensable gas mixture into a pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    De Walsche, C.; Cachard, F. de

    2000-07-01

    Experiments have been performed in the LINX facility to investigate condensation and mixing phenomena in pressure Suppression Pools (SPs), in the context of the European Simplified Boiling Water Reactor (ESBWR) study. As a contribution to the TEPSS project of the 4th European Framework Programme, eight medium-scale, separate-effect tests were carried out in which constant steam/air flow rates were injected below the surface of a two-metre diameter water pool, maintained at constant pressure, through a large downward vent. The vessel pressure was regulated, the pool temperature rising until equilibrium conditions with the incoming gas were reached. The SP temperature distribution was measured, as well as the inlet and outlet gas flow rates, and the overall condensation rate was estimated using mass and heat balances. The test matrix was based on steam mass floret and air mass fraction of the injected gas, the vent immersion depth, and the vessel pressure. Overall, the condensation was shown to be efficient for all tests performed, even for high non-condensable gas concentrations of the injected gas. Thermal stratification above the vent outlet was shown to be moderate. The tests performed allowed a better understanding to be gained of the mechanisms of condensation and mixing in the SP and Wetwell, and results were incorporated into an ORACLE database, to be used for further model development. (authors)

  18. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    Science.gov (United States)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  19. The Effect of Non-condensable Gases Removal on Air Gap Membrane Distillation: Experimental and Simulation Studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2014-04-01

    In the kingdom of Saudi Arabia (KSA), the current seawater desalination technologies are completely relying on burning unsustainable crude oil as their main energy driver. Saudi authorities have realized that the KSA is not going to be protected from the future global energy crisis and have started to set up a plan to diversify its energy resources. Membrane Distillation (MD) has emerged as an attractive alternative desalination process. It combines advantages from both thermal and membrane-based technologies and holds the potential of being a cost-effective separation process that can utilize low-grade waste heat or renewable energy. MD has four different configurations; among them is Air Gap Membrane Distillation (AGMD) which is the second most commonly tested and the most commercially available pilot-plant design. AGMD has a stagnant thin layer of air between the membrane and the condensation surface. This layer introduces a mass transfer resistance that makes the process require a large membrane surface area if a large quantity of fresh water is desired. This dissertation reports on experimental and theoretical work conducted to enhance the AGMD flux by removing non-condensable gases from the module and replacing it with either vacuum, liquid water or porous materials. At first, a mathematical model for AGMD was developed and validated experimentally to create a baseline for improvements that could be achieved after the removal of non-condensable gases. The mathematical model was then modified to simulate the process under vacuum where it showed a flux enhancement that reached 286%. The Water Gap Membrane Distillation (WGMD) configuration improved the flux by almost the same percentage. Since enhancing the flux is expected to increase temperature polarization effects, a theoretical study was conducted on the effect of temperature polarization in a Vacuum Membrane Distillation (VMD) configuration. The study showed that the effect of temperature polarization at

  20. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  1. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    OpenAIRE

    Cardone, F.; Mignani, R.; Petrucci, A.

    2011-01-01

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtaine...

  2. Primordial condensation of meteorite components - experimental evidence of the state of the source medium

    International Nuclear Information System (INIS)

    Arrhenius, G.; McCrumb, J.L.; Friedman, N.

    1979-01-01

    Mineral grains and grain aggregates in meteorites carry potential information on the conditions in the environment where they formed. To avoid model-dependent interpretations it is necessary to develop experimental criteria that uniquely reflect the environmental parameters of interest. These parameters include the various temperatures of the source medium and the temperature of grains at growth all of which are observed to be highly differentiated in the space medium in accordance with the radiation laws. (orig./WL)

  3. Experimental studies on condensation of steam mixed with noncondensable gas inside the vertical tube in a pool filled with subcooled water

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Sinha, R.K.; Aritomi, M.

    2003-01-01

    A passive containment cooling system with immersed condensers has been proposed as one of the alternatives for the advanced heavy water reactor (AHWR) being designed in India. The system removes residual/decay heat released into the containment through the immersed condensers kept in a pool of water following loss of coolant accident. An important aspect of the immersed condensers is the potential degradation of its performance due to the presence of noncondensable gases. Experiments are performed to obtain reliable data on condensation phenomena in presence of air. These experiments are conducted on full-scale tubes of condensers immersed in a pool of water maintaining similar conditions as in the prototype of AHWR. A method has been proposed for the determination of the local heat transfer rate using correlations given in literature. The parametric effects of air mass fraction, pressure, steam flow, etc. on condensation heat transfer in presence of noncondensable gas have been studied. The experimental results are compared with the correlations given in literature. (orig.)

  4. Autonomia profissional dos professores

    OpenAIRE

    Guerra, Teresa P.; Veiga, Feliciano

    2007-01-01

    Este estudo pretendeu analisar as representações dos professores acerca da sua autonomia em contexto escolar, com recurso a uma amostra de 203 professores de ambos os sexos, pertencentes a escolas dos distritos de Lisboa, Setúbal, Leiria e Aveiro. Utilizou-se a Escala de Autonomia Profissional dos Professores (EAPP).

  5. Experimental study on heat transfer with condensation of vapors of pure nitrogen tetroxide with nitrogen oxide additions on a bundle of horizontal tubes

    International Nuclear Information System (INIS)

    Batishcheva, T.M.; Derov, B.T.; Kolykhan, L.I.; Pulyaev, V.F.

    1977-01-01

    The results of an experimental investigation of heat transfer during condensation of pure N 2 O 4 vapours and with NO admixtures on the outside surface of a bundle of horizontal tubes are considered. The tests with pure N 2 O 4 have been performed at pressures between 0.3-1.0 MPa in the range of thermal loads 22-121 kW/m 2 , temperature heads of 5-33 grades with complete condensation and evaporation. The content of admixtures boiling at high temperatures do not exceed 0.8%. A concentration of noncondensing nitrogen oxide in a gas phase have changed in the range of 3-27%. It is shown, that a concentration of noncondensible NO doesn't result in a considerable decrease of the heat transfer intensity as well as in the case of condensation of vapour-liquid mixtures. The generalized criterion relations are presented

  6. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser

    International Nuclear Information System (INIS)

    Martínez, P.; Ruiz, J.; Cutillas, C.G.; Martínez, P.J.; Kaiser, A.S.; Lucas, M.

    2016-01-01

    A well known strategy for improving the performance of air conditioning systems when using air-condensed units is to decrease the ambient inlet airflow temperature by means of an evaporative cooling pad. In this work experiments are conducted in a split air-conditioning system where the condensing unit is modified by coupling different evaporative cooling pads with variable thickness. The impact of the different cooling pads on the overall performance of the air-conditioning system is experimentally determined by measuring the airflow conditions and the energy consumption of the overall air conditioning system, including both the condenser fan and the feedwater recirculation pump of the cooling pads. The aim is to determine the energy efficiency improvement achieved by pre-cooling the ambient airflow compared to a common air-condensed unit and to calculate the optimal pad thickness that maximize the overall COP of the system. Experimental results indicate that the best overall COP is obtained by adding a cooling pad thickness of about 100 mm. At that point the compressor power consumption is reduced by 11.4%, the cooling capacity is increased by 1.8% and finally the overall COP is increased by 10.6%.

  7. A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    O'Donovan, Alan; Grimes, Ronan

    2014-01-01

    Economic and environmental restrictions have resulted in an increase in the installation of air-cooled condensers (ACCs) in thermoelectric power plants located in arid regions. The traditional A-frame design is installed most frequently, despite an array of empirical evidence that shows it to suffer from significant inefficiencies. As a result, there is scope for improvement in condenser design and this paper presents one such approach – a novel modular air-cooled condenser (MACC). It is suggested that the unique ability of the MACC to continually vary fan speed could result in efficiency gains over a plant operating with existing state-of-the-art fixed speed ACCs. To determine the impact of installing the MACC on plant output, the steam-side characteristics were established through a series of experimental measurements taken on a full-scale prototype. The experimental arrangement and measurement technique ensured that conditions representative of an operational ACC were maintained throughout. The steam-side characteristics are quantified in terms of temperature, pressure and thermal resistance. Predicted values of these quantities are also presented, calculated from established theory. Both the measurements and predictions were used in a thermodynamic analysis to determine the performance of a 50 MW power plant. Results show that, for a given steam flow rate, increasing fan speed leads to a reduction in condenser pressure which ultimately, results in increased plant output. This occurs up until a certain point, at which further increases in output are offset by larger fan power consumption rates. Thus, an optimum operating point is shown to exist. The results from the thermodynamic analysis demonstrate discrepancies between the plant output evaluated from the measurements and that predicted from theory. In some cases, a difference as large as 1.5% was observed, equating to a 0.8 MW over-prediction by the theory. - Highlights: • A novel modular air

  8. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  9. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  10. Experimental and analytical study of intermittency in direct contact condensation of steam in a cross-flow of water

    NARCIS (Netherlands)

    Clerx, N.; Geld, van der C.W.M.

    2009-01-01

    The topology of a condensing steam jet, at low steam mass fluxes, injected in a cross-flow of water has been investigatedexperimentally for various conditions (system pressure around 3 bar). The intermittent character of the steam pocket growthand collapse clearly appeared from the high speed

  11. Experimental Investigation of Operation of VVER Steam Generator in Condensation Mode in the Event of the Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Andrey [Institute for Physics and Power Engineering by A.I. Leypunsky, 1 Bondarenko sq. Obninsk, 249033 (Russian Federation)

    2008-07-01

    For new Russian nuclear power plants with VVER-1200 reactor in the event of a beyond design basis accident, provision is made for the use of passive safety systems for necessary core cooling. These safety systems include the passive heat removal system (PHRS). In the case of leakage in the primary circuit this system assures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam. As a result, the condensate from SG arrives at the core providing its additional cooling. To investigate the condensation mode of VVER SG operation, a large scale HA2M-SG test facility was constructed. The rig incorporates: buffer tank, SG model with scale is 1:46, PHRS heat exchanger. Experiments at the test facility have been performed to investigate condensation mode of operation of SG model at the pressure 0.4 MPa, correspond to VVER reactor pressure at the last stage of the beyond design basis accident. The report presents the test procedure and the basic obtained test results. (authors)

  12. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  13. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  14. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    Science.gov (United States)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the

  15. Happy Birthday Professor Telegdi

    CERN Multimedia

    2002-01-01

    Professor Telegdi, pictured with Luciano Maiani and Alexander Skrinsky, receiving the medal of foreign member of the Russian Academy of Sciences in June 2000. Professor Valentine Telegdi celebrated his 80th birthday on Friday, 11th January. A brilliant American physicist of Hungarian origin, Professor Telegdi was a professor at the University of Chicago, the Swiss Federal Institute of Technology in Zurich (ETHZ) and the California Institute of Technology and took part in many CERN experiments, of which NA10 and L3 were the most recent. He served as Chairman of CERN's Scientific Policy Committee from 1981 to 1983. A member of numerous scientific academies, he shared the prestigious Wolf Prize with Maurice Goldhaber in 1991 in recognition of their separate seminal contributions to nuclear and particle physics, particularly those concerning weak interactions involving leptons.

  16. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François

    2018-06-01

    Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.

  17. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  18. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  19. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  20. Professor Michael Levitt

    Directory of Open Access Journals (Sweden)

    Gemma-Louise Davies

    2015-10-01

    Full Text Available Professor Michael Levitt (Stanford University, USA won the 2013 Nobel Prize in Chemistry for the development of multiscale models for complex chemical systems—computational tools which can calculate the course of chemical reactions. Professor Levitt was born in Pretoria, South Africa; he came to the UK on a summer vacation aged 16, where he decided to stay and study for his A‑levels. His interest in the physics of living systems drove him to study biophysics at King’s College London, before securing a PhD position at the Laboratory of Molecular Biology in Cambridge. In the interim year between his degree and beginning his PhD, Professor Levitt worked at the Weizmann Institute of Science in Israel, where he met his future wife. They married later that year and moved to Cambridge, where their three children were born. After completing his PhD, he spent time working in Israel, Cambridge, the Salk Institute and Stanford (both California. Since 1986, he has split his time between Israel and California. Outside of science, he is a keen hiker and he is well-known to have attended the eclectic ‘Burning Man’ Festival in California.[1] Professor Levitt visited the University of Warwick to speak at the Computational Molecular Science Annual Conference in March 2015. In this interview, Dr Gemma-Louise Davies, an Institute of Advanced Study Global Research Fellow, spoke to Professor Levitt about the importance of Interdisciplinarity in his field, role models in Academia, and his plans for the future. Image: Professor Michael Levitt (left with Dr Scott Habershon (right, organiser of the 2015 Computational Molecular Science Annual Conference during his visit to the University of Warwick in March 2015. [1] ‘Burning Man’ is a unique annual festival dedicated to community, art, music, self-expression and self-reliance. Tens of thousands of people flock to this temporary metropolis built in the Californian desert.

  1. Professor Torben Larsen

    DEFF Research Database (Denmark)

    Larsen, Torben

    2013-01-01

    En samling af væsentlige artikler, og diskussion, om stormflod skrevet af professor Torben Larsen, Aalborg Universitet. Torben Larsen diskuterer i artiklerne et forslag om at lukke Thyborøn Kanal for at mindske risikoen for stormflod og oversvømmelse langs Limfjordens byer.......En samling af væsentlige artikler, og diskussion, om stormflod skrevet af professor Torben Larsen, Aalborg Universitet. Torben Larsen diskuterer i artiklerne et forslag om at lukke Thyborøn Kanal for at mindske risikoen for stormflod og oversvømmelse langs Limfjordens byer....

  2. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  3. Professor Tiina Tasmuth Helsingis

    Index Scriptorium Estoniae

    2000-01-01

    Tervisekasvatuse õppetooli professor Tiina Tasmuth osales 11.-14. juunini Helsingis toimunud rahvusvahelise konverentsi "2nd Psycho-Social Impacts of Breast Cancer" töös ning esines ettekandega teemal "Chronic post-treatment symptoms in patients with breast cancer" : [täistekst

  4. Professor Kalkman retires

    NARCIS (Netherlands)

    Baas, Pieter

    1991-01-01

    On 13 December 1990 Prof. Dr. Cornelis (Kees) Kalkman retired from the positions of Professor of Plant Systematics and Scientific Director of the Rijksherbarium/ Hortus Botanicus by presenting his valedictory lecture to the academic community of Leiden University and the assembled Dutch Botanical

  5. Professor Wolfgang Panofsky

    CERN Multimedia

    2007-01-01

    "Professor Wolfgang panofsky, who died on September 24 aged 88, was a particle physicists and director of the Stanford Linear Accelerator Centre (SLAC) in California; with Jack Steinberger, he was the first to isolate the neutral pi meson, one of the subatomic particles which had been predicted by theoretical scientists to account for the strng force which binds the nuclei of atoms." (1 page)

  6. An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates

    Science.gov (United States)

    Imae, Naoya; Isobe, Hiroshi

    2017-09-01

    Chondrules, igneous objects of ∼1 mm in diameter, formed in the earliest solar system via a transient heating event, are divided into two types: main (type I, FeO-poor) and minor (type II, FeO-rich). Using various chondritic materials for different redox conditions and grain sizes, chondrule reproduction experiments were carried out at IW-2 to IW-3.8, with cooling rates mainly ∼100°C/h, with peak temperatures mainly at 1450 °C, and mainly at 100 Pa in a Knudsen cell providing near chemical equilibrium between the charge and the surrounding gas at the peak temperatures. Vapor pressures in the capsule were controlled using solid buffers. After and during the significant evaporation of the iron component from the metallic iron-poor starting materials in near equilibrium, crystallization occurred. This resulted in the formation of a product similar to the type I chondrules. Dusty olivine grains occurred in charges that had precursor type II chondrules containing coarse ferroan olivine, but such grains are not common in type I chondrules. Therefore fine-grained ferroan matrices rather than type II chondrules are main precursor for type I chondrules. The type I chondrules would have evolved via evaporation and condensation in the similar conditions to the present experimental system. Residual gas, which escaped in experiments, could have condensed to form matrices, leading to complementary compositions. Clusters of matrices and primordial chondrules could have been recycled to form main-generation chondrules originated from the shock heating.

  7. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  8. Professor og DMI

    DEFF Research Database (Denmark)

    Kaas, Eigil

    2010-01-01

    Det er koldt, og det har det været længe. Sammen med sneen har det en selvforstærkende effekt på vintervejret, forklarer professor og meteorolog. Kulde: - Det er koldt, fordi vinden kommer fra et sted, hvor det er koldt. Det er den enkle forklaring på, at Danmark og store dele af Europa lige nu...... oplever meget lave temperaturer - og for Danmarks vedkommende en usædvanlig lang periode med vintervejr. Forklaringen kommer fra professor Eigil Kaas fra Niels Bohr Instituttet ved Københavns Universitet. Han forklarer til jp.dk, at vintervejret dog er betinget af den mere eller mindre tilfældige måde...

  9. Professor Alex Callinicos

    OpenAIRE

    Ali Saqer

    2016-01-01

    Professor Alex Callinicos is a renowned social theorist and scholar of international political economy. He conducts research on Marx and Marxism, European social and political theory, contemporary political philosophy, critical theory, historiography, and international political economy. His work provides invaluable insights on issues of race and racism, social justice, the Third Way, imperialism, austerity, and EU politics, among many other fascinating contemporary issues. Alex studied Philo...

  10. The Effects of Professors' Race and Gender on Student Evaluations and Performance

    Science.gov (United States)

    Basow, Susan A.; Codos, Stephanie; Martin, Julie L.

    2013-01-01

    This experimental study examined the effects of professor gender, professor race, and student gender on student ratings of teaching effectiveness and amount learned. After watching a three-minute engineering lecture presented by a computer-animated professor who varied by gender and race (African American, White), female and male undergraduates…

  11. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  12. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  13. 16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

    CERN Document Server

    Anna Pantelia

    2013-01-01

    16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

  14. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  15. Professor Stewart's incredible numbers

    CERN Document Server

    Stewart, Ian

    2015-01-01

    Ian Stewart explores the astonishing properties of numbers from 1 to10 to zero and infinity, including one figure that, if you wrote it out, would span the universe. He looks at every kind of number you can think of - real, imaginary, rational, irrational, positive and negative - along with several you might have thought you couldn't think of. He explains the insights of the ancient mathematicians, shows how numbers have evolved through the ages, and reveals the way numerical theory enables everyday life. Under Professor Stewart's guidance you will discover the mathematics of codes,

  16. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  17. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    Science.gov (United States)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  18. Professor Alex Callinicos

    Directory of Open Access Journals (Sweden)

    Ali Saqer

    2016-04-01

    Full Text Available Professor Alex Callinicos is a renowned social theorist and scholar of international political economy. He conducts research on Marx and Marxism, European social and political theory, contemporary political philosophy, critical theory, historiography, and international political economy. His work provides invaluable insights on issues of race and racism, social justice, the Third Way, imperialism, austerity, and EU politics, among many other fascinating contemporary issues. Alex studied Philosophy, Politics, and Economics at Balliol College, Oxford, and Philosophy of Science at the London School of Economics before writing a DPhil on Marx's Capital, also at Balliol. He was a Junior Research Fellow in Contemporary Social Thought at St Peter's College, Oxford from 1979 to 1981, after which he taught social and political theory at the Department of Politics at the University of York until 2005, when he moved to King's College London. Alex is currently the Professor of European Studies at King's and editor of International Socialism. Alex has been an active contributor to the development of the movement for another globalization, participating in the World Social Forum and an animator of the European Social Forum. Among his best known books are The Revolutionary Ideas of Karl Marx (1983, Against Postmodernism (1990, Social Theory (1999, An Anti-Capitalist Manifesto (2003, The Resources of Critique (2006, Imperialism and Global Political Economy (2009. His most recent book is entitled Deciphering Capital: Marx’s Capital and its Destiny (2014.

  19. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  20. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  1. An overview of Experimental Condensed Matter Physics in Argentina by 2014, and Oxides for Non Volatile Memory Devices: The MeMOSat Project

    Science.gov (United States)

    Levy, Pablo

    2015-03-01

    In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.

  2. Condensation in Nanoporous Packed Beds.

    Science.gov (United States)

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  3. Professor Igor Yevseyev: In Memoriam Professor Igor Yevseyev: In Memoriam

    Science.gov (United States)

    2012-06-01

    Dear readers and authors, June 3, 2012 will mark five months since Professor Igor Yevseyev, Deputy Editor-in-Chief of both journals Laser Physics and Laser Physics Letters passed away, suddenly and unexpectedly. He was 67. Born in Moscow, he entered one of the world's best schools of physics, Moscow Engineering Physics Institute (MEPhI). With this renowned educational and research institution he bonded an alliance for his entire life, starting as an undergraduate student in the Department of Theoretical Physics and later continued as graduate student, assistant professor, associated professor, and full professor in the same department, a rare accomplishment of a person. All those years he retained the love of his life—the love for physics. He worked tirelessly as a teacher and scholar in this captivating field of knowledge. Professor Yevseyev was one of the founders of the international journal of Laser Physics in 1990, the first academic English language journal published in the former USSR. Later, in 2004, the second journal, Laser Physics Letters was brought to the forum of global laser physics community. The idea behind this new title was Professor Yevseyev's initiative to reach the readers and participants with new pioneering and break-through research results more rapidly. His leadership and indefatigable dedication to the quality of published materials made it possible that this journal reached international recognition in a few short years. Still, in order to attract even more attention of potential contributors and readers, Professor Yevseyev originally proposed to conduct the International Laser Physics Workshop (LPHYS) on the annual basis. Since 1992 the Workshop has been conducted every year, each year in a different country. As in all previous years, Professor Yevseyev was the key organizer of this year's workshop in Calgary, Canada. Sadly, this workshop will take place without him. Editorial Board

  4. Wanted: More Squares Among Professors

    Science.gov (United States)

    Fisher, William H.

    1969-01-01

    Professors who see the world and life in a context of sincerely held religious beliefs should be given the same tolerance and understanding which atheists and agnostics used to demand for themselves. (AD)

  5. The College Professor's Professional Liability

    Science.gov (United States)

    Griggs, Walter S.; Rubin, Harvey W.

