WorldWideScience

Sample records for products manufacturing processes

  1. Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing

    Directory of Open Access Journals (Sweden)

    Yan-Yan Wang

    2011-09-01

    Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the

  2. Design of production process main shaft process with lean manufacturing to improve productivity

    Science.gov (United States)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Anizar; Syahputri, K.

    2018-02-01

    This object research is one of manufacturing companies that produce oil palm machinery parts. In the production process there is delay in the completion of the Main shaft order. Delays in the completion of the order indicate the low productivity of the company in terms of resource utilization. This study aimed to obtain a draft improvement of production processes that can improve productivity by identifying and eliminating activities that do not add value (non-value added activity). One approach that can be used to reduce and eliminate non-value added activity is Lean Manufacturing. This study focuses on the identification of non-value added activity with value stream mapping analysis tools, while the elimination of non-value added activity is done with tools 5 whys and implementation of pull demand system. Based on the research known that non-value added activity on the production process of the main shaft is 9,509.51 minutes of total lead time 10,804.59 minutes. This shows the level of efficiency (Process Cycle Efficiency) in the production process of the main shaft is still very low by 11.89%. Estimation results of improvement showed a decrease in total lead time became 4,355.08 minutes and greater process cycle efficiency that is equal to 29.73%, which indicates that the process was nearing the concept of lean production.

  3. Processes for manufacture of products from plants

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein is a process for inhibiting browning of plant material comprising adding a chelating agent to a disrupted plant material and adjusting the pH to a value of 2.0 to 4.5. Processes for manufacture of soluble and insoluble products from a plant material are also disclosed. Soluble...

  4. Global Production Planning Process considering the Supply Risk of Overseas Manufacturing Sites

    Directory of Open Access Journals (Sweden)

    Hosang Jung

    2015-01-01

    Full Text Available Although global manufacturers can produce most of their final products in local plants, they need to source components or parts from desirable overseas manufacturing partners at low cost in order to fulfill customer orders. In this global manufacturing environment, capacity information for planning is usually imprecise owing to the various risks of overseas plants (e.g., foreign governments’ policies and labor stability. It is therefore not easy for decision-makers to generate a global production plan showing the production amounts at local plants and overseas manufacturing facilities operated by manufacturing partners. In this paper, we present a new global production planning process considering the supply risk of overseas manufacturing sites. First, local experts estimate the supply capacity of an overseas plant using their judgment to determine when the risk could occur and how large the risk impact would be. Next, we run a global production planning model with the estimated supply capacities. The proposed process systematically adopts the qualitative judgments of local experts in the global production planning process and thus can provide companies with a realistic global production plan. We demonstrate the applicability of the proposed process with a real world case.

  5. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  6. External designers in product design processes of small manufacturing firms

    NARCIS (Netherlands)

    Berends, Hans; Reymen, Isabelle; Stultiëns, Rutger G L; Peutz, Murk

    Small manufacturing firms often fail to reap the benefits of good design practices. This study investigates how the involvement of external designers influences the evolution of product design processes in small manufacturing firms. Qualitative and quantitative process research methods were used to

  7. 16 CFR 300.25 - Country where wool products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ... an origin label on the unfinished product, the manufacturing processes as required in paragraph (a)(4... processed or manufactured. Further work or material added to the wool product in another country must effect...

  8. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    Science.gov (United States)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  9. 76 FR 36078 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2011-06-21

    ...] Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for... to quality and sanitation requirements for the production and processing of manufacturing grade milk... Manufacturing Purposes and Its Production and Processing; Recommended Requirements for Adoption by State...

  10. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  11. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...

  12. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Manufacture of tobacco... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...

  13. 75 FR 61418 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2010-10-05

    ... for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for Adoption by... sanitation requirements for the production and processing of manufacturing grade milk. These Recommended... comments. SUMMARY: This document proposes to amend the recommended manufacturing milk requirements...

  14. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  15. Quantifying the robustness of process manufacturing concept – A medical product case study

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Troldtoft, M.E.; Eifler, Tobias

    2017-01-01

    Product robustness refers to the consistency of performance of all of the units produced. It is often the case that process manufactured products are not designed concurrently, so by the end of the product design phase the Process Manufacturing Concept (PMC) has yet to be decided. Allocating...... the unit-to-unit robustness of an early-stage for a PMC is proposed. The method uses variability and adjustability information from the manufacturing concept in combination with sensitivity information from products' design to predict its functional performance variation. A Technology maturation factor...... process capable tolerances to the product during the design phase is therefore not possible. The robustness of the concept (how capable it is to achieve the product specification), only becomes clear at this late stage and thus after testing and iteration. In this article, a method for calculating...

  16. Analysis of production flow process with lean manufacturing approach

    Science.gov (United States)

    Siregar, Ikhsan; Arif Nasution, Abdillah; Prasetio, Aji; Fadillah, Kharis

    2017-09-01

    This research was conducted on the company engaged in the production of Fast Moving Consumer Goods (FMCG). The production process in the company are still exists several activities that cause waste. Non value added activity (NVA) in the implementation is still widely found, so the cycle time generated to make the product will be longer. A form of improvement on the production line is by applying lean manufacturing method to identify waste along the value stream to find non value added activities. Non value added activity can be eliminated and reduced by utilizing value stream mapping and identifying it with activity mapping process. According to the results obtained that there are 26% of value-added activities and 74% non value added activity. The results obtained through the current state map of the production process of process lead time value of 678.11 minutes and processing time of 173.94 minutes. While the results obtained from the research proposal is the percentage of value added time of 41% of production process activities while non value added time of the production process of 59%. While the results obtained through the future state map of the production process of process lead time value of 426.69 minutes and processing time of 173.89 minutes.

  17. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  18. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  19. Quality changes in krill and krill products during their manufacturing process

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Jacobsen, Charlotte; Bruheim, Inge

    The main objective of this study is to a) investigate the effect of temperature towards the non-enzymatic browning reactions and lipid oxidation in krill products sampled at different stages during their manufacturing process. In order to further investigate this, a simple model system comprising...... amino acids (leucine, isoleucine, valine, methionine and lysine) was prepared with addition of lipid (saturated and α, β-unsaturated aldehydes) or non-enzymatic (Strecker aldehydes and pyrazine) derived volatiles. Therefore, the secondary objective is to investigate if the occurrence of non......-enzymatic browning reactions and lipid oxidation in krill products during their manufacturing process. The occurrence of these reactions could be observed in krill meal and this was ascribed to the presence of carbonyl compounds derived lipid oxidation products. The presence of a high level of non...

  20. Lean manufacturing analysis to reduce waste on production process of fan products

    Science.gov (United States)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Sari, R. M.; Syahputri, K.; Anizar

    2018-02-01

    This research is based on case study that being on electrical company. One of the products that will be researched is the fan, which when running the production process there is a time that is not value-added, among others, the removal of material which is not efficient in the raw materials and component molding fan. This study aims to reduce waste or non-value added activities and shorten the total lead time by using the tools Value Stream Mapping. Lean manufacturing methods used to analyze and reduce the non-value added activities, namely the value stream mapping analysis tools, process mapping activity with 5W1H, and tools 5 whys. Based on the research note that no value-added activities in the production process of a fan of 647.94 minutes of total lead time of 725.68 minutes. Process cycle efficiency in the production process indicates that the fan is still very low at 11%. While estimates of the repair showed a decrease in total lead time became 340.9 minutes and the process cycle efficiency is greater by 24%, which indicates that the production process has been better.

  1. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    Science.gov (United States)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  2. Manufacturing history of etanercept (Enbrel®): Consistency of product quality through major process revisions.

    Science.gov (United States)

    Hassett, Brian; Singh, Ena; Mahgoub, Ehab; O'Brien, Julie; Vicik, Steven M; Fitzpatrick, Brian

    2018-01-01

    Etanercept (ETN) (Enbrel®) is a soluble protein that binds to, and specifically inhibits, tumor necrosis factor (TNF), a proinflammatory cytokine. ETN is synthesized in Chinese hamster ovary cells by recombinant DNA technology as a fusion protein, with a fully human TNFRII ectodomain linked to the Fc portion of human IgG1. Successful manufacture of biologics, such as ETN, requires sophisticated process and product understanding, as well as meticulous control of operations to maintain product consistency. The objective of this evaluation was to show that the product profile of ETN drug substance (DS) has been consistent over the course of production. Multiple orthogonal biochemical analyses, which included evaluation of attributes indicative of product purity, potency, and quality, were assessed on >2,000 batches of ETN from three sites of DS manufacture, during the period 1998-2015. Based on the key quality attributes of product purity (assessed by hydrophobic interaction chromatography HPLC), binding activity (to TNF by ELISA), potency (inhibition of TNF-induced apoptosis by cell-based bioassay) and quality (N-linked oligosaccharide map), we show that the integrity of ETN DS has remained consistent over time. This consistency was maintained through three major enhancements to the initial process of manufacturing that were supported by detailed comparability assessments, and approved by the European Medicines Agency. Examination of results for all major quality attributes for ETN DS indicates a highly consistent process for over 18 years and throughout changes to the manufacturing process, without affecting safety and efficacy, as demonstrated across a wide range of clinical trials of ETN in multiple inflammatory diseases.

  3. Additive manufacturing in production: challenges and opportunities

    Science.gov (United States)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  4. The transformation factor: a measure for the productive behaviour of a manufacturing process

    NARCIS (Netherlands)

    Ron, de A.J.

    1993-01-01

    By using advanced manufacturing processes, production results should increase. Nevertheless managers have their doubts to invest in such processes because of the financial risks and the absence of adequate technical and economical measures which should support their decisions. Measures which contain

  5. Characterization of additive manufacturing processes for polymer micro parts productions using direct light processing (DLP) method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    The process capability of additive manufacturing (AM) for direct production of miniaturized polymer components with micro features is analyzed in this work. The consideration of the minimum printable feature size and obtainable tolerances of AM process is a critical step to establish a process...... chains for the production of parts with micro scale features. A specifically designed direct light processing (DLP) AM machine suitable for precision printing has been used. A test part is designed having features with different sizes and aspect ratios in order to evaluate the DLP AM machine capability...

  6. Lean Manufacturing Implementation: an Approach to Reduce Production Cost

    Directory of Open Access Journals (Sweden)

    Iraswari

    2012-04-01

    Full Text Available Abstract: Lean Manufacturing Implementation: An Approach To Reduce Production Cost. Opportunities to improve production processes and reduce production cost through the implementation of lean manufacturing in small medium garment manufacturing are presented in this research. This research shows that there is a possibility of decrease in production cost and increase in return on sales. Lean manufacturing implementation can eliminate waste in the production process. This is a set of techniques for identification and elimination of waste gathered from The Ford Production, Statistical Process Control and other techniques. Improvement of quality could be carried out while time and cost of production are being reduced.

  7. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... manufacture, preproduction design validation (including a process to assess the performance of a tobacco... about the manufacturing practices and processes unique to your facility and regulated tobacco products... process, package, label, and distribute different types of regulated tobacco products (cigarettes...

  8. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range

  9. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    Science.gov (United States)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  10. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    Science.gov (United States)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  11. Manufacturing Vision Development – Process and Dialogue

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra

    This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research invo...... involve case studies of three companies that are part of the MCD-process. The cases primarily are focusing on the process and the dialogue dur¬ing the manufacturing vision development.......This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research...

  12. Product quality considerations for mammalian cell culture process development and manufacturing.

    Science.gov (United States)

    Gramer, Michael J

    2014-01-01

    The manufacturing of a biologic drug from mammalian cells results in not a single substance, but an array of product isoforms, also known as variants. These isoforms arise due to intracellular or extracellular events as a result of biological or chemical modification. The most common examples related to biomanufacturing include amino acid modifications (glycosylation, isomerization, oxidation, adduct formation, pyroglutamate formation, phosphorylation, sulfation, amidation), amino acid sequence variants (genetic mutations, amino acid misincorporation, N- and C-terminal heterogeneity, clipping), and higher-order structure modifications (misfolding, aggregation, disulfide pairing). Process-related impurities (HCP, DNA, media components, viral particles) are also important quality attributes related to product safety. The observed ranges associated with each quality attribute define the product quality profile. A biologic drug must have a correct and consistent quality profile throughout clinical development and scale-up to commercial production to ensure product safety and efficacy. In general, the upstream process (cell culture) defines the quality of product-related substances, whereas the downstream process (purification) defines the residual level of process- and product-related impurities. The purpose of this chapter is to review the impact of the cell culture process on product quality. Emphasis is placed on studies with industrial significance and where the direct mechanism of product quality impact was determined. Where possible, recommendations for maintaining consistent or improved quality are provided.

  13. Process for the manufacture of whey products

    Energy Technology Data Exchange (ETDEWEB)

    Blanie, P

    1980-01-01

    Whey is subjected to ultrafiltration to retain about 10% of the T5, whilst the permeate is demineralized to 7% or less ash in the final product and dried to 3% moisture. The product, containing (in DM) 75% or more lactose, 6% or less protein and 8% or less minerals, is hydrolysed, e.g. with beta-galactosidase. It may be used for replacing sucrose, in the manufacture of a range of foods. Applications include chewing gum, fondants, nougats, chocolate, bakery and confectionery products as well as cream and yoghurt.

  14. Process monitoring for intelligent manufacturing processes - Methodology and application to Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas

    Process monitoring provides important information on the product, process and manufacturing system during part manufacturing. Such information can be used for process optimization and detection of undesired processing conditions to initiate timely actions for avoidance of defects, thereby improving...... quality assurance. This thesis is aimed at a systematic development of process monitoring solutions, constituting a key element of intelligent manufacturing systems towards zero defect manufacturing. A methodological approach of general applicability is presented in this concern.The approach consists...... of six consecutive steps for identification of product Vital Quality Characteristics (VQCs) and Key Process Variables (KPVs), selection and characterization of sensors, optimization of sensors placement, validation of the monitoring solutions, definition of the reference manufacturing performance...

  15. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  16. Intelligent technologies in process of highly-precise products manufacturing

    Science.gov (United States)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  17. Improved Manufacturing Process for Pyronaridine Tetraphosphate

    International Nuclear Information System (INIS)

    Lee, Dong Won; Lee, Seung Kyu; Cho, Jun Ho; Yoon, Seung Soo

    2014-01-01

    Pyronaridine tetraphosphate (1) is a well-known antimalarial drug. However, it required a carefully optimized production process for the manufacture of pyronaridine tetraphosphate. Each step of its manufacturing process was reinvestigated. For the cyclization of 4-chloro-2-(6-methoxy-pyridin-3-yl-amino)-benzoic acid 6 to 7,10-dichloro-2-methoxybenzo[b]-1,5-naphthyridine 5, an improved process was developed to eliminated critical process impurity (BIA). By the redesign of the formation of triphosphate salt, the purity as API grade was increased. Thus, a robust manufacturing process with an acceptable process performance has been developed to produce high quality pyronaridine tetraphosphate

  18. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  19. 21 CFR 1005.25 - Service of process on manufacturers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...

  20. Integrate Product Planning Process of OKP Companies in the Cloud Manufacturing Environment

    OpenAIRE

    Zheng , Pai; Xu , Xun; Xie , Sheng ,

    2015-01-01

    Part 8: Cloud-Based Manufacturing; International audience; In today’s competitive market, OKP companies operate in the “engineer-to-order” business mode, whereby analysing the “voice of customer” promptly and accurately in the early design stage determines the success of product development. However, OKP companies have limited resources. They may not be able to afford the cost of the complicated Quality Function Deployment (QFD) product planning process, nor can they obtain abundant CRs infor...

  1. PDC Journeys to Product Analysis Development and Additive Manufacturing?

    International Nuclear Information System (INIS)

    Shalina Sheik Muhamad

    2015-01-01

    The technology for product development and manufacturing has gone through many advancements. It is widely recognised that it would provide competitive advantage for engineering organization in term of product development cycle, productivity, sustainability and efficiency. We begin by describing the general characteristic of design process that will need to be integrated in product life cycle management. In Nuclear Malaysia, especially in engineering design activities the majority have been using 3D modelling. This paper discusses on the current product design practiced in Nuclear Malaysia, new product development process and new manufacturing technique which is additive manufacturing. (author)

  2. Operator-Oriented Product and Production Process Design for Manufacturing, Maintenance and Upgrading

    NARCIS (Netherlands)

    Rhijn, G. van; Bosch, T.

    2017-01-01

    The nature of production in the manufacturing industry is changing, and companies face large challenges. Customers expect fast delivery times, proven sustainability, flexibility, and frequent product upgrades. To stay competitive and manage rapid technological demands, a parallel, iterative and

  3. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    Science.gov (United States)

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  4. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....... elaborating the development and establishment of various manufacturing facilities of a Danish pump manufacturer is then described. The discussion from the case leads to the conclusion that developing new manufacturing facilities can be explained using existing theories of manufacturing strategy. However due...

  5. 27 CFR 19.374 - Manufacture of nonbeverage products, intermediate products, or eligible flavors.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Manufacture of nonbeverage... PLANTS Processing Operations Other Than Denaturation and Manufacture of Articles Receipt and Use of Spirits, Wines and Alcoholic Flavoring Materials § 19.374 Manufacture of nonbeverage products...

  6. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  7. Cost Models for MMC Manufacturing Processes

    Science.gov (United States)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  8. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...

  9. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  10. Introduction to powder metallurgy processes for titanium manufacturing

    International Nuclear Information System (INIS)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-01-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  11. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.

    Science.gov (United States)

    Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J

    2018-03-01

    The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mass customization and build to order production - in manufacturing networks

    DEFF Research Database (Denmark)

    Svensson, Carsten

    2003-01-01

    in the manufacturing as information processing is accountable for an increasing portion of the value creation. In order to improve the information processing some manufacturers have applied product models, thereby giving the customer access to the manufactures knowledge base. This project will introduce solution......Mass Customization and Build to Order Production – In Manufacturing Networks Mass customization and globalization have radically changed the environment for manufacturers. A new context is emerging with intensified competition and accelerated technology development. In this environment evolution...... is not an option, but a necessity for survival. This leads to the question “what can manufacturing enterprises do to turn the development into their own advantage?” As competition intensifies customer are increasingly demanding sophisticated and adapted solutions. Conventional manufacturer are challenged...

  13. Multiphysics modelling of manufacturing processes: A review

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Baran, Ismet; Mohanty, Sankhya

    2018-01-01

    Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics...... the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps...... for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work...

  14. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  15. Towards an integration of process planning and production planning and control for flexible manufacturing systems

    NARCIS (Netherlands)

    Gaalman, GJC; Slomp, J; Suresh, NC

    This introduction article attempts to present some major issues relating to the integration of process planning and production planning and control (PPC) for flexible manufacturing systems (FMSs). It shows that the performance of an FMS can be significantly improved and FMS capabilities more

  16. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  17. Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products.

    Science.gov (United States)

    Tulina, M A; Pyatigorskaya, N V

    2018-03-01

    The article describes special aspects of Good Manufacturing Practice (GMP) for biomedical cell products (BMCP) that imply high standards of aseptics throughout the entire productio process, strict requirements to donors and to the procedure of biomaterial isolation, guaranty of tracing BMCP products, defining processing procedures which allow to identify BMCP as minimally manipulated; continuous quality control and automation of the control process at all stages of manufacturing, which will ensure product release simultaneously with completion of technological operations.

  18. Development of manufacturing process for production of 500 MWe calandria sheets

    International Nuclear Information System (INIS)

    Hariharan, R.; Ramesh, P.; Lakshminarayana, B.; Bhaskara Rao, C.V.; Pande, P.; Agarwala, G.C.

    1992-01-01

    Calandria tubes made of zircaloy-2 are being used as structural components in pressurised heavy water power reactors. The sheets required for producing calandria tube for 235 MWe reactors are being manufactured at Zircaloy Fabrication Plant (ZFP), NFC utilizing a 2 Hi/4 Hi rolling mill procured for the purpose, by carrying out cold rolling process to achieve the required size after hot rolling suitable extruded slabs. Due to limitation of width of the sheet that can be rolled with the mill as well as the size of the slab that can be extruded with the existing press, difficulties arose in producing acceptable full length sheets of size 6600 mm long x 435 mm wide x 1.6 mm thick for manufacturing 500 MWe calandria tube. This paper deals with the details of the process problem resolved. They are: (a)designing of suitable hot and cold rolling pass schedules, (b)selection and standardization of process parameters such as beta quenching, hot rolling and cold rolling, and (c)details of the overall manufacturing process. Due to implementation of above, sheets required for manufacturing 500 MWe calandria tube sheets were successfully rolled. About 40 nos. of acceptable full length sheets have already been manufactured. (author). 1 fig., 3 tabs

  19. Current manufacturing processes of drug-eluting sutures.

    Science.gov (United States)

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-11-01

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  20. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    Science.gov (United States)

    2017-12-01

    distribution is unlimited. 1. Introduction Additive manufacturing (AM) is a production method that involves gradual, layer- by-layer building of material... design space—allowing the production of pre- viously unmanufacturable topologically optimized structures—constraints remain. One constraint, for...ARL-TR-8242•DEC 2017 US Army Research Laboratory Topology Optimization for ReducingAdditive Manufacturing ProcessingDistortions by Raymond A Wildman

  1. Current problems of raw fish material processing while manufacturing dried products

    Directory of Open Access Journals (Sweden)

    Yashonkov A. A.

    2017-09-01

    Full Text Available The substantiation for using techniques of fish raw material canning has been presented, raw fish being caught or farmed in aquaculture. The main problems in raw fish canning have been reviewed, including significant reduction in thermolabile vitamins in the ultimate product as compared with the raw material due to the thermal processing. Promising canning technique – vacuum drying – has been proposed. This technique makes possible to reduce the temperature of thermal processing down to 50…55 °С and significantly enlarge preservation of thermolabile vitamins from the raw fish. Sampling of raw materials, semi-finished products, finished products, including preparation for analysis has been conducted by standard methods. Disadvantages of this way have been found, it is low energy efficiency of the process. The way to intensify the vacuum drying of aquatic organisms has been proposed based on the method of preliminary pore-forming due to augmenting the area of moisture evaporation. The design of the pilot plant has been proposed in order to research the process of pore forming and vacuum drying. Target species for processing have been suggested. They are as follows: Azov goby (fillet for food products and Black Sea sprat for feeds. The recipes of the feed mixture for granulated floating food for trout have been developed. The results of the first series of the pilot research have been provided. The experiments have proved that preliminary pore forming immediately before vacuum drying makes possible to enlarge the surface area of moisture evaporation by 15…25 %. By processing photomicrographs of sections by means of a special software the authors have got the results demonstrating that when manufacturing dried products by pore forming and drying under pressure 10 kPa the pore take 35...38 % of the inner volume of the product and with drying under pressure 10 kPa – only 18...21 %, and when drying under the atmospheric pressure – 11...13 %.