    1977-01-01

    The growing number of professional liability suits against professors warrants a close examination of the need for and provisions of available insurance coverage. The evolution of tort liability, the question of negligence, and the professional liability policy are discussed. (LBH)

  6. Minimum Leakage Condenser Test Program

    International Nuclear Information System (INIS)

    1978-05-01

    This report presents the results and analysis of tests performed on four critical areas of large surface condensers: the tubes, tubesheets, tube/tubesheet joints and the water chambers. Significant changes in operation, service duty and the reliability considerations require that certain existing design criteria be verified and that improved design features be developed. The four critical areas were treated analytically and experimentally. The ANSYS finite element computer program was the basic analytical method and strain gages were used for obtaining experimental data. The results of test and analytical data are compared and recommendations made regarding potential improvement in condenser design features and analytical techniques

  7. Professor Igor Yevseyev: In Memoriam

    International Nuclear Information System (INIS)

    2012-01-01

    Dear readers and authors, June 3, 2012 will mark five months since Professor Igor Yevseyev, Deputy Editor-in-Chief of both journals Laser Physics and Laser Physics Letters passed away, suddenly and unexpectedly. He was 67. Born in Moscow, he entered one of the world's best schools of physics, Moscow Engineering Physics Institute (MEPhI). With this renowned educational and research institution he bonded an alliance for his entire life, starting as an undergraduate student in the Department of Theoretical Physics and later continued as graduate student, assistant professor, associated professor, and full professor in the same department, a rare accomplishment of a person. All those years he retained the love of his life—the love for physics. He worked tirelessly as a teacher and scholar in this captivating field of knowledge. Professor Yevseyev was one of the founders of the international journal of Laser Physics in 1990, the first academic English language journal published in the former USSR. Later, in 2004, the second journal, Laser Physics Letters was brought to the forum of global laser physics community. The idea behind this new title was Professor Yevseyev's initiative to reach the readers and participants with new pioneering and break-through research results more rapidly. His leadership and indefatigable dedication to the quality of published materials made it possible that this journal reached international recognition in a few short years. Still, in order to attract even more attention of potential contributors and readers, Professor Yevseyev originally proposed to conduct the International Laser Physics Workshop (LPHYS) on the annual basis. Since 1992 the Workshop has been conducted every year, each year in a different country. As in all previous years, Professor Yevseyev was the key organizer of this year's workshop in Calgary, Canada. Sadly, this workshop will take place without him. Editorial Board

  8. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  9. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  10. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  11. Experimental Studies for the VVER-440/213 Bubble Condenser System for Kola NPP at the Integral Test Facility BC V-213

    International Nuclear Information System (INIS)

    Blinkov, V.N.; Melikhov, O.I.; Melikhov, V.I.; Davydov, M.V.; Wolff, H.; Arndt, S.

    2012-01-01

    In the frame of Tacis Project R2.01/99, which was running from 2003 to 2005, the bubble condenser system of Kola NPP (unit 3) was qualified at the integral test facility BC V-213. Three LB LOCA tests, two MSLB tests, and one SB LOCA test were performed. The appropriate test scenarios for BC V-213 test facility, modeling accidents in the Kola NPP unit 3, were determined with pretest calculations. Analysis of test results has shown that calculated initial conditions and test scenarios were properly reproduced in the tests. The detailed posttest analysis of the tests performed at BC V-213 test facility was aimed to validate the COCOSYS code for the calculation of thermohydraulic processes in the hermetic compartments and bubble condenser. After that the validated COCOSYS code was applied to NPP calculations for Kola NPP (unit 3). Results of Tacis R2.01/99 Project confirmed the bubble condenser functionality during large and small break LOCAs and MSLB accidents. Maximum loads were reached in the LB LOCA case. No condensation oscillations were observed.

  12. Experimental Investigation of Thermal Behaviors in Window Systems by Monitoring of Surface Condensation Using Full-Scale Measurements and Simulation Tools

    Directory of Open Access Journals (Sweden)

    Goopyo Hong

    2016-11-01

    Full Text Available The aim of the present study was to investigate the thermal performance of window systems using full-scale measurements and simulation tools. A chamber was installed on the balcony of an apartment to control the temperatures which can create condensation on the interior surfaces of window systems. The condensation process on the window was carefully scrutinized when outdoor and indoor temperature and indoor relative humidity ranged from −15 °C to −20 °C, 23 °C to 24 °C, and 50% to 65%, respectively. The results of these investigations were analyzed to determine how the moisture is influenced by changing temperatures. It appears that the glass-edge was highly susceptible to the temperature variations and the lowest temperature on the glass edge was caused by the heat transfer through the spacer, between the two glass panels of the window. The results from the simulation used in this study confirm that the thermal performance of window systems can be improved the use of super insulated or thermally broken spacers. If the values of the indoor humidity and temperature are given, then the outdoor temperature when condensation forms can be obtained by using Temperature Difference Ratio (TDR. This methodology can be employed to predict the possible occurrence of condensation.

  13. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  14. Student Evaluations of College Professors: Are Female and Male Professors Rated Differently?

    Science.gov (United States)

    Basow, Susan A.; Silberg, Nancy T.

    1987-01-01

    Over 1,000 undergraduates evaluated 16 male and female professors in terms of teaching effectiveness and sex-typed characteristics. Male students gave female professors significantly poorer ratings than male professors on the six teaching evaluation measures. Female students evaluated female professors less favorably than male professors on three…

  15. Professor Peter Higgs: "My Life as a Boson"

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Professor Peter Higgs played a key role in the development of the Standard Model, our current theory of fundamental physics. The search for the Higgs Boson is the centrepiece of the LHC programme at CERN, and the existence of this famously elusive particle is likely to be confirmed or refuted with data currently being collected, using apparatus partly designed at Bristol. Professor Higgs will introduce the ideas of spontaneous symmetry breaking, and discuss how these developed from their application in condensed matter through the earlier work of Yoichiro Nambu and Jeffrey Goldstone, to the work of Robert Brout, Francois Englert and himself in 1964. The subsequent application of these ideas to electroweak theory will be discussed briefly.

  16. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  17. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  18. Teaching Ethos of Reference Professors

    Directory of Open Access Journals (Sweden)

    Jules Marcel

    2018-03-01

    Full Text Available The present article discusses the teaching ethos of professors who are recognized for their good practice as trainers. The aim of our study is to analyze the influences of such professors’ professional constitution, as well as the explicit and/or tacit teaching knowledge they mobilize in their teaching practices. Based on Shulman, Gauthier, Tardif and Polanyi, we conducted interviews with three professors described by their students as reference. They were also observed in their classes, in the context of an undergraduate program in pedagogy at a public university. Data show similarities between the practices of the investigated professors, as well as a consistent description of their didactics, which is marked by intellective, moral, emotional and behavioral features.

  19. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  20. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-01-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  1. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L. [Department of Phsysics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  2. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  3. Professors of the New Economy.

    Science.gov (United States)

    Wilson, Robin

    2000-01-01

    Profiles four professors who epitomize the increasing influence of academe on new technology-driven Internet business: a start-up maven, Steven Kaplan; a social psychologist, Michael Ray; a cyberlawyer, David Post; and an e-commerce expert, Andrew B. Whinston. (DB)

  4. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  5. Landau-Migdal parameters and pion condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)

    1999-08-01

    The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)

  6. ICT Use by Journalism Professors in Colombia

    Science.gov (United States)

    Hung, Elias Said

    2011-01-01

    This article analyses how journalism professors at Colombian universities use information and communications technologies (ICT) in their teaching. Survey data was obtained during the first trimester of 2009 from 63 professors in journalism departments and from a total of 865 professors who are affiliated with journalism departments at 29…

  7. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  8. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  9. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  10. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  11. Professor dr hab. Maria Lisiewska

    Directory of Open Access Journals (Sweden)

    Małgorzata Stasińska

    2015-08-01

    Full Text Available The article presents the biography and scientific achievements of Professor Maria Lisiewska. She earned master’s degree and Ph.D. in natural sciences from Adam Mickiewicz University in Poznań. After earning her doctoral degree, she stayed at Adam Mickiewicz University in Poznań and conducted her thrilling research on mycology and taught until now. Prof. Maria Lisiewska is an author of many books, articles, and other scholarly reports.

  12. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  13. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  14. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  15. Professor

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik

    2017-01-01

    DEBAT: Land og by hænger uløseligt sammen - både i forhold til fødevareproduktion og -distribuering – men også i forhold til vores fælles natur. Når vi bor i byerne, er vi tæt forbundet og afhængige af de tjenester, som landbruget bidrager med – fødevarer, sikring af rent grundvand, bioenergi, re...

  16. professores

    Directory of Open Access Journals (Sweden)

    Sandra Isabel Rodrigues Magalhães

    2006-01-01

    Full Text Available The development of classroom practices focused on scientific literacy as animportant outcome of schooling forces the re-thinking of science teacher’sformation. In this sense, this paper reports a study which involved theconception, development, implement and evaluation of an in-service program(IP focused on the Science — Technology — Society (STS education alongwith critical thinking (CT [STS/CT]. From the obtained results it was concludedthat the in-service program contributed for the teachers to (reconstructconceptions about Science, Technology and Society, to (reconstructknowledge related to the STS orientation and critical thinking and to promotetheir pre-disposition to implement STS/CTdidactic and pedagogic practices

  17. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  18. Purification method for condensate

    International Nuclear Information System (INIS)

    Shimoda, Akiyoshi.

    1996-01-01

    Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)

  19. 'Supermentoring' of assistant professors' teaching

    DEFF Research Database (Denmark)

    Lauridsen, Ole

    Aarhus University offers a mandatory pedagogical training program for assistant professors, required in order to obtain tenure at a Danish university. At Business and Social Sciences, this program is supplemented by voluntary observation and (first of all formative) supervision of the assistant...... professors’ teaching practice. This offer is given is (i) because many young university teachers face problems putting pedagogical theory into practice – even though the program mentioned is practice-oriented, and (ii) because many of them (partly due to (i)) lack self-confidence as to teaching...

  20. Entrevista com professor Bertrand Badie

    OpenAIRE

    Mere Marques Aveiro, Thais

    2015-01-01

    Bertrand Badie é cientista político, professor na Sciences Po, Paris, pesquisador do CERI (Centro de Estudos e Pesquisas Internacionais), codiretor da coleção L’etat du monde, publicada anualmente desde 2010 e coeditor da Enciclopédia Internacional de Ciência Política. Entre 2002 e 2005, foi Diretor do Centro de Estudos Internacionais sobre a paz e resoluções de conflitos. Por dez anos (1994 –2003), foi Diretor das publicações da Sciences Po.Desde 2000, ministra o Curso Espaço Mundial que, a ...

  1. Modeling of Kerena Emergency Condenser

    Science.gov (United States)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  2. Modeling of Kerena Emergency Condenser

    Directory of Open Access Journals (Sweden)

    Bryk Rafał

    2017-12-01

    Full Text Available KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA was built in Karlstein, Germany. The emergency condenser (EC system transfers heat from the reactor pressure vessel (RPV to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA. The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  3. Interview with Professor Mark Wilcox.

    Science.gov (United States)

    Wilcox, Mark

    2016-08-01

    Mark Wilcox speaks to Georgia Patey, Commissioning Editor: Professor Mark Wilcox is a Consultant Microbiologist and Head of Microbiology at the Leeds Teaching Hospitals (Leeds, UK), the Professor of Medical Microbiology at the University of Leeds (Leeds, UK), and is the Lead on Clostridium difficile and the Head of the UK C. difficile Reference Laboratory for Public Health England (PHE). He was the Director of Infection Prevention (4 years), Infection Control Doctor (8 years) and Clinical Director of Pathology (6 years) at the Leeds Teaching Hospitals. He is Chair of PHE's Rapid Review Panel (reviews utility of infection prevention and control products for National Health Service), Deputy Chair of the UK Department of Health's Antimicrobial Resistance and Healthcare Associated Infection Committee and a member of PHE's HCAI/AR Programme Board. He is a member of UK/European/US working groups on C. difficile infection. He has provided clinical advice as part of the FDA/EMA submissions for the approval of multiple novel antimicrobial agents. He heads a healthcare-associated infection research team at University of Leeds, comprising approximately 30 doctors, scientists and nurses; projects include multiple aspects of C. difficile infection, diagnostics, antimicrobial resistance and the clinical development of new antimicrobial agents. He has authored more than 400 publications, and is the coeditor of Antimicrobial Chemotherapy (5th/6th/7th Editions, 15 December 2007).

  4. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  5. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  6. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  7. Condensation in complex geometries

    International Nuclear Information System (INIS)

    Lauro, F.

    1975-01-01

    A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr

  8. 19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

  9. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant.

  10. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2013-01-01

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant

  11. Professor Gender, Age, and "Hotness" in Influencing College Students' Generation and Interpretation of Professor Ratings

    Science.gov (United States)

    Sohr-Preston, Sara L.; Boswell, Stefanie S.; McCaleb, Kayla; Robertson, Deanna

    2016-01-01

    A sample of 230 undergraduate psychology students rated their expectations of a bogus professor (who was randomly designated a man or woman and "hot" versus "not hot") based on ratings and comments found on RateMyProfessors.com. Five professor qualities were derived using principal components analysis: dedication,…

  12. Observations on Professor Hayek's Plan

    Directory of Open Access Journals (Sweden)

    Ludwig von Mises

    2009-01-01

    Full Text Available This memorandum was written at the request of Henry Hazlitt to provide Mises’s comments on and concerns about F.A. Hayek’s initial proposals for what became the Mont Pèlerin Society. Mises stresses that those who favor liberty and freedom and oppose totalitarianism must also oppose interventionism. The memo argues that those who fought and lost against the rising tide of totalitarianism at the turn of the 20th Century lost their battles because they settled for middle-of-the-road policies that conceded considerable ground to the socialists. The weak point in Professor Hayek’s plan is that it relies upon the cooperation of many men who are today’s middle-of-the-roaders. As interventionists, they may not be the hoped-for intellectual pioneers to inspire people to build a freer world.

  13. Professor Camillo Negro's Neuropathological Films.

    Science.gov (United States)

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  14. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  15. Spectroscopy of dark soliton states in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W

    2003-01-01

    Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates

  16. Student teachers can be as good as associate professors in teaching clinical skills

    DEFF Research Database (Denmark)

    Tolsgaard, Martin G; Gustafsson, Amandus; Rasmussen, Maria B

    2007-01-01

    AIM: The aim of this study is to compare student teachers and clinical associate professors regarding the quality of procedural skills teaching in terms of participants' technical skills, knowledge and satisfaction with the teaching. METHODS: This is an experimental, randomized, controlled study....... CONCLUSION: Trained student teachers can be as good as associate professors in teaching clinical skills. Udgivelsesdato: 2007-Sep...... comparing the teaching of student teachers and associate professors regarding participants' learning outcome and satisfaction with the teaching. Two skills are chosen for the experiment, i.v.-access and bladder catheterization. Learning outcome is assessed by a pre- and post testing of the participants...

  17. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  18. Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO2 in Nanopores: An Experimental Study on the Effects of Composition and Equilibrium.

    Science.gov (United States)

    Barsotti, Elizabeth; Saraji, Soheil; Tan, Sugata P; Piri, Mohammad

    2018-02-06

    Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids. To this end, a novel gravimetric apparatus is introduced and validated. Unlike apparatuses that have been previously used to study the confinement-induced phase behavior of fluids, this apparatus employs a gravimetric technique capable of discerning phase transitions in a wide variety of nanoporous media under both static and dynamic conditions. The apparatus was successfully validated against data in the literature for pure carbon dioxide and n-pentane. Then, isotherms were generated for binary mixtures of carbon dioxide and n-pentane using static and flow-through methods. Finally, two ternary mixtures of carbon dioxide, n-pentane, and isopentane were measured using the static method. While the equilibrium time was found important for determination of confined phase transitions, flow rate in the dynamic method was not found to affect the confined phase behavior. For all measurements, the results indicate qualitative transferability of the bulk phase behavior to the confined fluid.

  19. The Professors behind the MOOC Hype

    Science.gov (United States)

    Kolowich, Steve

    2013-01-01

    The largest-ever survey of professors who have taught MOOCs, or massive open online courses, shows that the process is time-consuming, but, according to the instructors, often successful. Nearly half of the professors felt their online courses were as rigorous academically as the versions they taught in the classroom. The survey, conducted by "The…

  20. Professor Nukem - et eksperiment med oplevelsesbaseret forskningsformidling

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Thorhauge, Anne Mette

    2007-01-01

    Professor Nukem er resultatet af et forskningsprojekt om oplevelsesbaseret forskningsformidling der har form som et computerspil med tilhørende website, hvor brugeren interaktivt kan engagere sig i forskning omkring sociale og kulturelle aspekter ved computerspil. Professor Nukem kan spilles på...

  1. Professor Kodi Husimi promoted accelerator projects

    International Nuclear Information System (INIS)

    Kikuchi, Ken

    2009-01-01

    The main aim of my article is to describe how deeply Professor Husimi devoted himself to promote large accelerator projects in Japan, as the establishment of National Laboratory for High Energy Physics (KEK), Photon Factory and TRISTAN, in which I myself was deeply involved. In addition, some topics related that I was a student of Professor Husimi are also reported. (author)

  2. The Reluctant Professor: Implications for University Management

    Science.gov (United States)

    Schein, Edgar H.

    1973-01-01

    Stating the belief that most analyses of the university fail to deal realistically with the role of the professor, the author's purpose is to show why it is difficult and possible undesirable to involve professors deeply in issues of university government. (Author/JB)

  3. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  4. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  5. Remembering for tomorrow: Professor Mansour Ali Haseeb.

    Science.gov (United States)

    Salih, Mustafa Abdalla M

    2013-01-01

    This is a highlight of the obituary ceremony in tribute to Professor Mansour Ali Haseeb (1910 - 1973), organized by the Medical Students Association of the Faculty of Medicine, the University of Khartoum (U of K). Professor Haseeb has been the first Sudanese Professor and first Dean of the Faculty of Medicine. He was an outstanding humane teacher, mentor and researcher, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO. He was also an active citizen in public life and became Mayor of Omdurman City. The obituary ceremony reflected the feelings of the medical community and included speeches by Professor Abdalla El Tayeb, President of U of K; the Dean, Faculty of Medicine; the Late Professor Haseeb's colleagues and students, His family representative, and an elegy poem.

  6. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  7. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  8. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  9. Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results

    Science.gov (United States)

    Hindle, Michael

    2011-01-01

    Purpose The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Methods Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. Results The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 µm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Conclusions Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery. PMID:21948458

  10. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2012-03-01

    The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

  11. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    OpenAIRE

    CORREA, TOMAS; TIAB, DJEBBAR; RESTREPO, DORA PATRICIA

    2009-01-01

    This work describes experimental design and tests performed to simulate gas condensate reservoir conditions below dew point in the laboratory using three different compositions of synthetic gas condensate. Methanol, propanol and methylene chloride are the solvents used to remove the condensate banking and improve the gas effective permeability near to the wellbore. Solvents are injected in Berea sandstone rock with similar petrophysical properties in order to compare the efficiency at removin...

  12. PROFESSORES: IMAGENS DO FUTURO PRESENTE

    Directory of Open Access Journals (Sweden)

    Maitê Alves Bezerra

    2014-06-01

    Full Text Available Ao observar a comunidade portuguesa que busca compreender a historicidade das formas e dos processos de escolarização por meio do estabelecimento de intenso diálogo com outras comunidades, é impossível não dar destaque à figura de António Manuel Seixas Nóvoa. Nascido em Lisboa no ano de 1954, aos 18 anos inicia o curso de Ciências da Educação na Universidade de Lisboa. Após lecionar em importantes universidades tais como Paris V, Oxford e Columbia University, atualmente acumula as posições de reitor da Universidade de Lisboa e professor catedrático da Faculdade de Psicologia e de Ciências da Educação na Instituição. Nóvoa tem se destacado à frente de debates internacionais a respeito da história da educação e educação comparada.

  13. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  14. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    International Nuclear Information System (INIS)

    Zhou, W.; Wolf, B.; Revankar, S.T.

    2011-01-01

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well. (author)

  15. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wolf, B. [Purdue University, West Lafayette, IN 47907 (United States); Revankar, S. [Purdue University, West Lafayette, IN 47907 (United States); POSTECH, Pohang (Korea, Republic of)

    2013-11-15

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well.

  16. Assessment and improvement of condensation model in RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Hui Cheon; Choi, Kee Yong; Park, Hyeon Sik; Kim, Sang Jae [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Lee, Sang Il [Korea Power Engineering Co., Inc., Seoul (Korea, Republic of)

    1997-07-15

    The objective of this research is to remove the uncertainty of the condensation model through the assessment and improvement of the various heat transfer correlations used in the RELAP5/MOD3 code. The condensation model of the standard RELAP5/MOD3 code is systematically arranged and analyzed. A condensation heat transfer database is constructed from the previous experimental data on various condensation phenomena. Based on the constructed database, the condensation models in the code are assessed and improved. An experiment on the reflux condensation in a tube of steam generator in the presence of noncondensable gases is planned to acquire the experimental data.

  17. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  18. In Conversation with: Professor Liz Thomas

    Directory of Open Access Journals (Sweden)

    Karen Nelson

    2012-08-01

    Full Text Available Editors Karen Nelson, John Clarke and Sally Kift interview Professor Liz Thomas,  Director of the Widening Participation Research Centre at Edge Hill University.  She is also Lead Adviser Retention and Success at the Higher Education Academy, England.   Professor Thomas was one of the keynote speakers at the 15th International First Year in Higher Education Conference held in Brisbane, Australia from the 26th – 29th of June, 2012.  Professor Thomas joined the Journal Editors at the conclusion of the main conference program to explore some of the key themes raised in her address.  

  19. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  20. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  1. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    modified correlation is proposed for wavy laminar regime. Superheated steam tests are then considered for modelling the steam to film interface heat flux. Both forced convection and natural convection regimes are considered in both laminar and turbulent cases. In presence of noncondensable gas, the mass diffusion of steam in the gas mixture is then modelled on the basis of COTURNE tests with Helium or Nitrogen. A Sherwood number is correlated based on a heat and mass transfer analogy. The mass transfer at the interface due to condensation is also modelled as a function of the interface temperature. A simplified modelling of the mass diffusion effect is proposed allowing to eliminate the interface temperature. The implementation of heat and mass transfer model in the CATHARE code is presented. The predictions with those new models of the total condensed flow rate are in good agreement with COTURNE data, and with other experimental data of Siddique and Nagasaka. (authors)

  2. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  3. The color class condensate RHIC and HERA

    CERN Document Server

    McLerran, L

    2002-01-01

    In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).

  4. Corrosion-related failures in power plant condensers. Final report

    International Nuclear Information System (INIS)

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1980-08-01

    A survey of the literature has been conducted for the Electric Power Research Institute on corrosion failures in surface condensers. The survey was directed toward condenser failures in pressurized water reactor (PWR) power plants but includes pertinent literature related to fossil and to other nuclear power plants. It includes literature on reported service failures and on experimental studies that impact on these failures

  5. Turning university professors into competent learners

    NARCIS (Netherlands)

    Stefanova, Eliza; Ilieva, Miroslava; Nikolova, Nikolina; Stefanov, Krassen

    2008-01-01

    Stefanova, E., Ilieva, M., Nikolova, N, & Stefanov, K. (2008). Turning university professors into competent learners. In H. W. Sligte & R. Koper (Eds.), Proceedings of the 4th TENCompetence Open Workshop. Empowering Learners for Lifelong Competence Development: pedagogical, organisational and

  6. Lifelong learning: Science professors need leadership training

    OpenAIRE

    Leiserson, Charles E.; McVinney, Chuck

    2015-01-01

    Education does not stop. Professors must update and develop their technical skills throughout their careers. But as they progress, few take the time — or are offered the opportunity — to become educated in how to be an effective leader.

  7. Bose-Einstein condensates in atomic gases: simple theoretical results

    International Nuclear Information System (INIS)

    Castin, Y.

    2001-01-01

    The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)

  8. Professor dr hab. Anna Maria Bujakiewicz

    Directory of Open Access Journals (Sweden)

    Anna Kujawa

    2015-08-01

    Full Text Available The article presents the biography and scientific achievements of Professor Anna Bujakiewicz. After receiving her master’s degree and doctorate in biology and mycology from Adam Mickiewicz University in Poznań, Professor Bujakiewicz continued her exciting research and teaching on mycology at her Alma Mater Posnaniensis for more than 50 years. Her publications in this field include many books, articles, and other scholarly reports.

  9. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  10. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  11. Development of balanced downflow type surface condensers, (2)

    International Nuclear Information System (INIS)

    Tomida, Akira; Oshima, Yoshikuni; Okochi, Isao; Izumi, Kenkichi.

    1976-01-01

    As the size of the condensers for power generation plants grew large, the new balanced downflow type condenser was developed and completed on the basis of the experiment on steam flow according to the two-dimensional flow model, the analysis of the performance in a tube nest with a computer, and the studies on the effect of outside liquid film and the reheating deaeration of condensate. When the balanced downflow type condensers were adopted for actual plants, the construction, strength and production method were examined, and the reliability of the new condenser was confirmed by the thermal characteristic experiment with the model similar to the actual machine. The condenser comprises a condenser body, supporting plates, cooling tubes, tube plates, water chambers, and reinforcements, and the cooling tubes are arranged so as to exchange heat effectively. The arrangement of tubes is divided into three regions, namely radiation portion, densely arranged portion, and air cooling portion. In the balanced downflow type condensers, the dilution by utilizing condensate is provided against ammonia attack. The apparatuses for the thermal characteristic experiment and the experimental results, and the results of the performance test on the actual balanced downflow type condenser are reported. (Kako, I.)

  12. Hysteretic capillary condensation in a porous material

    International Nuclear Information System (INIS)

    Lilly, M.P.; Hallock, R.B.

    1995-01-01

    The authors report on the behavior of hysteresis subloops in the capillary condensation of 4 He in the porous material Nuclepore. For hysteretic systems composed of many independent elements, the Preisach model may be used to predict the behavior of the resulting hysteresis. One prediction is that subloops with common chemical potential endpoints will be congruent. The observations of such subloops show that the prediction of congruence fails for this capillary condensation system. To understand deviations from Preisach behavior the authors modify the model to account for intersections among the pores. The modified model is in close agreement with the experimental results

  13. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  14. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  15. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  16. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  17. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  18. Free convective condensation in a vertical enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.J.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States); Corradini, M.L.; Pernsteiner, A.P. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  19. Surface design for dropwise condensation: A theoretical and experimental study: Paper presented at 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics; 17 to 19 July 2017; Portoroz, Slovenia

    OpenAIRE

    Ahlers, Marieke; Koch, Marcus; Lägel, Bert; Klingel, Steffen; Schlehuber, Dennis; Gehrke, Ilka; Eloo, Christina; Bart, Hans-Jörg

    2017-01-01

    The manipulation of the water wetting properties of heat exchangers into dropwise condensation by the use of microstructured surfaces promises an enhanced heat transfer. In order to design a hydrophobic surface geometry, different theoretical models have been introduced in the past. While these models describe the surface-drop-interaction of sessile drops reasonably well, nucleation and droplet growth in dropwise condensation are not considered. Modifications of roughness based models have be...

  20. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  1. Dropwise condensation on hydrophobic bumps and dimples

    Science.gov (United States)

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  2. Accounting Professor Qualification in Digital Age: A Perception Study on Brazilian Professors

    Science.gov (United States)

    Vendruscolo, Maria Ivanice; Behar, Patrícia Alejandra

    2015-01-01

    This papers aims at analyzing the perception of Accounting professors about the necessary qualifications in Accounting undergraduate courses. The contribution of this study is to theoretically discuss the education of Accounting professors, with empirical data, because Accounting teaching requires specific competencies in the digital area. The…

  3. Bose Condensate in He II

    International Nuclear Information System (INIS)

    Svensson, E.C.

    1984-01-01

    The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described

  4. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  5. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  6. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  7. Satisfaction among accounting professors in Brazil

    Directory of Open Access Journals (Sweden)

    Tamires Sousa Araújo

    Full Text Available ABSTRACT The aim of this study was to identify the prevalence of satisfaction among accounting professors in Brazil throughout their careers. The research is classified as descriptive and used a quantitative approach to data analysis. 641 valid responses were obtained from professors from all regions of Brazil. The results show that a feeling of satisfaction prevails among accounting course professors, as most of them “like the profession” and, in general, "are satisfied with it”. It was found that levels of satisfaction are higher among individuals with more experience, in that in their first years in the job (one to three years, professors have lower satisfaction rates; the highest levels of satisfaction are found in the final stage (over 35 years. The main factor that influences satisfaction is personal fulfillment (teaching work and relationship with students. It was also possible to identify that positive feelings about teaching predominate (67.3% compared to negative ones (32.7%. These results show the need for greater attention to be paid in the early years of the career in order to avoid a "reality clash". They also show the need for other studies to investigate how the phases in the life cycle of accounting professors are characterized.

  8. Dr. Rudolph Binion: professor, mentor, psychohistorian.

    Science.gov (United States)

    Szaluta, Jacques

    2015-01-01

    As the title of my paper indicates, Dr. Rudolph Binion was my professor, mentor, and a leading psychohistorian. My paper in memoriam to Rudolph Binion is intended as both a retrospective and an introspective account of my relationship with him, as he had a pivotal influence on me when he was my professor at Columbia University. His help and influence continued after I left graduate school. In my paper I also deal with the enormous stresses of navigating through graduate school, for those students whose goal was to earn the Ph.D. degree. Some examinations were dreaded, For Example The "Examination in Subjects," popularly called the "Oral Exam." The "incubation" period was long indeed, frequently averaging nearly ten years, and it was an ordeal, as the rate of attrition was very high. There is then also the question of "ego strength" and that of "transference" toward the professor. Graduate school is indeed a long and strenuous challenge. I took a seminar in modern French history, a requirement for the Master's degree with Professor Binion, which was consequential for me, as he taught me to be objective in writing history. Professor Binion was a demanding and outstanding teacher.

  9. The housekeeper and the professor a novel

    CERN Document Server

    Ogawa, Yoko

    2010-01-01

    He is a brilliant math Professor with a peculiar problem—ever since a traumatic head injury, he has lived with only eighty minutes of short-term memory. She is an astute young Housekeeper—with a ten-year-old son—who is hired to care for the Professor. And every morning, as the Professor and the Housekeeper are introduced to each other anew, a strange and beautiful relationship blossoms between them. Though he cannot hold memories for long (his brain is like a tape that begins to erase itself every eighty minutes), the Professor's mind is still alive with elegant equations from the past. And the numbers, in all of their articulate order, reveal a sheltering and poetic world to both the Housekeeper and her young son. The Professor is capable of discovering connections between the simplest of quantities—like the Housekeeper's shoe size—and the universe at large, drawing their lives ever closer and more profoundly together, even as his memory slips away. Yoko Ogawa's The Housekeeper and the Professo...

  10. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  11. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  12. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  13. ENSAIO: HOMENAGEM AO PROFESSOR REINIER ROZESTRATEN

    Directory of Open Access Journals (Sweden)

    Antonio C. R. Tupinambá

    2014-02-01

    Full Text Available Trata-se de uma homenagem póstuma ao Professor Doutor Reinier Rozestraten. O texto apresenta, suscintamente, o percurso acadêmico do nomeado professor, em especial a sua passagem pela Psicologia do Trânsito. Paralelamente discorre sobre sua principal obra na área, que, de certo modo introduz o discurso psicológico sobre o comportamento de trânsito em perspectiva nacional, juntamente com sua preocupação em imprimir um caráter científico ao tema e introduzi-lo no contexto da academia e na sociedade em perspectivas teórica e prática. A obra escolhida é considerada um marco para o estabelecimento teórico da disciplina da psicologia do trânsito no Brasil. A homenagem foi originalmente escrita por ocasião dos cinco anos de falecimento do professor Reinier.

  14. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  15. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  16. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  17. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  18. Condenser performance monitoring and cleaning

    International Nuclear Information System (INIS)

    Walden, J.V.

    1998-01-01

    The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control

  19. Illustrated & Dissected: Professor Richard Sawdon Smith.

    Science.gov (United States)

    2015-06-01

    This Alternative Gallery feature introduces the photographic artist Professor Richard Sawdon Smith. Professor Sawdon Smith's work stems around a fascination with representations of anatomy that have been fuelled by his experience as a hospital patient. The work has allowed him to explore ideas through the use of medical illustrations which include early anatomical drawings, personal medical photography and facial modelling. The work highlights how such imagery can be used in the context of a patient seeking understanding and acceptance of ill health and disease using the body as a canvas on which to translate the experience.

  20. Kai Adolf Jensen, professor i almindelig patologi

    DEFF Research Database (Denmark)

    Høiby, Niels

    2016-01-01

    for the Bacillus Calmette-Guérin vaccine production and supervised many young scientists’ doctoral theses on the aspects of tuberculosis. He became internationally recognized, and he revealed an important scientific fraud in the laboratory of the Austrian professor Ernst Löwenstein (1878-1950), who claimed that he...... could detect M. tuberculosis in blood cultures as a cause of a multitude of diseases. He was a pioneer in eradication of bovine tuberculosis in Denmark which became the first country in the world where this happened. Kai Adolf Jensen held the position as professor of general pathology from 1940 to 1965...

  1. Professor Stewart's casebook of mathematical mysteries

    CERN Document Server

    Stewart, Ian

    2014-01-01

    Like its wildly popular predecessors Cabinet of Mathematical Curiosities and Hoard of Mathematical Treasures, Professor Stewart's brand-new book is a miscellany of over 150 mathematical curios and conundrums, packed with trademark humour and numerous illustrations. In addition to the fascinating formulae and thrilling theorems familiar to Professor Stewart's fans, the Casebook follows the adventures of the not-so-great detective Hemlock Soames and his sidekick Dr John Watsup (immortalised in the phrase 'Watsup, Doc?'). By a remarkable coincidence they live at 222B Baker Street, just a

  2. Professor: Danmarkskanon skal give plads til mangfoldighed

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2016-01-01

    DEBAT: Danmark har igennem størstedelen af sin historie været et flerkulturelt land. Vi kan derfor ikke diskutere danske værdier til en Danmarkskanon uden at kaste et blik på globale strømninger og vores mangfoldige fortid, skriver Garbi Schmidt, professor ved RUC......DEBAT: Danmark har igennem størstedelen af sin historie været et flerkulturelt land. Vi kan derfor ikke diskutere danske værdier til en Danmarkskanon uden at kaste et blik på globale strømninger og vores mangfoldige fortid, skriver Garbi Schmidt, professor ved RUC...

  3. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  4. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  5. Hydrogen behavior in ice condenser containments

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, P.; Hongisto, O. [Power Plant Lab., Helsinki (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  6. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  7. CFD simulation on condensation inside a Hybrid SIT

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Ryu, Sung Uk; Kim, Seok; Euh, Dong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of Hybrid Safety Injection Tank system (Hybrid SIT) was proposed by Korea Atomic Energy Research Institute (KAERI) aiming at Advanced Power Reactor Plus. The main advantage of the system is the ready injection of coolant into the reactor coolant system at high pressure. In this paper, a CFD simulation is conducted as a preliminary study. In Hybrid SITs, condensation inside the tank affects its pressure rise and injection time. In an attempt to explore the condensation in detail, we manufactured a dedicated experimental facility for visualization of condensation-induced thermal mixing and conducted a preliminary CFD simulation. Its condensation models were validated first and then computational domain was constructed. The water region was modeled as a solid for stable calculation. The CFD results gave less condensation and excessive pressurization because of lack of steam penetration into the water. In the future, the water region will be modeled as liquid using a VOF model.

  8. Final Comments from Professors George and Beane.

    Science.gov (United States)

    Beane, James; George, Paul S.

    1996-01-01

    Concludes this journal focus section on curriculum integration with transcripts of questions asked by conference attendees and answers by Professors Beane and George. Areas addressed included experience levels with children and teachers, studies that point to the failure of curriculum integration, and how teachers can continue curriculum…

  9. Professor Jacques Cortes prantsuse keele lektoraadis

    Index Scriptorium Estoniae

    2000-01-01

    Juuni alguses külastas filoloogiateaduskonna romaani-germaani filoloogia osakonda Roueni ülikooli professor Jacques Cortes (Prantsusmaa). Ta korraldas 4. õa üliõpilastele prantsuse keele intensiivkursuse ja võttis vastu eksami ning kohtus prantsuse keele lektoraadi õppejõududega : [täistekst

  10. Russel Nye: The Professor in Public Life.

    Science.gov (United States)

    Hungiville, Maurice

    1995-01-01

    A discussion of the influence of Russel Nye, a college English professor at Michigan State University and journalist, focuses on the values that shaped his teaching, scholarship, and writing and his defense of democratic values, especially in education. It is concluded that Nye's experience suggests that public service can be a source of personal…

  11. Interview met professor Joan Wallach Scott

    NARCIS (Netherlands)

    Bijl, Greetje; Tijhoff, Esmeralda

    2012-01-01

    Joan Scott, professor at the School of Social Science in the Institute for Avanced Study in Princeton, New Jersey (USA), was the keynote speaker at the conference 'Uitsluitend emancipatie' in de Beurs van Berlage in Amsterdam in October 2012. An interview on gender, history, feminism and her book

  12. String theorist takes over as Lucasian Professor

    Science.gov (United States)

    Banks, Michael

    2009-11-01

    String theorist Michael Green will be the next Lucasian Professor of Mathematics at Cambridge University. Green, 63, will succeed Stephen Hawking, who held the chair from 1980 before retiring last month at the age of 67 and taking up a distinguished research chair at the Perimeter Institute for Theoretical Physics in Canada (see above).

  13. Professor Brand Advocacy: Do Brand Relationships Matter?

    Science.gov (United States)

    Jillapalli, Ravi K.; Wilcox, James B.

    2010-01-01

    The trend among students to advocate their professors online continues to generate interest within marketing academia. Brand advocacy in products and services has played a vital role in marketing. However, no known research to date has embraced the idea of brand advocacy in marketing education. This research builds on the recent human brand…

  14. CFA or CFP: A Guide for Professors

    Science.gov (United States)

    Moy, Ronald L.

    2011-01-01

    The CFA Institute and the CFP Board of Standards provide professional certifications in the field of finance. In this paper, I provide my experience with the CFA and CFP programs in order to give other professors some insight into the process of attaining the designations. I hope to provide answers to some of the questions that other faculty…

  15. Reflections of a Latino Associate Professor

    Science.gov (United States)

    Peguero, Anthony A.

    2018-01-01

    The following reflection essay is about my experiences as a Latino Associate Professor who focuses on criminology, youth violence, juvenile justice, and the associated disparities with race, ethnicity, and immigration. I reflect about the "race and justice" job market, pursuing and establishing a Latina/o Criminology working group, often…

  16. Leisure and the Retired Professor: Occupation Matters

    Science.gov (United States)

    Dorfman, Lorraine; Kolarik, Douglas

    2005-01-01

    Little attention has been given to the leisure activities of retired professors, whose activity patterns in retirement may be different from those of other occupational groups because of their lifetime commitment to work. This interview study uses both quantitative and qualitative data to investigate: (a) the leisure and professional activities of…

  17. Bose-Einstein condensation of paraxial light

    OpenAIRE

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-01-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have obs...

  18. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  19. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  20. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  1. Bubbler condenser related research work. Present situation

    International Nuclear Information System (INIS)

    2001-02-01

    Intensive discussions within the OECD Support Group on 'VVER-440 Bubbler Condenser Containment Research Work' between 1991 and 1994 demonstrated the need for supplementary research work to achieve an adequate level of basic knowledge. In 1994, the European Commission (EC) asked for a specific 'VVER-440/213 Bubble Condenser Qualification Feasibility Study', which was finished early in 1996, confirming the need for additional research in this field. The Feasibility study formed the basis for the Bubble Condenser Experimental Qualification Project (BCEQ) with two separate experimental activities to be executed within the frame of the PHARE/TACIS 2.13/95 project of the European Commission. A first activity served to study the thermal-hydraulic phenomena and the associated structure dynamic interactions. This part of the project was performed at EREC, in Elektrogorsk, Russia. The design of the test facility was based on the prototypical bubbler condenser configuration for the Hungarian Paks nuclear power plant. A second activity addressed the structural integrity of certain components of the bubbler condenser steel structures under DBA-typical conditions. This part of the project was performed at VUEZ, in Levice, Slovak Republic. The design of the components of this facility was based on the structural properties of the Dukovany and/or Bohunice nuclear power plants. A third component of the BCEQ project was specified later asking for analytical studies, which should be supported by a number of small-scale separate effects tests to be performed at SVUSS, in Bechovice, Czech Republic. The main experimental and analytical results of the BCEQ test campaigns have been presented and discussed within the frame of the 4. meeting of the Technical Advisory Committee to the BCEQ (Bubble Condenser Experimental Qualification) Project in Brussels in December 1999 and on occasion of the 11. OECD Support Group Meeting in Berlin in April 2000. The discussions had evidenced several

  2. Bose-Einstein condensation and indirect excitons: a review.

    Science.gov (United States)

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  3. Condensation and frost formation in heat exchangers

    International Nuclear Information System (INIS)

    Rostami, A.A.

    1982-01-01

    The occurence of condensation and of frost formation are considered for air to heat exchangers with emphasis on how such occurrences would affect the performance of such heat exchangers when they are used in ventilating applications. The formulations which predict performance are developed for parallel, counter flow and cross flow with either formation or condensation, and for condensation the consequences for evaporation of condensate and of the effect of longitudinal conduction in the walls of the exchanger are also considered. For the prediction of the exchanger performance with frost formation there must be specified the growth of the frost layer with time and existing theories for this growth are examined, a new method of calculation of the growth is presented and this is shown to give results for the growth that are in accord with available experimental evidence. This new theory for the growth of a frost layer is used to predict the performance of a parallel flow exchanger under conditions in which frost formation occurs, by successively applying the steady state performance calculation for time increments over which the frost layer build-up is calculated for these time increments. The calculation of counter flow exchanger performance by this method, while feasible, is so time consuming that only the general aspects of the calculation are considered

  4. Bose-Einstein condensation in atomic alkali gases

    Science.gov (United States)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  5. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  6. Effects of non-condensable gas on the condensation of steam

    International Nuclear Information System (INIS)

    Jackson, J.D.; An, P.; Reinert, A.; Ahmadinejad, M.

    2000-01-01

    The experimental work reported here was undertaken with the aim of extending the database currently available on the condensation of steam in the presence of non-condensable gases and thereby improving the empirical input to thermal-hydraulic codes which might be used for design and safety assessment of advanced water-cooled nuclear reactors. Heat was removed from flowing mixtures of steam and air in a test section by means of a water-cooled condensing plate. The test facility constructed for the study incorporates a degassing unit which supplies water to a boiler. This delivers steam steadily to a mixing chamber where it joins with a flow of preheated air. The mixture of steam and air is supplied to the bottom of a cylindrical test section in which it flows upwards over a double sided condensing plate which can be vertical, inclined or horizontal, The rate at which heat is removed by cooling water flowing through internal passages in the plate can de determined calorimetrically knowing the flow rate of the water and its temperature rise. After commissioning experiments had shown that reliable measurements of condensation heat transfer rate could be made using the test facility, a programme of development work followed in the course of which three different designs of condensing plate were evaluated in turn. The version eventually used in the main programme of experiments which followed was made from copper. However, its surfaces were coated with a thin layer of nickel and then with one of chromium. It was found that such a surface consistently promoted dropwise condensation and showed no signs of deterioration after lengthy periods of use. The rate of heat removal from pure steam and from mixtures of steam and air in varying proportions was measured as a function of plate sub-cooling for a variety of plate orientations. (author)

  7. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  8. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    Directory of Open Access Journals (Sweden)

    A. G. Kulakov

    2005-01-01

    Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.

  9. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  10. Categorization of Quantum Mechanics Problems by Professors and Students

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

  11. 22 CFR 62.20 - Professors and research scholars.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Professors and research scholars. 62.20 Section... Specific Program Provisions § 62.20 Professors and research scholars. (a) Introduction. These regulations govern Exchange Visitor Program participants in the categories of professor and research scholar, except...