  2. Qualification of laser based additive production for manufacturing of forging Tools

    Directory of Open Access Journals (Sweden)

    Junker Daniel

    2015-01-01

    Full Text Available Mass customization leads to very short product life cycles, so the costs of a tool have to be amortized with a low number of workpieces. Especially for highly loaded tools, like those for forging, that leads to expensive products. Therefore more economical production processes for tool manufacturing have to be investigated. As laser additive manufacturing is already used for the production of moulds for injection moulding, this technology maybe could also improve the forging tool production. Within this paper laser metal deposition, which is industrially used for tool repair, will be investigated for the use in tool manufacturing. Therefore a mechanical characterization of parts built with different laser process parameters out of the hot work tool steel 1.2709 is made by upsetting tests and hardness measurements. So the influence of the additive manufacturing process on the hardness distribution is analysed.

  3. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    Science.gov (United States)

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  4. Lean manufacturing: A better way for enhancement in productivity

    Science.gov (United States)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh

    2012-03-01

    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  5. Production of RVNRL and manufacture of products from it

    International Nuclear Information System (INIS)

    Vijayakumar, K.C.; Jacob, J.

    1996-01-01

    The procedure of the trial irradiation of latex at the pilot plant are discussed. Factory influencing the quality of RVNRL during trial production are identified. Procedure for processing of radiation prevulcanised latex into end products has been standardised. Household gloves, industrial gloves, to), balloons, blood transfusion tubes and nipples are manufactured commercially from RVNRL produced at Rubber Board

  6. Lean Manufacturing - A Powerfull Tool for Reducing Waste During the Processes

    Directory of Open Access Journals (Sweden)

    Mihai Apreutesei

    2010-01-01

    Full Text Available Lean manufacturing provides a new management approach for many small and medium size manufacturers, especially older firms organized and managed under traditional push systems. Improvement results can be dramatic in terms of quality, cycle times, and customer responsiveness. Lean manufacturing is more than a set of tools and techniques and has been widely adopted by many production companies. Lean manufacturing is a culture in which all employees continuously look for ways to improve processes. In the present article are presented the Lean Manufacturing tools, like kaizen, Kanban, poka-yoke witch a company can use to reduce the waste(muda during a production process. The paper contains also, the most common seven types of waste from production and some examples from our daily activity.

  7. Development of a virtual metrology for high-mix TFT-LCD manufacturing processes

    International Nuclear Information System (INIS)

    Chen Shan; Pan Tianhong; Jang Shishang

    2010-01-01

    Nowadays, TFT-LCD manufacturing has become a very complex process, in which many different products being manufactured with many different tools. The ability to predict the quality of product in such a high-mix system is critical to developing and maintaining a high yield. In this paper, a statistical method is proposed for building a virtual metrology model from a number of products using a high-mix manufacturing process. Stepwise regression is used to select 'key variables' that really affect the quality of the products. Multivariate analysis of covariance is also proposed for simultaneously applying the selected variables and product effect. This framework provides a systematic method of building a processing quality prediction system for a high-mix manufacturing process. The experimental results show that the proposed quality prognostic system can not only estimate the critical dimension accurately but also detect potentially faulty glasses.

  8. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.

    Science.gov (United States)

    Içten, Elçin; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2015-05-01

    The US Food and Drug Administration introduced the quality by design approach and process analytical technology guidance to encourage innovation and efficiency in pharmaceutical development, manufacturing, and quality assurance. As part of this renewed emphasis on the improvement of manufacturing, the pharmaceutical industry has begun to develop more efficient production processes with more intensive use of online measurement and sensing, real-time quality control, and process control tools. Here, we present dropwise additive manufacturing of pharmaceutical products (DAMPP) as an alternative to conventional pharmaceutical manufacturing methods. This mini-manufacturing process for the production of pharmaceuticals utilizes drop on demand printing technology for automated and controlled deposition of melt-based formulations onto edible substrates. The advantages of drop-on-demand technology, including reproducible production of small droplets, adjustable drop sizing, high placement accuracy, and flexible use of different formulations, enable production of individualized dosing even for low-dose and high-potency drugs. In this work, DAMPP is used to produce solid oral dosage forms from hot melts of an active pharmaceutical ingredient and a polymer. The dosage forms are analyzed to show the reproducibility of dosing and the dissolution behavior of different formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. A practical discussion of risk management for manufacturing of pharmaceutical products.

    Science.gov (United States)

    Mollah, A Hamid; Baseman, Harold S; Long, Mike; Rathore, Anurag S

    2014-01-01

    Quality risk management (QRM) is now a regulatory expectation, and it makes good business sense. The goal of the risk assessment is to increase process understanding and deliver safe and effective product to the patients. Risk analysis and management is an acceptable and effective way to minimize patient risk and determine the appropriate level of controls in manufacturing. While understanding the elements of QRM is important, knowing how to apply them in the manufacturing environment is essential for effective process performance and control. This article will preview application of QRM in pharmaceutical and biopharmaceutical manufacturing to illustrate how QRM can help the reader achieve that objective. There are several areas of risk that a drug company may encounter in pharmaceutical manufacturing, specifically addressing oral solid and liquid formulations. QRM tools can be used effectively to identify the risks and develop strategy to minimize or control them. Risks are associated throughout the biopharmaceutical manufacturing process-from raw material supply through manufacturing and filling operations to final distribution via a controlled cold chain process. Assessing relevant attributes and risks for biotechnology-derived products is more complicated and challenging for complex pharmaceuticals. This paper discusses key risk factors in biopharmaceutical manufacturing. Successful development and commercialization of pharmaceutical products is all about managing risks. If a company was to take zero risk, most likely the path to commercialization would not be commercially viable. On the other hand, if the risk taken was too much, the product is likely to have a suboptimal safety and efficacy profile and thus is unlikely to be a successful product. This article addresses the topic of quality risk management with the key objective of minimizing patient risk while creating an optimal process and product. Various tools are presented to aid implementation of these

  10. The effect of thermal treatment on the quality changes of Antartic krill meal during the manufacturing process: High processing temperatures decrease product quality

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, Inge; Ale, Marcel Tutor

    2015-01-01

    The quality of krill products is influenced by their manufacturing process and could be evaluated by their degradation products from lipid oxidation and non-enzymatic browning reactions. The main objectives of this study were: (i) to investigate the effect of thermal treatment on these two reacti...

  11. Offshoring trends in the manufacturing process within the automotive industry

    DEFF Research Database (Denmark)

    Simplay, S.; Hansen, Zaza Nadja Lee

    2014-01-01

    consisting of original equipment manufacturers and engineering service providers. The findings indicated some offshoring trends in the automotive industry. Offshoring in this industry is moving from a manufacturing focus to incorporate large parts of the process, including high-level product development...... engineering activities. This development has created several challenges. These challenges arose as organisations are not considering how offshoring activities could be integrated with an increasingly global supply chain for the manufacturing of the final product. The paper contributes to manufacturing theory...

  12. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    OpenAIRE

    Bullon, Juan; González Arrieta, Angélica; Hernández Encinas, Ascensión; Queiruga Dios, Araceli

    2017-01-01

    The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities pr...

  13. Ramp Technology and Intelligent Processing in Small Manufacturing

    Science.gov (United States)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  14. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  15. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  16. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  17. Application of the flotation process in the silver recovery from the wastes generated during the silvery semi-products manufacturing

    OpenAIRE

    B. Oleksiak; A. Blacha-Grzechnik; G. Siwiec

    2012-01-01

    In this work, the results of the flotation process application in the silver recovery from the wastes generated during the silvery semi-products manufacturing, are shown. The flotation process parameters, i.e. time of process, rotation frequency, gas flow rate and flotation reagents, were optimized.

  18. Manufacturing process design for multi commodities in agriculture

    Science.gov (United States)

    Prasetyawan, Yudha; Santosa, Andrian Henry

    2017-06-01

    High-potential commodities within particular agricultural sectors should be accompanied by maximum benefit value that can be attained by both local farmers and business players. In several cases, the business players are small-medium enterprises (SMEs) which have limited resources to perform added value process of the local commodities into the potential products. The weaknesses of SMEs such as the manual production process with low productivity, limited capacity to maintain prices, and unattractive packaging due to conventional production. Agricultural commodity is commonly created into several products such as flour, chips, crackers, oil, juice, and other products. This research was initiated by collecting data by interview method particularly to obtain the perspectives of SMEs as the business players. Subsequently, the information was processed based on the Quality Function Deployment (QFD) to determine House of Quality from the first to fourth level. A proposed design as the result of QFD was produced and evaluated with Technology Assessment Model (TAM) and continued with a revised design. Finally, the revised design was analyzed with financial perspective to obtain the cost structure of investment, operational, maintenance, and workers. The machine that performs manufacturing process, as the result of revised design, was prototyped and tested to determined initial production process. The designed manufacturing process offers IDR 337,897, 651 of Net Present Value (NPV) in comparison with the existing process value of IDR 9,491,522 based on similar production input.

  19. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Good manufacturing practices of artisanal products in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Medeiros, J.M.S.D

    2017-05-01

    Full Text Available This review provides an overview of the importance of good manufacturing practices in the elaboration of artisanal products, aiming to generate a discussion about this subject. The elaboration of artisanal food has been gaining prominence in several countries of the world since these products carry the identity and culture of a place. The traditional and artisanal way of manufacturing provides the food with a variation in its characteristics, which makes it peculiar in comparison to its similar, pleasing the most diverse demands of consumers. In addition, they are considered healthier and natural foods. In the Northeast of Brazil, these products are highlighted by the significant commercialization, being sources of income generation for the region. Among the most prominent products are the coalho and butter types cheeses, bottled butter and carne de sol. Despite the economic and cultural importance of these products, the traditional way of manufacturing, without proper hygiene care, can be a limiting factor for the formal commercialization of these products. Therefore, adopting good manufacturing practices at artisanal food processing places may be the first step towards the production of higher quality products that meet the requirements of the legislation but retain their artisanal manufacturing characteristics.

  1. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  2. Review of manufacturing processes for fabrication of SOFC components

    International Nuclear Information System (INIS)

    Stacey, B.; Badwal, S.P.S.; Foger, K.

    1998-01-01

    In order for fuel cell technology to be commercial, it must meet stringent criteria of reliability, life-time expectations and cost. While materials play an important role in determining these parameters, engineering design and manufacturing processes for fuel cell stack components are equally important. Manufacturing processes must be low cost and suitable for large volume production for the technology to be viable and competitive in the market place. Several processes suitable for the production of ceramic components used in solid oxide fuel cells as well as ceramic coating techniques required for the protection of some metal components have been described. Copyright (1998) Australasian Ceramic Society

  3. Evaluation of polymer micro parts produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Micro manufacturing scale feature production by Additive Manufacturing (AM) processes for the direct production of miniaturized polymer components is analysed in this work. The study characterizes the AM processes for polymer micro parts productions using the vat photopolymerization method...

  4. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  5. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  6. Application of the flotation process in the silver recovery from the wastes generated during the silvery semi-products manufacturing

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-07-01

    Full Text Available In this work, the results of the flotation process application in the silver recovery from the wastes generated during the silvery semi-products manufacturing, are shown. The flotation process parameters, i.e. time of process, rotation frequency, gas flow rate and flotation reagents, were optimized.

  7. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    Science.gov (United States)

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.

    Science.gov (United States)

    Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W

    2015-01-01

    Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product. © 2015 American Institute of Chemical Engineers.

  9. Integrated Production-Distribution Scheduling Problem with Multiple Independent Manufacturers

    Directory of Open Access Journals (Sweden)

    Jianhong Hao

    2015-01-01

    Full Text Available We consider the nonstandard parts supply chain with a public service platform for machinery integration in China. The platform assigns orders placed by a machinery enterprise to multiple independent manufacturers who produce nonstandard parts and makes production schedule and batch delivery schedule for each manufacturer in a coordinate manner. Each manufacturer has only one plant with parallel machines and is located at a location far away from other manufacturers. Orders are first processed at the plants and then directly shipped from the plants to the enterprise in order to be finished before a given deadline. We study the above integrated production-distribution scheduling problem with multiple manufacturers to maximize a weight sum of the profit of each manufacturer under the constraints that all orders are finished before the deadline and the profit of each manufacturer is not negative. According to the optimal condition analysis, we formulate the problem as a mixed integer programming model and use CPLEX to solve it.

  10. Efficacy of Lean Manufacturing to Improve Production Performance

    Directory of Open Access Journals (Sweden)

    Israel Balogun

    2016-12-01

    Full Text Available The lean manufacturing system is a technique of manufacturing products in time. The concept of lean manufacturing principles employs simpler ways of communicating required materials as well as manual technique in ensuring the provision of signals for replenishment of materials the production companies require. Performance on the other hand, can be considered the attainment of value effectively and efficiently. Lean manufacturing and performance production goes hand in hand. Through utilizing lean manufacturing method, most companies would be able to tailor their processes in achieving effective performance and meeting unique requests from their consumers. The exploratory observations conducted in the study was purposely for examining the nature of complex interactions involved between major constructs and environmental sustainability at the parent company and the tire part vendors. The method of the research was a qualitative case study. The research data were obtained from with the case company and through structured interviews the case company's consumers. The case-specific tools were first developed in close co-operation with the case company. Future research agenda addresses gaps in the current literature and suggests relevant framework from which to explore this phenomenon.

  11. Manufacture of immunoglobulin products for patients with primary antibody deficiencies – the effect of processing conditions on product safety and efficacy

    Directory of Open Access Journals (Sweden)

    Albert eFarrugia

    2014-12-01

    Full Text Available Early preparations of immunoglobulin (IG manufactured from human plasma by ethanol (Cohn fractionation were limited in their usefulness for substitution therapy in patients with primary antibody deficiencies (PAD, as IG aggregates formed during manufacture resulted in severe systemic reactions in patients when given intravenously. Developments in manufacturing technology obviated this problem through the capacity to produce concentrated solutions of intact monomeric IG, revolutionizing PAD treatment and improving patient life expectancy and quality of life. As the need for IG has grown, manufacturers have refined further manufacturing technologies to improve yield from plasma and produce therapies which are easier and less expensive to deliver. This has led to the substitution, partly or wholly, of ethanol precipitation by other techniques such as chromatography, and has also stimulated the production of highly concentrated solutions capable of rapid infusion. IG products have been associated, since their inception, with certain adverse events, including infectious disease transmission, haemolysis and thromboembolism. The introduction of standardized manufacturing processes and dedicated pathogen elimination steps has removed the risk of infectious disease, and the focus of attention has shifted to other problems which appear to have increased over the past five years. These include haemolysis and thromboembolism, both the cause for substantial concern and the subject of recent regulatory scrutiny and actions. We review the development of manufacturing technology and the emerging evidence that changes for the optimization of yield and convenience has contributed to the recent incidents in certain adverse events. Industry measures under development will be discussed in terms of their potential to improve safety and optimize care for patients with PAD.

  12. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  13. United States Department of Energy Integrated Manufacturing & Processing Predoctoral Fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, M.

    2003-03-31

    The objective of the program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design.

  14. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  15. Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process

    Science.gov (United States)

    Gautham, B. P.; Kulkarni, Nagesh; Khan, Danish; Zagade, Pramod; Reddy, Sreedhar; Uppaluri, Rohith

    Integrated design of a product and its manufacturing processes would significantly reduce the total cost of the products as well as the cost of its development. However this would only be possible if we have a platform that allows us to link together simulations tools used for product design, performance evaluation and its manufacturing processes in a closed loop. In addition to that having a comprehensive knowledgebase that provides systematic knowledge guided assistance to product or process designers who may not possess in-depth design knowledge or in-depth knowledge of the simulation tools, would significantly speed up the end-to-end design process. In this paper, we propose a process and illustrate a case for achieving an integrated product and manufacturing process design assisted by knowledge support for the user to make decisions at various stages. We take transmission component design as an example. The example illustrates the design of a gear for its geometry, material selection and its manufacturing processes, particularly, carburizing-quenching and tempering, and feeding the material properties predicted during heat treatment into performance estimation in a closed loop. It also identifies and illustrates various decision stages in the integrated life cycle and discusses the use of knowledge engineering tools such as rule-based guidance, to assist the designer make informed decisions. Simulation tools developed on various commercial, open-source platforms as well as in-house tools along with knowledge engineering tools are linked to build a framework with appropriate navigation through user-friendly interfaces. This is illustrated through examples in this paper.

  16. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  17. Practical Aspects of CALS in Design and Manufacturing of Sheet Metal Products

    DEFF Research Database (Denmark)

    Shpitalni, Moshe; Alting, Leo; Bilberg, Arne

    1998-01-01

    The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...... with the design and manufacture of sheet metal parts. It is demonstrated that through implementation of the CALS approach, the overall process can be optimised and products can be manufactured significantly more accurately, faster and less expensively.......The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...

  18. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  19. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability

    Directory of Open Access Journals (Sweden)

    Muhammad Syafrudin

    2017-11-01

    Full Text Available Currently, the manufacturing industry is experiencing a data-driven revolution. There are multiple processes in the manufacturing industry and will eventually generate a large amount of data. Collecting, analyzing and storing a large amount of data are one of key elements of the smart manufacturing industry. To ensure that all processes within the manufacturing industry are functioning smoothly, the big data processing is needed. Thus, in this study an open source-based real-time data processing (OSRDP architecture framework was proposed. OSRDP architecture framework consists of several open sources technologies, including Apache Kafka, Apache Storm and NoSQL MongoDB that are effective and cost efficient for real-time data processing. Several experiments and impact analysis for manufacturing sustainability are provided. The results showed that the proposed system is capable of processing a massive sensor data efficiently when the number of sensors data and devices increases. In addition, the data mining based on Random Forest is presented to predict the quality of products given the sensor data as the input. The Random Forest successfully classifies the defect and non-defect products, and generates high accuracy compared to other data mining algorithms. This study is expected to support the management in their decision-making for product quality inspection and support manufacturing sustainability.

  20. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...... of the processing steps and their interdependence. A large database for several thousand anode-supported SOFCs manufactured annually at the Risoe National Laboratory in collaboration with Topsoe Fuel Cell A/S has been constructed. This enables a statistical analysis of the various controlling parameters. Some...

  1. Process for manufacture of inertial confinement fusion targets and resulting product

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wise, K.D.; Wuttke, G.H.; Masnari, N.A.; Rensel, W.B.; Robinson, M.G.

    1980-01-01

    A method of manufacturing inertial confinement fusion targets is described which is adaptable for high volume production of low cost targets in a wide variety of sizes. The targets include a spherical pellet of fusion fuel surrounded by a protective concentric shell. (UK)

  2. 16 CFR 303.33 - Country where textile fiber products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ... [Foreign Country]”. (ii) When the U.S. Customs Service requires an origin label on the unfinished product... manufactured. Further work or material added to the textile fiber product in another country must effect a...

  3. Numerical simulation of complex part manufactured by selective laser melting process

    Science.gov (United States)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  4. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  5. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    Science.gov (United States)

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  7. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    Science.gov (United States)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  8. Space system production cost benefits from contemporary philosophies in management and manufacturing

    Science.gov (United States)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  9. Detailed design of product oriented manufacturing systems

    OpenAIRE

    Silva, Sílvio Carmo; Alves, Anabela Carvalho

    2006-01-01

    This paper presents a procedure for the detailed design and redesign of manufacturing systems within a framework of constantly fitting production system configuration to the varying production needs of products. With such an approach is achieved the design of Product Oriented Manufacturing Systems – POMS. This approach is in opposition to the fitting, before hand, of a production system to all products within a company. In this case is usual to adopt a Function Oriented Manufactur...

  10. PROCESS PERFORMANCE EVALUATION USING HISTOGRAM AND TAGUCHI TECHNIQUE IN LOCK MANUFACTURING COMPANY

    Directory of Open Access Journals (Sweden)

    Hagos Berhane

    2013-12-01

    Full Text Available Process capability analysis is a vital part of an overall quality improvement program. It is a technique that has application in many segments of the product cycle, including product and process design, vendor sourcing, production or manufacturing planning, and manufacturing. Frequently, a process capability study involves observing a quality characteristic of the product. Since this information usually pertains to the product rather than the process, this analysis should strictly speaking be called a product analysis study. A true process capability study in this context would involve collecting data that relates to process parameters so that remedial actions can be identified on a timely basis. The present study attempts to analyze performance of drilling, pressing, and reaming operations carried out for the manufacturing of two major lock components viz. handle and lever plate, at Gaurav International, Aligarh (India. The data collected for depth of hole on handle, central hole diameter, and key hole diameter are used to construct histogram. Next, the information available in frequency distribution table, the process mean, process capability from calculations and specification limits provided by the manufacturing concern are used with Taguchi technique. The data obtained from histogram and Taguchi technique combined are used to evaluate the performance of the manufacturing process. Results of this study indicated that the performance of all the processes used to produce depth of hole on handle, key hole diameter, and central hole diameter are potentially incapable as the process capability indices are found to be 0.54, 0.54 and 0.76 respectively. The number of nonconforming parts expressed in terms of parts per million (ppm that have fallen out of the specification limits are found to be 140000, 26666.66, and 146666.66 for depth of hole on handle, central hole diameter, and key hole diameter respectively. As a result, the total loss incurred

  11. Validation of a sterilization dose for products manufactured using a 3D printer

    Science.gov (United States)

    Wangsgard, Wendy; Winters, Martell

    2018-02-01

    As more healthcare products are personalized, the use of unique, patient-specific products will increase. Some of these are manufactured using a 3D printing process (also known as additive manufacturing) for either polymers or metals. For these products, processes such as sterilization validations must be handled in a different manner. The concepts typically used are still relevant but are approached from an alternative perspective to account for a potential production batch size of one, and for the great variability that can occur in size and shape of a product.