  12. Variables That Can Affect Student Ratings of Their Professors

    Science.gov (United States)

    Gotlieb, Jerry

    2013-01-01

    Attribution theory was applied to help predict the results of an experiment that examined the effects of three independent variables on students' ratings of their professors. The dependent variables were students' perceptions of whether the professor caused the students' grades and student satisfaction with their professor. The results suggest…

  13. E-Mail from Professor Enhances Student Motivation and Attitudes

    Science.gov (United States)

    Legg, Angela M.; Wilson, Janie H.

    2009-01-01

    Traditionally, professors use the first day of class to build rapport. However, current technology allows professors to contact students prior to the first day of class. This study assessed how the receipt of a welcoming e-mail from a female professor 1 week before the first day of class affected student motivation and attitudes toward the…

  14. Optimal design of condenser weight

    International Nuclear Information System (INIS)

    Zheng Jing; Yan Changqi; Wang Jianjun

    2011-01-01

    The condenser is an important component in nuclear power plants, which dimension and weight will effect the economical performance and the arrangement of the nuclear power plants. In this paper, the calculation model is established according to the design experience. The corresponding codes are also developed, and the sensitivity of design parameters which influence the condenser weight is analyzed. The present design optimization of the condenser, taking the weight minimization as the objective, is carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme, and also verify the feasibility of the complex-genetic algorithm. (authors)

  15. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate.

  16. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    International Nuclear Information System (INIS)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk

    2015-01-01

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate

  17. Assessment of RELAP5/MOD3 with condensation experiment for pure steam condensation in a vercal tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    The film condensation models in RELAP5/MOD3.1 and RELAP5/MOD3.2 are assessed with the data of experiment performed in the scaled down condensation experimental facility with a single vertical tube of inner diameter of 46 mm in the range of pressure 0.1 {approx} 7.5 MPa for the PSCS(Passive Secondary Condenser System). Both MOD3.1 and MOD3.2 don`t shows any reliable predictions of the experimental data. The RELAP5/MOD3.1 overpredicts the heat transfer coefficients of experiment, whereas the RELAP5/MOD3.2 underpredicts those data. It is recommended that the film condensation model in RELAP5/MOD3.2 should be modified to have a larger heat transfer coefficient than those of the present model to give the reliable predictions. 7 refs., 6 figs., 1 tab. (Author)

  18. Assessment of RELAP5/MOD3 with condensation experiment for pure steam condensation in a vercal tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The film condensation models in RELAP5/MOD3.1 and RELAP5/MOD3.2 are assessed with the data of experiment performed in the scaled down condensation experimental facility with a single vertical tube of inner diameter of 46 mm in the range of pressure 0.1 {approx} 7.5 MPa for the PSCS(Passive Secondary Condenser System). Both MOD3.1 and MOD3.2 don`t shows any reliable predictions of the experimental data. The RELAP5/MOD3.1 overpredicts the heat transfer coefficients of experiment, whereas the RELAP5/MOD3.2 underpredicts those data. It is recommended that the film condensation model in RELAP5/MOD3.2 should be modified to have a larger heat transfer coefficient than those of the present model to give the reliable predictions. 7 refs., 6 figs., 1 tab. (Author)

  19. [Professor WU Zhongchao's experience of penetration needling].

    Science.gov (United States)

    Zhang, Ning; Wang, Bing; Zhou, Yu

    2016-08-12

    Professor WU Zhongchao has unique application of penetration needling in clinical treatment. Professor WU applies penetration needling along meridians, and the methods of penetration needling include self-meridian penetration, exterior-interior meridian penetration, identical-name meridian penetration, different meridian penetration. The meridian differentiation is performed according to different TCM syndromes, locations and natures of diseases and acupoint nature, so as to make a comprehensive assessment. The qi movement during acupuncture is focused. In addition, attention is paid on anatomy and long-needle penetration; the sequence and direction of acupuncture is essential, and the reinforcing and reducing methods have great originality, presented with holding, waiting, pressing and vibrating. Based on classical acupoint, the acupoint of penetration needling is flexible, forming unique combination of acupoints.

  20. Bose-Einstein Condensation

    International Nuclear Information System (INIS)

    Jaksch, D

    2003-01-01

    The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is

  1. Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels

    Science.gov (United States)

    Sikora, Małgorzata; Bohdal, Tadeusz

    2017-12-01

    Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.

  2. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  3. Professor Andrzej Nespiak (1921-1981

    Directory of Open Access Journals (Sweden)

    Tomasz Majewski

    2014-08-01

    Full Text Available The biography of a professor of the Laboratory of Pharmaceutical Botany of the Medical Academy in Wrocław, who was formerly an investigator of the Agricultural Academy in Wrocław. He worked on mycorhiza, the participation of Macromycetes in forest communities and the use of fungi for synthesis of some organic compounds, he was also the author of the Polish flora of the genus Cortinarius (1975,1981 and Inocybe (manuscript.

  4. Professor Andrzej Nespiak (1921-1981)

    OpenAIRE

    Tomasz Majewski

    2014-01-01

    The biography of a professor of the Laboratory of Pharmaceutical Botany of the Medical Academy in Wrocław, who was formerly an investigator of the Agricultural Academy in Wrocław. He worked on mycorhiza, the participation of Macromycetes in forest communities and the use of fungi for synthesis of some organic compounds, he was also the author of the Polish flora of the genus Cortinarius (1975,1981) and Inocybe (manuscript).

  5. [Homage to Professor Dr. Nicasio Etchepareborda].

    Science.gov (United States)

    1998-11-01

    During a solemn academic act, de Main Classroom of the Facultad de Odontologia de Buenos Aires was named after Prof. Dr. Nicasio Etchepareborda. He has been the first professor at the Escuela de Odontologia and its organizer, after having obtained his Dentistry degree at the Dental School of Paris, in 1882. The new school was founded in 1891, and its activities began the following year.

  6. 31 July 2014 - Professor M. Kastner

    CERN Multimedia

    Egli, Laurent

    2014-01-01

    MIT Faculty Member Donner Professor of Physics Massachusetts Institute of Technology United States of America, Prof. M. Kastner visiting the LHC tunnel at Point 5 with Beams Department M. Solfaroli Camillocci, LHC superconducting magnet assembly hall visit with L. Rossi and R. Principe, LHC Computing Grid Project presentation and computer centre visit with I. Bird and signing the guest book with CERN Director-General R. Heuer.

  7. Bose-Einstein condensation of paraxial light

    Science.gov (United States)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  8. Work process of nursing professors 1

    Science.gov (United States)

    Parra Giordano, Denisse; Felli, Vanda Elisa Andres

    2017-01-01

    ABSTRACT Objective: to analyze the work process of nursing professors. Method: descriptive, exploratory and qualitative study, developed with a focus on critical epidemiology, carried out at a School of Nursing in Chile. The research subjects consist of 17 nursing professors, with whom individual semi-structured interviews were carried out and nine participated in a focus group. The Ethics Committee approved this study. Results: 88.2% were female, mean age of 42 years, 47% were married, 94% were Chilean, average length of service in the institution of 2.8 years, and 23.5% had a master’s degree. Regarding the work process, the students were the work object, the tools used were the knowledge and the experience as a nurse, and the work environment was considered good. Regarding the form of work organization, 76% have a 44-hour workweek, the wage was considered inadequate and the workload was higher than foreseen in the contract. The dialectic of the nursing work process is evidenced, demonstrating the contradiction between the low wages and labor overload and the narratives reporting a good work environment, personal fulfillment and transcendence that goes far beyond work. Conclusions: the work process allows describing the work components of the nursing professors, which are consistent with the results of the literature and show the dialectic of the nursing work process. PMID:29211193

  9. Professor Witold Nowicki - a greatly spirited pathologist.

    Science.gov (United States)

    Wincewicz, A; Szepietowska, A; Sulkowski, S

    2016-06-01

    This paper presents a complete overview of the scientific, professional and social activity of a great Polish pathologist, Witold Nowicki (1878-1941), from mainly Polish-written, original sources with a major impact on mostly his own publications. The biographical commemoration of this eminent professor is not only due to the fact that he provided a profound microscopic characterization of pneumatosis cystoides in 1909 and 1924. Nowicki greatly influenced the development of anatomical pathology in Poland, having authored over 82 publications, with special reference to tuberculosis, lung cancer, sarcomatous carcinomas, scleroma and others. However, the first of all his merits for the readership of Polish pathologists was his textbook titled Anatomical Pathology, which was a basic pathology manual in pre-war Poland. Witold Nowicki - as the head of the academic pathological anatomy department and former dean of the medical faculty - was shot with other professors by Nazi Germans in the Wuleckie hills in Lvov during World War Two. Professor Nowicki was described as being "small in size but great in spirit" by one of his associates, and remains an outstanding example of a meticulous pathologist, a patient tutor and a great social activist to follow.

  10. O professor_: de quem estamos falando mesmo?

    Directory of Open Access Journals (Sweden)

    Santos, Fabiane Konowaluk

    2004-01-01

    Full Text Available O presente texto procura abordar a temática relacionada à auto-imagem do professor, constatada através de uma enquete e da construção de um website que subsidiou o tensionamento com o real. Segundo Arroyo (2000, p. 124, “carregamos a função que exercemos, que somos e a imagem de professor(a que internalizamos”. Dessa forma, o tema em estudo segue, ainda hoje, sendo altamente significativo, pois não podemos esquecer os momentos históricos, políticos e sociais vivenciados pelos professores, buscando justamente explicações sobre como as questões de auto-imagem, o fazer e suas competências, suas possibilidades e limites e outros tantos fatores que estão a alterar seu comportamento. Arroyo (2000, p. 124 assinala que a auto-imagem docente é apreendida em múltiplos espaços e tempos, em múltiplas vivências, como resultado das condições psicológicas e sociais que afetam sua docência

  11. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  12. Faraday waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Nicolin, Alexandru I.; Carretero-Gonzalez, R.; Kevrekidis, P. G.

    2007-01-01

    Motivated by recent experiments on Faraday waves in Bose-Einstein condensates we investigate both analytically and numerically the dynamics of cigar-shaped Bose-condensed gases subject to periodic modulation of the strength of the transverse confinement. We offer a fully analytical explanation of the observed parametric resonance, based on a Mathieu-type analysis of the non-polynomial Schroedinger equation. The theoretical prediction for the pattern periodicity versus the driving frequency is directly compared to the experimental data, yielding good qualitative and quantitative agreement between the two. These results are corroborated by direct numerical simulations of both the one-dimensional non-polynomial Schroedinger equation and of the fully three-dimensional Gross-Pitaevskii equation

  13. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  14. Bose-Einstein condensation and superfluidity

    CERN Document Server

    Pitaevskii, Lev

    2016-01-01

    This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.

  15. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  16. Analysis of experiments for vertical out-tube steam condensation in presence of non-condensable gases

    International Nuclear Information System (INIS)

    Su Jiqiang; Sun Zhongning; Fan Guangming; Guo Zixuan

    2014-01-01

    In order to investigate the influence of various parameters in the steam condensation heat transfer process with non-condensable gas, and to get a more suitable empirical correlation, the wall under-cooling, pressure and the content of non-condensable gas were studied outside a vertical tube by experiments. The results showed that: at the same pressure, the relationship between wall sub-cooling and HTC is exponential, and helium stratification does not happen within the experimental range. Based on the analysis of various experimental variables, combined with a large number of experimental data, a wider scope of application of the empirical correlation associated is obtained with the experimental value of the error within ±20%. (authors)

  17. Estimation of the Influence of Operational Factors on the Oxygen Content of the Turbine Condensate at the Outlet from the Condenser of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Shempelev A. G.

    2017-08-01

    Full Text Available The aim of the article is to analyze the influence of different factors on the oxygen content in the condensate using the example of the condenser of the steam turbine unit T-110/120-130. For the first time, the authors of the article analyze in details how the basic parameters of the condenser's operation (the condenser heat load, the flow and temperature of the cooling water, the air inflow in the condenser, the condition of the heat exchange surface influence the oxygen content of the condensate. The authors come to the conclusion that with standard air inflow in the vacuum system, the equilibrium oxygen content, which corresponds to the norms in the condensate at the condenser outlet, is only possible in its operation modes when the steam flow to the condenser is more than 50% of the nominal flow and cooling water temperatures are equal to or greater than calculated for this type of condenser. The conclusions are confirmed by the experimental material. The results of the research are the basis for the development of measures aimed to increase the deaerating capacity of condensers depending on specific operating conditions.

  18. The once-through mode of steam generator reflux condensation in loss of coolant accident scenarios

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.; Suckow, D.

    2009-01-01

    The once-through mode of steam generator reflux condensation in the presence of noncondensable gases and/or aerosols for LOCA scenarios is introduced. This phenomenon is planned to be investigated at Paul Scherrer Institute in the ARTIST/RFLX experimental program. The plausible accident scenarios associated with the once-through reflux condensation are analyzed with MELCOR to study the safety significance and the boundary conditions of this phenomenon. This work presents the recent PSI experimental and analytical work on reflux condensation: the progress of modification to the ARTIST test facility for the purpose to study reflux condensation, and the analytical model for the once-through reflux condensation in the presence of noncondensable gas using the heat and mass transfer analogy approach. Future experimental and analytical work on reflux condensation is also outlined. (author)

  19. Ice-condenser aerosol tests

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K.

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between ∼0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m 3 /s resulted in stable thermal stratification whereas flows less than 0.1 m 3 /s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs

  20. Visit of Professor Shigehiko Hasumi. President of Tokyo University, Japan, Professor Kazuo Okamoto, Head of Graduate School of Mathematical Sciences, Professor Toshiteru Matsuura, Head of Graduate School of Arts and Sciences

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    Visit of Professor Shigehiko Hasumi. President of Tokyo University, Japan, Professor Kazuo Okamoto, Head of Graduate School of Mathematical Sciences, Professor Toshiteru Matsuura, Head of Graduate School of Arts and Sciences

  1. A Study on Condensation Heat Transfer at the Exterior Surface of S.A.M. Coated Titanium Tube Using in Steam Condensers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung-Gu; Lee, Sang-Hyup; Ji, Dae-Yun; Park, Hyun-Gyu; Lee, Kwon-Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    Condensation occurs when the temperature of a steam is reduced below its saturation temperature. There exist two forms of condensation on cooling surface: dropwise, and film condensations. Usually, dropwise condensation has a better heat transfer performance than film condensation, but it has limit of short period. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas exist, the condensation heat transfer coefficient is decreased. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes in 70 kPa vacuum condition respectively. Most of power plants use sea water as coolant, so the surface of metal tubes could be corroded by the coolant. We had researched an experimental study related to condensation heat transfer on surface modified titanium tube. Our experimental facility was designed to show how two kinds of tube's heat transfer performances are different in a same condition. We changed the range of saturation pressure and coolant flow rate to observe tube's performance change. When saturation pressure and coolant flow rate increase, overall heat transfer coefficients were increased. When residue of non-condensable gases was decreased, the overall heat transfer coefficients were increased. S.A.M. coated tube's overall heat transfer coefficients were lower than those of bare tube, because the droplets didn't have a tendency of frequently falling down.

  2. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  3. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  4. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  5. Redox Pioneer: Professor Vadim N. Gladyshev.

    Science.gov (United States)

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  6. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  7. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  8. On the temperature effect of substrate and evaporation rate on condensate dispersion

    International Nuclear Information System (INIS)

    Orlov, Yu.F.; Belotserkovskaya, N.G.; Gustylev, V.K.

    1978-01-01

    On the basis of available and new experimental data an attempt has been made to generalize the results of studying the effect of the substrate temperature and evaporation rate on the dispersity of amorphous condensates of Sb 2 S 3 and on that of crystalline condensates of PbO and PbTe. The dispersity of the condensates is shown to decrease with a substrate temperature and evaporation rate. The specific surface decreases linearly with the 3-5-fold rise in the evaporation rate. A dispersity decrease is due to the temperature rise in the medium where condensation takes place. The pattern of dispersity dependence on the substrate temperature and evaporation rate does not depend on the mechanism of vapour condensation and is the same both for aerosol mechanism of the condensate formation and for vapour condensation directly on the substrate

  9. Numerical Study of Condensation Heat Exchanger Design in a Subcooled Pool: Correlation Investigation

    International Nuclear Information System (INIS)

    Lee, Hee Joon; Ju, Yun Jae; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2012-01-01

    Generally the condensation heat exchanger has higher heat transfer coefficient compared to the single phase heat exchanger, so has been widely applied to the cooling systems of energy plant. Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. Lee and Lee investigated the existing condensation correlation to the experiment for heat exchanger in saturated pool. They concluded Traviss' correlation showed most satisfactory results for the heat transfer coefficient and mass flow rate in a saturated water pool. In this study, a thermal sizing program of vertical condensation heat exchanger to design, TSCON(Thermal Sizing of CONdenser) was validated with the existing experimental data of condensation heat exchanger in a subcooled pool for pure steam condensation

  10. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  11. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  12. O fracasso escolar no discurso do professor

    OpenAIRE

    Piccirilli, Manoela de Souza Silva

    2014-01-01

    O fracasso escolar tem sido repetidamente abordado em pesquisas de diversas naturezas que buscam diferentes razões para sua ocorrência. Essa dissertação não pretende elaborar mais uma suposição do que venha a ser o fracasso escolar, mas analisar os sentidos deste no discurso de alguns professores de educação básica. Trata-se de um estudo qualitativo realizado sob a ótica da teoria-metodológica da Análise de Discurso de linha francesa a partir de Michel Pêcheux. O procedimento ...

  13. An Interview with Professor Roy Caldwell

    OpenAIRE

    Chowdhary, Kuntal; Bhat, Prashant; Rosen, Jared; Naughton, Ida; Wang, Jingyan

    2013-01-01

    Envision the underwater world: vibrant coral, swaying seaweed, and lively creatures abound. However, the postcards and National Geographic covers that try to capture the beauty of this picturesque habitat can only represent it at one moment in time -- in reality, the landscape is hardly static, since many of its animals are capable of body modifications to change their shape and color. To understand the coloration and color vision of sea creatures, UC Berkeley Professor Roy L. Caldwell resear...

  14. Solar engineering - a condensed course

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars

    2011-11-15

    The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.

  15. Investigation of enhanced condensation heat transfer outside vertical titanium circularly-grooved tube

    International Nuclear Information System (INIS)

    Zhaorigetu; Huang Weitang; Lv Xiangbo; Liu Feng

    2005-01-01

    The investigation of enhanced condensation heat transfer had been conducted on the outside vertical Titanium circularly-grooved tube. The experimental result indicates that the Titanium circularly-grooved tube is fairly efficient in enhancing the heat transfer. Within the experimental scope, the total heat transfer coefficient of the optimum circularly-grooved tube is 1.12 to 1.36 times of that of the Titanium smooth tube. Through regression analysis on the experimental data, the experimental correlations for the inside heat transfer coefficient, the condensation heat transfer coefficient on film condensation and the friction coefficient were achieved. (authors)

  16. Condensation heat transfer coefficient of air-cooled condensing heat exchanger of emergency cooldown tank in long-term passive cooling system

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In

    2017-01-01

    For the design purpose of air-cooled condensing heat exchanger of emergency cooldown tank, average condensation heat transfer coefficient inside a circular tube was reduced by a thermal sizing program using the experimental data of Kim et al. It was compared to the existing condensation heat transfer correlations. Moreover, a sensitivity analysis of both inside condensation and outside air natural convection correlations was performed. Although condensation heat transfer did not play a great role to design over 10 3 W/m 2 /K, the improved Shah's correlation gives the best prediction for the design. Consequently, air natural convection coefficient significantly affects the design of air-cooled condensing heat exchanger. (author)

  17. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  18. Disoriented chiral condensate: Theory and phenomenology

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1997-12-01

    These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC

  19. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  20. Construction of the blowdown and condensation loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki

    1997-12-01

    The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.

  1. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wen [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Xiaowei, E-mail: lixiaowei@tsinghua.edu.cn [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wu, Xinxin [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael L. [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-02-15

    Highlights: • Gas mixture convective condensation in vertical tubes were simulated using FLUENT code. • The simulation results matched well with experimental data. • The detailed velocity field and species distribution were investigated. • The suction factors predicted by CFD models were compared with the classical correlations. • The effects of air and helium on steam condensation were compared. - Abstract: Steam condensation is degraded when non-condensable gases are present. Convective condensation of steam–air mixture and steam–helium mixture in vertical tubes were simulated using the CFD code FLUENT. The condensation process was modeled by defining source terms for the mass, momentum, species and energy conservation equations. Several cases with various steam mass fractions were simulated, the results matched well with the experimental data. Detailed velocity field and species distribution were investigated. The radial velocity was clearly represented, and the suction effect was modeled, which needs to be accounted for when using the heat and mass transfer analogy theory. The Nusselt and Sherwood numbers predicted by CFD models were compared with the classical correlations, and the suction effects were analyzed. The suction effect is proportional to steam mass fraction, while the suction factor is little affected by the Reynolds number. For forced convection flow in this work, the buoyant force can be neglected, so the larger diffusion coefficient of steam–helium mixture would improve the steam condensation compared to steam–air mixture. The condensation mass fluxes of steam–helium mixture and steam–air mixture are almost the same at relatively high steam inlet molar fraction (≥90%).