  12. CIMOSA process classification for business process mapping in non-manufacturing firms: A case study

    Science.gov (United States)

    Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian

    2017-11-01

    A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.

  13. Additive Manufacturing of Tooling for Refrigeration Cabinet Foaming Processes

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K [ORNL; Nuttall, David [ORNL; Cukier, Michael Z [ORNL; Hile, Michael B [ORNL

    2016-07-29

    The primary objective of this project was to leverage the Big Area Additive Manufacturing (BAAM) process and materials into a long term, quick change tooling concept to drastically reduce product lead and development timelines and costs. Current refrigeration foam molds are complicated to manufacture involving casting several aluminum parts in an approximate shape, machining components of the molds and post fitting and shimming of the parts in an articulated fixture. The total process timeline can take over 6 months. The foaming process is slower than required for production, therefore multiple fixtures, 10 to 27, are required per refrigerator model. Molds are particular to a specific product configuration making mixed model assembly challenging for sequencing, mold changes or auto changeover features. The initial goal was to create a tool leveraging the ORNL materials and additive process to build a tool in 4 to 6 weeks or less. A secondary goal was to create common fixture cores and provide lightweight fixture sections that could be revised in a very short time to increase equipment flexibility reduce lead times, lower the barriers to first production trials, and reduce tooling costs.

  14. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  15. Big Data Based Analysis Framework for Product Manufacturing and Maintenance Process

    OpenAIRE

    Zhang , Yingfeng; Ren , Shan

    2015-01-01

    Part 8: Cloud-Based Manufacturing; International audience; With the widely use of smart sensor devices in the product lifecycle management (PLM), it creates amount of real-time and muti-source lifecycle big data. These data allow decision makers to make better-informed PLM decisions. In this article, an overview framework of big data based analysis for product lifecycle (BDA-PL) was presented to provide a new paradigm by extending the techniques of Internet of Things (IoT) and big data analys...

  16. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    International Nuclear Information System (INIS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; Rompay, Marc van; Ballanger, Anne

    2002-01-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7x10 10 to 3.7x10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach

  17. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    Science.gov (United States)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  18. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Science.gov (United States)

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  19. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    Science.gov (United States)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  20. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    Science.gov (United States)

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  1. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  2. Integrating artificial and human intelligence into tablet production process.

    Science.gov (United States)

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  3. Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard

    2017-01-01

    . In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...

  4. From a homemade to an industrial product : manufacturing Bulgarian yogurt

    NARCIS (Netherlands)

    Stoilova, E.R.

    2013-01-01

    Changes in yogurt production in the first half of the twentieth century were related to the transformation of dairy manufacturing through the incorporation of science and technology into the production process. The modernization of the dairy industry affected yogurt, which Bulgarians considered a

  5. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  6. Design and Optimization of Sheet Hydroforming Process for Manufacturing Oil tank

    International Nuclear Information System (INIS)

    Prakash, C.; Narasimhan, K.

    2005-01-01

    The need for reduction of weight is an important issue in sheet metal forming industry. The hydroforming process has become an effective manufacturing process, as it can be adapted for the manufacturing of complex structural components with high structural stiffness. The process parameters and material properties are important factors that influence the quality of final product. In this paper, an optimized window of process parameters is obtained for successful sheet hydroforming of Oil tank. The simulation of hydroforming process is performed by using a Finite Element Method based Commercial code

  7. Characterizing performances of solder paste printing process at flexible manufacturing lines

    International Nuclear Information System (INIS)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-01-01

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter

  8. Characterizing performances of solder paste printing process at flexible manufacturing lines

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Jit Ping; Low, Heng Chin [University of Science Malaysia, 11800 Minden, Penang (Malaysia); Teoh, Ping Chow [Wawasan Open University, 54 Jalan Sultan Ahmad Shah, 10050 Penang (Malaysia)

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  9. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Manufacture of Allergenic Products. 680.2 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR MISCELLANEOUS PRODUCTS § 680.2 Manufacture of Allergenic Products. (a...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture...

  10. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  11. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  12. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  13. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    Science.gov (United States)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  14. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    Science.gov (United States)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  15. quality assurance calculation in UO2 pellet manufacturing process

    International Nuclear Information System (INIS)

    Can, S.; Acarkan, S.; Guereli, L. and others

    1997-01-01

    A process qualification plan is prepared for preparation of quality assurance documentation in accordance with ISO-9000 series of standards, for sintered UO 2 pellets manufactured in the Nuclear Fuel Technology Department. The objectives of this plan are to determine quantitatively and statistically process capability of the pellet production, to check product properties (are) in conformance with specifications at the pre-( ) confidence levels, to prepare necessary documents and to assess the results. The product properties taking into account are chemical composition, cracks, density, microstructure and grain size. The statistical parameters used for qualification element of quality assurance are calculated.Statistical values for sintered pellets are: LENGTH/WEIGHT/DIAMETER/DENSITY/%TD: MEAN:13,395/16,808/12,293/10,679/97,400 STD:0,1651/ 0,252/0,0212/0,015/0,140. It was seen that sintered pellets manufactured in the Nuclear Fuel Technology Department meet the criteria within 95% confidence level. In this paper specifications, criteria and calculations will be explained in detail

  16. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    the provision of high-quality data for LCA studies of products using these unit process datasets for the manufacturing processes, as well as the in-depth analysis of individual manufacturing unit processes.In addition, the accruing availability of data for a range of similar machines (same process, different......This report proposes a life-cycle analysis (LCA)-oriented methodology for systematic inventory analysis of the use phase of manufacturing unit processes providing unit process datasets to be used in life-cycle inventory (LCI) databases and libraries. The methodology has been developed...... and resource efficiency improvements of the manufacturing unit process. To ensure optimal reproducibility and applicability, documentation guidelines for data and metadata are included in both approaches. Guidance on definition of functional unit and reference flow as well as on determination of system...

  17. Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process.

    Science.gov (United States)

    Anzano, Manuela; Tosti, Alessandra; Lasagni, Marina; Campiglio, Alfredo; Pitea, Demetrio; Collina, Elena

    2011-01-01

    The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company. The company produced thin silver metallic films and the production scraps were silver flakes. The possibility to use the silver flakes in water disinfection processes was studied. The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model. The flakes did not show any antimicrobial activity, so they were activated with two different processes: thermal activation in reducing atmosphere and chemical activation, obtaining, respectively, reduced flakes (RF) and chemical flakes (CF). The flakes, activated with either treatment, showed antimicrobial activity against E. coli. The kill rate was dependent on the type of activated flakes. The chemical flakes were more efficient than reduced flakes. The kill rate determined for 1 g of CF, 1.0 +/- 0.2 min(-1), was greater than the kill rate determined for 1 g of RF, 0.069 +/- 0.004 min(-1). This was confirmed also by the minimum inhibitory concentration values. It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium. Furthermore, the flakes maintained their properties also when used a second time. Finally, the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.

  18. Pharmaceutical quality by design: product and process development, understanding, and control.

    Science.gov (United States)

    Yu, Lawrence X

    2008-04-01

    The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.

  19. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  20. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice.

    Science.gov (United States)

    Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann

    2018-02-01

    Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.

  1. Fault tree analysis of the manufacturing process of nuclear fuel containers

    International Nuclear Information System (INIS)

    Liao Weixian; Men Dechun; Sui Yuxue

    1998-08-01

    The nuclear fuel container consists of barrel body, bottom, cover, locking ring, rubber seal ring, and so on. It should be kept sealed in transportation and storage, so keeps the fuel contained from leakage. Its manufacturing process includes blanking, forming, seam welding, assembling, derusting and painting. The seam welding and assembling of barrel body and bottom are two key procedures, and the slope grinding, barrel body flaring and deep drawing of the bottom are important procedures. Faults in the manufacturing process of the nuclear fuel containers are investigated in details as for its quality requirements. A fault tree is established with products being unqualified as the top event. Five causes resulting in process faults are classified and analysed, and some measures are suggested for controlling different failures in manufacturing. More research work should be conducted in rules how to set up fault trees for manufacturing process

  2. Customer-driven manufacturing in the food processing industry

    NARCIS (Netherlands)

    Donk, D.P. van

    2000-01-01

    Food processing industry copes with high logistical demands from its customers. This paper studies a company changing to more customer (order) driven manufacturing. In order to help decide which products should be made to order and which made to stock, a frame is developed and applied to find and

  3. Manufacturers Mergers and Product Variety in Vertically Related Markets

    OpenAIRE

    Chrysovalantou Milliou; Joel Sandonis

    2014-01-01

    We study final product manufacturers’ incentives to introduce new products into the market and how they are affected by a merger among them. We show that when manufacturers distribute their products through multi-product retailers, a manufacturers merger, although it leads to an increase in the wholesale prices, it can enhance product variety. The merger generated product variety efficiencies though arise only when vertical relations are present: when manufacturers sell directly their produ...

  4. PURPOSE – PROCESS – PEOPLE A LEAN APPROACH TO BIOMEDICAL MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.D. Kahlen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Opportunities to improve production processes and access to markets through the implementation of lean manufacturing in biomedical manufacturing are presented. The importance of a unified definition of manufacturing, to which biomedical manufacturing is party, is emphasized, and the theory of “lean”, summarized as “purpose, process, people”, is elaborated. The requirements for the creation of value through the creation of flow and the elimination of wastes are highlighted in the context of biomedical manufacturing. Finally, case studies are presented to illustrate the approaches to “purpose, process, people”.

    AFRIKAANSE OPSOMMING: Geleenthede vir die verbetering van produksieprosesse en marktoegang via die implementering van skraalvervaardiging in die biomediese vervaardigingsbedryf word voorgehou. Aandag word geskenk aan die betekenis van terme soos “skraal, doel, proses, menes” in die konteks van biomediese vervaardiging. Waardeskepping, vloei en vermorsing word onder die loep geneem. Gevallestudies word ter illustrasie van begrippe aangebied.

  5. Current trend in latex dipped products manufacturing

    International Nuclear Information System (INIS)

    Wong, W.S.C.

    1996-01-01

    The paper present the activities in dipped products manufacturing in Malaysia; the activities carried out by MARGMA - Malaysian Rubber Glove manufacturer; other issues discussed such as labour, pricing environmental issue, product certification in this activity

  6. Green electronics manufacturing creating environmental sensible products

    CERN Document Server

    Wang, John X

    2012-01-01

    Going ""green"" is becoming a major component of the mission for electronics manufacturers worldwide. While this goal seems simplistic, it poses daunting dilemmas. Yet, to compete effectively in the global economy, manufacturers must take the initiative to drive this crucial movement. Green Electronics Manufacturing: Creating Environmental Sensible Products provides you with a complete reference to design, develop, build, and install an electronic product with special consideration for the product's environmental impacts during its whole life cycle. The author discusses how to integrate the st

  7. Essential Aspects in Assessing the Safety Impact of Interactions between a Drug Product and Its Associated Manufacturing System.

    Science.gov (United States)

    Jenke, Dennis

    2012-01-01

    An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.

  8. Toward industrialization: Supporting the manufacturing processes of superconducting cavities at DESY

    International Nuclear Information System (INIS)

    Buerger, J.; Dammann, J.A.; Hagge, L.; Iversen, J.; Matheisen, A.; Singer, W.

    2006-01-01

    Manufacturing high-gradient superconducting cavities for future accelerators requires detailed knowledge of the entire production process. This knowledge has to be transferred from the laboratories, which are developing the process, to industry in order to achieve reproducible results in the industrial production of large numbers of cavities. The paper introduces DESY's approach to process industrialization based on the use of an engineering data management system (EDMS)

  9. Factors Affecting Labour Productivity in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Zbigniew Gołaś

    2011-07-01

    Full Text Available The article presents the results of the analysis of the factors influencing labour productivity in the manufacturing business sector in 20042008. Labour productivity was analyzed in the context of the assets productivity, technical equipment of work, labour intensity of production, wages, value added and depreciation costs, and using linear stepwise regression. The study shows that despite significant progress, the level of labour productivity in domestic manufacturing significantly lower than the average in the European Union. Lower than in Poland, the level of labour productivity gain only companies in Romania, Bulgaria, Lithuania, Latvia and Estonia. Estimated parameters of the regression function showed that the most important determinants of labour productivity in manufacturing are technical equipment of work, labour intensity of production, assets productivity, level of added value in relation to revenues. These factors explain the variability of labour productivity in 20042008 in a high degree.

  10. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  11. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  12. Process and quality control in manufacturing of nuclear fuel assemblies of LWRs

    International Nuclear Information System (INIS)

    Dietrich, M.; Hoff, A.; Reimann, P.

    2000-01-01

    Manufacturing of nuclear fuel assemblies requires a multitude of different process and quality methods to assure and maintain a high quality level. In recent years methods have been applied which prevent deviations rather than detect deviant products. This paper gives an example on how to control a complex manufacturing process by using a small number of key parameters and second, it demonstrates the importance of graphical data evaluation and presentation methods. In the past many product and product characteristics were inspected m comparison with specification limits only. However, todays methods allow the early identification of trends, increase of variation, shifts disturbances etc. before the product characteristics exceed the specification limits. These methods are process control charts, x-y-plots, boxplots, failure mode and effect analysis (FMEA), process capability numbers and others. This paper demonstrates the beneficial use of some of the methods by presenting selected examples applied at Advanced Nuclear Fuels GmbH (ANF). (author)

  13. Introduction to powder metallurgy processes for titanium manufacturing; Introduccion al procesado pulvimetalurgico del titanio

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-07-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  14. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products.

    Science.gov (United States)

    Nicolette, C A; Healey, D; Tcherepanova, I; Whelton, P; Monesmith, T; Coombs, L; Finke, L H; Whiteside, T; Miesowicz, F

    2007-09-27

    Dendritic cell (DC) active immunotherapy is potentially efficacious in a broad array of malignant disease settings. However, challenges remain in optimizing DC-based therapy for maximum clinical efficacy within manufacturing processes that permit quality control and scale-up of consistent products. In this review we discuss the critical issues that must be addressed in order to optimize DC-based product design and manufacture, and highlight the DC based platforms currently addressing these issues. Variables in DC-based product design include the type of antigenic payload used, DC maturation steps and activation processes, and functional assays. Issues to consider in development include: (a) minimizing the invasiveness of patient biological material collection; (b) minimizing handling and manipulations of tissue at the clinical site; (c) centralized product manufacturing and standardized processing and capacity for commercial-scale production; (d) rapid product release turnaround time; (e) the ability to manufacture sufficient product from limited starting material; and (f) standardized release criteria for DC phenotype and function. Improvements in the design and manufacture of DC products have resulted in a handful of promising leads currently in clinical development.

  15. Design of an automatic production monitoring system on job shop manufacturing

    Science.gov (United States)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Rosyidi, Cucuk Nur

    2018-02-01

    Every production process requires monitoring system, so the desired efficiency and productivity can be monitored at any time. This system is also needed in the job shop type of manufacturing which is mainly influenced by the manufacturing lead time. Processing time is one of the factors that affect the manufacturing lead time. In a conventional company, the recording of processing time is done manually by the operator on a sheet of paper. This method is prone to errors. This paper aims to overcome this problem by creating a system which is able to record and monitor the processing time automatically. The solution is realized by utilizing electric current sensor, barcode, RFID, wireless network and windows-based application. An automatic monitoring device is attached to the production machine. It is equipped with a touch screen-LCD so that the operator can use it easily. Operator identity is recorded through RFID which is embedded in his ID card. The workpiece data are collected from the database by scanning the barcode listed on its monitoring sheet. A sensor is mounted on the machine to measure the actual machining time. The system's outputs are actual processing time and machine's capacity information. This system is connected wirelessly to a workshop planning application belongs to the firm. Test results indicated that all functions of the system can run properly. This system successfully enables supervisors, PPIC or higher level management staffs to monitor the processing time quickly with a better accuracy.

  16. AN EXPLORATORY STUDY OF MANUFACTURING STRATEGY OF PACKAGING PRODUCT-MANUFACTURING COMPANIES IN INDIA

    Directory of Open Access Journals (Sweden)

    Pradip P. Patil

    2012-09-01

    Full Text Available This paper presents finding of a survey on manufacturing strategy implementation (MSI adopted by the Indian packaging product manufacturing companies (IPPMC. Though the companies differ in terms of prod uct types (shape, method, content and material of packaging, conversion system, sales volume and sophistication of machinery used, they share common purpose that are used for packaging the product s . With growth in demand for consumer products, packaging f orms basis of differentiating products from competitors. The survey shows emphasis on implementation of manufacturing strategy, key decision areas, identifies competitive priorities, order winners. To get insight, three companies are selected for detailed case studies.

  17. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    Science.gov (United States)

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  18. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  19. Microstructure devices for process intensification: Influence of manufacturing tolerances and design

    International Nuclear Information System (INIS)

    Brandner, Juergen J.

    2013-01-01

    Process intensification by miniaturization is a common task for several fields of technology. Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and problems gained also interest in chemistry and chemical process engineering. While the integration of enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself has been realized in all material classes, namely metals, ceramics and polymers. First devices have been manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties and design show much larger influence to the process than in macro scale. Many of the devices generated alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations on the design and production of devices for micro process engineering should be made to provide devices which show reproducible and controllable process behavior. The aim of the following publication is to show the importance of considerations in manufacturing tolerances and dimensions as well as design of microstructures to avoid negative influences and optimize the process characteristics of miniaturized devices. Some examples will be shown to explain the considerations presented here

  20. Development of a PVD-based manufacturing process of monolithic LEU irradiation targets for {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Hollmer, Tobias

    2015-08-03

    {sup 99}Mo is the most important radioisotope in nuclear medicine. It is produced by fission of uranium in irradiation targets. The usage of cylindrical monolithic targets can ensure a safe supply of {sup 99}Mo and at the same reduce the amount of highly radioactive waste generated during production. To manufacture these targets, a novel PVD-based technique was developed. Both the feasibility and the high efficiency of this process were demonstrated in a prototype apparatus.

  1. DETERMINING THE NEED FOR ZERO SERIES EXECUTION IN MANUFACTURING PROCESSES IN THE TEXTILE GARMENT INDUSTRY

    Directory of Open Access Journals (Sweden)

    OANA Ioan Pave

    2017-05-01

    Full Text Available Because the industrial production requires the application of some transformation procedures on the material resources, so that a clothing product comes out with optimal use value in terms of maximum economic efficiency, one of the main influencial factors is the quality of the products. To make manufacturing processes more efficient, it is necessary to carry out the zero series in order to ensure the quality of the technological processes, as well as to prevent some design deficiencies. Among the main operations undertaken to ensure the quality of the zero series, we mention: creating the conditions for launch, tracking and finalizing the accompanying production documents under similar series production conditions; zero-series producers are usually the same workers who make up the series production line; equipping with the appropriate equipment and providing with necessary devices in order to create the technical conditions for the execution of the zero series; providing technical assistance in relation to manufacturing and control documentation for eliminating the design deficiencies. This paper presents the architecture of the zero series execution in manufacturing processes in the textile garment industry. The information obtained from the zero-series analysis is directed to the technical support, for possible corrections of the patterns according to which the products were manufactured.

  2. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  3. Data quality and processing for decision making: divergence between corporate strategy and manufacturing processes

    Science.gov (United States)

    McNeil, Ronald D.; Miele, Renato; Shaul, Dennis

    2000-10-01

    Information technology is driving improvements in manufacturing systems. Results are higher productivity and quality. However, corporate strategy is driven by a number of factors and includes data and pressure from multiple stakeholders, which includes employees, managers, executives, stockholders, boards, suppliers and customers. It is also driven by information about competitors and emerging technology. Much information is based on processing of data and the resulting biases of the processors. Thus, stakeholders can base inputs on faulty perceptions, which are not reality based. Prior to processing, data used may be inaccurate. Sources of data and information may include demographic reports, statistical analyses, intelligence reports (e.g., marketing data), technology and primary data collection. The reliability and validity of data as well as the management of sources and information is critical element to strategy formulation. The paper explores data collection, processing and analyses from secondary and primary sources, information generation and report presentation for strategy formulation and contrast this with data and information utilized to drive internal process such as manufacturing. The hypothesis is that internal process, such as manufacturing, are subordinate to corporate strategies. The impact of possible divergence in quality of decisions at the corporate level on IT driven, quality-manufacturing processes based on measurable outcomes is significant. Recommendations for IT improvements at the corporate strategy level are given.

  4. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro......Micro manufacturing has gained interest over the last decade as the demand for micro mechanical components has increased. The need for dimensional metrology at micro scale is evident both in terms of quality assurance of components and products and in terms of process control. As critical...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  5. Additive manufacturing for the production of inserts for micro injection moulding

    DEFF Research Database (Denmark)

    Mischkot, Michael; Hansen, Hans Nørgaard; Pedersen, David Bue

    2015-01-01

    The production of inserts for micro injection moulding using additive manufacturing technology has the potential to greatly improve the efficiency of pilot production and reduce overall time to market. In this work, Digital Light Processing (DLP) was used to produce micro injection moulding inserts...

  6. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  7. Automation in Siemens fuel manufacturing - the basis for quality improvement by statistical process control (SPC)

    International Nuclear Information System (INIS)

    Drecker, St.; Hoff, A.; Dietrich, M.; Guldner, R.

    1999-01-01

    Statistical Process Control (SPC) is one of the systematic tools to perform a valuable contribution to the control and planning activities for manufacturing processes and product quality. Advanced Nuclear Fuels GmbH (ANF) started a program to introduce SPC in all sections of the manufacturing process of fuel assemblies. The concept phase is based on a realization of SPC in 3 pilot projects. The existing manufacturing devices are reviewed for the utilization of SPC. Subsequent modifications were made to provide the necessary interfaces. The processes 'powder/pellet manufacturing'. 'cladding tube manufacturing' and 'laser-welding of spacers' are located at the different locations of ANF. Due to the completion of the first steps and the experience obtained by the pilot projects, the introduction program for SPC has already been extended to other manufacturing processes. (authors)

  8. Economic trade-offs of additive manufacturing integration in injection moulding process chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    2017-01-01

    Additive Manufacturing has emerged as an innovative set of novel technologies capable of replacing established manufacturing processes due to fabrication of highly complex parts and its continuous improvements of efficiency and cost effectiveness. This study is based on the idea that through...... the creation of synergies between additive and conventional manufacturing technologies it is possible to achieve greater cost advantages and operational benefits than by substituting injection moulding with additive manufacturing. The analysis presented explores the cost advantages that can be secured when...... additive manufacturing is used to support the fabrication of mould inserts for the product development phase of the injection moulding process chain. This study shows that fabrication of soft tooling by mean of AM is economically convenient with a cost reduction between 80% and 90%. Break-even points...