  2. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  3. In Memoriam: Professor Jan M. Hoem

    Directory of Open Access Journals (Sweden)

    James W. Vaupel

    2017-02-01

    Full Text Available Jan Hoem died on Saturday in Stockholm after a long illness. Jan became Director of the Max Planck Institute for Demographic Research (MPIDR in 1999; he and I jointly led the Institute for almost eight years. During this period he served as Editor of Demographic Research; he took on this responsibility shortly after the journal was launched and built the journal into a respected online source of cutting-edge analysis. Jan was a superb colleague, with very good judgment, a delightful sense of humor, and deep devotion to research quality. A pioneer of event history analysis, he understood the subtleties of the subject better than anyone else. Jan was born and educated in Norway and worked in Oslo before becoming Professor in Copenhagen and then Professor in Stockholm, where he established SUDA, a leading demographic research initiative. His dedication to high-quality, statistically sophisticated population research at SUDA and MPIDR as well as in the journal Demographic Research substantially advanced the discipline of demography. Jan was a warm and generous teacher, a loyal colleague, and a caring friend whom many people will long remember with gratitude and respect. James W. Vaupel Publisher, Demographic Research

  4. Interview: Interview with Professor Malcolm Rowland.

    Science.gov (United States)

    Rowland, Malcolm

    2010-03-01

    Malcolm Rowland is Professor Emeritus and former Dean of the School of Pharmacy and Pharmaceutical Sciences and a member and former director (1996-2000), of the Centre for Applied Pharmacokinetic Research, University of Manchester. He holds the positions of Adjunct Professor, School of Pharmacy, University of California, San Francisco; Member, Governing Board, EU Network of Excellence in Biosimulation; Founder member of NDA Partners; academic advisor to a Pharmaceutical initiative in prediction of human pharmacokinetics and Scientific Advisor to the EU Microdose AMS Partnership Program. He was President of the EU Federation for Pharmaceutical Sciences (1996-2000); Vice-President of the International Pharmaceutical Federation (2001-2009) and a Board Member of the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, 2004-2008). He received his degree in Pharmacy and PhD at the University of London and was on faculty (School of Pharmacy, University of California San Francisco [1967-1975]) before taking up a professorship at Manchester. His main research interest is physiologically based pharmacokinetics and its application to drug discovery, development and use. He is author of over 300 scientific articles and co-author, with TN Tozer, of the textbooks Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications and Introduction to Pharmacokinetics and Pharmacodynamics. He was editor of the Journal of Pharmacokinetics and Pharmacodynamics (formerly Journal of Pharmacokinetics and Biopharmaceutics, 1973-2007) and, since 1977, has organized regular residential workshops in pharmacokinetics.

  5. Professor de Hevesy traces radioisotope history

    International Nuclear Information System (INIS)

    1965-01-01

    Professor George de Hevesy, who was a pioneer in the field of radioactive tracers, prepared this paper for the IAEA symposium on Radiochemical Methods of Analysis, held at Salzburg in October 1964. Professor de Hevesy was born in Budapest in 1885. He studied in Budapest, Berlin and Freiburg, and spent some years at Zurich when Einstein was there. In 1911 he went to Manchester to work with Rutherford and there witnessed some of the greatest discoveries in the history of physics. At the end of 1912 he visited the Vienna Institute for Radium Research, where he worked with Paneth, and in 1913 applied the method of labelled lead for the first time. After the first world war, he worked at the Institute for Theoretical Physics in Copenhagen; since 1943, his chief activities have been in Sweden. In 1923, with Coster, he discovered the element hafnium. He made notable discoveries on the mobility of ions, and isotope separation, and his work on radioisotope tracers, which has had important biological applications, won him the Nobel Prize for Chemistry in 1943

  6. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  7. Bose-Einstein condensation

    Indian Academy of Sciences (India)

    Science. His current research involves trapping of atoms to carry out high precision tests of ... experimental techniques involved in achieving it, and high- light some of the ... is n-1!3, and from kinetic theory, the mean de Broglie wavelength.

  8. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  9. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  10. A ATUAÇÃO DE PROFESSORES DE ENSINO SUPERIOR: INVESTIGANDO DOIS PROFESSORES BEM AVALIADOS PELOS ESTUDANTES

    Directory of Open Access Journals (Sweden)

    Ana Luiza de Quadros

    2016-06-01

    Full Text Available In the last years, higher education teacher training has received more didactic-pedagogical attention. Despite numerous criticisms to professors' work, some practices present differentials that make them a reference to students, even among university professors with undergraduate and graduate degrees in their specific areas of knowledge. To analyze the classes of such professors who become a reference to students, we selected two higher education professors of chemistry and videotaped their classes seeking to identify the teaching strategies that they use. After analysis, we shared the results with the subjects and complemented them with a semi-structured interview. We found out that these professors perform based on counter-models of professors who they had had in their undergraduate courses and developed strategies aiming to minimize for their students the difficulties they themselves had experienced.

  11. Contribution to the study of unsteady condensation in transonic flow

    International Nuclear Information System (INIS)

    Collignan, B.; Laali, A.R.

    1993-12-01

    The aim of this thesis is the study of transonic steam flows with condensation, especially at high pressure. This study includes a numerical part an experimental one. The modelling has consisted of introducing a spontaneous condensation model in a one-dimensional Euler code using steam-water thermodynamic tables. Calculations, performed with this code, are in good agreement with experimental results at low pressure. The experimental study has been undertaken on a high pressure experimental loop installed at the Bugey nuclear power plant. We have studied steam flows in nozzles. The results obtained show that a partial heterogeneous condensation occurs in these flows. This proportion is stronger if the expansion rate of the flow is low and if the inlet pressure is high. However, a correction factor is obtained for high pressure nucleation rate model from experimental results. No unsteady condensation has been observed for flows between 15 bars and 50 bars with the steam available at Bugey power plant. (authors). figs., 71 refs., 6 annexes

  12. More accurate theory for Bose-Einstein condensation fraction

    International Nuclear Information System (INIS)

    Biswas, Shyamal

    2008-01-01

    Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401

  13. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  14. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  15. Investigation of condensation implosion by changing configurations of water and steam inlets

    International Nuclear Information System (INIS)

    Seporaitis, Marijus; Pabarcius, Raimondas; Almenas, Kazys

    2003-01-01

    A previous paper (Seporaitis, 2002) presented experimental results, which showed that it is possible to induce condensation implosion events in a horizontal cylindrical pulser solely by varying the introduction rate of sub-cooled liquid. Interface disruption is triggered when an increasing liquid-vapor inter-face generates a growing condensation rate that leads to larger vapor flows. Vapor flow and condensation induced shear initiate surface waves and when these exceed a 'critical' growth rate complete interface disruption leading to a rapid condensation pulse. Although initial experimental success-generation of condensation implosion events in a controlled manner-was achieved it was determined that the range of the liquid introduction rate is fairly narrow. To avoid a high liquid heat up (negative factor for initiation of condensation implosion events) during it inducing into pulser and to expend range of the controlling variable the internal flow configurations in the further tests were used. The experimental studies presented in this paper have shown that trace amount of non-condensable gas have a larger effect on the initiation of a controlled condensation implosion event then was initially assumed. The influence of non-condensable gas is shown to be of an equivalent importance as the liquid side turbulence that is modulated by the rate of liquid introduction. (author)

  16. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  17. Professor Gender, Age, and “Hotness” in Influencing College Students’ Generation and Interpretation of Professor Ratings

    Directory of Open Access Journals (Sweden)

    Sara L. Sohr-Preston

    2016-09-01

    Full Text Available Undergraduate psychology students rated expectations of a bogus professor (randomly designated a man or woman and hot versus not hot based on an online rating and sample comments as found on RateMyProfessors.com (RMP. Five professor qualities were derived using principal components analysis (PCA: dedication, attractiveness, enhancement, fairness, and clarity. Participants rated current psychology professors on the same qualities. Current professors were divided based on gender (man or woman, age (under 35 or 35 and older, and attractiveness (at or below the median or above the median. Using multivariate analysis of covariance (MANCOVA, students expected hot professors to be more attractive but lower in clarity. They rated current professors as lowest in clarity when a man and 35 or older. Current professors were rated significantly lower in dedication, enhancement, fairness, and clarity when rated at or below the median on attractiveness. Results, with previous research, suggest numerous factors, largely out of professors’ control, influencing how students interpret and create professor ratings. Caution is therefore warranted in using online ratings to select courses or make hiring and promotion decisions. 

  18. Bose condensation in 4He and neutron scattering

    International Nuclear Information System (INIS)

    Silver, R.N.

    1997-01-01

    The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995

  19. Excitations of Bose-Einstein condensates at finite temperatures

    International Nuclear Information System (INIS)

    Rusch, M.

    2000-01-01

    Recent experimental observations of collective excitations of Bose condensed atomic vapours have stimulated interest in the microscopic description of the dynamics of a Bose-Einstein condensate confined in an external potential. We present a finite temperature field theory for collective excitations of trapped Bose-Einstein condensates and use a finite-temperature linear response formalism, which goes beyond the simple mean-field approximation of the Gross-Pitaevskii equation. The effect of the non-condensed thermal atoms we include using perturbation theory in a quasiparticle basis. This presents a simple scheme to understand the interaction between condensate and non-condensed atoms and enables us to include the effect the condensate has on collision dynamics. At first we limit our treatment to the case of a spatially homogeneous Bose gas. We include the effect of pair and triplet anomalous averages and thus obtain a gapless theory for the excitations of a weakly interacting system, which we can link to well known results for Landau and Beliaev damping rates. A gapless theory for trapped systems with a static thermal component follows straightforwardly. We then investigate finite temperature excitations of a condensate in a spherically symmetric harmonic trap. We avoid approximations to the density of states and thus emphasise finite size aspects of the problem. We show that excitations couple strongly to a restricted number of modes, giving rise to resonance structure in their frequency spectra. Where possible we derive energy shifts and lifetimes of excitations. For one particular mode, the breathing mode, the effects of the discreteness of the system are sufficiently pronounced that the simple picture of an energy shift and width fails. Experiments in spherical traps have recently become feasible and should be able to test our detailed quantitative predictions. (author)

  20. Condensation: the new deal; Condensation: la nouvelle donne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The principle of condensation boilers is based on the recovery of the latent heat of the steam generated by the combustion of natural gas. This technology was introduced in France at the end of the 80's but failed in its promise because of the complexity of the equipments available at that time. Today, constructors' offer is more mature and reliable and the context has changed. This technology can conciliate three goals: a mastery of energy consumptions, the comfort of the user and the respect of environment. This meeting organized by the research center of Gaz de France (Cegibat), was a good opportunity to makes a status of the market of individual condensation systems in France and in Europe, to present the situation of this technology today and the 10 golden rules for the fitting and maintenance of individual condensation boilers, and to present some technical references, examples and results of today's offer. (J.S.)

  1. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  2. Professor Howard Mason and oxygen activation

    International Nuclear Information System (INIS)

    Waterman, Michael R.

    2005-01-01

    Our understanding of the classification, function, mechanism, and structure of the enzymes which incorporate atoms of oxygen from atmospheric molecular oxygen during catalysis is based on the thoughtful and technically challenging experiments of two giants in the field of Biochemistry, Howard Mason and Osamu Hayaishi. This volume celebrates the 50th anniversary of the discovery and characterization of these 'oxygenase' enzymes and provides a broad view of how far this area of research has advanced. Professor Hayaishi describes herein his perspective on the background and major discoveries which led to the development of this field. Regrettably Howard Mason passed away at age 88 in 2003. I am indeed fortunate to have been a Ph.D. student with Howard and to have the opportunity to briefly review his role in the development of this field for this special commemorative issue of BBRC

  3. Institutional Support for the Virtual Professor

    Directory of Open Access Journals (Sweden)

    Tom JONES

    2004-01-01

    Full Text Available Academics who hold positions at single-mode, distance education institutions are presently being hampered by an adherence to a long-standing set of protocols (specific office location, face-to-face meetings that were put in place when the conventional post-secondary was the norm. With the advent of a powerful merging of personal computers and the internet, a shift from those protocols to one of support for the virtual professor is in the offing, to the benefit of both the professoriate and the student. A key factor in this shift is the degree and quality of institutional support that will allow these changes to take place. This paper focuses on a number of the key factors that will have to be addressed if this new type of distance education academic is to function effectively.

  4. Interview with Professor Dr. Daniel Spreng

    International Nuclear Information System (INIS)

    Nagel, C.; Kilchmann, A.

    2004-01-01

    This interview with Professor Dr. Daniel Spreng of the Center for Energy Policy and Economics (CEPE) in Zuerich, Switzerland, deals with questions concerning research in the area of energy economics. In particular, the situation in Switzerland, where mains-connected sources of energy such as electricity and gas play an important role in energy supply, is looked at in the light of market liberalisation. Various approaches to the liberalisation of gas and electricity systems are discussed and the costs of liberalised supply systems are compared with those of the present monopolistic situation. Also, energy reserves and the use of the gas distribution system in a future hydrogen-based energy supply scenario are looked at. Projects currently being worked on at the CEPE are reviewed

  5. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  6. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  7. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  8. Charged ρ Meson Condensate in Neutron Stars within RMF Models

    Directory of Open Access Journals (Sweden)

    Konstantin A. Maslov

    2017-12-01

    Full Text Available Knowledge of the equation of state (EoS of cold and dense baryonic matter is essential for the description of properties of neutron stars (NSs. With an increase of the density, new baryon species can appear in NS matter, as well as various meson condensates. In previous works, we developed relativistic mean-field (RMF models with hyperons and Δ -isobars, which passed the majority of known experimental constraints, including the existence of a 2 M ⊙ neutron star. In this contribution, we present results of the inclusion of ρ − -meson condensation into these models. We have shown that, in one class of the models (so-called KVOR-based models, in which the additional stiffening procedure is introduced in the isoscalar sector, the condensation gives only a small contribution to the EoS. In another class of the models (MKVOR-based models with additional stiffening in isovector sector, the condensation can lead to a first-order phase transition and a substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not spoil the description of the experimental constraints.

  9. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  10. The Limited Role of Journalism Professors in Direct Media Criticism.

    Science.gov (United States)

    Bass, Abraham Z.

    This paper discusses reasons why few journalism professors are personally confronting the news media with criticism or praise. One of the primary reasons for this is that journalism professors may fear retribution or keep inbred ties with the media or be following academic tradition. A survey was conducted in Spring 1975 for this report. The…

  11. Student and Professor Gender Effects in Introductory Business Statistics

    Science.gov (United States)

    Haley, M. Ryan; Johnson, Marianne F.; Kuennen, Eric W.

    2007-01-01

    Studies have yielded highly mixed results as to differences in male and female student performance in statistics courses; the role that professors play in these differences is even less clear. In this paper, we consider the impact of professor and student gender on student performance in an introductory business statistics course taught by…

  12. Professor om kystsikring: Ingen universelle løsninger

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2017-01-01

    DEBAT: Der findes ikke universalløsninger mod stigende risiko for stormfloder, men løsninger skal findes, skriver Karsten Arnbjerg-Nielsen, professor ved DTU.......DEBAT: Der findes ikke universalløsninger mod stigende risiko for stormfloder, men løsninger skal findes, skriver Karsten Arnbjerg-Nielsen, professor ved DTU....

  13. Effects of Social Support on Professors' Work Stress

    Science.gov (United States)

    Moeller, Christin; Chung-Yan, Greg A.

    2013-01-01

    Purpose: The purpose of this paper is to examine how various types of workplace social support from different support sources interact with occupational stressors to predict the psychological well-being of university professors. Design/method/approach: A total of 99 full-time professors participated via an online or paper questionnaire. Findings:…

  14. The benefits of being economics professor A (rather than Z)

    NARCIS (Netherlands)

    van Praag, C.M.; van Praag, B.M.S.

    2008-01-01

    Alphabetical name ordering on multi-authored academic papers, which is the convention in economics and various other disciplines, is to the advantage of people whose last name initials are placed early in the alphabet. Professor A, who has been a first author more often than Professor Z, will have

  15. University Pedagogy for Assistant Professors at Aalborg University (Part 2)

    DEFF Research Database (Denmark)

    Kolmos, Anette; Krogh, Lone

    2003-01-01

    In issue 1-2003, Anette Kolmos and Lone Krogh reported on the two-semester study course " University Pedagogy for Assistant Professors at Aalborg University (DK)". Now, in part 2, they are adressing guidelines for supervison and advising of assistant professors in the university teacher education...

  16. Do Professors Have Customer-Based Brand Equity?

    Science.gov (United States)

    Jillapalli, Ravi K.; Jillapalli, Regina

    2014-01-01

    This research endeavors to understand whether certain professors have customer-based brand equity (CBBE) in the minds of students. Consequently, the purpose of this study is to conceptualize, develop, and empirically test a model of customer-based professor brand equity. Survey data gathered from 465 undergraduate business students were used to…

  17. University Curriculum Project--Professors Reflect on Impact.

    Science.gov (United States)

    Babbitt, Beatrice C.

    This paper describes the reflections of the university professors in eight colleges at the University of Nevada, Las Vegas, who were pioneers in integrating assistive technology and related content into their courses and who continue to provide leadership in curricular change. Professors from the colleges of fine and performing arts, business,…

  18. Engaging Undergraduates in Feminist Classrooms: An Exploration of Professors' Practices

    Science.gov (United States)

    Spencer, Leland G.

    2015-01-01

    This article reports the results of a feminist action research project that sought to ascertain professors' best practices for engaging undergraduates in feminist classrooms. In semi-structured interviews, professors recommended assigning readings from a variety of positionalities; creating a safe space for class discussion; relying on data to…

  19. What I Wish My Professors Had Told Me

    Science.gov (United States)

    Collins, Jennifer

    2016-01-01

    What do you wish your undergraduate professors told you before you ever set foot in a classroom? Jennifer Collins, one such professor who prepares pre-service teachers, has a list of six "truths" she shares with her students. In this article, Collins outlines those pieces of advice, which include understanding your larger purpose,…

  20. Mental Health Assessment in Professors' Training in Two Chilean Universities

    Science.gov (United States)

    Ossa, Carlos J.; Quintana, Ingrid M.; Rodriguez, Felipe F.

    2015-01-01

    This study analyzed the evaluation of professors of pedagogy and directors programs, about the importance of mental health in vocational training, and factors that might influence this valuation. The methodology includes participation of 17 academicians (professors and belonging to the managerial staff) of two universities in southern Chile. A…

  1. Academic Labor Markets and Assistant Professors' Employment Outcomes

    Science.gov (United States)

    Hargens, Lowell L.

    2012-01-01

    Using data for 638 assistant professors who joined graduate sociology departments between 1975 and 1992, I examine the claim that when the labor market for new doctorates is weak, assistant professors experience less favorable employment outcomes than when that labor market is strong. Surprisingly, I find that those hired during the weak…

  2. A single electron in a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Balewski, Jonathan Benedikt

    2014-01-01

    This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.

  3. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two...

  4. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...

  5. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  6. Condensational theory of stationary tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.

    2011-01-01

    Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.

  7. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  8. Dynamics of inhomogeneous chiral condensates

    Science.gov (United States)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  9. In commemoration of professor V.P. Karpov

    Directory of Open Access Journals (Sweden)

    Semyonova L.S.

    2013-10-01

    Full Text Available This article is about professor Karpov V.P., a prominent scientist, first rector of Yekaterinoslav Medical Academy. Biography of a great investigator, his main achievements in the area of histology, biology, theory and history of medicine was studied. Professor Karpov V.P. always combined his great scientific, organizational and research work with social activity. Monographs of professor Karpov V.P. and conferences organized by him were of great importance in the solution of such new problems as theary of microscope and cell amitosis. Professor Karpov is a founder of a large school of histology. Thanks to his active participation and personal guidance, in 1917 department of histology was founded in Yekaterinoslav Medical Institute. The author of the article has analyzed Hippocrates` works translated into Russian by professor Karpov V.P. and pointed out their significance for modern medical science and practice.

  10. Professor I I Glass A Tribute and Memorial

    CERN Document Server

    Igra, Ozer

    2013-01-01

    The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, m...

  11. Condensation phenomena in BWR-pressure suppression containments under LOCA conditions

    International Nuclear Information System (INIS)

    Aust, E.; McCauley, E.W.; Niemann, H.R.

    1983-01-01

    Experimental studies on condensation phenomena in pressure suppression systems (PSS) have shown, that chugging produces the major dynamic loads in a PSS. Time correlation of digital and visual data have produced understanding of the essential physics of this phenomenon: chugging events are characterized by pipe outside and pipe inside condensation. Pipe outside condensation is smooth, sometimes accompanied by vent pipe acoustic frequency. Pipe inside condensation is ring-like and induces a strong pressure pulse with ringdown frequency. The steam ring is caused by the retreating steam front in the pipe exit, which acts as a BORDA-mouth. (orig.) [de

  12. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    Science.gov (United States)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  13. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  14. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  15. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  16. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  17. OBITUARY: Professor Jan Evetts in memoriam

    Science.gov (United States)

    Dew-Hughes, David; Campbell, Archie; Glowacki, Bartek

    2005-11-01

    It is with great sadness that we report the death of Jan Evetts, who lost his second battle with cancer on 18 August 2005. In 1988 he was appointed Founding Editor of this journal where his leadership created the foundation upon which its success rests today. He made an outstanding series of contributions to the science of superconductivity and to the understanding of superconducting materials, and was an indefatigable champion of the development of applications of superconductivity. The loss to the scientific community is incalculable, as is attested by the many communications received from colleagues throughout the world. Professor Jan Edgar Evetts (1939-2005) Professor Jan Edgar Evetts (1939-2005) Jan was born on 31 March 1939, and attended the Dragon School in Oxford, and later Haileybury. He was awarded an exhibition to read Natural Sciences at Pembroke College, Cambridge in 1958 and took his BA degree in 1961. He then undertook a Certificate of Postgraduate Study in Physics under the supervision of Professor Neville Mott. He was the first student to undertake this newly-instituted course; the title of his thesis was `The Resistance of Transition Metals'. In 1962 he joined David Dew-Hughes' embryonic superconducting materials research group, along with Archie Campbell and Anant Narlikar. In fact it was Jan's enthusiasm for the proposed course of research that helped convince David that he should follow Professor Alan Cottrell's suggestion to apply metallurgical methodology to the study of the factors that controlled critical current density in the type II superconductors that were then under development for applications in magnets. Competing theories for the critical current density at that time were fine filaments or `Mendelssohn Sponge' versus the pinning of Abrikosov quantized vortices. The results of the group's work, to which Jan made a major contribution, came down heavily in favour of the latter theory. Jan's outstanding characteristic was his

  18. Investigations on the Steam Condensation in a Vertical Tube Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Hwan; Jerng, Dong-wook [Chung-Ang University, Seoul (Korea, Republic of)

    2016-10-15

    In case of accidents that threats containment integrity, such as Station Black Out (SBO), it is able to depressurize containment using exterior-surface condensation in presence of non-condensable gases, which is named as Passive Containment Cooling System (PCCS). It is very important to precisely predict heat removal capability PCCS, as it affects safety and economics. The effect of curvature is not yet experimentally and numerically studied. It is reported that the effect of curvature exists at single-phase condition, yet it is not studied that if it can applicable to two-phase condensation in presence of non-condensables. In this paper, various experimental data are collected to analyze if it is able to observe curvature effect. However, it is hard to analyze experimental data, as the geometry, experimental conditions and means of measurement differs. To check if the differences between experiments are curvature effect, each experiment is compared with CFD simulation result using a commercial CFD code, STAR-CCM+. In this paper, with correlations derived from prior studies, we found the existence of curvature effect under PCCS operating condition. However, it is unable to find out a clear curvature effect at experiment data as they scatter much. As a means of comparison reference between experiment, CFD code is used. From comparison between CFD and experiment, we could confirm the existence of curvature effect. However, measured heat transfer coefficients of Kawakubo’s experiment are relatively low, whereas Dehbi’s measurement data are relatively high. Also, considering that usage of eq. overly supplies steam to condensing shell region, heat transfer coefficients of Pan Tong’s measured relatively high, but not as much that of Dehbi’s. A further experimental identification is needed for evaluation. Currently, CFD code calculates the curvature effect. Overall trend versus air mass fraction is similar with average of experiment.