  9. Cluster processing for 16Mb DRAM production

    International Nuclear Information System (INIS)

    Bergendahl, A.; Horak, D.

    1989-01-01

    Multichamber and in-situ technology are used to meet the challenge of manufacturing 16-Mb cost/performance DRAMs. The 16-Mb fabrication process is more complex than earlier 1-Mb and 4-Mb chips. Clustering of sequential process steps effectively compensates for both manufacturing complexity and foreign-material (FM) related defect densities. The development time of clusters combining new processes and equipment in multiple automated steps is nearly as long as the product development cycle. This necessitates codevelopment of manufacturing process cluster with technology integration while addressing the factors influencing FM defect generation, processing turnaround time (TAT), manufacturing costs, yield and array cell and support device designs. The advantages of multichamber and in situ processing have resulted in their application throughout the entire 16-Mb DRAM process as appropriate equipment becomes available

  10. BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Joosung Lee

    2017-03-01

    Full Text Available Modular construction methods, where products are manufactured beforehand in a factory and then transported to the site for installation, are becoming increasingly popular for construction projects in many countries as this method facilitates the use of the advanced technologies that support sustainability in building projects. This approach requires dual factory–site process management to be carefully coordinated and the factory module manufacturing process must therefore be managed in a detailed and quantitative manner. However, currently, the limited algorithms available to support this process are based on mathematical methodologies that do not consider the complex mix of equipment, factories, personnel, and materials involved. This paper presents three new building information modeling-based 4D simulation frameworks to manage the three elements—process, quantity, and quality—that determine the productivity of factory module manufacturing. These frameworks leverage the advantages of 4D simulation and provide more precise information than existing conventional documents. By utilizing a 4D model that facilitates the visualization of a wide range of data variables, manufacturers can plan the module manufacturing process in detail and fully understand the material, equipment, and workflow needed to accomplish the manufacturing tasks. Managers can also access information about material quantities for each process and use this information for earned value management, warehousing/storage, fabrication, and assembly planning. By having a 4D view that connects 2D drawing models, manufacturing errors and rework can be minimized and problems such as construction delays, quality lapses, and cost overruns vastly reduced.

  11. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  12. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  13. Improvement of the Zircaloy fuel can manufacturing process

    International Nuclear Information System (INIS)

    1986-01-01

    The following work has been performed in order to ensure more reliable supply of start material for the manufacture of Zy-2 and Zy-4 fuel cans, and to improve the processing techniques and product quality: 1) Two complete production campaigns with the ingot suppliers Western Zirconium and Ugine Aciers. 2) Development of new ingot dimensions (rolling tests). 3) Development of a mechanized washing and cleansing procedure. 4) Development of a new abrasive treatment technique (wet sand blasting). (orig./HP) [de

  14. EVALUATION OF MANUFACTURING AND AGRICULTURAL PRODUCTION BY THE END OF THE FINANCIAL PERIOD

    Directory of Open Access Journals (Sweden)

    Mincho Minev

    2016-06-01

    Full Text Available This article is dedicated on the matter of evaluation of manufacturing and agricultural production after the initial appraisal. Accounting standards and regulations, concerning the reappraisal of production, are discussed with emphasis on the key and most disputable requirements. The most commonly met difficulties in the process of reappraisal of production are pointed out. A research is done over the leading manufacturing and agricultural entities in Bulgaria. The point of the research is to study the degree on witch entities met the requirements and regulations of accounting standards when they reevaluate their production by the end of the year. The results of the research are shown and analyzed. Conclusions are made along with some recommendations in order to improve the quality of reappraisal of manufacturing and agricultural production.

  15. A Classification Scheme for Production System Processes

    DEFF Research Database (Denmark)

    Sørensen, Daniel Grud Hellerup; Brunø, Thomas Ditlev; Nielsen, Kjeld

    2018-01-01

    Manufacturing companies often have difficulties developing production platforms, partly due to the complexity of many production systems and difficulty determining which processes constitute a platform. Understanding production processes is an important step to identifying candidate processes...... for a production platform based on existing production systems. Reviewing a number of existing classifications and taxonomies, a consolidated classification scheme for processes in production of discrete products has been outlined. The classification scheme helps ensure consistency during mapping of existing...

  16. Modelling of just-in-sequence supply of manufacturing processes

    Directory of Open Access Journals (Sweden)

    Bányai Tamás

    2017-01-01

    Full Text Available The customer oriented production led to the growth of complexity of manufacturing and connected logistics processes. In many production companies one of the largest asset on balance sheet is inventory. To avoid inventory problems and to be the winners of today’s market situation manufacturing companies try to decrease heavy inventory levels through just-in-time based supply strategies. The aim of this research work is to analyse these supply strategies. The first part of the paper describes the just-in-time based supply and summarises the most important characteristics of them. The second part focuses on the modelling of just-in-sequence based in-plant supply. The models makes it possible to determine different in-plant supply strategies.

  17. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  18. Toward Meaningful Manufacturing Variation Data in Design - Feature Based Description of Variation in Manufacturing Processes

    DEFF Research Database (Denmark)

    Eifler, Tobias; Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    The need to mitigate the effects of manufacturing variation already in design is nowadays commonly acknowledged and has led to a wide use of predictive modeling techniques, tolerancing approaches, etc. in industry. The trustworthiness of corresponding variation analyses is, however, not ensured...... by the availability of sophisticated methods and tools alone, but does evidently also depend on the accuracy of the input information used. As existing approaches for the description of manufacturing variation focus however, almost exclusively, on monitoring and controlling production processes, there is frequently...... a lack of objective variation data in design. As a result, variation analyses and tolerancing activities rely on numerous assumptions made to fill the gaps of missing or incomplete data. To overcome this hidden subjectivity, a schema for a consistent and standardised description of manufacturing...

  19. Systems engineering management process maturity of South African manufacturing organisations

    CSIR Research Space (South Africa)

    Lemberger, ID

    2014-07-01

    Full Text Available to integrate people, processes and technologies to deliver innovative complex systems. The investigation set out to improve the understanding of systems engineering (SE) with focus on organisations in manufacturing of coke, petroleum, chemical products, rubber...

  20. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  1. Improving drug manufacturing with process analytical technology.

    Science.gov (United States)

    Rodrigues, Licinia O; Alves, Teresa P; Cardoso, Joaquim P; Menezes, José C

    2006-01-01

    Within the process analytical technology (PAT) framework, as presented in the US Food and Drug Administration guidelines, the aim is to design, develop and operate processes consistently to ensure a pre-defined level of quality at the end of the manufacturing process. Three PAT implementation scenarios can be envisaged. Firstly, PAT could be used in its most modest version (in an almost non-PAT manner) to simply replace an existing quality control protocol (eg, using near-infrared spectroscopy for an in-process quality control, such as moisture content). Secondly, the use of in-process monitoring and process analysis could be integrated to enhance process understanding and operation for an existing industrial process. Thirdly, PAT could be used extensively and exclusively throughout development, scale-up and full-scale production of a new product and process. Although the first type of implementations are well known, reports of the second and third types remain scarce. Herein, results obtained from PAT implementations of the second and third types are described for two industrial processes for preparing bulk active pharmaceutical ingredients, demonstrating the benefits in terms of increased process understanding and process control.

  2. State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last couple of decades the possibility of modelling multi-physics phenomena has increased dramatically, thus making simulation of very complex manufacturing processes possible and in some fields even an everyday event. A consequence of this has been improved products with respect...... competition between manufacturers of products in combination with the possibility of doing these highly complex simulations. Thus, there is a crucial need for combining advanced simulation tools for manufacturing processes with systematic optimisation algorithms which are capable of searching for single....... These limitations eventually determine what is in fact possible today and hence define what the “state-of-the-art” is. So, seen from that perspective the very definition of the state-of-the-art itself in the field of optimisation of manufacturing processes constitutes an important discussion. Moreover, in the major...

  3. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  4. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  5. Eradication of Productivity Related Problems Through Lean Principles In Integrated Manufacturing Environment

    Directory of Open Access Journals (Sweden)

    Rahul

    2013-06-01

    Full Text Available In this competitive era, manufacturing enterprises struggle to adopt cost-effective manufacturing systems. Overview of the recent manufacturing enterprises shows that successful global manufacturing enterprises have distributed their manufacturing capabilities over the globe. The successes of distributed integrated manufacturing enterprises depend upon the adaptation of appropriate manufacturing technologies like computer integrated manufacturing (CIM under the global collaborative environment along with the principles of lean manufacturing so that their corporate goals are achieved. CIM is an umbrella term which involves automated design, analysis, planning manufacturing, dispatching, customer-interaction, purchasing, cost accounting, inventory control and factory floor functions, which are inter-linked through the computer, to control all the campus-wide manufacturing related operations. It helps to improve the performance of a firm by integrating various areas of manufacturing business in which most of lean ideas are embedded. These lean ideas cause work in a process to be performed with minimum of non-value adding activities and focus on customers’ needs by delivering them at minimum time, with high quality and at minimum cost by eliminating hidden waste. What happens at the shop floor of even an integrated industry is that proper and timely attention is not paid to the intangible lean principles in the manual part of the CIM system which results in substantial loss of the plant productivity. Therefore the objective of this research paper is to investigate the different poor productivity-related problems in a partially integrated manufacturing environment and lay down the remedial measures to eradicate them using ‘Juran’s problem solving techniques’ and various ‘lean tools’ which results in the reduced wastages and hence improved productivity.

  6. Which variety is free? Discerning the impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Trattner, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    In the pursuit of mass customization, it is a great challenge for companies to maintain mass production efficiencies while producing a wide range of prod-ucts. This poses an even a greater challenge to process industry manufactur-ing systems which are built for high volume, low variety operations...... and which are sensitive to changes in process parameters. Many studies have been performed to quantify the impact of product variety on the efficiency of automotive assembly processes, but little work has been done to address pro-cess manufacturing systems. This study aims to determine the effects of in......-dividual product features on machine productivity at a process industry manufacturer. A lasso regression model is developed and tested using actual product and process level data from a stone wool manufacturer in central Eu-rope. Results show that product features are less correlated to machine effi-ciency than...

  7. 21 CFR 820.70 - Production and process controls.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES QUALITY SYSTEM REGULATION Production and Process Controls § 820.70 Production and process... used as part of production or the quality system, the manufacturer shall validate computer software for... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Production and process controls. 820.70 Section...

  8. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  9. Applying Value Stream Mapping Technique for Production Improvement in a Manufacturing Company: A Case Study

    Science.gov (United States)

    Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.

    2013-01-01

    The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.

  10. Product variety, product complexity and manufacturing operational performance: A systematic literature review

    DEFF Research Database (Denmark)

    Trattner, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    Manufacturing in the twenty-first century has been wrought with the struggle to satisfy the rising demand for greater product variety and more complex products while still maintaining efficient manufacturing operations. However, the literature lacks an overview of which operational performance...... measures are most affected by increased variety and complexity. This study presents a systematic literature review of the recent scholarly literature on variety, complexity and manufacturing operational performance (MOP). Results show that product variety has a consistently negative relationship with MOP...... across different time, cost, quality and flexibility measures while product complexity lacks evidence of strong relationships with MOP measures....

  11. Make-to-order manufacturing - new approach to management of manufacturing processes

    Science.gov (United States)

    Saniuk, A.; Waszkowski, R.

    2016-08-01

    Strategic management must now be closely linked to the management at the operational level, because only in such a situation the company can be flexible and can quickly respond to emerging opportunities and pursue ever-changing strategic objectives. In these conditions industrial enterprises seek constantly new methods, tools and solutions which help to achieve competitive advantage. They are beginning to pay more attention to cost management, economic effectiveness and performance of business processes. In the article characteristics of make-to-order systems (MTO) and needs associated with managing such systems is identified based on the literature analysis. The main aim of this article is to present the results of research related to the development of a new solution dedicated to small and medium enterprises manufacture products solely on the basis of production orders (make-to- order systems). A set of indicators to enable continuous monitoring and control of key strategic areas this type of company is proposed. A presented solution includes the main assumptions of the following concepts: the Performance Management (PM), the Balanced Scorecard (BSC) and a combination of strategic management with the implementation of operational management. The main benefits of proposed solution are to increase effectiveness of MTO manufacturing company management.

  12. Tracking the course of the manufacturing process in selective laser melting

    Science.gov (United States)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  13. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  14. VARIANTS OF DETERMINING THE MANUFACTURING COST OF A PRODUCT IN A PRODUCTION UNIT IN THE LIGHT OF BALANCE SHEET LAW

    Directory of Open Access Journals (Sweden)

    Marzena STROJEK‐FILUS

    2014-01-01

    Full Text Available The category of the manufacturing cost of a product is one of the most important ones from the point of view of proper valuation of the assets of a production unit, costs of its operations as well as pricing decisions. This article presents the problem of determining the manufacturing cost of a product in terms of balance sheet law. It has been shown that in order to determine this value various methods and options are allowed by this law, by means of which different values of manufacturing cost of a product are obtained. The importance of a proper selection of an allocation key in setilement of indirect production costs has been highlighted as well as the results of using, in certain cases, approved simplifications in the balance sheet law when determining the manufacturing cost of products have been demonstrated. The problem presented in this article is crucial from the point of view of an organization and management of production as well as managerial decision‐making in a company in the area of design of products and processes.

  15. Identified research directions for using manufacturing knowledge earlier in the product lifecycle.

    Science.gov (United States)

    Hedberg, Thomas D; Hartman, Nathan W; Rosche, Phil; Fischer, Kevin

    2017-01-01

    Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.

  16. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  17. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  18. Process development for the manufacturing of state-of-the-art spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian; Dietrich, Matthias [Advanced Nuclear Fuels GmbH, Karlstein (Germany)

    2013-07-01

    At the beginning it was questioned if 'time to market' is really important for the nuclear industry. The clear answer is YES. Even if the development times might be longer compared to projects in other industries it is still beneficial to use concurrent engineering. In the world wide network of manufacturing sites, Advanced Nuclear Fuels GmbH in Karlstein is quite often involved when the development of new processes is necessary. As ANF Karlstein is delivering products around the world the experience with different customer requirements supports an optimized solution in order to fulfill these principle requirements and to deliver state-of-the-art products like spacer grids. Continues feedback from process development already improves the first prototypes. In the meantime ANF Karlstein manufactured the components for both new fuel assembly designs which are introduced as a first set of Lead Fuel Assemblies. For the manufacturing of the next sets of spacer grids (for tests and next series of Lead Fuel Assemblies) the described processes will be used and further improved, so that an industrialized solution is available. (orig.)

  19. Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen, 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  20. Modeling of Agile Intelligent Manufacturing-oriented Production Scheduling System

    Institute of Scientific and Technical Information of China (English)

    Zhong-Qi Sheng; Chang-Ping Tang; Ci-Xing Lv

    2010-01-01

    Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of the production system have surpassed the scope of individual enterprise and embodied some new features including complexity, dynamicity, distributivity, and compatibility. The agile intelligent manufacturing paradigm calls for a production scheduling system that can support the cooperation among various production sectors, the distribution of various resources to achieve rational organization, scheduling and management of production activities. This paper uses multi-agents technology to build an agile intelligent manufacturing-oriented production scheduling system. Using the hybrid modeling method, the resources and functions of production system are encapsulated, and the agent-based production system model is established. A production scheduling-oriented multi-agents architecture is constructed and a multi-agents reference model is given in this paper.

  1. Process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. Verfahren zur Herstellung eines Filterstoffes zur Reinigung von industriellen oder Brennkraftmaschinen-Abgasen und ein hiernach hergestellter Filterstoff

    Energy Technology Data Exchange (ETDEWEB)

    Bumbalek, A.

    1986-01-02

    This is a process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. The filter material is manufactured from the mineralized combustion product of peel of tropical fruits burnt at a temperature of 820/sup 0/C to 840/sup 0/C in an oxidising atmosphere excluding the production of carbon, particularly using banana skins and orange peels, which product is granulated with carrier materials or compressed.

  2. Integration of process-oriented control with systematic inspection in FRAMATOME-FBFC fuel manufacturing

    International Nuclear Information System (INIS)

    Kopff, G.

    2000-01-01

    The classical approach to quality control is essentially based on final inspection of the product conducted through a qualified process. The main drawback of this approach lies in the separation and , therefore, in the low feedback between manufacturing and quality control, leading to a very static quality system. As a remedy, the modern approach to quality management focuses on the need for continuous improvement through process-oriented quality control. In the classical approach, high reliability of nuclear fuel and high quality level of the main characteristics are assumed to be attained, at the manufacturing step, through 100% inspection of the product, generally with automated inspection equipment. Such a 100% final inspection is not appropriate to obtain a homogeneous product with minimum variability, and cannot be a substitute for the SPC tools (Statistical Process Control) which are rightly designed with this aim. On the other hand, SPC methods, which detect process changes and are used to keep the process u nder control , leading to the optimal distribution of the quality characteristics, do not protect against non systematic or local disturbances, at low frequency. Only systematic control is capable of detecting local quality troubles. In fact, both approaches, SPC and systematic inspection, are complementary , because they are remedies for distinct causes of process and product changes. The term 'statistical' in the expression 'SPC' refers less to the sampling techniques than to the control of global distribution parameters of product or process variables (generally location and dispersion parameters). The successive integration levels of process control methods with systematic inspection are described and illustrated by examples from FRAMATOME-FBFC fuel manufacturing, from the simple control chart for checking the performance stability of automated inspection equipment to the global process control system including systematic inspection. This kind of

  3. Cost estimation of a specifically designed direct light processing (DLP) additive manufacturing machine for precision printing

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Davoudinejad, Ali; Tosello, Guido

    2017-01-01

    creating new opportunities for manufacturers in a variety of industrial sectors. AM is an essentialprototyping technique for product design and development that is used in many different fields. However, the suitability of AMapplications in actual production in an industrial context needs to be determined......Additive Manufacturing (AM) refers to a portfolio of novel manufacturing technologies based on a layer-by-layer fabrication method.The market and industrial application of additive manufacturing technologies as an established manufacturing process have increasedexponentially in the last years....... This study, presents a cost estimation model forprecision printing with a specifically designed Digital Light Processing (DLP) AM machine built and validated at the Technical Universityof Denmark. The model presented in this study can be easily adapted and applied to estimate within a high level...

  4. Product manufacturing, quality, and reliability initiatives to maintain a competitive advantage and meet customer expectations in the semiconductor industry

    Science.gov (United States)

    Capps, Gregory

    Semiconductor products are manufactured and consumed across the world. The semiconductor industry is constantly striving to manufacture products with greater performance, improved efficiency, less energy consumption, smaller feature sizes, thinner gate oxides, and faster speeds. Customers have pushed towards zero defects and require a more reliable, higher quality product than ever before. Manufacturers are required to improve yields, reduce operating costs, and increase revenue to maintain a competitive advantage. Opportunities exist for integrated circuit (IC) customers and manufacturers to work together and independently to reduce costs, eliminate waste, reduce defects, reduce warranty returns, and improve quality. This project focuses on electrical over-stress (EOS) and re-test okay (RTOK), two top failure return mechanisms, which both make great defect reduction opportunities in customer-manufacturer relationship. Proactive continuous improvement initiatives and methodologies are addressed with emphasis on product life cycle, manufacturing processes, test, statistical process control (SPC), industry best practices, customer education, and customer-manufacturer interaction.

  5. Achievement Report for fiscal 1997 on developing a silicon manufacturing process with reduced energy consumption. Development of silicon mass-production manufacturing technology for solar cells; 1997 nendo energy shiyo gorika silicon seizo process kaihatsu. Taiyo denchiyo silicon ryosanka seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to manufacture silicon for solar cells, development is intended on a technology to manufacture silicon (SOG-Si) for solar cells by means of metallurgical methods using metallic silicon with purity generally available as an interim starting material. The silicon is required of p-type electric conductivity characteristics with specific resistance of 0.5 to 1.5 ohm per cm, to be sufficient even with 6-7N as compared to silicon for semiconductors (11-N), and to be low in cost. While the NEDO fluid bed process and the metallurgical NEDO direct reduction process have been developed based on the technology to manufacture silicon for semiconductors, the basic policy was established to develop a new manufacturing method using commercially available high-purity metallic silicon as an interim starting material, with an objective to achieve cost as low as capable of responding to small-quantity phase production for proliferation purpose. Removal of boron and phosphor has been the main issue in the development, whereas SOG-Si was manufactured in a laboratory scale by combining with the conventional component technologies in fiscal 1991 and 1992. The scale was expanded to 20 kg since fiscal 1993, and a five year plan starting fiscal 1996 was decided to develop the technology for industrial scale. Fiscal 1997 has promoted the development by using the 20-kg scale device, and introduced facilities to develop technology for mass-production scale. (NEDO)

  6. General description and production lines of the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.; Elseaidy, I.M.

    1999-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a new facility, producing an MTR-type fuel elements required for the Egyptian Second Research Reactor, ETRR-2, as well as other plates or elements for an external clients with the same type and enrichment percent or lower, (LEU). General description is presented. The production lines in FMPP, which begin from uranium hexaflouride (UF 6 , 19.7±0.2 % U 235 by wt), aluminum powder, and nuclear grade 6061 aluminium alloy in sheets, bars, and rods with the different heat treatments and dimensions as a raw materials, are processed through a series of the manufacturing, inspection, and quality control plan to produce the final specified MTR-type fuel elements. All these processes and the product control in each step are presented. The specifications of the final product are presented. (author)

  7. Investigating factors that influence level and dynamics of capital productivity in plants manufacturing equipment for mines

    Energy Technology Data Exchange (ETDEWEB)

    Karenov, R.S. (Karagandinskii Politekhnicheskii Institut (USSR))

    1990-10-01

    Analyzes productivity of capital in plants manufacturing equipment for underground coal mining in the USSR. Effects of the following factors are evaluated: working time, investment, mechanization of manufacturing processes, power of motors used to drive the manufacturing equipment, duration of a manufacturing cycle, cooperation degree, equipment service life. Effects of insufficient specialization of manufacturing plants and the manufacturing of mining equipment by repair shops of individual mines which should rather specialize in equipment repair and maintenance are evaluated. Analysis shows that specialization of the manufacturing plants could increase productivity of capital by 1.5-2.0 times, reduce labor consumption by 3-5 times and consumption of materials by 1.5-1.7 times. 4 refs.

  8. Lean manufacturing and Toyota Production System terminology applied to the procurement of vascular stents in interventional radiology.

    Science.gov (United States)

    de Bucourt, Maximilian; Busse, Reinhard; Güttler, Felix; Wintzer, Christian; Collettini, Federico; Kloeters, Christian; Hamm, Bernd; Teichgräber, Ulf K

    2011-08-01

    OBJECTIVES: To apply the economic terminology of lean manufacturing and the Toyota Production System to the procurement of vascular stents in interventional radiology. METHODS: The economic- and process-driven terminology of lean manufacturing and the Toyota Production System is first presented, including information and product flow as well as value stream mapping (VSM), and then applied to an interdisciplinary setting of physicians, nurses and technicians from different medical departments to identify wastes in the process of endovascular stent procurement in interventional radiology. RESULTS: Using the so-called seven wastes approach of the Toyota Production System (waste of overproducing, waiting, transport, processing, inventory, motion and waste of defects and spoilage) as well as further waste characteristics (gross waste, process and method waste, and micro waste), wastes in the process of endovascular stent procurement in interventional radiology were identified and eliminated to create an overall smoother process from the procurement as well as from the medical perspective. CONCLUSION: Economic terminology of lean manufacturing and the Toyota Production System, especially VSM, can be used to visualise and better understand processes in the procurement of vascular stents in interventional radiology from an economic point of view.

  9. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  10. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  11. Fuzzy linguistic hedges for the selection of manufacturing process for prosthetic sockets

    Directory of Open Access Journals (Sweden)

    Richa Pandey

    2014-08-01

    Full Text Available In this paper, a comparison is presented between two prime methods of producing prosthetic sockets by using the fuzzy linguistic hedges approach on the qualitative feedback of Indian prosthetic users. Recent trends indicate that the Indian manufacturers have tried to adopt the newer technologies like reverse engineering (RE approach to achieve the desired goals. However, the satisfaction of the user is of utmost importance for the unique and customized products for rehabilitation. In order to analyze the effectiveness of the manufacturing approaches, user case studies are taken, based on the linguistic feedbacks, and a comparative study is conducted. Thirteen users from four different manufacturing units are taken for study and sockets made by conventional as well as RE are experimented. Fuzzy membership functions are constructed using the linguistic hedges based on the user feedbacks. An analytical hierarchy process (AHP is applied to arrive at a decision to select the manufacturing process for user satisfaction and manufacturing excellence.

  12. TECHNICAL AND ORGANIZATIONAL IMPROVEMENTS OF PACKAGING PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2016-06-01

    Full Text Available Due to customer driven economies, today’s world markets are characterized by high fluctuations in market demand and the frequent arrival of new technologies and new products. To stay competitive in such markets manufacturing companies require continuous improvements both in technical and organizational areas of their activity. The paper presents results of the diagnosis provided in the manufacturing area of the company producing cardboard packages and recommendations to make the production process more efficient. Especially, among the proposed technical and organizational recommendations the most important ones are: automation of certain elements of the production process and changes in production plant layout.

  13. Patterns of order processing : a study of the formalization of the ordering process in order-driven manufacturing companies

    NARCIS (Netherlands)

    Welker, Geertruida Annigje

    2004-01-01

    It is essential for many order-driven manufacturing companies to be able to respond quickly to changing customer demand. In this respect, the ordering process plays a central role, as coordination between demand and production takes places within this process. The ordering process must contribute to

  14. Predictive Manufacturing: A Classification Strategy to Predict Product Failures

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat

    2018-01-01

    manufacturing analytics model that employs a big data approach to predicting product failures; third, we illustrate the issue of high dimensionality, along with statistically redundant information; and, finally, our proposed method will be compared against the well-known classification methods (SVM, K......-nearest neighbor, artificial neural networks). The results from real data show that our predictive manufacturing analytics approach, using genetic algorithms and Voronoi tessellations, is capable of predicting product failure with reasonable accuracy. The potential application of this method contributes...... to accurately predicting product failures, which would enable manufacturers to reduce production costs without compromising product quality....

  15. Physical Properties for Lipids Based Process and Product Design

    DEFF Research Database (Denmark)

    Ana Perederic, Olivia; Kalakul, Sawitree; Sarup, Bent

    Lipid processing covers several oil and fats technologies such as: edible oil production, biodieselproduction, oleochemicals (e.g.: food additives, detergents) and pharmaceutical product manufacturing. New demands regarding design and development of better products and more sustainable processes...... related to lipids technology, emerge according to consumers demanding improved product manufacturing from sustainable resources and new legislation regarding environmental safety [1]. Physical and thermodynamic property data and models for prediction of pure compound properties and mixtures properties...... involving lipids represent the basic and most important requirements for process product design, simulation and optimization. Experimentally measured values of involved compounds are desirable, but in most of the cases these are not available for all the compounds and properties needed. The lack...

  16. Process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Noriah Jamal; Rehir Dahlan; Wan Anuar Wan Awang; Zakaria Ibrahim; Shaaban Kassim; Wan Firdaus Wan Ishak; Nelly Bo Nai Lee; Noraisyah Yusof; Siti Selina Abdul Hamid; Ng Yen; Rahimah Abdul Rahim; Muhammad Hanafi Mohamad Mokhtar; Azahari Kasbollah; Abd Jalil Abd Hamid; Yahya Talib; Shafii Khamis; Zulkifli Mohamed Hashim

    2007-01-01

    Process validation provides the best platform in identifying potential problems in the actual radiopharmaceuticals manufacturing work. The purpose of this paper is to present experience in performing process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia. Process validation for the manufacturing of Tc-99m generator was done by performing four try runs, between October 2006 to April 2007. It was done using saline instead of the actual product. Each try run took four days to complete. On day 1, clean room was cleaned and disinfected. On day 2, activity of washing and sterilization of utensils, columns, rubber stoppers and aluminium caps was carried out. On day 3, preparation of white top, alumina packed column and mixing solutions was performed. Apparatus was also sent for sterilizing test. On day 4, the actual production day of the try run by impregnating column with sterile saline was performed. Prior to the manufacturing activities, particle counts measurement and area clearance were performed to ensure that the temperature and humidity of the clean room are suitable for the production work. Settle plates were placed at the identified positions including in the Hot Cell. Personnel's finger print was performed before and after production work by using touch plates. After completion of try run, elution from the generators that been manufactured, settle and touch plates were sent to quality control unit for the microbiological test. It took fourteen days to get the test results. The first try run was failed, which may be due to insufficient of proper arrangement/preparation of work. It may also due to problem of cleaning/disinfection of clean room, which may not be done properly. The further three consecutive try runs meet all the specifications including the sterility test, endotoxin test and finger prints. It shows that the manufacturing of Tc-99m generator at Nuclear Malaysia is validated and ready for the active run. (Author)

  17. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Products requiring manufacturer or mill certification... manufacturer or mill certification. (a) Products required to be certified by a manufacturer or by mill... accepted without referring to its manufacturer or mill certification, if: (1) The product is marked in...

  18. Novel fermentation processes for manufacturing plant natural products.

    Science.gov (United States)

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fatigue crack growth in additive manufactured products

    Directory of Open Access Journals (Sweden)

    A. Riemer

    2015-10-01

    Full Text Available Additive Manufacturing (AM is a new innovative technique that allows the direct fabrication of complex, individual, delicate and high-strength products, based on their 3D data. Selective Laser Melting (SLM is one of the AM processes that generates metallic components layer by layer using powder-bed technique. The irradiation and consequent melting of metallic powder is realised by the laser source. Employing SLM, especially complex and individual products, such as implants or aerospace parts, are well suited for economic production in small batches. The first important issue in this work was to analyse the fatigue crack growth (FCG in titanium alloy Ti-6-4 and stainless steel 316L processed by SLM. As a first step, stress intensity range decreasing tests were performed on SLM samples in their “as-built” condition. The next step was to adopt measures for optimisation of fatigue crack growth performance of SLM parts. For this purpose various heat treatments such as stress relief annealing and hot isostatic pressing (HIP were applied to the CT specimens. Finally, the strong impact of heat treatment on the residual lifetime was demonstrated by numerical fatigue crack growth simulations. For this purpose, the hip joint implant consisting of Ti-6-4 and processed by SLM was taken into account. It was found that residual stresses have a strong influence on the crack growth in Ti-6-4, while the influence of the micro-pores on the threshold values remains low. In contrast the results for 316L show that its fracturemechanical behaviour is not affected by residual stresses, whereas the microstructural features lead to modification in the da/dN-K-data. The second fundamental aim of this work was to demonstrate the possibilities of the SLM process. For that reason, the individually tailored bicycle crank was optimised regarding its weight and local stresses and finally manufactured using the SLM system. The iterative optimisation procedure was based on

  20. A new study of the kinetics of curd production in the process of cheese manufacture.

    Science.gov (United States)

    Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez

    2017-11-01

    We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.

  1. Application of a B ampersand W developed computer aided pictorial process planning system to CQMS for manufacturing process control

    International Nuclear Information System (INIS)

    Johanson, D.C.; VandeBogart, J.E.

    1992-01-01

    Babcock ampersand Wilcox (B ampersand W) will utilize its internally developed Computer Aided Pictorial Process Planning or CAPPP (pronounced open-quotes cap cubedclose quotes) system to create a paperless manufacturing environment for the Collider Quadruple Magnets (CQM). The CAPPP system consists of networked personal computer hardware and software used to: (1) generate and maintain the documents necessary for product fabrication, (2) communicate the information contained in these documents to the production floor, and (3) obtain quality assurance and manufacturing feedback information from the production floor. The purpose of this paper is to describe the various components of the CAPPP system and explain their applicability to product fabrication, specifically quality assurance functions

  2. Sustainable Product: Personal Protective Equipment Manufactured with Green Plastic

    Directory of Open Access Journals (Sweden)

    Hamilton Aparecido Boa Vista

    2015-04-01

    Full Text Available This study analyzed the case of manufacturing of Personal Protective Equipment (PPE using as raw material biopolymers produced from ethanol from sugar cane, known as green polypropylene, produced since 2008 by BRASKEM. This article studied the PPE for the employee’s head protection, named helmet by NR 6, which is used in situations of exposure to weather and work scenarios in places where there is risk of impact from falling or projecting objects, burns, electric shock, and solar radiation. The MSA, green helmet manufacturer, made an inventory of greenhouse gas emissions into the atmosphere by comparing the two manufacturing processes of the helmet shell, covering the January 1 to December 31, 2011 period. It concluded that the sustainable helmet (green polyethylene and pigments robs 231g of CO2 from the atmosphere per produced unit, while the helmet’s production with traditional raw materials (polyethylene and petrochemical pigments found that, for each unit produced, 1029g of CO2 are emitted into the atmosphere. The study showed that substitution of raw materials has led to reduction in the impact generated in the helmets’ production.

  3. 3D food printing: a new dimension in food production processes

    Science.gov (United States)

    3D food printing, also known as food layered manufacture (FLM), is an exciting new method of digital food production that applies the process of additive manufacturing to food fabrication. In the 3D food printing process, a food product is first scanned or designed with computer-aided design softwa...

  4. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  5. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  6. Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer

    NARCIS (Netherlands)

    Bokhorst, Jos A. C.; Slomp, Jannes

    2010-01-01

    Eaton Electric General Supplies, a parts manufacturing unit that supplies parts for Eaton's electrical business unit, implemented several lean control elements in its high-variety, low-volume production units. These control elements include a constant work-in-process mechanism to limit and control

  7. Product Life Cycle of the Manufactured Home Industry

    Directory of Open Access Journals (Sweden)

    Gavin Wherry

    2014-09-01

    Full Text Available Residential construction consumes an estimated 26 percent of the total U.S. wood harvest and thus plays an important role in the forest products value chain. While being a relatively small part of the U.S. residential construction market, the factory-built residential housing industry, originating from manufactured homes (e.g. mobile homes, is embracing emerging industry segments such as modular or panelized homes. Since indications exist that factory-built home production is slated to gain a more prominent role in the U.S. construction markets at the cost of traditional stick-built production, the factory-built home industry sub-segment is of considerable importance to the forest products industry. This research looks at manufactured home producers as a benchmark for analyzing the current economic state of the industry and discusses competitive strategies. The analysis concludes, through macroeconomic modeling, that manufactured homes are in the declining stage of their product life cycle due to changes to the U.S. residential construction sector and the factory-built home industry and by advancements of rival industry-segments. As market share continues to decline, firms operating in this industry-segment seek to either hedge their losses through product diversification strategies or remain focused on strategically repositioning the manufactured home segment.

  8. Rapsodie first core manufacture. 1. part: processing plant

    International Nuclear Information System (INIS)

    Masselot, Y.; Bataller, S.; Ganivet, M.; Guillet, H.; Robillard, A.; Stosskopf, F.

    1968-01-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [fr

  9. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    Directory of Open Access Journals (Sweden)

    Sylvestre Uwizeyemungu

    2015-10-01

    Full Text Available Manufacturing small and medium-sized enterprises (SMEs are more and more adopting advanced manufacturing technologies (AMT aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types of AMT grouped into 5 categories, we derived three AMT assimilation patterns through a cluster analysis procedure combining hierarchical and non-hierarchical clustering algorithms. The analysis of the relationship between AMT assimilation patterns and product innovation performance shows a rather unexpected picture: in spite of the existence of clearly distinct patterns of AMT assimilation, we find no significant relationship between any pattern and product innovation performance. Instead, we find the organizational and environmental context of SMEs to be more determinant for product innovation performance than any of the AMT assimilation patterns. From a practical point of view, this study indicates that manufacturing SMEs managers interested in fostering their innovation capabilities through AMT assimilation need to be aware of the contingency effects of their organizational size, age, and sector of activity.

  10. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  11. QUALITY CONTROL IN PRECAST PRODUCTION A case study on Tunnel Segment Manufacture

    Directory of Open Access Journals (Sweden)

    Yee Weng Cheong

    2005-01-01

    Full Text Available Quality control forms an integral part of precast production. An efficient quality system is most critical in the mass production of precast components in any project. In this study, the quality control system implemented in a precast factory is discussed. The precast factory is set up for the manufacture of large quantity of tunnel segments under a contract. Processes in the precast manufacture are discussed with respect to the control procedures in the quality inspection plan. The standard tests involved, roles of inspectors and corrective actions on-site are highlighted. Critical issues pertaining to the productivity and quality of precast production are reviewed. These include the quality of staff and maintenance, which could potentially affect the efficiency of the quality system. Some considerations should also be given to improve the workflow and productivity of the plant.

  12. Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.

    Science.gov (United States)

    Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V

    2016-04-01

    The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.

  13. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  14. Delivering Value In A Global Aerospace Manufacturer Through The Effective Use Of Numerical Process Simulation

    Science.gov (United States)

    Ward, M. J.; Walløe, S. J.

    2004-06-01

    Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.

  15. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  16. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  17. 16 CFR 1211.24 - Product certification and labeling by manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Product certification and labeling by manufacturers. 1211.24 Section 1211.24 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.24 Product certification and labeling by manufacturers. (a) Form of permanent label of...

  18. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  19. Key Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  20. 75 FR 8114 - In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to...

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-655] In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to Same and Certain Products Containing Same ; Issuance... to cast steel railway wheels and products containing same manufactured by or for Respondents using...

  1. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  2. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  3. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    Science.gov (United States)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  4. MANAGING TRANSITION PROCESSES OF MANUFACTURING NETWORKS OF GLOBAL OPERATIONS

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2012-01-01

    rather than the pure product. Incidentally, products and services are often inseparable and the sale of a product would lead to a relationship where services could be sold over an extended period of time (Levitt, 1983). Thereby, many manufacturers have sought growth through the increased sale of products......Western companies have now started to compete on the basis of value delivered by shifting their market focus from manufacturing to more product-service oriented systems. This is linked to the view that manufacturing companies are becoming more oriented to the use of the product-service offering......-services offerings. Localizing and globalizing these products-services offerings have inherent complexities which have been under researched. Facing the intense global competition, companies are seeking higher levels of efficiency and effectiveness by configuring their discrete value-added activities on a global...

  5. A risk-based auditing process for pharmaceutical manufacturers.

    Science.gov (United States)

    Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan

    2014-01-01

    The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.

  6. 31 CFR 500.412 - Process vs. manufacture.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Process vs. manufacture. 500.412 Section 500.412 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... Interpretations § 500.412 Process vs. manufacture. A commodity subject to § 500.204 remains subject howsoever it...

  7. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    Science.gov (United States)

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  8. Glocalized Production - A Holistic Approach for Future Manufacturing at The LEGO Group

    DEFF Research Database (Denmark)

    Hadar, Ronen

    2014-01-01

    ) and Rapid Manufacturing (RM). RMS is a manufacturing system that is designed for rapid changes. It is based on core characteristics such as modularity, convertibility, customized flexibility, etc.. RM is the use of Additive Manufacturing (AM –commonly referred to as 3D printing) for the production......Global production is changing. Changes in production paradigms, global competition, manufacturing technologies, and new mega trends such as individualization, inflict immense challenges on global manufacturers. A new holistic approach for facing supply chain and production challenges is proposed...... facilities, the establishment of production close to main markets, and the creation of a global network of independent factories and supply chains with local manufacturing. Doing so will potentially increase responsiveness, cut transportation costs, reduce complexity, enable production to demand rather than...

  9. Manufacturing, regulatory and commercial challenges of biopharmaceuticals production: a Finnish perspective.

    Science.gov (United States)

    Närhi, Marko; Nordström, Katrina

    2005-04-01

    Biopharmaceuticals product development is a broad and multidisciplinary field. Science and technology are combined with new manufacturing, regulatory and commercial challenges. However, although there is ample literature on the molecular biology and biochemistry of products, the implementation of processes from test tube to commercial scale has not received similar attention. Consequently, the present study aims to highlight, from practical point of view, some of the key issues involved with manufacturing technologies of biopharmaceuticals at a commercial scale. Regulatory requirements and investments are also addressed based on the practical experiences of start-up and small companies. Finland is used as a case-example of such companies as this is a EU-member state with strong technological growth and rapidly increasing number of biotech companies.

  10. Process performance and product quality in an integrated continuous antibody production process.

    Science.gov (United States)

    Karst, Daniel J; Steinebach, Fabian; Soos, Miroslav; Morbidelli, Massimo

    2017-02-01

    Continuous manufacturing is currently being seriously considered in the biopharmaceutical industry as the possible new paradigm for producing therapeutic proteins, due to production cost and product quality related benefits. In this study, a monoclonal antibody producing CHO cell line was cultured in perfusion mode and connected to a continuous affinity capture step. The reliable and stable integration of the two systems was enabled by suitable control loops, regulating the continuous volumetric flow and adapting the operating conditions of the capture process. For the latter, an at-line HPLC measurement of the harvest concentration subsequent to the bioreactor was combined with a mechanistic model of the capture chromatographic unit. Thereby, optimal buffer consumption and productivity throughout the process was realized while always maintaining a yield above the target value of 99%. Stable operation was achieved at three consecutive viable cell density set points (20, 60, and 40 × 10 6 cells/mL), together with consistent product quality in terms of aggregates, fragments, charge isoforms, and N-linked glycosylation. In addition, different values for these product quality attributes such as N-linked glycosylation, charge variants, and aggregate content were measured at the different steady states. As expected, the amount of released DNA and HCP was significantly reduced by the capture step for all considered upstream operating conditions. This study is exemplary for the potential of enhancing product quality control and modulation by integrated continuous manufacturing. Biotechnol. Bioeng. 2017;114: 298-307. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Development strategy and process models for phased automation of design and digital manufacturing electronics

    Science.gov (United States)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  12. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Science.gov (United States)

    2010-01-01

    ...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...

  13. Automation of cellular therapy product manufacturing: results of a split validation comparing CD34 selection of peripheral blood stem cell apheresis product with a semi-manual vs. an automatic procedure

    OpenAIRE

    H?mmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard

    2016-01-01

    Background Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+?hematopoietic ?stem? cells (HSCs). Methods As the clinical GMP-compliant autom...

  14. Advanced process monitoring and feedback control to enhance cell culture process production and robustness.

    Science.gov (United States)

    Zhang, An; Tsang, Valerie Liu; Moore, Brandon; Shen, Vivian; Huang, Yao-Ming; Kshirsagar, Rashmi; Ryll, Thomas

    2015-12-01

    It is a common practice in biotherapeutic manufacturing to define a fixed-volume feed strategy for nutrient feeds, based on historical cell demand. However, once the feed volumes are defined, they are inflexible to batch-to-batch variations in cell growth and physiology and can lead to inconsistent productivity and product quality. In an effort to control critical quality attributes and to apply process analytical technology (PAT), a fully automated cell culture feedback control system has been explored in three different applications. The first study illustrates that frequent monitoring and automatically controlling the complex feed based on a surrogate (glutamate) level improved protein production. More importantly, the resulting feed strategy was translated into a manufacturing-friendly manual feed strategy without impact on product quality. The second study demonstrates the improved process robustness of an automated feed strategy based on online bio-capacitance measurements for cell growth. In the third study, glucose and lactate concentrations were measured online and were used to automatically control the glucose feed, which in turn changed lactate metabolism. These studies suggest that the auto-feedback control system has the potential to significantly increase productivity and improve robustness in manufacturing, with the goal of ensuring process performance and product quality consistency. © 2015 Wiley Periodicals, Inc.

  15. A case study on Simulation and Design optimization to improve Productivity in cooling tower manufacturing industry

    Science.gov (United States)

    Pranav Nithin, R.; Gopikrishnan, S.; Sumesh, A.