  19. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  20. Three-vortex configurations in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.

    2010-01-01

    We report on the creation of three-vortex clusters in a 87 Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.

  1. Pitot pressure analyses in CO2 condensing rarefied hypersonic flows

    Science.gov (United States)

    Ozawa, T.; Suzuki, T.; Fujita, K.

    2016-11-01

    In order to improve the accuracy of rarefied aerodynamic prediction, a hypersonic rarefied wind tunnel (HRWT) was developed at Japan Aerospace Exploration Agency. While this wind tunnel has been limited to inert gases, such as nitrogen or argon, we recently extended the capability of HRWT to CO2 hypersonic flows for several Mars missions. Compared to our previous N2 cases, the condensation effect may not be negligible for CO2 rarefied aerodynamic measurements. Thus, in this work, we have utilized both experimental and numerical approaches to investigate the condensation and rarefaction effects in CO2 hypersonic nozzle flows.

  2. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  3. Impacto vocal de professores Teachers' vocal impact

    Directory of Open Access Journals (Sweden)

    Adriana Ricarte

    2011-08-01

    Full Text Available OBJETIVO: analisar o impacto vocal nas atividades diárias em professores do ensino médio. Correlacionar os achado da auto-percepção do problema vocal com os aspectos: efeitos no trabalho, na comunicação diária, na comunicação social e na sua emoção. MÉTODOS: a amostra foi constituída por 107 professores, sendo 86 com queixa e 21 sem queixa, selecionados em escolas da rede particular de ensino de Maceió-AL. Cada professor respondeu individualmente o protocolo Perfil Participação em Atividades Vocais na presença da pesquisadora, assinalando suas respostas em uma escala visual que varia de 0 a 10. O protocolo é composto por 28 questões com a presença integrada em cinco aspectos englobados para avaliar a qualidade de vida e o resultado de tratamentos vocais. O protocolo oferece, ainda, dois escores adicionais: pontuação de limitação nas atividades (PLA e de restrição de participação (PRP. RESULTADOS: na comparação dos grupos com e sem queixa vocal foram verificados que todos os resultados foram estatisticamente significantes (pPURPOSE: to analyze the vocal impact in the daily activities on high-school teachers. Correlate the finding of the auto-perception on the vocal problem with the following aspects: effects in the work, daily communication, social communication and, its emotion METHODS: the sample consisted of 107 teachers, 86 with and 21 with no complaint, selected from private teaching schools in Maceió-AL. Each teacher answered individually the Protocol for Voice Activity Participation Profile in the presence of the researcher, noting their responses on a visual scale ranging from 0 to 10. The protocol is composed of 28 questions with the presence integrated in five aspects to evaluate the quality of life and the result of vocal treatments. The protocol offers, still, two additional scores: punctuation of limitation in the activities (PLA and restriction of participation (PRP. RESULTS: comparing the groups with

  4. International Workshop on Current Problems in Condensed Matter

    CERN Document Server

    Current Problems in Condensed Matter

    1998-01-01

    This volume contains the papers presented at the International Workshop on the Cur­ rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More­ los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...

  5. On condensation-induced waves

    NARCIS (Netherlands)

    Cheng, W.; Luo, X.; Dongen, van M.E.H.

    2010-01-01

    Complex wave patterns caused by unsteady heat release due to cloud formation in confined compressible flows are discussed. Two detailed numerical studies of condensation-induced waves are carried out. First, the response of a flow of nitrogen in a slender Laval nozzle to a sudden addition of water

  6. KAON CONDENSATION IN NEUTRON STARS

    International Nuclear Information System (INIS)

    RAMOS, A.; SCHAFFNER-BIELICH, J.; WAMBACH, J.

    2001-01-01

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed

  7. Thermodynamic entanglement of magnonic condensates

    Science.gov (United States)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  8. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  9. Approaching Bose-Einstein Condensation

    Science.gov (United States)

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  10. Burney J. Le Boeuf, Professor of Ecology and Evolutionary Biology: Recollections of UCSC, 1966-1994

    OpenAIRE

    Reti, Irene H.; Burney, Le Boeuf J; Jarrell, Randall

    2014-01-01

    Burney Le Boeuf was born in southern Louisiana. He attended UC Berkeley, earning his PhD in experimental psychology in 1966. While at Berkeley, he also studied zoology and experimental biology. He arrived at UCSC in 1967 as a member of the psychology board and of Crown College. He already had a strong interest in evolutionary biology and participated in the biology board’s meetings as an outside member. He also began working with biology professor Richard Peterson on seal and sea lion researc...

  11. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  12. Heat transfer during forced convection condensation inside horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering

    1995-03-01

    This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)

  13. Professor Wind i Deadline om Spitzenkandidaten

    DEFF Research Database (Denmark)

    2018-01-01

    Professor og centerleder, Marlene Wind, var fredag den 23. februar 2018 i DR2 Deadline for at snakke om proceduren bag udvælgelsen af en ny formand for Europa Kommissionen. Professer Wind forklarede blandt andet, hvordan Europa Parlamentet, siden Lisabon Traktaten i 2009, har fortolket en del af...... traktaten til, at det skal være det vindende parti ved EP-valget, som vælger Kommissionsformanden. Dette er kendt som Spitzenkandidaten-proceduren. Wind pointerede, at særligt tyskerne har den holdning til EU, at den primære legitimitet ligger hos Europa parlamentet, da det er det eneste direkte folkevalgte...... organ i EU. Wind påpegede, at statsoverhovederne har været meget skeptiske eller direkte imod proceduren, men at der er en stigende holdning til, at proceduren kan være med til at sikre borgerinddragelse i EU. Til dette sagde Wind; "Hvis man skal engangere borgerne ved det her valg, hvor stort set ingen...

  14. Memories of Professor Sugimoto and isotope separator

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro

    2013-01-01

    Usual magnetic isotope-separators select the particles with the same Z/A value which may include different nuclides. Identification of the isotope with the same Z/A value but different Z or A value is an universal requirement for nuclear physics experiments. If one knows, together with the A/Z value, the dE/dx or the range of the isotope in some energy absorber, which are the function of Z 2 /A, its nuclide can be specified. This idea can be realized by arranging proper energy-absorber at the focal point of magnetic analyzer. The author proposes another novel method in which two dipole-magnets are excited with some difference, and an energy absorber corresponding to that energy difference is situated between two magnets. It can also be devised so that the dispersion at the final focal-point depends only on the emission angle of the isotope at production. Professor Sugimoto recognized the significance of this scheme and proposed to employ it in the experiment at BEVATRON. The unbalanced two dipole-magnets method is employed at RIKEN and RCNP, Osaka University. The author's creative idea originated in Sugimoto Laboratory at Osaka University. (author)

  15. Discrete breathers in Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Politi, Antonio; Livi, Roberto; Oppo, Gian-Luca

    2011-01-01

    Discrete breathers, originally introduced in the context of biopolymers and coupled nonlinear oscillators, are also localized modes of excitation of Bose–Einstein condensates (BEC) in periodic potentials such as those generated by counter-propagating laser beams in an optical lattice. Static and dynamical properties of breather states are analysed in the discrete nonlinear Schrödinger equation that is derived in the limit of deep potential wells, tight-binding and the superfluid regime of the condensate. Static and mobile breathers can be formed by progressive re-shaping of initial Gaussian wave-packets or by transporting atomic density towards dissipative boundaries of the lattice. Static breathers generated via boundary dissipations are determined via a transfer-matrix approach and discussed in the two analytic limits of highly localized and very broad profiles. Mobile breathers that move across the lattice are well approximated by modified analytical expressions derived from integrable models with two independent parameters: the core-phase gradient and the peak amplitude. Finally, possible experimental realizations of discrete breathers in BEC in optical lattices are discussed in the presence of residual harmonic trapping and in interferometry configurations suitable to investigate discrete breathers' interactions. (invited article)

  16. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  17. The order of condensation in capillary grooves

    International Nuclear Information System (INIS)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-01-01

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p co (L) described, for large widths, by the Kelvin equation p sat − p co (L) = 2σcosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θ cap ; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σsinθ cap /L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θ cap = 0 and the influence of corner menisci on adsorption isotherms are presented. (fast track communication)

  18. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  19. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  20. Equation of state of warm condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W., III; Young, D.A.; Rogers, F.J.

    1998-03-01

    Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.

  1. Aspects of Landau condensation in atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1980-01-01

    Some aspects of Landau condensation in atomic physics are reviewed both as regards current work on Rydberg states under laboratory conditions and from the viewpoint of the prospects of spontaneous decay of neutral vacuum with superheavy elements. The characteristics of the hydrogen-atom spectrum in a strong magnetic field are presented and discussed using essentially semiclassical arguments. Some schematic attempt at a global interpretation of the Rydberg spectrum near the ionization limit is also given. Then the action of an electric field on the quasi-Landau spectrum is discussed. The conditions for spontaneous production of positrons from neutral vacuum decay with superheavy elements are reconsidered for the case when the system experiences ultrastrong magnetic fields, as in pulsars and white dwarfs. It is shown that spontaneous decay of neutral vacuum may occur at lower Z values than 169. The possible importance of such effects during heavy-ion collisions is briefly discussed. We deal with some qualitative trends of the problem of an atom in a magnetic field with particular emphasis on diamagnetic effects. In the last few years, we have had the capability of making accurate experimental investigations of Rydberg atoms, and perhaps in the future we will develop fundamentally new means of studying heavy-ion collisions. Accordingly it seems of interest to make qualitative remarks regarding the present state of the problem and the possible importance of Landau condensation in various domains of atomic physics now under active development. (author)

  2. Editorial: A dedication to Professor Jan Evetts

    Science.gov (United States)

    Weber, Harald; Dew-Hughes, David; Campbell, Archie; Barber, Zoe; Somekh, Rob; Glowacki, Bartek

    2006-03-01

    A few days before the beginning of the 7th European Conference on Applied Superconductivity we learned that Professor Jan Evetts, a pioneer of superconductor research, a brilliant scientist, a wonderful person and a great personal friend, had passed away. We therefore decided to dedicate the 7th European Conference on Applied Superconductivity to the memory of Jan Evetts. The following citation is based on material provided by his former supervisor (D Dew-Hughes) and his closest co-workers in Cambridge. Professor Jan Edgar Evetts (1939-2005) Professor Jan Edgar Evetts (1939-2005) Jan Evetts passed away after losing his second battle with cancer on 24th August 2005. He made an outstanding series of contributions to the science of superconductivity and to the understanding of superconducting materials and was an indefatigable champion of the development of applications of superconductivity. The loss to the superconductivity community is incalculable, as attested by the many communications received from colleagues throughout the world. Jan was born on 31 March 1939, and attended the Dragon School in Oxford, and later Haileybury. He was awarded an exhibition to read Natural Sciences at Pembroke College, Cambridge. He entered the college in 1958 and took his BA degree in 1961. He then undertook a Certificate of Postgraduate Study in Physics under the supervision of Professor Neville Mott. He was the first student to undertake this newly-instituted course; the title of his thesis was `The Resistance of Transition Metals'. In 1962 he joined David Dew-Hughes' superconducting materials research group, along with Archie Campbell and Anant Narlikar. In fact it was Jan's enthusiasm for the proposed course of research that helped convince David that he should follow Professor Alan Cottrell's suggestion to apply metallurgical methodology to the study of the factors that controlled critical current density in the type II superconductors that were then under development for

  3. On the Froehlich decomposition and the condensate fraction in He II

    International Nuclear Information System (INIS)

    Ghassib, H.B.; Sridhar, R.

    1983-09-01

    The method of extracting the Bose-Einstein condensate fraction in He II within the Froehlich decomposition scheme is revisited. A new simple formula for determining this fraction is derived. Possible experimental and theoretical implications are discussed. (author)

  4. Dispersion Engineering of Bose-Einstein Condensates

    Science.gov (United States)

    Khamehchi, Mohammad Amin

    The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel

  5. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  6. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  7. Investigation of viscosity of whole hydrolyze sweetened condensed milk

    Directory of Open Access Journals (Sweden)

    O. Kalinina

    2015-05-01

    Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.

  8. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  9. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  10. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  11. Heat transfer degradation during condensation of non-azeotropic mixtures

    Science.gov (United States)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  12. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  13. Some concepts in condensed phase chemical kinetics

    International Nuclear Information System (INIS)

    Adelman, S.A.

    1986-01-01

    Some concepts in condensed phase chemical kinetics which have emerged from a recent rigorous statistical mechanical treatment of condensed phase chemical reaction dynamics (S.A. Adelman, Adv. Chem. Phys.53:61 (1983)) are discussed in simple physical terms

  14. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  15. Salamfestschrift. A collection of talks from the conference on highlights of particle and condensed matter physics

    International Nuclear Information System (INIS)

    Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)

    1994-01-01

    The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  16. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  17. Some issues in the ghost condensation scenario

    International Nuclear Information System (INIS)

    Anisimov, A.

    2004-01-01

    In the recently proposed 'ghost condensation' scenario a model of consistent infrared modification of gravity was suggested. We first review the basic ideas of this scenario. We discuss various phenomenological aspects of the ghost condensation, such as stability of the condensate, bounds on the UV cut-off scale of the corresponding effective field theory and other issues. (author)

  18. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  19. Special issue dedicated to Professor Johann M. Schepers

    Directory of Open Access Journals (Sweden)

    Gideon P De Bruin

    2006-10-01

    Full Text Available It is a great pleasure for me to have been associated with this special issue of the SA Journal of Industrial Psychology dedicated to Professor Johann M. Schepers. The purpose of the special issue is to honour Professor Schepers for his contributions to the development of Psychology and Industrial Psychology as empirical fields of study in South Africa. The contributors have worked with Professor Schepers as students or colleagues and share his academic interests. The articles reflect his areas of interest and employ analytic techniques taught and championed by him. We are grateful to Professor Schepers for his cooperation throughout this project. Thanks are due to all the contributors and referees.

  20. Professor Anne Khademian named National Academy of Public Administration Fellow

    OpenAIRE

    Chadwick, Heather Riley

    2009-01-01

    Anne Khademian, professor with Virginia Tech's Center for Public Administration and Policy, School of Public and International Affairs, at the Alexandria, Va., campus has been elected a National Academy of Public Administration (NAPA) Fellow.

  1. Afetividade entre professor e aluno no processo ensino-aprendizagem

    Directory of Open Access Journals (Sweden)

    Jéssica Simone Galdino Schaefer

    2015-06-01

    Full Text Available Este artigo tem como objetivo analisar as relações de afetividade entre professor e aluno no processo ensino-aprendizagem. Utiliza de metodologia com abordagem qualitativa, observação participante, e entrevistas semi-estruturadas. O lócus da pesquisa foi a Escola Municipal de Educação Básica Lizamara Aparecida Oliva de Almeida em Sinop, entre Fevereiro e Maio de 2014. Enquanto sujeitos, contou-se com professores e alunos do 3º ano do Ensino Fundamental. Dos resultados parciais, verificou-se que mesmo que a afetividade e a aprendizagem sejam reconhecidas teoricamente por Henri Wallon como elos fundamentais para o processo ensino-aprendizagem, ainda não é bem compreendido pelos sujeitos professores. Palavras-chave: psicologia educacional; afetividade; professores e alunos. 

  2. University Pedagogy for Assistant Professors at Aalborg University (Part 1)

    DEFF Research Database (Denmark)

    Kolmos, Anette; Krogh, Lone

    2003-01-01

    The article describes a course for assistant professors within the University Teacher Education at Aalborg University. The course focus is to develop knowledge, skills and methods from within the didactic, pedagogical, and learning theory-based fields....

  3. 26 CFR 509.115 - Visiting professors or teachers.

    Science.gov (United States)

    2010-04-01

    ...) REGULATIONS UNDER TAX CONVENTIONS SWITZERLAND General Income Tax § 509.115 Visiting professors or teachers. (a... not exceeding two years at any university, college, school, or other educational institution situated...

  4. Analysis study of the condensation heat transfer coefficient in the presence of noncondensable on PCCS vertical condenser tube using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong jae; Jang, Yeong jun; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of); Kim, Sin [Chung-Ang University, Seoul (Korea, Republic of)

    2015-10-15

    The Passive Containment Cooling System (PCCS) to be introduced in advanced LWRs removes released energy to an external heat sink by a naturally driven flow. Containment through the condensation heat transfer phenomenon in the event of the loss of coolant accident (LOCA) or main steam line break (MSLB). As the released steam pressurizes the containment, the PCCS will activate to transport the decay heat In this study, a numerical analysis of the condensation heat transfer coefficients on the PCCS condenser tube is conducted using the MARS-KS code. The condensation heat transfer coefficients are obtained from JNU condensation tests performed on a 1000 long and 40 mm O.D. tube. The analysis condition covers 2 and 4 bar for the air mass fraction ranging from 0.1 to 0.8. The JNU single vertical condensation experimental results, Uchida's and Dehbi's correlation compared with the MARS-KS code's results at 2 and 4 bar. Experimental results and MARS-KS predicted heat transfer coefficient is different from the thermal resistances and Wall subcooling. An average relative error is 18.8% and 15% at 2 and 4 bar, respectively. Uchida's correlation is considered the noncondensable gas mass fraction only. Therefore, that is lower than MARS-KS results at 4 bar. Dehbi's correlation affected by ratio of the height-to-diameter, so its results are higher condensation heat transfer coefficient than MARS-KS predicted results.

  5. Redox Pioneer: Professor Stuart A. Lipton

    Science.gov (United States)

    2013-01-01

    Abstract Professor Stuart A. Lipton Stuart A. Lipton, M.D., Ph.D. is recognized here as a Redox Pioneer because of his publication of four articles that have been cited more than 1000 times, and 96 reports which have been cited more than 100 times. In the redox field, Dr. Lipton is best known for his work on the regulation by S-nitrosylation of the NMDA-subtype of neuronal glutamate receptor, which provided early evidence for in situ regulation of protein activity by S-nitrosylation and a prototypic model of allosteric control by this post-translational modification. Over the past several years, Lipton's group has pioneered the discovery of aberrant protein nitrosylation that may contribute to a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (Lou Gehrig's disease). In particular, the phenotypic effects of rare genetic mutations may be understood to be enhanced or mimicked by nitrosative (and oxidative) modifications of cysteines and thereby help explain common sporadic forms of disease. Thus, Lipton has contributed in a major way to the understanding that nitrosative stress may result from modifications of specific proteins and may operate in conjunction with genetic mutation to create disease phenotype. Lipton (collaborating with Jonathan S. Stamler) has also employed the concept of targeted S-nitrosylation to produce novel neuroprotective drugs that act at allosteric sites in the NMDA receptor. Lipton has won a number of awards, including the Ernst Jung Prize in Medicine, and is an elected fellow of the AAAS. Antioxid. Redox Signal. 19, 757–764. PMID:23815466

  6. Supersymmetry breaking by gaugino condensation

    International Nuclear Information System (INIS)

    Casas, J.A.

    1991-01-01

    We briefly review the status and some of the recent work on supersymmetry breaking by gaugino condensation effects in the context of superstring theories. This issue is intimately related to the structure of the effective potential coming from superstrings. Minimization of this not only allows to find the scale of supersymmetry breaking, but also to determine dynamically other fundamental parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. In a multiple condensate scenario these get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. Some directions for future work are examined too. (author). 23 refs

  7. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  8. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Ellen Gleditsch: Professor, radiochemist and mentor

    International Nuclear Information System (INIS)

    Lykknes, Annette

    2005-06-01

    This dissertation deals with Ellen Gleditsch and some important aspects of her career, as professor, radiochemist and mentor. As Professor Gleditsch supervised students, gave lectures, disseminated science, did research and administrative work; together with many others she participated in the shaping of a research university which developed during her career. She also experienced the daily life in an institute in which there was competition for both resources and positions, included the professorship she was finally granted after many set-backs. The Radiochemist Ellen Gleditsch worked and researched at Marie Curie's laboratory in Paris, and later at Bertram Boltwood's laboratory in New Haven and Stefan Meyer's Institute for Radium Research in Vienna, furthermore she planned and made efforts to establish a similar laboratory in Oslo. During her time in Paris and U.S.A. Gleditsch participated in important debates in the early period of radioactivity, including those on the determination of the radium-uranium ratio and the half-life of radium. In Norway she devoted her time to atomic weight determinations, age determinations, and radiogeological investigations. Research was all important part of Gleditsch's life and career. Gleditsch was also a Mentor in many respects; in tile international radioactivity community, as one of the first female academics and radiochcmists in Norway, for her many students, and this role seems also to have been hers within her family. In Paris she looked after students from all over the world to help alleviate their home sickness, at the University of Oslo she was known as the scientific mother to many; mentoring was among Gleditsch's main qualities. The story of Ellen Gleditsch opens for several perspectives that are discussed. 3 papers are included. In paper 1, ''Ellen Gleditsch: Pioneer Woman in Radiochemistry'', the story is about the young chemist Ellen Gleditsch, who arrived in Paris in 1907 and started cooperating with Marie Curie

  10. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan

    2017-01-17

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  11. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan

    2017-01-01

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  12. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  13. Atomistic modeling of dropwise condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L. [Department of Mechanical Engineering, Amity University Uttar Pradesh, Noida (India); Muralidhar, K.; Khandekar, S. [Department of Mechanical Engineering, IIT Kanpur (India)

    2016-05-23

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  14. LOFCON-LOFT condenser program

    International Nuclear Information System (INIS)

    Lemmon, E.C.; MacKay, D.B.