    2018-02-01

    Cooling towers are the heat transfer devices commonly found in industries which are used to extract the high temperature from the coolants and make it reusable in various plants. Basically, the cooling towers has Fills made of PVC sheets stacked together to increase the surface area exposure of the cooling liquid flowing through it. This paper focuses on the study in such a manufacturing plant where fills are being manufactured. The productivity using the current manufacturing method was only 6 to 8 fills per day, where the ideal capacity was of 14 fills per day. In this plant manual labor was employed in the manufacturing process. A change in the process modification designed and implemented will help the industry to increase the productivity to 14. In this paper, initially the simulation study was done using ARENA the simulation package and later the new design was done using CAD Package and validated using Ansys Mechanical APDL. It’s found that, by the implementation of the safe design the productivity can be increased to 196 Units.

  16. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  17. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A.; Purvis, M. [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1995-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  18. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A; Purvis, M [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1996-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  19. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    Science.gov (United States)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  20. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    Science.gov (United States)

    De Jesus Vega, Marisely

    rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  1. Applications Of Laser Processing For Automotive Manufacturing In Japan

    Science.gov (United States)

    Ito, Masashi; Ueda, Katsuhiko; Takagi, Soya

    1986-11-01

    Recently in Japan, laser processing is increasingly being employed for production, so that laser cutting, laser welding and other laser material processing have begun to be used in various industries. As a result, the number of lasers sold has been increasing year by year in Japan. In the Japanese automotive industry, a number applications have been introduced in laboratories and production lines. In this paper, several current instances of such laser applications will be introduced. In the case of welding, studies have been conducted on applying laser welding to automatic transmission components, in place of electron beam welding. Another example of application, the combination of lasers and robots to form highly flexible manufacturing systems, has been adopted for trimming steel panel and plastic components.

  2. Applications of dimensional micro metrology to the product and process quality control in manufacturing of precision polymer micro components

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2009-01-01

    Precision manufacturing of micro injection moulded (mu IM) components presents challenges in terms of quality control due to the miniaturization of product dimensions and tolerances. This paper addresses product compliance with specifications, focusing on tolerances of dimensions and position on mu...... IM components selected from industrial production. Two systems were analysed: a tactile coordinate measuring machine (CMM) with sub-micrometer uncertainty and an optical CMM allowing fast measurements suitable for in-line quality control. Product quality control capability, measuring uncertainty...... and calibration guidelines are discussed for both systems. Finally, a new approach for the manufacturing of hybrid micro polymer-metal calibrated objects is proposed....

  3. INNOVATIONS AS AN IMPORTANT FACTOR INFLUENCING LABOUR PRODUCTIVITY IN THE MANUFACTURING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Marija Bušelić

    2016-12-01

    Full Text Available Economic science has long recognized labour productivity as an important factor of economic growth. In the uncertain conditions of increasingly fierce and complex competition, it becomes one of the key prerequisites for an adequate response to global challenges. The development of labour productivity has to be observed as a multi-dimensional process including numerous interconnected quantitative and qualitative factors, in particular human factors and technological advancement realized through investments in research and development (innovations. The analysis of labour productivity in the manufacturing industry of the selected countries, Germany and China, is performed in the context of an important influential factor – innovations, and interdependently with the economic growth of the selected countries. The research results and the conducted regression analyses indicate a superiority of German labour productivity in the manufacturing industry, which is strongly affected by considerable investments in research and development. However, the technological convergence of China as the upcoming power is increasingly important, which shows that the gap in labour productivity is decreasing, making developed countries face new challenges posed by globalization. The analysis of the interdependence of economic growth (GDP and labour productivity in the manufacturing industry points to a positive link and the conclusion that the elasticity of the GDP to changes in labour productivity is greater in China than in Germany.

  4. Production Supervision Incorporated With Network Technology-A Solution For Controlling In-Process Inventory

    Directory of Open Access Journals (Sweden)

    Suraj Yadav

    2013-06-01

    Full Text Available In context to the manufacturing management in medium scale production floor, work-in-process (WIP management or the inprocess inventory and control as the inevitable result of the production process has become a vital link of production plan. Due to the growing production requirements and the potential economic benefits of manufacturing process flow, enterprises have been pushed to integrate work-in-process management with their manufacturing process and the larger the company the larger the list of in-process inventory and this all are typically hard to manage so for the same respect the author in this paper has lighted on the integration of sophisticated electronics and networking technologies with the W.I.P with an native and low cost solution for managing the same, specially for the medium scaled company dealing with large number of product or with the customized product with reference to study of present scenario of a multinational company’s plant engineering department.

  5. Technological review of the HRP manufacturing process R and D activity

    International Nuclear Information System (INIS)

    Visca, Eliseo; Pizzuto, A.; Gavila, P.; Riccardi, B.; Roccella, S.; Candura, D.; Sanguinetti, G.P.

    2013-01-01

    performances obtained from a monoblock medium scale mockup. On the base of these results ENEA-ANSALDO participated to the European programme for the qualification of the manufacturing technology to be used for the procurement of the ITER divertor IVT, according to the F4E specifications. A divertor inner vertical target prototype (400 mm total length) with three plasma facing component units, was successfully tested at ITER relevant thermal heat fluxes. Now, ANSALDO and ENEA are ready to face the challenge of the ITER inner vertical target production, transferring to an industrial production line the experience gained in the development, optimization and qualification of the PBC and HRP processes

  6. Technological review of the HRP manufacturing process R and D activity

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Gavila, P.; Riccardi, B. [Fusion For Energy, C. Josep Pla 2, ES-08019 Barcelona (Spain); Roccella, S. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Candura, D.; Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16121 Genova (Italy)

    2013-10-15

    performances obtained from a monoblock medium scale mockup. On the base of these results ENEA-ANSALDO participated to the European programme for the qualification of the manufacturing technology to be used for the procurement of the ITER divertor IVT, according to the F4E specifications. A divertor inner vertical target prototype (400 mm total length) with three plasma facing component units, was successfully tested at ITER relevant thermal heat fluxes. Now, ANSALDO and ENEA are ready to face the challenge of the ITER inner vertical target production, transferring to an industrial production line the experience gained in the development, optimization and qualification of the PBC and HRP processes.

  7. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review

    Directory of Open Access Journals (Sweden)

    Panagiotis Sfakianakis

    2014-03-01

    Full Text Available Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization and further yogurt manufacture (fermentation physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields, and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review.

  8. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review

    Science.gov (United States)

    Sfakianakis, Panagiotis; Tzia, Constatnina

    2014-01-01

    Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review. PMID:28234312

  9. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  10. Knowledge management toboost productivity in manufacturing ...

    African Journals Online (AJOL)

    Knowledge management toboost productivity in manufacturing. ... Journal of Fundamental and Applied Sciences ... The assessment tool is an important factor because knowledge management has a deep relationship with performance ...

  11. Innovation in the product development process and performance of firm

    DEFF Research Database (Denmark)

    Oliveira, Selma R.M.; Alves, Jorge L.; Boer, Harry

    2017-01-01

    This article aims to show the influence of the incorporation of technological innovations based on 3D modeling and additive manufacturing on the performance of firm and value co-creation for client , in the perspective of product development process (PDP), systematized in two phases: elaboration...... that it is possible to combine additive manufacturing techniques and traditional processes of production of components in pewter and the incorporation of other components in composite materials and other metallic alloys, allowing to develop innovative products in very short time frames, with market acceptance...

  12. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  13. 77 FR 16158 - Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs...

    Science.gov (United States)

    2012-03-20

    .... FDA-1997-N-0518] (formerly 97N-0300) Current Good Manufacturing Practice in Manufacturing, Processing... labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS 0 1. The authority citation for 21 CFR part...

  14. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  15. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  16. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    Science.gov (United States)

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  17. Productivity Measurement in Manufacturing and the Expenditure Approach

    DEFF Research Database (Denmark)

    Schjerning, Bertel; Sørensen, Anders

    2008-01-01

    This paper studies conversion factors based on the expenditure approach and evaluates the appropriateness for international comparisons of output levels in manufacturing. We apply a consistency check based on the insight that relative productivity levels should be invariant to the choice of base....... The conclusion is insensitive to the applied method for developing conversion factors. The implication is that we cannot measure relative productivity levels in manufacturing across countries using the expenditure approach....

  18. Risk calculations in the manufacturing technology selection process

    DEFF Research Database (Denmark)

    Farooq, S.; O'Brien, C.

    2010-01-01

    Purpose - The purpose of this paper is to present result obtained from a developed technology selection framework and provide a detailed insight into the risk calculations and their implications in manufacturing technology selection process. Design/methodology/approach - The results illustrated...... in the paper are the outcome of an action research study that was conducted in an aerospace company. Findings - The paper highlights the role of risk calculations in manufacturing technology selection process by elaborating the contribution of risk associated with manufacturing technology alternatives...... in the shape of opportunities and threats in different decision-making environments. Practical implications - The research quantifies the risk associated with different available manufacturing technology alternatives. This quantification of risk crystallises the process of technology selection decision making...

  19. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  20. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  1. Rapid Response Manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  2. 40 CFR Figure E-2 to Subpart E of... - Product Manufacturing Checklist

    Science.gov (United States)

    2010-07-01

    ... Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Product Manufacturing Checklist E...—Product Manufacturing Checklist PRODUCT MANUFACTURING CHECKLIST AuditeeAuditor signatureDate Compliance...

  3. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  4. PowerLight Corporation Lean Manufacturing, PV Manufacturing R&D Phase I Report: 6 December 2001--31 March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, L; Botkin, J.

    2005-06-01

    PowerLight Corporation (PowerLight) has completed Phase I of its PV Manufacturing R&D subcontract, ''PowerGuard Lean Manufacturing,'' Subcontract No. NDO-1-30628-04. The overall technical goal of this project was to reduce the cost of PowerGuard manufacturing while simultaneously improving product quality. This will enable PowerLight to scale up production capacity as the market for PowerGuard continues to grow. Through the introduction of world-class lean manufacturing techniques, PowerLight was to cut out waste in the manufacturing process of PowerGuard. The manufacturing process was to be overhauled with an objective of removing as much as possible those steps that do not add value to the product. Quality of finished goods was also to be improved through the use of statistical process control and error-proofing in the manufacturing process. Factory operations were also to be addressed to streamline those factory activities that support the manufacturing process. This report de tails the progress made toward the above listed goals during the first phase of this subcontract.

  5. Designing Integrated Product- Service System Solutions in Manufacturing Industries

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2015-01-01

    Manufacturing firms are increasingly evolving towards the design of integrated product-service solutions but servitization literature does not provide specific guidance on how to design these integrated solutions. Building upon ProductService System (PSS) and Service Design (SD) approaches...... how it brings new insights to manufacturing companies moving to a service, value cocreation perspective....

  6. Uranium manufacturing process employing the electrolytic reduction method

    International Nuclear Information System (INIS)

    Oda, Yoshio; Kazuhare, Manabu; Morimoto, Takeshi.

    1986-01-01

    The present invention related to a uranium manufacturing process that employs the electrolytic reduction method, but particularly to a uranium manufacturing process that employs an electrolytic reduction method requiring low voltage. The process, in which uranium is obtained by means of the electrolytic method and with uranyl acid as the raw material, is prior art

  7. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  8. Accessibility analysis in manufacturing processes using visibility cones

    Institute of Scientific and Technical Information of China (English)

    尹周平; 丁汉; 熊有伦

    2002-01-01

    Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing processes.After exploring the relations among approachability,accessibility and visibility,a general method for accessibility analysis using visibility cones (VC) is proposed.With the definition of VC of a point,three kinds of visibility of a feature,namely complete visibility cone (CVC),partial visibility cone (PVC) and local visibility cone (LVC),are defined.A novel approach to computing VCs is formulated by identifying C-obstacles in the C-space,for which a general and efficient algorithm is proposed and implemented by making use of visibility culling.Lastly,we discuss briefly how to realize accessibility analysis in numerically controlled (NC) machining planning,coordinate measuring machines (CMMs) inspection planning and assembly sequence planning with the proposed methods.

  9. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.

  10. Integrating ergonomics into the product development process

    DEFF Research Database (Denmark)

    Broberg, Ole

    1997-01-01

    and production engineers regarding information sources in problem solving, communication pattern, perception of ergonomics, motivation and requests to support tools and methods. These differences and the social and organizational contexts of the development process must be taken into account when considering......A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The purpose was to elucidate conditions and strategies for integrating ergonomics into the product development process thereby preventing ergonomic problems at the time...... of manufacture of new products. In reality the product development process is not a rational problem solving process and does not proceed in a sequential manner as decribed in engineering models. Instead it is a complex organizational process involving uncertainties, iterative elements and negotiation between...

  11. Microeconomics of process control in semiconductor manufacturing

    Science.gov (United States)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  12. Use of statistical process control in the production of blood components

    DEFF Research Database (Denmark)

    Magnussen, K.; Quere, S.; Winkel, P.

    2008-01-01

    occasional component manufacturing staff to an experienced regular manufacturing staff. Production of blood products is a semi-automated process in which the manual steps may be difficult to control. This study was performed in an ongoing effort to improve the control and optimize the quality of the blood...

  13. Process chain modeling and selection in an additive manufacturing context

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael

    2016-01-01

    This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....

  14. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)

    2011-07-01

    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  15. Sequencing of Dust Filter Production Process Using Design Structure Matrix (DSM)

    Science.gov (United States)

    Sari, R. M.; Matondang, A. R.; Syahputri, K.; Anizar; Siregar, I.; Rizkya, I.; Ursula, C.

    2018-01-01

    Metal casting company produces machinery spare part for manufactures. One of the product produced is dust filter. Most of palm oil mill used this product. Since it is used in most of palm oil mill, company often have problems to address this product. One of problem is the disordered of production process. It carried out by the job sequencing. The important job that should be solved first, least implement, while less important job and could be completed later, implemented first. Design Structure Matrix (DSM) used to analyse and determine priorities in the production process. DSM analysis is sort of production process through dependency sequencing. The result of dependency sequences shows the sequence process according to the inter-process linkage considering before and after activities. Finally, it demonstrates their activities to the coupled activities for metal smelting, refining, grinding, cutting container castings, metal expenditure of molds, metal casting, coating processes, and manufacture of molds of sand.

  16. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  17. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  18. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  19. CIM [computer-integrated manufacturing]: It all starts with product definition

    International Nuclear Information System (INIS)

    Stephens, A.E.

    1986-01-01

    The logical starting place for computer-integrated manufacturing (CIM) is at the front end of the production process - product definition. It consists of the part/assembly drawings, material lists, specifications, and procedures. Product definition starts at the design agencies: two nuclear design laboratories (Los Alamos National Laboratory and Lawrence Livermore National Laboratory) and a non-nuclear design laboratory (Sandia National Laboratories with two site locations). These laboratories perform the basic part design which is then transferred over a secure communications network to the Oak Ridge Y-12 Plant, where weapon components are produced by Martin Marietta Energy Systems, Inc., under contract with the Department of Energy (DOE). Initial Graphics Exchange Specifications (IGES) and DOE Data Exchange Format (DOEDEF) translation software is used to transfer part designs between dissimilar graphics systems. Product-definition data flow is examined both external and internal to the Y-12 Plant. Software developed specifically to computerize product definition is covered as follows: Electronic File Manager (EFM), Manage Design Documents, Distribute Product Definition, Manage Manufacturing Procedures and Product Specifications. Trident II is the first program to beneficially use CIM technologies plant-wide. Prototype software was written to add a layer of user friendliness through multilayer menu selects to enable access to a number of existing application software packages. Additional software was developed and purchased that enables a single personal computer to meet many needs. These product-definition needs include procedures generation, graphics viewing, and office automation. 3 figs

  20. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  1. Low energy production processes in manufacturing of silicon solar cells

    Science.gov (United States)

    Kirkpatrick, A. R.

    1976-01-01

    Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.

  2. Research on the Governance Mechanism of Aviation Complex Product Manufacturing Supply Chain Based on Dynamic Game Theory

    Directory of Open Access Journals (Sweden)

    Wang Nan

    2016-01-01

    Full Text Available In the manufacturing process of aeronautical complex products, for the following problems: develop long production cycle, a large number of ancillary products, a plurality of participating units, etc, and the status of the frequency of quality problems, using single-phase static game model in the case of asymmetric information, study on Supplier Quality insufficient investment, which resulting in opportunistic behaviour reasons. And using KMRW dynamic game model, we quantitative analysis the mechanism and crucial role of reputation mechanisms to ensure aeronautical complex product manufacturing supply chain and effective operation.

  3. Additive Manufacturing: Multi Material Processing and Part Quality Control

    DEFF Research Database (Denmark)

    Pedersen, David Bue

    This Ph.D dissertation,ffAdditive Manufacturing: Multi Material Processing and Part Quality Controlff, deal with Additive Manufacturing technologies which is a common name for a series of processes that are recognized by being computer controlled, highly automated, and manufacture objects...... by a layered deposition of material. Two areas of particular interest is addressed. They are rooted in two very different areas, yet is intended to fuel the same goal. To help Additive Manufacturing technologies one step closer to becoming the autonomous, digital manufacturing method of tomorrow. Vision...... systems A paradox exist in the field of Additive Manufacturing. The technologies allow for close-to unrestrained and integral geometrical freedom. Almost any geometry can be manufactured fast, e"ciently and cheap. Something that has been missing fundamental capability since the entering of the industrial...

  4. Efficiency of manufacturing processes energy and ecological perspectives

    CERN Document Server

    Li, Wen

    2015-01-01

     This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes.  An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of  manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily co...

  5. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...

  6. In-use product stocks link manufactured capital to natural capital.

    Science.gov (United States)

    Chen, Wei-Qiang; Graedel, T E

    2015-05-19

    In-use stock of a product is the amount of the product in active use. In-use product stocks provide various functions or services on which we rely in our daily work and lives, and the concept of in-use product stock for industrial ecologists is similar to the concept of net manufactured capital stock for economists. This study estimates historical physical in-use stocks of 91 products and 9 product groups and uses monetary data on net capital stocks of 56 products to either approximate or compare with in-use stocks of the corresponding products in the United States. Findings include the following: (i) The development of new products and the buildup of their in-use stocks result in the increase in variety of in-use product stocks and of manufactured capital; (ii) substitution among products providing similar or identical functions reflects the improvement in quality of in-use product stocks and of manufactured capital; and (iii) the historical evolution of stocks of the 156 products or product groups in absolute, per capita, or per-household terms shows that stocks of most products have reached or are approaching an upper limit. Because the buildup, renewal, renovation, maintenance, and operation of in-use product stocks drive the anthropogenic cycles of materials that are used to produce products and that originate from natural capital, the determination of in-use product stocks together with modeling of anthropogenic material cycles provides an analytic perspective on the material linkage between manufactured capital and natural capital.

  7. Supply chain risk management processes for resilience: A study of South African grocery manufacturers

    Directory of Open Access Journals (Sweden)

    Simon Simba

    2017-09-01

    Full Text Available Background: The supply chain risk management (SCRM process is aimed at the implementation of strategies that assist in managing both daily and exceptional risks facing the supply chain through continuous risk assessment to reduce vulnerability and ensure continuity. Purpose: The purpose of the study was to determine whether the SCRM process enables supply chain resilience among grocery manufacturers in South Africa. The fast-moving consumer goods (FMCG-manufacturing industry faces increased risk because of the nature of their products being perishable with a limited shelf life. Method: This study was conducted using a descriptive qualitative research design. Data were collected by means of 12 semi-structured interviews with senior supply chain practitioners within the South African grocery manufacturing industry. Findings: The study found that most firms informally implement SCRM processes of risk identification, assessment, mitigation and monitoring to mitigate disruptions. Furthermore, the findings indicate that the SCRM processes facilitate resilience among grocery manufacturers in South Africa. Conclusion: The managerial implications show that supply chain managers of grocery manufacturers should formalise the SCRM process and develop risk assessment scales to better prioritise risks in order to run a resilient supply chain. The research contributes to the supply chain management field by adding to the scarce literature relating to SCRM as an enabler of supply chain resilience in a South African context.

  8. Big Data Analysis of Manufacturing Processes

    Science.gov (United States)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  9. Big Data Analysis of Manufacturing Processes

    International Nuclear Information System (INIS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-01-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results. (paper)

  10. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  11. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  12. Applying unit process life cycle inventor (UPLCI) methodology in product/packaging combinatons

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Overcash, M.; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This paper discusses how the UPLCI approach can be used for determining the inventory of the manufacturing phases of product/packaging combinations. The UPLCI approach can make the inventory of the manufacturing process of the product that is investigated more accurate. The life cycle of

  13. Process Modelling of Rapid Manufacturing Based Mass Customisation System for Fabrication of Custom Foot Orthoses: Review Paper

    Directory of Open Access Journals (Sweden)

    Saleh Jumani

    2013-04-01

    Full Text Available The need for custom-made devices, rehabilitation aids and treatments is explicit in the medical sector. Applications of rapid manufacturing techniques based on additive fabrication processes combined with medical digitising technologies can generate high quality solutions in situations where the need for custom-made devices and rehabilitation aids and low-lead times are very important factors. Foot orthoses are medical devices applied in the treatment of biomechanical foot disorders, foot injuries and foot diseases including rheumatoid arthritis and diabetes. The significant challenge in the treatment of foot related diseases is progressing pathological deterioration in the affected sites of the foot which requires quick provision of the orthoses. A process model is developed using the IDEF0 modelling technique in which a rapid manufacturing approach is integrated in the design and fabrication process of custom foot orthoses. The process model will be used in the development of rapid manufacturing based design and fabrication system for mass customisation of foot orthoses. The developed system is aimed at mass scale production of custom foot orthoses with the advantages of reduced cost, reduced lead-time and improved product in terms of increased fit, consistency and accuracy in the final product.

  14. Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process

    Directory of Open Access Journals (Sweden)

    Jung W.-G.