    1978-01-01

    LOFCON is a program developed for the LOFT air condenser system contained in the secondary coolant system. Although the basic theory described herein is general, the program given is not--it is specifically for the LOFT configuration. LOFCON is presented in subroutine form so that it may be easily incorporated into a larger program describing the complete secondary side. Specifically LOFCON was written to be incorporated into the detailed CSMP model of the LOFT secondary coolant system simulation

  15. Water condensation promotes fungal growth in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Pasanen, P.; Pasanen, A.-L. (University of Kupopio, Department of Environmental Sciences, Kuopio (Finland)); Jantunen, M. (National Public Health Institute, Kuopio (Finland))

    1993-01-01

    In a subarctic climate the diurnal variation in temperature may cause water condensation in ducts placed in the unheated spaces of a building. In this study, germination time and sporulation of a fungus, Penicillium verrucosum, were studied on dusty, galvanized steel sheet under different moisture conditions at room temperature. The effect of condensed water in a supply air duct on spore amplification was studied in an experimental ventilation set-up. In the field, air temperatures and the dew point temperature of air in the duct were monitored continuously for a week. P. verrucosum germinated on steel surfaces during five-hour incubation of the surface under humid conditions, when the surface has been moist for half an hour, germ tubes appeared within 17 hours. During 24-hour incubation under moist conditions, P. verrucosum produced hyphae and spores. In the experimental set-up the airborne spore counts increased when the air passed through a water-condensing section of the duct. Penicillium was the most abundant fungus sporulated on the moist duct surface. In the field, during humid weather, the surface temperature on the air stream surface decreased to the dew point temperature of the air in the duct. thus water condensation in air ducts may promote fungal growth. (au)

  16. Seniorforsker Ole Hertel udnævnt til adjungeret professor

    DEFF Research Database (Denmark)

    Pedersen, Jens Christian

    2009-01-01

    Sektionsleder og seniorforsker Ole Hertel, Danmarks Miljøundersøgelser (DMU) ved Aarhus Universitet, er udnævnt til adjungeret professor ved Institut for Miljø, Samfund og Rumlig Forandring på Roskilde Universitet.......Sektionsleder og seniorforsker Ole Hertel, Danmarks Miljøundersøgelser (DMU) ved Aarhus Universitet, er udnævnt til adjungeret professor ved Institut for Miljø, Samfund og Rumlig Forandring på Roskilde Universitet....

  17. Modelling of Condensation in Vertical Tubes for Passive Safety System

    International Nuclear Information System (INIS)

    Papini, D.; Ricotti, M.; Santini, L.; Grgic, D.

    2008-01-01

    Condensation in vertical tubes plays an important role in the performance of heat exchangers in passive safety systems, widely adopted in next generation reactors. Vertical pipe condensers are implemented in the GE-SBWR1000 Isolation Condenser as well as in the Emergency Heat Removal System (EHRS) of the IRIS reactor. The transient and safety analysis is usually carried out by means of best-estimate, thermalhydraulic codes, as RELAP. Suitable heat transfer correlations are required to duly model the two-phase processes. As far as the condensation process is concerned, RELAP5/MOD3.3 adopts the Nusselt correlation to calculate the heat transfer coefficient in laminar conditions and the Shah correlation for turbulent conditions; the maximum of the predictions from laminar and turbulent regimes is used to calculate the condensation heat transfer coefficient. Shah correlation is generally considered as the best empirical correlation for turbulent annular film condensation, but suitable in proper ranges of the various parameters. Nevertheless, recent investigations have pointed out that its validity is highly questionable for high pressure and large diameter tube applications with water, as should be for the utilization for vertical tube condensers in passive safety systems. Thus, a best-estimate model, based on the theory of film condensation on a plain wall, is proposed. Condensate velocity, expressed in terms of Reynolds number, governs the development of three different regime zones: laminar, laminar wavy and turbulent. The best correlation for each regime (Nusselt's for laminar, Kutateladze's for laminar wavy and Chen's for turbulent) is considered and then implemented in RELAP code. Comparison between the Nusselt-Shah and the proposed model shows substantial differences in heat transfer coefficient prediction. Especially, a trend of increasing value of the heat transfer coefficient with tube abscissa (and quality decreasing) is predicted, when turbulence

  18. Computational fluid dynamics validation study of steam condensation on the containment walls

    International Nuclear Information System (INIS)

    Gera, B.; Sharma, P.K.; Singh, R.K.; Vaze, K.K.

    2012-01-01

    In water cooled power reactors, significant quantities of hydrogen could be produced following a severe accident (loss-of-coolant-accident along with non availability of emergency core cooling system). A sound understanding of dispersion, stratification and diffusion of released hydrogen during severe accidents is, therefore, of practical importance and use to better understand the possibility of ignition, combustion and explosion of such releases within the context of containment safety. The presence of air and steam in the containment atmosphere also affects the hydrogen distribution as steam condensation takes place at containment walls in presence of non condensable and bulk of the mixture diffuses towards wall. The application of general purpose CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing over past few years. The commercial CFD codes generally do not have built-in steam condensations models. In the present work, the adaptation of a commercial multipurpose code to this kind of problem is explained, i.e. by the implementation of models for steam condensation onto walls in presence of non-condensable gases. Steam condensation was modeled using the Uchida correlation, which was originally developed to be used for 'lumped' (volume-averaged) modeling of steam condensation in the presence of non-condensable gases. The Uchida correlation is based on experiments on natural convection from relatively small vertical plates. The present methodology has been validated against experimental data from the TOSQAN and COPAIN experimental facilities. (orig.)

  19. Scandinavian experience of titanium condensers

    International Nuclear Information System (INIS)

    Multer, I.; Hedstroem, M.

    1985-01-01

    The Albrass condenser tubing in Sweden and Finnish nuclear power plants has caused much concern. After the appearance of the first tube leak, the deterioration has been very rapid. A typical development is represented by the Ringhals unit 2 eddy current (EC) measurements. They are, despite the difference in salinity, almost identical with Forsmark units 1 and 2 and units 1 and 2 of the TVO power company at Olkiluoto, Finland. For instance, in summer 1984, 3000 tubes were plugged in TVO 2 after four years of operation. The cause was pitting and/or erosion-corrosion. The failure rate, although the plugging criteria have been different from the EPRI concept, has exceeded that reported in the US and UK; and it has been necessary, especially with the strict feed water chemistry requirements in the PWR's, to arrange for retubing after a very short time, approximately 3 years after the first leak. The history of the nuclear plant condensers is shown; the average condenser life span has been approximately 6.5 years

  20. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  1. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  2. Condensation During Nuclear Reactor Loca

    International Nuclear Information System (INIS)

    Rihan, Y.; Teamah, M.; Sorour, M.; Soliman, S.

    2008-01-01

    Two-phase channel flow with condensation is a common phenomenon occurs in a number of nuclear reactor accident scenarios. It also plays an important role during the operation of the safety coolant injection systems in advanced nuclear reactors. Semiempirical correlations and simple models based on the analogy between heat and mass transfer processes have been previously applied. Rigorous models, compatible with the state-of-the-art numerical algorithms used in thermal-hydraulic computer codes, are scare, and are of great interest. The objective of this research is to develop a method for modeling condensation, with noncondensable gases, compatible with the state-of-the-art numerical methods for the solution of multi-phase field equations. A methodology for modeling condensation, based on the stagnant film theory, and compatible with the reviewed numerical algorithms, is developed. The model treats the coupling between the heat and mass transfer processes, and allows for an implicit treatment of the mass and momentum exchange terms as the gas-liquid interphase, without iterations. The developed model was used in the application of loss of coolant in pressurized water reactor accidents

  3. Multiple spectator condensates from inflation

    Science.gov (United States)

    Hardwick, Robert J.

    2018-05-01

    We investigate the development of spectator (light test) field condensates due to their quantum fluctuations in a de Sitter inflationary background, making use of the stochastic formalism to describe the system. In this context, a condensate refers to the typical field value found after a coarse-graining using the Hubble scale H, which can be essential to seed the initial conditions required by various post-inflationary processes. We study models with multiple coupled spectators and for the first time we demonstrate that new forms of stationary solution exist (distinct from the standard exponential form) when the potential is asymmetric. Furthermore, we find a critical value for the inter-field coupling as a function of the number of fields above which the formation of stationary condensates collapses to H. Considering some simple two-field example potentials, we are also able to derive a lower limit on the coupling, below which the fluctuations are effectively decoupled, and the standard stationary variance formulae for each field separately can be trusted. These results are all numerically verified by a new publicly available python class (nfield) to solve the coupled Langevin equations over a large number of fields, realisations and timescales. Further applications of this new tool are also discussed.

  4. DISCOURSE SPACE OF THE LINGUOCULTURAL CHARACTER TYPE PROFESSOR

    Directory of Open Access Journals (Sweden)

    Lara Sinelnikova

    2014-10-01

    Full Text Available The article offers an analysis of the linguocultural character type professor taking into consideration both traditional set of signs and those transformations that indicate accumulation of evolutionary changes. The methodological base for the systematic description were the achievements of such areas of scientific knowledge as personology, linguopersonology and discourseology. The linguocultural character type (LCCT is a generalised image of persons, whose behaviour and value orientations influence culture, language and show social originality of the society. The peculiarity of the studied linguocultural character type is in its interrelation with the linguocultural character types intellectual and teacher as well as in the fact of the traditional connection with the concept elite. The exposure of such kind of multidimensional relations allowed to focus attention on the qualities of the LCCT professor that ensure its relative self-sufficiency. The sign of elitism and belonging to the intellectuals of the LCCT professor is asserted by the high social status recognised by the society, which is based on professionalism and compliance with moral principles. The axiological generality of the LCCT professor and teacher is ensured by the peculiarities of the modern pedagogical discourse with its typical image settings. One of the main features of the image of a professor is its belonging to the elite language person. The transformational processes in the contents of the LCCT professor are connected with the globalisation: including the international dimension in the evaluation of the professional activity, complication of the language environment, marketisation of the university sphere.

  5. Irradiation damage in graphite. The works of Professor B.T. Kelly

    International Nuclear Information System (INIS)

    Marsden, B.J.

    1996-01-01

    The irradiation damage produced in graphite by energetic neutrons (>100eV) has been extensively studied because of the use of graphite as a moderator in thermal nuclear reactors. In recent times, graphite has been adopted as the protective tiling of the inner wall of experimental fusion systems and property changes due to fusion neutrons have become important. The late Professor B.T. Kelly reviewed the work carried out on the irradiation behaviour of graphite since the 1940s. This work is particularly timely as the scale of research into the effects of fission neutrons has been greatly reduced and many of the active researchers have retired. In recent years, new programmes of work are being formulated for the use of graphite in both the field of high temperature reactor systems and fusion systems. It is therefore important that the knowledge gained by Professor Kelly and other workers is not lost but passed on to future generations of nuclear scientists and engineers. This paper reviews Professor Kelly's last work, it also draws on the experience gained during many long discussions with Brian during the years he worked closely with the present graphite team at AEA Technology. It is hoped to publish his work in full in the near future. (author). 13 refs, 14 figs, 3 tabs

  6. Quality factors to consider in condensate selection

    Energy Technology Data Exchange (ETDEWEB)

    Lywood, B. [Crude Quality Inc., Edmonton, AB (Canada)

    2009-07-01

    Many factors must be considered when assessing the feasibility of using condensates as a diluent for bitumen or heavy crude production blending. In addition to commercial issues, the effect of condensate quality is a key consideration. In general, condensate quality refers to density and viscosity. However, valuation decisions could be enhanced through the expansion of quality definitions and understanding. This presentation focused on the parameters that are important in choosing a diluent grade product. It also reviewed pipeline and industry specifications and provided additional information regarding general properties for bitumen and condensate compatibility; sampling and quality testing needs; and existing sources of information regarding condensate quality. tabs., figs.

  7. FOREWORD: The 70th birthday of Professor Stig Stenholm The 70th birthday of Professor Stig Stenholm

    Science.gov (United States)

    Suominen, Kalle-Antti

    2010-09-01

    researchers such as Marc-Andre Dupertuis and Steve Barnett worked with Stig at TFT, and in the 1990s it was the turn of Barry Garraway, Ilkka Tittonen and Nikolay Vitanov among others. For his work in 1992-1997 Stig Stenholm received the prestigious Academy of Finland Professorship which provided him with valuable research funds. My graduation in 1992 was followed by Mackillo Kira in 1995 and Päivi Törmä in 1996. Following developments in the field, in the mid-1990s Stig started to work on Bose-Einstein condensation and quantum information. Later he had a Humboldt fellowship, with stays in Germany shared by the Universities at Konstanz (Jürgen Mlynek) and Ulm (Wolfgang Schleich). Unfortunately, the University of Helsinki decided to replace TFT and a corresponding experimental particle physics institute with a new institute, which was mostly seen as the Finnish front-end for CERN collaboration; in 1997 the Helsinki Institute of Physics (HIP) was started. Although the activities of TFT still existed in the theory section of HIP, many things and especially the atmosphere were changed and in 1997 this partly led Stig to accept a position at the Royal Institute of Technology in Stockholm, Sweden, where two of his Finnish students, Patrik Öhberg and Erika Andersson graduated shortly after the move. I moved to HIP at the time, but left for a position in Turku in 2000, and the quantum optics project was finally switched off at HIP in 2003—only later it was found that quantum optics had provided the Institute with its most cited papers, propelling it into the top 5 percent most cited institutes in its field (especially thanks to Norbert Lütkenhaus and his work on quantum cryptography). The time in Stockholm was fruitful for Stig scientifically, but he also became a member of the Royal Swedish Academy of Sciences, and although Nobel committee papers remain secret for 50 years, it is likely that he had a hand in its activities. In 2005 we jointly published a textbook on quantum

  8. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    Science.gov (United States)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  9. Ghost condensate and generalized second law

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2009-01-01

    Dubovsky and Sibiryakov recently proposed a scenario in which particles of different species propagate with different speeds due to their direct couplings to ghost condensate. It was argued that this extended version of ghost condensate allows a gedanken experiment leading to violation of the generalized second law. However, in the original ghost condensate scenario, difference in propagation speeds is suppressed by M 2 /M Pl 2 , where M is the order parameter of spontaneous Lorentz breaking and M Pl is the Planck scale. In this case the energy transfer necessary for the gedanken experiment is so slow that the timescale of decrease of entropy, if any, is always longer than the Jeans timescale of ghost condensate. Hence the generalized second law is not violated by the gedanken experiment in the original ghost condensate scenario. This conclusion trivially extends to gauged ghost condensation by taking into account accretion of gauged ghost condensate into a black hole.

  10. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  11. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  12. Forecasting the Student-Professor Matches That Result in Unusually Effective Teaching

    Science.gov (United States)

    Gross, Jennifer; Lakey, Brian; Lucas, Jessica L.; LaCross, Ryan; Plotkowski, Andrea R.; Winegard, Bo

    2015-01-01

    Background: Two important influences on students' evaluations of teaching are relationship and professor effects. Relationship effects reflect unique matches between students and professors such that some professors are unusually effective for some students, but not for others. Professor effects reflect inter-rater agreement that some professors…

  13. "They Are Weighted with Authority": Fat Female Professors in Academic and Popular Cultures

    Science.gov (United States)

    Fisanick, Christina

    2007-01-01

    The images of fat professors encountered in popular culture are few in number and negative in depiction. In this article, the author discusses on how will the professorial body affect the way in which students perceive the professor's teaching abilities. The author concludes that bias against fat professors, professors of color, and other…

  14. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  15. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  16. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  17. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  18. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  19. One-nucleon absorption of slow pions by atomic nuclei and π condensation

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Koldaev, M.V.; Chekunaev, N.I.

    1977-01-01

    Solved is a problem of one-nucleon absorption of slow pions by real nuclei. Without ion condensate one-nucleon absorption forbiddenness decreases due to nucleus finiteness, as nucleus finiteness results in nucleon momentum nonconservation. As a result one-nucleon absorption probability differs from a zero and equals the order of 10 -3 . Calculated is one-nucleon absorption probability in nuclear matter as well as in atomic nuclei due to π condensate existence. The condensate part is shown to be considerable in a finite system as well. For heavy nuclei the condensate presence results in this probability increase about 100 times. Experiments on one-nucleon absorption of slow pions may be critical to elucidate a question of π condensate presence in nuclear systems. In conclusion experimental data available on pion absorption are discussed and it is paid attention to the necessity of carrying out further experiments

  20. Direct Observation of Zitterbewegung in a Bose Einstein Condensate

    Science.gov (United States)

    2013-07-03

    analogous to the Higgs mechanism where a Higgs condensate (a coherent matter wave) generates mass in the standard model [28].) The zitterbewegung of...directly realize Dirac– boson systems in the laboratory [12, 29], permitting access to new classes of experimental systems. Though BECs near these Dirac...http://www.njp.org/) 10 in an optical lattice, can stably populate these states [34, 35], for example leading to bosonic composite-fermion states [36, 37

  1. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new

  2. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  3. Method of continuously cleaning condensers

    International Nuclear Information System (INIS)

    Tomita, Akira; Takahashi, Sankichi.

    1982-01-01

    Purpose: To prevent marine livings from depositing to the inside of ball recycling pipeways. Method: Copper electrodes are provided to the downstream of a sponge ball collector in a sponge ball recycling pipeways for cleaning through the cooling pipes of a condenser. Electrical current is supplied by way of a variable resister to the electrodes and copper ions resulted from the dissolution of the electrodes are fed in the pipes to kill the marine livings such as barnacles and prevent the marine livings from depositing to the inside of the sponge ball recycling pipeways. (Seki, T.)

  4. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    Science.gov (United States)

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  5. Accident localization system with jet condensers for VVER 440-V 230 NPP at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Murani, J.

    1995-01-01

    The operational safety of the V1 nuclear power plant (NPP) is unsatisfactory and does not correspond to present requirements as to nuclear safety. Further NPP operation after 1995 is conditional on nuclear safety enhancement to a level comparable with that in West European countries. This aim should be achieved by a principal reconstruction involving in addition to others also backfitting the V1 NPP with technical facilities aimed at coping with a design basis accident (DBA).To cope with such an accident the Power Equipment Research Institute (VUEZ) designed an accident localization system with jet condensers. This system consists of (a) an air trap (one for each unit, mutually interconnected) with an expansion bell enclosed within, placed on a plate with 200 pipes of jet condensers passing through, and (b) a connecting duct between the hermetic zone and the air trap. The vertical jet condenser is an essential element of the system designed for steam condensation. Apart from condensation it serves as a water seal separating units 1 and 2.Demonstration tests of the jet condenser (model 1:1) condensing function were carried out at the testing unit of the All-Union Research Institute for NPP Operation (VNIIAES), Moscow in Kashir, 11-22 September 1992. These experiments proved the jet condenser ability to ensure complete condensation of the steam produced. Experimental verification of the sealing function (model 1:1) was carried out at the testing unit of the VUEZ Tlmace. These experiments concerning the dynamics and overpressure in the free space above the pool were close to the conditions in the air trap during DBA. The jet condenser height was proved to be sufficient to ensure the sealing function. Design and experimental work has been implemented in close cooperation with Russian experts Mr. V.N. Bulynin from the VNIIAES, Moscow, and Mr. M.V. Kuznecov from the Scientific and Engineering Center for Nuclear and Radiological Safety, Moscow. (orig.)

  6. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for

  7. Bose-Einstein condensation of excitons in Cu2O

    International Nuclear Information System (INIS)

    Snoke, D.W.

    1990-01-01

    Free excitons provide the only experimental system other than helium in which the behavior of particles with mass is known to follow Bose-Einstein statistics. Experimental observations are presented of the kinetic energy distribution of excitons in the direct-gap semiconductor Cu 2 O, both the triplet orthoexciton state and the singlet paraexciton state. The density and temperature of the exciton gas closely follow the phase boundary for Bose-Einstein condensation. At the highest densities, the lower-lying paraexcitons take on an anomalous energy distribution with a sharp, high-energy edge. This odd distribution of particle energies may be associated with Bose-Einstein condensation into a state with nonzero momentum. Indeed, the excitons leave the region of their creation at supersonic velocities. In addition to the experimental observations, theoretical models are presented for several aspects of this nonequilibrium system. The equilibration of a nearly-ideal boson gas is modeled, finding that a significant time is required for the approach to condensation. The temperature and density of the excitons in steady state are modeled based on known classical kinetic effects in semiconductors, and the effects of Bose-Einstein statistics on these processes estimated

  8. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  9. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  10. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  11. On scalar condensate baryogenesis model

    International Nuclear Information System (INIS)

    Kiriloval, D.P.; Valchanov, T.V.

    2004-09-01

    We discuss the scalar field condensate baryogenesis model, which is among the baryogenesis scenarios preferred today, compatible with inflation. According to that model a complex scalar field φ, carrying baryon charge B≠0 is generated at inflation. The baryon excess in the Universe results from the φ decay at later stages of Universe evolution (T 15 GeV). We updated the model's parameters range according to the current observational cosmological constraints and analyzed numerically φ evolution after the inflationary stage till its decay φ → qq-barlγ. During that period oscillated with a decreasing amplitude due to Universe expansion and particle production processes due to the coupling of the field to fermions gφf 1 f 2 . It was shown that particle creation processes play an essential role for evolution and its final value. It may lead to a considerable decrease of the field's amplitude for large g and/or large H values, which reflects finally into strong damping of the baryon charge carried by the condensate. The analysis suggests that for a natural range of the model's parameters the observed value of the baryon asymmetry can be obtained and the model can serve as a successful baryogenesis model, compatible with inflation. (author)

  12. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  13. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  14. Condensation induced water hammer safety

    International Nuclear Information System (INIS)

    Gintner, M.A.

    1997-01-01

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer

  15. Condensation induced water hammer safety

    Energy Technology Data Exchange (ETDEWEB)

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  16. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    Science.gov (United States)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  17. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  18. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  19. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  20. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  1. The role of flooding in the design of vent and reflux condensers

    International Nuclear Information System (INIS)

    Sacramento, Julio C.; Heggs, Peter J.