    2018-01-01

    Full Text Available In order to promote the recycling of by-product from Si wafer manufacturing process and to develop environment-friend and low cost process for ferrochrome alloy production, a basic study was performed on the preliminary reduction reaction between chromium ore and the Si sludge, comprised of SiC and Si particles, which is recovered from the Si wafer manufacturing process for the semiconductor and solar cell industries. Pellets were first made by mixing chromium ore, Si sludge, and some binders in the designed mixing ratios and were then treated at different temperatures in the 1116°C–1388°C range in an ambient atmosphere. Cordierite and SiO2 were confirmed to be formed in the products after the reduction. Additionally, metal particles were observed in the product with Fe, Cr, and Si components. It is found that temperatures above 1300°C are necessary for the reduction of the chromium ore by the Si sludge. The reduction ratio for Fe was evaluated quantitatively for our experimental conditions, and the proper mixing ratio was suggested for the pre-reduction of the chromium ore by the Si sludge. This study provides basic information for the production of ferrochrome alloys on the pre-reduction of chromium ore using Si sludge.

  15. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manufacturing, processing and..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing and... any change in the manner of processing and distributing, importing (manufacturing), or exporting of...

  16. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  17. Social aspects in additive manufacturing of pharmaceutical products

    DEFF Research Database (Denmark)

    Lind, Johanna Lena Maria; Kälvemark Sporrong, Sofia; Kaae, Susanne

    2016-01-01

    INTRODUCTION: Additive manufacturing (AM) techniques, such as drug printing, represent a new engineering approach that can implement the concept of personalized medicine via on-demand manufacturing of dosage forms with individually adjusted doses. Implementation of AM principles...... will be used for production of on-demand medicine. The impact of such changes in the distribution chain on regulation, healthcare professionals and patients are highlighted. Expert opinion: Drug manufacturing by traditional methods is well-established, but it lacks the possibility for on-demand personalized...

  18. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  19. The process defines the product: what really matters in biosimilar design and production?

    Science.gov (United States)

    Vulto, Arnold G; Jaquez, Orlando A

    2017-08-01

    Biologic drugs are highly complex molecules produced by living cells through a multistep manufacturing process. The key characteristics of these molecules, known as critical quality attributes (CQAs), can vary based on post-translational modifications that occur in the cellular environment or during the manufacturing process. The extent of the variation in each of the CQAs must be characterized for the originator molecule and systematically matched as closely as possible by the biosimilar developer to ensure bio-similarity. The close matching of the originator fingerprint is the foundation of the biosimilarity exercise, as the analytical tools designed to measure differences at the molecular level are far more sensitive and specific than tools available to physicians during clinical trials. Biosimilar development, therefore, has a greater focus on preclinical attributes compared with the development of an original biological agent. As changes in CQAs can occur at different stages of the manufacturing process, even small modifications to the process can alter biosimilar attributes beyond the point of similarity and impact clinical effectiveness and safety. The manufacturer's ability to provide consistent production and quality control will greatly influence the acceptance of biosimilars. To this end, preventing drift from the required specifications over time and avoiding the various implications brought by product shortage will enhance biosimilar integration into daily practice. As most prescribers are not familiar with this new drug development paradigm, educational programmes will be needed so that prescribers see biosimilars as fully equivalent, efficacious and safe medicines when compared with originator products. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  20. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  1. A novel monolithic LEU foil target based on a PVD manufacturing process for 99Mo production via fission.

    Science.gov (United States)

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    99 Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the 99 Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin Z.

    Science.gov (United States)

    Stenland, Christopher J; Lis, Lev G; Schendel, Frederick J; Hahn, Nicholas J; Smart, Mary A; Miller, Amy L; von Keitz, Marc G; Gurvich, Vadim J

    2013-02-15

    A scalable and reliable manufacturing process for Nikkomycin Z HCl on a 170 g scale has been developed and optimized. The process is characterized by a 2.3 g/L fermentation yield, 79% purification yield, and >98% relative purity of the final product. This method is suitable for further scale up and cGMP production. The Streptomyces tendae ΔNikQ strain developed during the course of this study is superior to any previously reported strain in terms of higher yield and purity of Nikkomycin Z.

  3. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  4. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  5. The improvement of the manufacturing process of a company by the Sigma level: the case of the company BAG (Batna

    Directory of Open Access Journals (Sweden)

    Athmane MECHENENE

    2014-06-01

    Full Text Available This modest work aims to evaluate the performance of the manufacturing process of the company by a new measurement tool, namely the sigma level whose purpose is to quantify the costs inherent in each production process, measure the levels of six Sigma in adjacent processes, to achieve weight calculate DPMO (Defects Per Million Opportunity and thus assess the overall competitiveness of the company. This new tool for measuring the performance of the manufacturing process (sigma level is applied to manufacturing gas cylinders (BAG - Batna.

  6. PM - processing for manufacturing of metals with cellular structures

    International Nuclear Information System (INIS)

    Strobl, S.; Danninger, H.

    2001-01-01

    In this review the major Processes about manufacturing of metals with cellular structure are described - based on powder metallurgy, chemical deposition and some other methods (without melting techniques). It can be shown that during the last decade many interesting innovations led to new production methods to design cellular materials. Some of them are used nowadays in industry. Also characterization and properties become more important and have therefore been carried out carefully, because of their strong influence on the functions and applications of such materials. (author)

  7. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications.

    Science.gov (United States)

    Wuchter, Patrick; Bieback, Karen; Schrezenmeier, Hubert; Bornhäuser, Martin; Müller, Lutz P; Bönig, Halvard; Wagner, Wolfgang; Meisel, Roland; Pavel, Petra; Tonn, Torsten; Lang, Peter; Müller, Ingo; Renner, Matthias; Malcherek, Georg; Saffrich, Rainer; Buss, Eike C; Horn, Patrick; Rojewski, Markus; Schmitt, Anita; Ho, Anthony D; Sanzenbacher, Ralf; Schmitt, Michael

    2015-02-01

    Human mesenchymal stem or stromal cells (MSCs) represent a potential resource not only for regenerative medicine but also for immunomodulatory cell therapies. The application of different MSC culture protocols has significantly hampered the comparability of experimental and clinical data from different laboratories and has posed a major obstacle for multicenter clinical trials. Manufacturing of cell products for clinical application in the European Community must be conducted in compliance with Good Manufacturing Practice and requires a manufacturing license. In Germany, the Paul-Ehrlich-Institut as the Federal Authority for Vaccines and Biomedicines is critically involved in the approval process. This report summarizes a consensus meeting between researchers, clinicians and regulatory experts on standard quality requirements for MSC production. The strategy for quality control testing depends on the product's cell composition, the manufacturing process and the indication and target patient population. Important quality criteria in this sense are, among others, the immunophenotype of the cells, composition of the culture medium and the risk for malignant transformation, as well as aging and the immunosuppressive potential of the manufactured MSCs. This position paper intends to provide relevant information to interested parties regarding these criteria to foster the development of scientifically valid and harmonized quality standards and to support approval of MSC-based investigational medicinal products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Image slicer manufacturing: from space application to mass production

    Science.gov (United States)

    Bonneville, Christophe; Cagnat, Jean-François; Laurent, Florence; Prieto, Eric; Ancourt, Gérard

    2004-09-01

    This presentation aims to show technical and industrial inputs to be taking into account for Image Slicer systems design and development for different types of projects from space application to mass production for multi-IFU instruments. Cybernétix has a strong experience of precision optics assembled thanks to molecular adhesion and have already manufactured 6 prototypes of image slicer subsystem (prototypes of NIRSPEC-IFU, IFS for JWST, MUSE ...) in collaboration with the Laboratoire d"Astrophysique de Marseille (LAM) and the Centre de Recherche Astronomique de Lyon (CRAL). After a brief presentation of the principle of manufacturing and assembly, we will focus on the different performances achieved in our prototypes of slicer mirrors, pupil and slit mirrors lines: an accuracy on centre of curvature position better than 15 arsec has been obtained for a stack of 30 slices. The contribution of the slice stacking to this error is lower than 4 arcsec. In spite of very thin surfaces (~ 0.9 x 40 mm for instance), a special process allows to guarantee a surface roughness about 5 nm and very few digs on the slice borders. The WFE of the mini-mirror can also be measured at a stage of the manufacturing. Different environmental tests have shown the withstanding of these assemblies to cryogenic temperature (30 K). Then, we will describe the different solutions (spherical, flat, cylindrical surfaces) and characteristics of an image slicer that can influence difficulties of manufacturing and metrology, cost, schedule and risks with regard to fabrication. Finally, the study of a mass production plan for MUSE (CRAL) composed of 24 Image Slicers of 38 slices, that"s to say 912 slices, will be exposed as an example of what can be do for multi-module instruments.

  9. [Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory].

    Science.gov (United States)

    Cui, Ru; Ma, Yong-Liang

    2013-12-01

    Based on the EPA method T0-11 and 14/15 for measurement of toxic organics in air samples, fast VOCs detector, Summa canister and DNPH absorbent were used to determine the VOCs concentrations and the compositions in the ambient air of the workshops for different processes as well as the emission concentration in the exhaust gas. In all processes that involved VOCs release, concentrations of total VOCs in the workshops were 0.1-0.5 mg x m(-3), 1.5-2.5 mg x m(-3) and 20-200 mg x m(-3) for casting, cutting and painting respectively. Main compositions of VOCs in those workshops were alkanes, eneynes, aromatics, ketones, esters and ethers, totally over 20 different species. The main compositions in painting workshop were aromatics and ketones, among which the concentration of benzene was 0.02-0.34 mg x m(-3), toluene was 0.24-3.35 mg x m(-3), ethyl benzene was 0.04-1.33 mg x m(-3), p-xylene was 0.13-0.96 mg x m(-3), m-xylene was 0.02-1.18 mg x m(-3), acetone was 0.29-15.77 mg x m(-3), 2-butanone was 0.06-22.88 mg x m(-3), cyclohexene was 0.02-25.79 mg x m(-3), and methyl isobutyl ketone was 0-21.29 mg x m(-3). The VOCs emission from painting process was about 14 t x a(-1) for one single manufacturing line, and 840 t x a(-1) for the whole factory. According to the work flows and product processes, the solvent used during painting process was the main source of VOCs emission, and the exhaust gas was the main emission point.

  10. Automation of cellular therapy product manufacturing: results of a split validation comparing CD34 selection of peripheral blood stem cell apheresis product with a semi-manual vs. an automatic procedure.

    Science.gov (United States)

    Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard

    2016-03-16

    Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at

  11. Process improvements for enhanced productivity of PHWR garter springs

    International Nuclear Information System (INIS)

    Srinivasula Reddy, S.; Tonpe, Sunil; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: In Pressurised Heavy Water Reactors (PHWR), Garter springs are used as spacers between the coolant tube and calandria tube. Garter springs are made from Zirconium alloy containing 2.5 % Niobium and 0.5% copper. The springs are basically manufactured by coiling a wire of cross section 1.7 mm x 1.0 mm, which is produced by series of drawing and swaging operations using hot extruded rods of 19 mm diameter. The manufacturing process also involves heat treatment and chemical cleaning operations at appropriate stages. It is required to ensure that the life of springs against parameters like hydrogen pickup, residual stresses and low stiffness is improved at the manufacturing stage itself by improving manufacturing process. The impact of above problems on spring life and process improvements is briefly discussed. The critical factor affecting the garter spring performance in PHWR Reactor is mainly hydrogen. The life limiting factors for garter springs are the problems arising out of high total hydrogen content, which depends on the hydrogen pickup during reactor operation. This phenomenon can happen during the reactor operation, as springs are prone to pick-up hydrogen in the reactor environment. Hence acceptable hydrogen content for the springs is specified as 25 ppm (max.). Garter spring is susceptible to hydrogen pick-up during various production processes, which make material brittle and difficult for fabrication process such as wire drawing and coiling. By studying and optimizing the process parameters of spring manufacturing, the hydrogen pick-up of springs is brought down from 70 ppm to a level of 20 ppm. Garter springs are provided with a hook at each end to enable its assembly to coolant tube in the reactor. The hook portion is very critical in maintaining the integrity of the spring. It is desirable to have the hook portion relieved of all residual stresses. For this purpose manufacturing process has been modified and solutionising was introduced as

  12. MANAGING TRANSITION PROCESSES OF MANUFACTURING CONFIGURATIONS OF GLOBAL OPERATIONS

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2012-01-01

    was reduced as a result of the possibility to exploit the opportunity of low cost of production and to harness cheap resources related benefits by offshoring activities. As a result of offshoring and outsourcing, manufacturing activities kept in-house in western companies have reduced and has led......Exploration and exploitation excellence is one of the ways of satisfying today’s, tomorrow’s and future customers. Bolwijn and Kumpe (1998) explained that efficiency, quality, flexibility, speed and innovativeness are necessary in order to achieve exploration and exploitation excellence. Western...... companies have now started to compete on the basis of value delivered by shifting their market focus from manufacturing to more product-service oriented systems. This is linked to the view that manufacturing companies are becoming more oriented to the use of the product-service offering rather than the pure...

  13. Development of an eco-efficient product/process for the vulcanising industry

    Directory of Open Access Journals (Sweden)

    Becerra, M. B.

    2014-08-01

    Full Text Available This paper presents the development of an eco-efficient product/process, which has improved mechanical properties from the introduction of natural fibres in the EPDM (Ethylene-Propylene-Diene-Terpolymer rubber formulation. The optimisation analysis is made by a fractional factorial design 211-7. Different formulations were evaluated using a multi-response desirability function, with the aim of finding efficient levels for the manufacturing time-cycle, improving the mechanical properties of the product, and reducing the raw material costs. The development of an eco-efficient product/process generates a sustainable alternative to conventional manufacturing.

  14. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    NARCIS (Netherlands)

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  15. Application of Contact Mode AFM to Manufacturing Processes

    Science.gov (United States)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  16. Horizontally Differentiated Store Brands: Production Outsourcing to National Brand Manufacturers

    Directory of Open Access Journals (Sweden)

    Shun Shindo

    2014-01-01

    Full Text Available We study a retailer's strategic decision with regard to outsourcing the production of such types of store brands (SBs to national brand (NB manufacturers. The wholesale price of NB is assumed to be set by the manufacturer, while that of the SB is assumed to be set by the retailer. When a retailer outsources SB production to an NB manufacturer, the NB manufacturer might suffer from cannibalization due to offering both the SB and the NB, implying that a strategic interaction between the retailer and manufacturer is an important issue. Based on this motivation, we mainly focus on the strategy of a dominant retailer in such a situation and investigate it with a game-theoretic approach. We show that the optimal strategy for the SB retailer sensitively depends on the degree of differentiation between the SB and the NB. In particular, if both products are less differentiated, the retailer benefits from offering only the SB, and, in this case, the retailer should offer its wholesale price, after the manufacturer sets the NB wholesale price. Furthermore, it is shown that the optimal strategies of the retailer are socially efficient, if and only if the SB and the NB are sufficiently differentiated.

  17. Productivity improvement: Implementation and analysis of clustering technique in manufacturing of timing gearbox cover

    Directory of Open Access Journals (Sweden)

    Satbir Singh

    2016-04-01

    Full Text Available Productivity is an indicator of efficiency with which resources, both human and material, are transformed into useful services and goods. The vital purpose of the prevailing work was to analyze the factors involved in the improvement of productivity in all its types such as material, capital, labor, machine and total productivity at the plant. This was obtained by decreasing the manufacturing cost per component by reducing its cycle time and increasing the monthly production rate. The experimentation revealed that using proposed processes and improved tooling, monthly production rate has increased by 16.2% due to reduced cycle time, the number of defected components i.e. rejection rate has reduced up to 2%. A reduction of 6.78% in manufacturing cost per component was recorded. Tooling cost has reduced by more than 12%. Saving up to 50% in inspection cost has been recorded due to close dimensional tolerances and high surface finish achieved on components. An increase of 4.84% was recorded in total productivity.

  18. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  19. Economic benefits of metrology in manufacturing

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo; Carmignato, S.

    2016-01-01

    examples from industrial production, in which the added value of metrology in manufacturing is discussed and quantified. Case studies include: general manufacturing, forging, machining, and related metrology. The focus of the paper is on the improved effectiveness of metrology when used at product...... and process design stages, as well as on the improved accuracy and efficiency of manufacturing through better measuring equipment and process chains with integrated metrology for process control.......In streamlined manufacturing systems, the added value of inspection activities is often questioned, and metrology in particular is sometimes considered only as an avoidable expense. Documented quantification of economic benefits of metrology is generally not available. This work presents concrete...

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to a notification from the International Organisation of Vine and Wine (OIV) on casein/caseinate/milk products to be used in the manufacture of wine as clarification processing aids pursuant to Article 6

    DEFF Research Database (Denmark)

    Tetens, Inge

    of the fining agents regarding their content of milk proteins other than casein, the lack of standardisation of the wine manufacturing process, and that no new clinical data have been provided in the present application, the Panel concludes that wines fined with casein/caseinate/milk products may trigger......Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion related to a notification from the International Organisation of Vine and Wine on casein/caseinate/milk products to be used in the manufacture...... refers to new analytical methods developed for the detection of milk allergens in the fining agent and the detection of casein in wine. There were no changes in the wine manufacturing process and no new clinical studies were provided. Taking into account the information provided on the characterisation...

  1. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing

    Science.gov (United States)

    Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger

    2018-04-01

    Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.

  2. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    Energy Technology Data Exchange (ETDEWEB)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  3. The effect of sample grinding procedures after processing on gas production profiles and end-product formation in expander processed barley and peas

    NARCIS (Netherlands)

    Azarfar, A.; Poel, van der A.F.B.; Tamminga, S.

    2007-01-01

    Grinding is a technological process widely applied in the feed manufacturing industry and is a prerequisite for obtaining representative samples for laboratory procedures (e.g. gas production analysis). When feeds are subjected to technological processes other than grinding (e.g. expander

  4. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    Science.gov (United States)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  5. Simulation and Flexibility Analysis of Milk Production Process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    . Such flexible dairy production line can adjust its production pace in manufacturing different products without replacing existing equipment in the production line. In this work, the dairy process simulator is applied to study the flexibility of milk production line. In the same production line, various......In this work, process simulation method is used to simulate pasteurised market milk production line. A commercial process simulation tool - Pro/II from Simulation Science Inc. is used in the simulation work. In the simulation, a new model is used to calculate the thermal property of milk....... In this work, a simulator is obtained for the milk production line. Using the simulator, different milk processing situation can be quantitatively simulated investigated, such as different products production, capacity changes, fat content changes in raw milk, energy cost at different operation conditions etc...

  6. Manufacturing processes of cellular metals. Part I. Liquid route processes

    International Nuclear Information System (INIS)

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2008-01-01

    With its interesting and particular characteristics, cellular metals are taking part of the great family of new materials. They can have open or closed porosity. At the present time, the major challenge for the materials researchers is based in the manufacturing techniques improvement in order to obtain reproducible and reliable cellular metals with quality. In the present paper, the different production methods to manufacture cellular metals by liquid route are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 106 refs

  7. The roles of communication process for an effective lean manufacturing implementation

    OpenAIRE

    Puvanasvaran, Perumal; Megat, Hamdan; Hong, Tang Sai; Razali, Muhamad Mohd.

    2009-01-01

    Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing. This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practice...

  8. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  9. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  10. The impact of lean manufacturing as a factor for improving productive performance

    Directory of Open Access Journals (Sweden)

    Leoni Pentiado Godoy

    2018-06-01

    Full Text Available The main objective of this article is to present the impact that the Lean manufacturing tool can have in a company that does not have management methodology for the Toyota Production System. This work was carried out in an industry that outsources services for the export of the medium-sized leather footwear producers sector located in the industrial pole of RS, Brazil. In the data collection, questions were raised with the managers and collaborators, as well as the researcher’s empirical view on the decisions that were being taken in the productive processes for a period of four months. These data were analyzed using Excel spreadsheets. In the results , the importance of the application of the Lean Manufacturing tools was highlighted , and some suggestions were given to the managers, mainly in relation to the idle capacity of production in several sectors, representing how much more the company could be producing to reach its maximum capacity. The mapping applied identified the adaptation of new machines for better production results, as well as intensifying the mapping of the critical paths that aggregate and do not add value in the productive operating environment.

  11. Manufacturability of Wood Plastic Composite Sheets on the Basis of the Post-Processing Cooling Curve

    Directory of Open Access Journals (Sweden)

    Sami Matthews

    2015-10-01

    Full Text Available Extruded wood-plastic composites (WPCs are increasingly regarded as promising materials for future manufacturing industries. It is necessary to select and tune the post-processing methods to be able to utilize these materials fully. In this development, temperature-related material properties and the cooling rate are important indicators. This paper presents the results of natural cooling in a factory environment fit into a cooling curve function with temperature zones for forming, cutting, and packaging overlaid using a WPC material. This information is then used in the evaluation of manufacturability and productivity in terms of cost effectiveness and technical quality by comparing the curve to actual production time data derived from a prototype post-process forming line. Based on this information, speed limits for extrusion are presented. This paper also briefly analyzes techniques for controlling material cooling to counter the heat loss before post-processing.

  12. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  13. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [ORNL; Gandy, David [Electric Power Research Institute (EPRI); Lannom, Robert [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test valve

  14. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  15. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    OpenAIRE

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  16. Research overview: Advanced Manufacturing in Switzerland

    OpenAIRE

    Schärer, Claudia

    2016-01-01

    SATW is convinced that industrial production methods will see fundamental changes over the coming years. Mastering new production technologies (advanced manufacturing) such as additive manufacturing and industry 4.0 will be vital to keep Swiss production at a competitive level. New additive manufacturing processes such as 3D printing offer revolutionary opportunities and have the potential to replace traditional production methods. Industry 4.0 has seen the definition of a new concept for...

  17. Evaluation by nanoindentation of technological products manufactured by pulse injection molding process

    Directory of Open Access Journals (Sweden)

    Natova Margarita

    2018-01-01

    Full Text Available During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.

  18. Production of recombinant antigens and antibodies in Nicotiana benthamiana using 'magnifection' technology: GMP-compliant facilities for small- and large-scale manufacturing.

    Science.gov (United States)

    Klimyuk, Victor; Pogue, Gregory; Herz, Stefan; Butler, John; Haydon, Hugh

    2014-01-01

    This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.