    2009-01-01

    Reflux and vent condensers are vertical separators where film condensation occurs. A vapour mixture is supplied at the bottom of the tubes and encounters vertical cold surfaces. A falling film forms and exits from the bottom of the tubes, flowing counter-current to the vapour, but co-current to the coolant on the shell side. Flooding occurs when the condensate flow moves from a gravity regime to a shear regime. Vapour velocities at or above the flooding velocity will cause the liquid to exit from the top of the tubes rather than from the bottom. The main disadvantage of these condensers is the limited flooding velocity allowed. Several investigators propose correlations to predict the flooding velocity. In most cases these correlations come from isothermal experiments data, thus the general recommendation of using safety factors of at least 30%. This work compares these correlations to new experimental values of flooding in steam/air vent condensation. The experimental apparatus is a 3 m long, double-pipe condenser with an internal diameter of 0.028 m. The conclusions presented here will aid the design engineer to understand better the applicability of the discussed correlations in the design of steam/air vent condensers

  2. Nonlinear behavior of the radiative condensation instability

    International Nuclear Information System (INIS)

    McCarthy, D.; Drake, J.F.

    1991-01-01

    An investigation of the nonlinear behavior of the radiative condensation instability is presented in a simple one-dimensional magnetized plasma. It is shown that the radiative condensation is typically a nonlinear instability---the growth of the instability is stronger once the disturbance reaches finite amplitude. Moreover, classical parallel thermal conduction is insufficient by itself to saturate the instability. Radiative collapse continues until the temperature in the high density condensation falls sufficiently to reduce the radiation rate

  3. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  4. The I Professor Formation in the Wallonian approach.

    Science.gov (United States)

    Aranha, Ana Lúcia Batista; Mrech, Leny Magalhaes; Zacharias, Adriana Pereira Gonçalves; Figueredo, Luana Prado; Mendonça, Catarina Terumi Abe; Fernandes, Maria de Fátima Prado

    2015-12-01

    Objectives Analyze how teachers perceive the construction of their I Professor from the perspective of Wallon and learn about their everyday experiences in school in the condition of being self and other. Method Qualitative, with 13 participants from the Bachelor of Nursing Program. Data collection was carried out in 2013 using interviews that were subjected to thematic analysis. Results Three categories emerged: Construction of the I Professor; living daily life supported by oneself and the other; and the components for constructing the I Professor, highlighting consciousness and valuing of oneself and the other. Conclusion The teachers traveled a path that allowed them to recognize themselves in different movements of the internalization of the I.

  5. [The essence of Professor Wu Lian-Zhong's acupuncture manipulation].

    Science.gov (United States)

    Liu, Jing; Guo, Yi; Wu, Lian-Zhong

    2014-05-01

    The painless needle insertion technique, summarized by Professor WU Lian-zhong during his decades of acupuncture clinical practice is introduced in this article, which is characterized as soft, flexible, fast, plucking and activating antipathogenic qi. The Sancai (three layers) lifting and thrusting manipulation technique is adopted by Professor WU for getting the qi sensation. And features of 10 kinds of needling sensation such as soreness, numbness, heaviness, distension, pain, cold, hot, radiation, jumping and contracture are summarized. Finger force, amplitude, speed and time length are also taken as the basis of reinforcing and reducing manipulations. Moreover, examples are also given to explain the needling technique on some specific points which further embodies Professor WU's unique experiences and understandings on acupuncture.

  6. ATLANTIC and beyond: an interview with Professor Azfar Zaman.

    Science.gov (United States)

    Zaman, Azfar; Wu, Wing

    2015-01-01

    Professor Azfar Zaman speaks to Wing Wu, Commissioning Editor: Professor Azfar Zaman is a Consultant Interventional Cardiologist at Freeman Hospital and Professor of Cardiology at Newcastle University. Following graduation at Leeds Medical School, he completed postgraduate training in cardiology at regional centres in Leeds, London and Cardiff. Prior to his appointment in Newcastle upon Tyne, he was a Fulbright Scholar and British Heart Foundation International Fellow at Mount Sinai Medical Center, New York, USA. He is the Clinical Lead for Coronary Intervention and Director of the Cardiac Catheter Laboratories. In 2012, he was appointed Specialty Group Lead for Cardiovascular Research and has an interest in clinical research, with a particular interest in atherothrombosis in diabetes and clinical trials.

  7. Gender and teamwork: an analysis of professors' perspectives and practices

    Science.gov (United States)

    Beddoes, Kacey; Panther, Grace

    2018-05-01

    Teamwork is increasingly seen as an important component of engineering education programmes. Yet, prior research has shown that there are numerous ways in which teamwork is gendered, and can lead to negative experiences for women students. This article presents the first interview findings on professors' perspectives on gender and teamwork. Semi-structured interviews were conducted with 39 engineering professors to determine what and how they thought about gender in engineering and engineering education. For this article, the parts of the interviews about teamwork are analysed. We conclude that professors need tools to help them facilitate gender-inclusive teamwork, and those tools must address the beliefs that they already hold about teamwork. The findings raise questions about the adoption of evidence-based instructional practices and suggest current teamwork practices may exacerbate gender inequalities in engineering.

  8. [Professor Kazimierz Jaegermann--forensic pathologist--scientist--thinker].

    Science.gov (United States)

    Nasiłowski, Władysław

    2009-01-01

    Professor Kazimierz Jaegermann, a founder of the theory of medico-legal opinionating, passed away 20 years ago. Numerous specialists in forensic medicine and an ever increasing number of lawyers substantiate the importance and value of the creative thought and the entire research work of Professor Jaegermann that have been an inspiration of progress in forensic medicine and in the science of applied law. His unique ability to perform a scientific synthesis leading to recognizing forensic medicine as an applied bridging knowledge points to the eminently creative role played by Professor Jaegermann in development of forensic medicine. There is an urgent need to recall his research activities and to publish a complete collection of his articles and publications. With this idea in mind, I present below an article based on the text published in No. 1 of the Zeszyty Naukowe Katedry Medycyny Sadowej Slaskiej Akademii Medycznej in 1995.

  9. Faculty Agency in Applying for Promotion to Professor

    Directory of Open Access Journals (Sweden)

    Susan K. Gardner

    2017-02-01

    Full Text Available Aim/Purpose: In the United States, faculty who wish to pursue promotion to the rank of professor do so without clear guidance or structure. Even the timing of such a process is nebulous. As such, an individual engages in agentic action to pursue the rank. Background: This study examined the experiences of faculty members who chose to pursue the application process to be promoted to professor but were rejected or dissuaded. Methodology: Utilizing a case study of one institutional setting, we conducted 10 in-depth qualitative interviews. Contribution: Very little is known about the process of promotion to full professor in the U.S. and even less empirical research exists. This study advances knowledge of the process and the experiences of those undertaking it. Findings: We learned that cues from the social context greatly influenced these faculty members’ sense of agency.

  10. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  11. An analysis of some basic studies on the condensation in the presence of non-condensable along a plane plate

    International Nuclear Information System (INIS)

    Vernier, P.; Dalbe, M.

    1984-01-01

    Our study aims at facilitating the calculation of vapour condensation rate in the containment vessel of a PWR system in the event of a LOCA. Emphasis is placed on filmwise condensation because of its prime importance in such events. We have restricted ourselves to the steady-state regimes. The previous studies consider a laminar film, coupled with a vapour-air mixture laminar boundary layer, which are developed under the action of body and/or pressure forces. It has been show that, depending on the air mass fraction, the condensation rate reduces drastically as a result of the diffusion phenomena. Moreover the effects of the vapour superheating have been discussed. When film and/or boundary layer are turbulents, there is no satisfactory theory but only experimental correlations. Owing to the effect of suction (condensation), the correlations for the various transfers from the boundary layer must be corrected by some factors stemming from the ''film theory''. One should be able to treat the coupling between the turbulent film and the boundary layer by the integral method [fr

  12. Depletion of superfluidity in a disordered non-equilibrium quantum condensate

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander; Rosenow, Bernd [Institut fuer Theoretische Physik, Universitaet Leipzig, 04009 Leipzig (Germany); Hyart, Timo [Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Eastham, Paul [School of Physics, Trinity College, Dublin 2 (Ireland)

    2013-07-01

    Observations of quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We analyze the superfluid stiffness of a non-equilibrium quantum-condensate in a disordered environment taking gain and loss of particles into account. To this end a modified effective Gross-Pitaevskii equation is employed. We find that the disorder-driven depletion of superfluidity is strongly enhanced due to the gain-loss mechanism. It turns out that the condensate remains stiff at finite length scales only.

  13. Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond

    International Nuclear Information System (INIS)

    Carr, Lincoln D.; Leung, Mary Ann; Mills College, Oakland, CA 94613-1301; Reinhardt, William P.; Department of Chemistry, University of Washington, Seattle, WA 98195-1700

    2000-01-01

    It is shown that the quasi-one-dimensional Bose-Einstein condensate is experimentally accessible and rich in intriguing phenomena. We demonstrate numerically and analytically the existence, stability and perturbation-induced dynamics of all types of stationary states of the quasi-one-dimensional nonlinear Schroedinger equation for both repulsive and attractive cases. Among our results are: the connection between stationary states and solitons; creation of vortices from such states; manipulation of such states with simple phase profiles; demonstration of the fragility of the condensate phase in response to shock; and a robust stabilization of the attractive Bose-Einstein condensate. (author)

  14. An analysis direct-contact condensation in horizontal cocurrent stratified flow of steam and cold water

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)

  15. [Professor Frantisek Por MD and Professor Robert Klopstock MD, students at Budapest and Prague Faculties of Medicine].

    Science.gov (United States)

    Mydlík, M; Derzsiová, K

    2010-11-01

    Professor Frantisek Por MD and Professor Robert Klopstock MD were contemporaries, both born in 1899, one in Zvolen, the other in Dombovar, at the time of Austro-Hungarian Monarchy. Prof. Por attended the Faculty of Medicine in Budapest from 1918 to 1920, and Prof. Klopstock studied at the same place between 1917 and 1919. From 1920 until graduation on 6th February 1926, Prof. Por continued his studies at the German Faculty of Medicine, Charles University in Prague. Prof. Klopstock had to interrupt his studies in Budapest due to pulmonary tuberculosis; he received treatment at Tatranske Matliare where he befriended Franz Kafka. Later, upon Kafka's encouragement, he changed institutions and continued his studies at the German Faculty of Medicine, Charles University in Prague, where he graduated the first great go. It is very likely that, during their studies in Budapest and Prague, both professors met repeatedly, even though their life paths later separated. Following his graduation, Prof. Por practiced as an internist in Prague, later in Slovakia, and from 1945 in Kosice. In 1961, he was awarded the title of university professor of internal medicine at the Faculty of Medicine, Pavol Jozef Safarik University in Kosice, where he practiced until his death in 1980. Prof. Klopstock continued his studies in Kiel and Berlin. After his graduation in 1933, he practiced in Berlin as a surgeon and in 1938 left for USA. In 1962, he was awarded the title of university professor of pulmonary surgery in NewYork, where he died in 1972.

  16. Strangeness condensation and ''clearing'' of the vacuum

    International Nuclear Information System (INIS)

    Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)

  17. Light propagation in disordered media: From Maxwell equations to a spherical p-spin model and light condensation effects

    KAUST Repository

    Toth, Laszlo Daniel

    2013-05-01

    The well-known phenomenon of the formation of a Bose-Einstein condensate (BEC), a striking consequence of the Bose-Einstein statistics, has been traditionally linked to an ensemble of ultra-cold gas molecules. However, classical systems can also exhibit condensation effects; in the field of photonics, for example, signatures of this condensation in the mode dynamics (\\'light condensation\\', LC) have been theoretically investigated and experimentally observed in various types of multimode lasers [1,2 and ref. therein]. © 2013 IEEE.

  18. Determination of and the four-quark vacuum condensate from e/sup +/e/sup -/ data

    International Nuclear Information System (INIS)

    Dominguez, C.A.

    1987-01-01

    The dimension-four gluon condensate and the dimension-six four-quark condensate are related to experimental data on σ(e/sup +/e/sup -/ → hadrons, I = 1) in the framework of Gauss-Weierstrass and finite energy QCD sum rules. Stable eigenvalue solutions for these vacuum condensates, consistent with duality, are obtained. Results from this determination confirm earlier conjectures calling for a substantial increase in the standard value of , as well as previous claims casting doubt on the validity of the vacuum saturation approximation for estimating the four-quark condensate

  19. Code-experiment comparison on wall condensation tests in the presence of non-condensable gases-Numerical calculations for containment studies

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France); Porcheron, E.; Dumay, F.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, BP 68, 91192 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Steam condensation on walls has been investigated in the TOSQAN vessel. Black-Right-Pointing-Pointer Experiments on 7 different tests have been performed. Black-Right-Pointing-Pointer Different steam injections and wall temperatures are used. Black-Right-Pointing-Pointer Simulations are performed in 2D using the TONUS code. Black-Right-Pointing-Pointer Code-experiments comparisons at many different locations show a good agreement. - Abstract: During the course of a severe Pressurized Water Reactor accident, pressurization of the containment occurs and hydrogen can be produced by the reactor core oxidation and distributed in the containment according to convection flows and wall condensation. Filmwise wall condensation in the presence of non-condensable gases is a subject of many interests and extensive studies have been performed in the past. Some empirical correlations have demonstrated their limit for extrapolation under different thermal-hydraulic conditions and at different geometries/scales. The French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a numerical tool and an experimental facility in order to investigate free convection flows in the presence of condensation. The objective of this paper is to present numerical results obtained on different wall condensation tests in 7 m{sup 3} volume vessel (TOSQAN facility), and to compare them with the experimental ones. Over eight tests are considered here, and code-experiment comparison is performed on many different locations, giving an extensive insight of the code assessment for air-steam mixture flows involving wall condensation in the presence of non-condensable gases.

  20. Aspectos gerais da formação de professores

    Directory of Open Access Journals (Sweden)

    Edson do Carmo Inforsato

    1996-08-01

    Full Text Available Este artigo, ancorado em estudos recentes e antigos, mostra o afastamento dos cursos de formação de professores em relação aos elementos que compõem a prática profissional docente. Favorável a uma aproximação efetiva com o contexto das práticas de sala de aula, o autor defende a idéia de uma formação de professores atrelada aos problemas e necessidades da prática docente no ensino formal de 1º e 2º graus.

  1. [Effective acupoints for bulbar paralysis by professor GAO Weibin].

    Science.gov (United States)

    Kang, Lianru; Zheng, Shuang

    2016-04-01

    Professor GAO Weibin academically advocates, based on basic theory of TCM and theories of different schools, modern science technology should be used for the methods and principles of acupuncture and Chinese medicine for neuropathy, so as to explore and summarize the rules, characteristics and advantages of TCM for nervous system disease, especially bulbar paralysis. During the treatment of bulbar paralysis, professor GAO creatively proposes the effective acupuncture points such as Gongxue, Tunyan-1, Tunyan-2, Fayin, Tiyan and Zhifanliu from the aspects of neuroanatomy, and analyzes their anatomical structure and action mechanism.

  2. A formação do professor de biologia

    OpenAIRE

    Schlichting, Maria Cristina Rodrigues Maranhão

    1997-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciencias da Educação O estudo evidencia o tratamento dicotômico mantido na estrutura curricular dos cursos de formação do professor de biologia considerando ser essa prática responsável pelos preconceitos que levam à desvalorização da prática pedagógica. O estudo parte da análise da estrutura curricular e aprofunda-se com entrevistas que buscam levantar o posicionamento dos professores dos cursos de Ciências Biológi...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  4. Forecasting the student–professor matches that result in unusually effective teaching

    Science.gov (United States)

    Gross, Jennifer; Lakey, Brian; Lucas, Jessica L; LaCross, Ryan; R Plotkowski, Andrea; Winegard, Bo

    2015-01-01

    Background Two important influences on students' evaluations of teaching are relationship and professor effects. Relationship effects reflect unique matches between students and professors such that some professors are unusually effective for some students, but not for others. Professor effects reflect inter-rater agreement that some professors are more effective than others, on average across students. Aims We attempted to forecast students' evaluations of live lectures from brief, video-recorded teaching trailers. Sample Participants were 145 college students (74% female) enrolled in introductory psychology courses at a public university in the Great Lakes region of the United States. Methods Students viewed trailers early in the semester and attended live lectures months later. Because subgroups of students viewed the same professors, statistical analyses could isolate professor and relationship effects. Results Evaluations were influenced strongly by relationship and professor effects, and students' evaluations of live lectures could be forecasted from students' evaluations of teaching trailers. That is, we could forecast the individual students who would respond unusually well to a specific professor (relationship effects). We could also forecast which professors elicited better evaluations in live lectures, on average across students (professor effects). Professors who elicited unusually good evaluations in some students also elicited better memory for lectures in those students. Conclusions It appears possible to forecast relationship and professor effects on teaching evaluations by presenting brief teaching trailers to students. Thus, it might be possible to develop online recommender systems to help match students and professors so that unusually effective teaching emerges. PMID:24953773

  5. On-Demand Dark Soliton Train Manipulation in a Spinor Polariton Condensate

    KAUST Repository

    Pinsker, F.

    2014-04-10

    We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton condensate within experimentally accessible schemes. In particular, we show that the frequency of the train can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation. Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand half-soliton trains. © 2014 American Physical Society.

  6. Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Gati, Rudolf; Hemmerling, Boerge; Foelling, Jonas; Albiez, Michael; Oberthaler, Markus K.

    2006-01-01

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics

  7. Noise thermometry with two weakly coupled Bose-Einstein condensates.

    Science.gov (United States)

    Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K

    2006-04-07

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.

  8. Generation and interaction of solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Burger, S.; Sengstock, K.; Carr, L.D.; Oehberg, P.; Sanpera, A.

    2002-01-01

    Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot be observed with present experiments. Finally, motivated by the recent experimental results of Cornish et al. [Phys. Rev Lett. 85, 1795 (2000)], we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well with the existing experimental ones and provide guidance for future experiments

  9. Perda da voz em professores e não professores Voice loss in teachers and non-teachers

    Directory of Open Access Journals (Sweden)

    Kelly Park

    2009-01-01

    Full Text Available OBJETIVO: Verificar a percepção de professores e não-professores sobre as implicações de uma eventual perda de voz. MÉTODOS: Participaram 205 indivíduos sendo 105 professores e 100 não professores entre 23 a 65 anos, 106 mulheres e 99 homens. Foi aplicado um questionário contendo quatro perguntas referentes a uma eventual perda de visão, audição, voz e deambulação e o grau de impacto inferido (de 0 a 4. RESULTADOS: Para o grupo de professores, não enxergar gerou o maior impacto negativo (média de 3,8, seguido por não andar (média de 3,7, não ter voz (média de 3,7 e não ouvir (média de 3,6. Para o grupo de não-professores, não enxergar também gerou o maior impacto negativo (média de 3,4, seguido por não andar (média de 3,0; não ouvir (média de 2,2 e não ter voz (média de 2,0. Em relação ao maior impacto de uma eventual perda da voz, professores indicaram prejuízos no trabalho, relacionamento social e atividades rotineiras e, no grupo de não professores, nas atividades rotineiras, trabalho, relacionamento social e manifestações das emoções. CONCLUSÕES: Os professores valorizam sua voz de modo diverso dos não-professores e ambos os grupos avaliam a perda da voz como algo que não acarreta consequências negativas. Apesar de o professor perceber mais o impacto de um eventual problema de voz do que o não-professor, os sentimentos em relação à perda da voz foram muito semelhantes nos dois grupos.PURPOSE: To investigate teachers' and non-teachers' perception regarding the implications of an eventual loss of voice. METHODS: Participated in the study 205 individuals (106 women and 99 men, 105 teachers and 100 non-teachers, with ages varying from 23 to 65 years old. The participants were asked to answer a questionnaire with four questions regarding an eventual loss of vision, hearing, voice and deambulation, and the inferred impact degree (from 0 to 4. RESULTS: For the teachers group, not being able to see

  10. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  11. Quasiparticles in condensed matter systems

    Science.gov (United States)

    Wölfle, Peter

    2018-03-01

    Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

  12. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)

    2008-12-15

    This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)

  13. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  14. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  15. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  16. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  17. Artificial neural network analysis of a refrigeration system with an evaporative condenser

    Energy Technology Data Exchange (ETDEWEB)

    Ertunc, H.M. [Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli (Turkey); Hosoz, M. [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)

    2006-04-01

    This paper describes an application of artificial neural networks (ANNs) to predict the performance of a refrigeration system with an evaporative condenser. In order to gather data for training and testing the proposed ANN, an experimental refrigeration system with an evaporative condenser was set up. Then, steady-state test runs were conducted varying the evaporator load, air and water flow rates passing through the condenser and both dry and wet bulb temperatures of the air stream entering the condenser. Utilizing some of the experimental data, an ANN model for the system based on standard backpropagation algorithm was developed. The ANN was used for predicting various performance parameters of the system, namely the condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance. The ANN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.933-1.000, mean relative errors in the range of 1.90-4.18% and very low root mean square errors. Results show that refrigeration systems, even complex ones involving concurrent heat and mass transfer such as systems with an evaporative condenser, can alternatively be modelled using ANNs within a high degree of accuracy. [Author].

  18. Condenser design optimization and operation characteristics of a novel miniature loop heat pipe

    International Nuclear Information System (INIS)

    Wan Zhenping; Wang Xiaowu; Tang Yong

    2012-01-01

    Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.

  19. Condensation heat transfer for refrigerant-oil mixtures in microfin tube condenser

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K N [Sungkyunkwan University, Seoul (Korea); Tae, S J [Sungkyunkwan University Graduate School, Seoul (Korea)

    2000-04-01

    Condensation heat transfer experiments for R-22 and R-407 C refrigerants mixed with mineral oil and POE oil respectively were performed in straight and U-bend sections of a microfin tube. Experimental parameters were an oil concentration from 0 to 5 %, a mass flux from 100 to 400 kg/m{sup 2}s and an inlet quality from 0.5 to 0.9. The enhancement factors for R-22 and R-407 C refrigerants at the first straight section decreased continuously as the oil concentration increased. They decreased rapidly as the mass maximum at the 90 deg. position. The heat transfer coefficients at the second straight section within the dimensionless length of 48 were larger by a maximum of 33 % than the average heat transfer coefficients at the first straight section. (author). 10 refs., 6 figs., 1 tab.

  20. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...