  19. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Processing Challenges and Opportunities of Camel Dairy Products

    DEFF Research Database (Denmark)

    Berhe, Tesfemariam; Seifu, Eyassu; Ipsen, Richard

    2017-01-01

    A review on the challenges and opportunities of processing camel milk into dairy products is provided with an objective of exploring the challenges of processing and assessing the opportunities for developing functional products from camel milk. The gross composition of camel milk is similar...... to bovine milk. Nonetheless, the relative composition, distribution, and the molecular structure of the milk components are reported to be different. Consequently, manufacturing of camel dairy products such as cheese, yoghurt, or butter using the same technology as for dairy products from bovine milk can...... result in processing difficulties and products of inferior quality. However, scientific evidence points to the possibility of transforming camel milk into products by optimization of the processing parameters. Additionally, camel milk has traditionally been used for its medicinal values and recent...

  1. Analysis of flow coefficient in chair manufacture

    Directory of Open Access Journals (Sweden)

    Ivković Dragoljub

    2005-01-01

    Full Text Available The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely made of sawn timber as the basic material. They belong to the group of export products, so it is especially significant to analyze the duration of the production cycle, and the type and the degree of stoppages in this type of production. Parallel method of production is applied in chair manufacture. The study shows that the value of flow coefficient is close to one or higher, in most cases. The results indicate that the percentage of interoperational stoppage is unjustifiably high, so it is proposed how to decrease the percentage of stoppages in the manufacturing process.

  2. Economic Analysis of Additive Manufacturing Integration in Injection Molding Process Chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    The purpose of this research is to analyze how additive manufacturing can create value when it is utilized as a supportive technology to injection molding by quantifying the cost advantages that can be obtained. Tooling for the product development phase is investigated as pilot integration area...... of additive manufacturing with injection molding. Cost considerations are discussed through the development of a cost estimation model. The study shows that integration of additive manufacturing in the product development phase for fabrication of soft tooling is economically convenient with a cost reduction...... of 79,8% and 89,9%. The cost models on additive manufacturing have been built so far on the idea of substituting injection molding with additive manufacturing. In response to this literature gap, this research addresses the advantages of additive manufacturing utilized in a synergistic rather than...

  3. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  4. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  5. Production of erythrocytes from directly isolated or Delta1 Notch ligand expanded CD34+ hematopoietic progenitor cells: process characterization, monitoring and implications for manufacture.

    Science.gov (United States)

    Glen, Katie E; Workman, Victoria L; Ahmed, Forhad; Ratcliffe, Elizabeth; Stacey, Adrian J; Thomas, Robert J

    2013-09-01

    Economic ex vivo manufacture of erythrocytes at 10(12) cell doses requires an efficiently controlled bio-process capable of extensive proliferation and high terminal density. High-resolution characterization of the process would identify production strategies for increased efficiency, monitoring and control. CD34(+) cord blood cells or equivalent cells that had been pre-expanded for 7 days with Delta1 Notch ligand were placed in erythroid expansion and differentiation conditions in a micro-scale ambr suspension bioreactor. Multiple culture parameters were varied, and phenotype markers and metabolites measured to identify conserved trends and robust monitoring markers. The cells exhibited a bi-modal erythroid differentiation pattern with an erythroid marker peak after 2 weeks and 3 weeks of culture; differentiation was comparatively weighted toward the second peak in Delta1 pre-expanded cells. Both differentiation events were strengthened by omission of stem cell factor and dexamethasone. The cumulative cell proliferation and death, or directly measured CD45 expression, enabled monitoring of proliferative rate of the cells. The metabolic activities of the cultures (glucose, glutamine and ammonia consumption or production) were highly variable but exhibited systematic change synchronized with the change in differentiation state. Erythroid differentiation chronology is partly determined by the heterogeneous CD34(+) progenitor compartment with implications for input control; Delta1 ligand-mediated progenitor culture can alter differentiation profile with control benefits for engineering production strategy. Differentiation correlated changes in cytokine response, markers and metabolic state will enable scientifically designed monitoring and timing of manufacturing process steps. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Design and research on the platform of network manufacture product electronic trading

    Science.gov (United States)

    Zhou, Zude; Liu, Quan; Jiang, Xuemei

    2003-09-01

    With the rapid globalization of market and business, E-trading affects every manufacture enterprise. However, the security of network manufacturing products of transmission on Internet is very important. In this paper we discussed the protocol of fair exchange and platform for network manufacture products E-trading based on fair exchange protocol and digital watermarking techniques. The platform realized reliable and copyright protection.

  7. TORE SUPRA vacuum vessel and shield manufacturing

    International Nuclear Information System (INIS)

    Blateyron, J.; Lepez, R.

    1984-01-01

    TORE SUPRA vacuum vessel and vacuum chamber shield manufacturing in progress at Jeumont-Schneider consists of three main phases: - Detail engineering and manufacturing fixture construction; - Prototype section manufacturing and process preparation; - Construction of the 6 production modules. The welding techniques adopted, call for three special automatic processes: TIG, MIG and PLASMA welding which guarantee mechanical strength, vacuum tightness and absence of distortion. Production of the modules began July 1984. (author)

  8. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    OpenAIRE

    Kukla S.

    2016-01-01

    The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of wor...

  9. 78 FR 4307 - Current Good Manufacturing Practice Requirements for Combination Products

    Science.gov (United States)

    2013-01-22

    ...-2009-N-0435] Current Good Manufacturing Practice Requirements for Combination Products AGENCY: Food and...) is issuing this regulation on the current good manufacturing practice (CGMP) requirements applicable... this subpart? (Sec. 4.2) D. What current good manufacturing practice requirements apply to my...

  10. Raw materials in the manufacture of biotechnology products: regulatory considerations.

    Science.gov (United States)

    Cordoba-Rodriguez, Ruth

    2010-01-01

    The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  12. Process and equipment design optimising product properties and attributes

    NARCIS (Netherlands)

    Bongers, P.M.M.; Thullie, J.

    2009-01-01

    Classically, when products have been developed at the bench, process engineers will search for equipment to manufacture the product at large scale. More than often, this search is constraint to the existing equipment base, or a catalog search for standard equipment. It is then not surprising, that

  13. Services trade restrictiveness and manufacturing productivity : the role of institutions

    OpenAIRE

    BEVERELLI, Cosimo; FIORINI, Matteo; HOEKMAN, Bernard M.

    2015-01-01

    We study the effect of services trade restrictiveness on manufacturing productivity for a broad cross-section of countries at different stages of economic development. Decreasing services trade restrictiveness has a positive indirect impact on the manufacturing sectors that use services as intermediate inputs in production. We identify a critical role of local institutions in shaping this effect: countries with high institutional capacity benefit the most from services trade policy reforms in...

  14. Simulation modeling for quality and productivity in steel cord manufacturing

    OpenAIRE

    Türkseven, Can Hulusi; Turkseven, Can Hulusi; Ertek, Gürdal; Ertek, Gurdal

    2003-01-01

    We describe the application of simulation modeling to estimate and improve quality and productivity performance of a steel cord manufacturing system. We describe the typical steel cord manufacturing plant, emphasize its distinguishing characteristics, identify various production settings and discuss applicability of simulation as a management decision support tool. Besides presenting the general structure of the developed simulation model, we focus on wire fractures, which can be an important...

  15. Computational manufacturing as a bridge between design and production.

    Science.gov (United States)

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  16. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Codinach, Margarita; Blanco, Margarita; Ortega, Isabel; Lloret, Mireia; Reales, Laura; Coca, Maria Isabel; Torrents, Sílvia; Doral, Manel; Oliver-Vila, Irene; Requena-Montero, Miriam; Vives, Joaquim; Garcia-López, Joan

    2016-09-01

    Multipotent mesenchymal stromal cells (MSC) have achieved a notable prominence in the field of regenerative medicine, despite the lack of common standards in the production processes and suitable quality controls compatible with Good Manufacturing Practice (GMP). Herein we describe the design of a bioprocess for bone marrow (BM)-derived MSC isolation and expansion, its validation and production of 48 consecutive batches for clinical use. BM samples were collected from the iliac crest of patients for autologous therapy. Manufacturing procedures included: (i) isolation of nucleated cells (NC) by automated density-gradient centrifugation and plating; (ii) trypsinization and expansion of secondary cultures; and (iii) harvest and formulation of a suspension containing 40 ± 10 × 10(6) viable cells. Quality controls were defined as: (i) cell count and viability assessment; (ii) immunophenotype; and (iii) sterility tests, Mycoplasma detection, endotoxin test and Gram staining. A 3-week manufacturing bioprocess was first designed and then validated in 3 consecutive mock productions, prior to producing 48 batches of BM-MSC for clinical use. Validation included the assessment of MSC identity and genetic stability. Regarding production, 139.0 ± 17.8 mL of BM containing 2.53 ± 0.92 × 10(9) viable NC were used as starting material, yielding 38.8 ± 5.3 × 10(6) viable cells in the final product. Surface antigen expression was consistent with the expected phenotype for MSC, displaying high levels of CD73, CD90 and CD105, lack of expression of CD31 and CD45 and low levels of HLA-DR. Tests for sterility, Mycoplasma, Gram staining and endotoxin had negative results in all cases. Herein we demonstrated the establishment of a feasible, consistent and reproducible bioprocess for the production of safe BM-derived MSC for clinical use. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    Science.gov (United States)

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  18. Modular manufacturing processes : Status, challenges, and opportunities

    NARCIS (Netherlands)

    Baldea, Michael; Edgar, Thomas F.; Stanley, Bill L.; Kiss, Anton A.

    2017-01-01

    Chemical companies are constantly seeking new, high-margin growth opportunities, the majority of which lie in high-grade, specialty chemicals, rather than in the bulk sector. To realize these opportunities, manufacturers are increasingly considering decentralized, flexible production facilities:

  19. Implementation of lean manufacturing for frozen fish process at PT. XYZ

    Science.gov (United States)

    Setiyawan, D. T.; Pertiwijaya, H. R.; Effendi, U.

    2018-03-01

    PT. XYZ is a company specialized in the processing of fishery products particularly in frozen fish fillet. The purpose of this research was to identify the type of waste and determine the recommendations of minimizing waste Lean manufacturing approach was used in the identification of waste by describing the Value Stream Mapping (VSM) and selecting tools in the Value Stream Analysis Tools (VALSAT). The results of this research showed that the highest waste that generated was the defect of leak packaging on fillet products with an average of 1.21%. In addition to defect, other insufficiencies were found such as: unnecessary motion, unnecessary overhead, and waiting time. Recommendations for improvements that given include reduction of time at several stages of the process, making production schedules, and conducting regular machine maintenance. VSM analysis shows reduced lead time of 582.04 minutes to 572.01 minutes.

  20. Survey of the US materials processing and manufacturing in space program

    Science.gov (United States)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  1. Hot forming and quenching pilot process development for low cost and low environmental impact manufacturing.

    Science.gov (United States)

    Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja

    2017-09-01

    The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.

  2. A Systematic Approach to Quality Oriented Product Sequencing for Multistage Manufacturing Systems

    OpenAIRE

    Zhang, Faping; Butt, Shahid Ikramullah

    2016-01-01

    Product sequencing is one way to reduce cost and improve product quality for multistage manufacturing systems (MMS). However, systematically evaluating the influence of product sequence on quality performance for MMS is still a challenge. By considering the rate of incoming conforming product, manufacturing system quality transition between batch to batch, and quality propagation along stages, this paper investigates the appropriate batch policies and product sequencing for MMS so that satisf...

  3. A risk analysis for production processes with disposable bioreactors.

    Science.gov (United States)

    Merseburger, Tobias; Pahl, Ina; Müller, Daniel; Tanner, Markus

    2014-01-01

    : Quality management systems are, as a rule, tightly defined systems that conserve existing processes and therefore guarantee compliance with quality standards. But maintaining quality also includes introducing new enhanced production methods and making use of the latest findings of bioscience. The advances in biotechnology and single-use manufacturing methods for producing new drugs especially impose new challenges on quality management, as quality standards have not yet been set. New methods to ensure patient safety have to be established, as it is insufficient to rely only on current rules. A concept of qualification, validation, and manufacturing procedures based on risk management needs to be established and realized in pharmaceutical production. The chapter starts with an introduction to the regulatory background of the manufacture of medicinal products. It then continues with key methods of risk management. Hazards associated with the production of medicinal products with single-use equipment are described with a focus on bioreactors, storage containers, and connecting devices. The hazards are subsequently evaluated and criteria for risk evaluation are presented. This chapter concludes with aspects of industrial application of quality risk management.

  4. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics.

    Science.gov (United States)

    Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter; Malmsten, Martin; Rantanen, Jukka; Bohr, Adam

    2018-04-05

    Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Process chains for the manufacturing of moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    process chains for the manufacturing of MIDs. This paper presents a comparison among the MID manufacturing process chains, and it presents experimental results based on two of the most industrially adapted processes. Experiments with two-component (2k) injection molding and subsequent selective......) process show that the success of the process is heavily dependant on the choice of material. It presents how the surface topographies are varied as a function of laser type and material choice. The amount of seed metal particles in the plastic material is a crucial factor that controls laser...

  6. Method for matching customer and manufacturer positions for metal product parameters standardization

    Science.gov (United States)

    Polyakova, Marina; Rubin, Gennadij; Danilova, Yulija

    2018-04-01

    Decision making is the main stage of regulation the relations between customer and manufacturer during the design the demands of norms in standards. It is necessary to match the positions of the negotiating sides in order to gain the consensus. In order to take into consideration the differences of customer and manufacturer estimation of the object under standardization process it is obvious to use special methods of analysis. It is proposed to establish relationships between product properties and its functions using functional-target analysis. The special feature of this type of functional analysis is the consideration of the research object functions and properties. It is shown on the example of hexagonal head crew the possibility to establish links between its functions and properties. Such approach allows obtaining a quantitative assessment of the closeness the positions of customer and manufacturer at decision making during the standard norms establishment.

  7. Problems and Instruments of Product and Technological Diversification of Manufacturing

    Directory of Open Access Journals (Sweden)

    Kuzmin Oleg Ye.

    2015-03-01

    Full Text Available The purpose of the article involves identification of objectives and development of instruments for product and technological diversification aimed at updating the range of products and introducing innovative technologies, which will ensure a high level of competitiveness and create preconditions for steady development of the enterprise. As a result of studying the literary sources the objectives and instruments for development of enterprises by means of product and technological diversification have been defined. The article suggests effective instruments of product and technological diversification of manufacturing, namely: the model of expansion of the product range, multi-criteria model of optimization of the product range, a modified model of Kantorovich-Koopmans for implementing new production technologies with set limits on the product output. Further research relate to formation of instruments for manufacturing diversification by means of introducing new types of production.

  8. Towards Knowledge Management for Smart Manufacturing.

    Science.gov (United States)

    Feng, Shaw C; Bernstein, William Z; Hedberg, Thomas; Feeney, Allison Barnard

    2017-09-01

    The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

  9. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  10. Application of Nanotechnology in the Manufacturing Sector: A Review

    African Journals Online (AJOL)

    This review of the manufacturing processes in the evolving field of nanotechnology describes the production of nanomaterials by the modification of conventional production techniques. A number of the manufacturing techniques for nanomaterials production and the challenges in the adaptation of the processes to enable ...

  11. Technology for the product and process data base

    Science.gov (United States)

    Barnes, R. D.

    1984-01-01

    The computerized product and process data base is increasingly recognized to be the cornerstone component of an overall system aimed at the integrated automation of the industrial processes of a given company or enterprise. The technology needed to support these more effective computer integrated design and manufacturing methods, especially the concept of 3-D computer-sensible product definitions rather than engineering drawings, is not fully available and rationalized. Progress is being made, however, in bridging this technology gap with concentration on the modeling of sophisticated information and data structures, high-performance interactive user interfaces and comprehensive tools for managing the resulting computerized product definition and process data base.

  12. Relationship Between Lean Production and Operational Performance in the Manufacturing Industry

    Science.gov (United States)

    Rasi, Raja Zuraidah R. M.; Syamsyul Rakiman, Umol; Ahmad, Md Fauzi Bin

    2015-05-01

    Nowadays, more and more manufacturing firms have started to implement lean production system in their operations. Lean production viewed as one of the mechanism to maintain the organisation's position and to compete globally. However, many fail to apply the lean concepts successfully in their operations. Based on previous studies, implementation of lean production in the manufacturing industry is more focused on the relationship between Lean and Operational Performance of one dimension only. Therefore, this study attempted to examine the relationship between Lean Production (LP) and Operational Performance in 4 dimensions which are quality, delivery, cost and flexibility. This study employed quantitative study using questionnaires. Data was collected from 50 manufacturing industries. The data was analysed using Statistical Package for Social Science (SPSS) 22.0. This study is hoped to shed new understanding on the concept of Lean Production (LP) in regards of Operational Performance covering the 4 dimensions.

  13. Design for manufacturing and assembly key performance indicators to support high-speed product development

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Juel Jespersen, Ida Kirstine; Kjærgaard, Thomas

    2018-01-01

    Design for Manufacturing and Assembly (DfMA) has great potential for minimizing late engineering changes (ECs) that impede high-speed product development and delay time-to-profit. However, our understanding of DfMA and its implementation in industry is still incomplete. This paper presents...... an industrial case study on late ECs in high-speed product development and compares the results to other examples from the literature. It then proposes a framework with sets of key performance indicators (KPIs) to measure and improve producability and product quality throughout the product development process....

  14. CUSTOMIZED PRODUCTS: THE INTEGRATING RELATIONSHIP MARKETING, AGILE MANUFACTURING AND SUPPLY CHAIN MANAGEMENT FOR MASS CUSTOMIZATION

    OpenAIRE

    Süleyman BARUTCU

    2007-01-01

    A customized product is a special product designed and manufactured for individual customers to meet their individual needs. Managers need to understand why customers demand and how companies supply customized products. The importance of this study is to highlight business, marketing and manufacturing strategies so as to supply customized products efficiently. It is expected from a manufacturer to successfully adopt relationship marketing, mass customization, agile manufacturing and supply ch...

  15. Failure Mode and Effect Analysis (FMEA for confectionery manufacturing in developing countries: Turkish delight production as a case study

    Directory of Open Access Journals (Sweden)

    Sibel Ozilgen

    2012-09-01

    Full Text Available The Failure Mode and Effect Analysis (FMEA was applied for risk assessment of confectionary manufacturing, in whichthe traditional methods and equipment were intensively used in the production. Potential failure modes and effects as well as their possible causes were identified in the process flow. Processing stages that involve intensive handling of food by workers had the highest risk priority numbers (RPN = 216 and 189, followed by chemical contamination risks in different stages of the process. The application of corrective actions substantially reduced the RPN (risk priority number values. Therefore, the implementation of FMEA (The Failure Mode and Effect Analysis model in confectionary manufacturing improved the safety and quality of the final products.

  16. Electropulsing to assist conventional manufacturing processes

    OpenAIRE

    Sánchez Egea, Antonio José

    2016-01-01

    This thesis presents a study on the variation of the mechanical properties of some materials. These variations are registered for processes as bottom bending, wire drawing or round turning, which are performed under high density electropulses. This research implied the study of several issues related to the manufacturing processes and the electric pulses. For example, some isolated systems are developed for each process. This is required for protecting the monitoring devices and machinery fro...

  17. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  18. Manufacturing of Zirconium products at Chepetsky Mechanical Plant, Stock Company. Prospects of development and products quality assurance

    International Nuclear Information System (INIS)

    Vergazov, K.; Shtuza, M.; Lozitsky, S.; Kutyavin, A.

    2015-01-01

    The report described all the steps required to fabricate zirconium components, starting from the procurement of feed material up to rolling of sheets, tubes, bars and manufacture of the applicable parts required to manufacture fuel assemblies. Automated state-of-the-art equipment used for advanced productivity, as well as various installations able to perform numerous inspection steps to assure quality of the manufactured products was showcased. The challenges to be addressed in the nearest future were also presented

  19. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  20. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    Science.gov (United States)

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  1. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    Science.gov (United States)

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  2. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  3. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  4. Peer production on the Internet as an example of global disintegration of production process

    OpenAIRE

    Slawomir Czetwertynski

    2012-01-01

    The article is an attempt to explain the reason for participation in peer production in the context of decentralization of production process. There are two maintheses. The first is that the motivations of participants in production are the same as motivation for gainful employment. Although in the case of the partnership production model bypasses the medium of money, because the participants do not receive payment for manufactured products. The second argument indicates the need for the disi...

  5. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  6. Additive manufacturing: state-of-the-art and application framework

    Directory of Open Access Journals (Sweden)

    Vinícius Picanço Rodrigues

    2017-09-01

    Full Text Available Additive manufacturing encompasses a class of production processes with increasing applications in different areas and supply chains. Due to its flexibility for production in small batches and the versatility of materials and geometries, this technology is recognized as being capable of revolutionizing the production processes as well as changing production strategies that are currently employed. However, there are different technologies under the generic label of additive manufacturing, materials and application areas with different requirements. Given the growing importance of additive manufacturing as a production process, and also considering the need to have a better insight into the potential applications for driving research and development efforts, this article presents a proposal of organization for additive manufacturing applications in seven areas. Additionally, the article provides a panorama of the current development stage of this technology, with a review of its major technological variants. The results presented aim to serve as a basis to support driving initiatives in additive manufacturing in companies, development agencies and research institutions.

  7. Advances in ingredient and processing systems for meat and meat products.

    Science.gov (United States)

    Weiss, Jochen; Gibis, Monika; Schuh, Valerie; Salminen, Hanna

    2010-09-01

    Changes in consumer demand of meat products as well as increased global competition are causing an unprecedented spur in processing and ingredient system developments within the meat manufacturing sector. Consumers demand healthier meat products that are low in salt, fat, cholesterol, nitrites and calories in general and contain in addition health-promoting bioactive components such as for example carotenoids, unsaturated fatty acids, sterols, and fibers. On the other hand, consumers expect these novel meat products with altered formulations to taste, look and smell the same way as their traditionally formulated and processed counterparts. At the same time, competition is forcing the meat processing industry to use the increasingly expensive raw material "meat" more efficiently and produce products at lower costs. With these changes in mind, this article presents a review of novel ingredient systems and processing approaches that are emerging to create high quality, affordable meat products not only in batch mode but also in large-scale continuous processes. Fat replacers, fat profile modification and cholesterol reduction techniques, new texture modifiers and alternative antioxidant and antimicrobial systems are being discussed. Modern processing equipment to establish continuously operating product manufacturing lines and that allow new meat product structures to be created and novel ingredients to be effectively utilized including vacuum fillers, grinders and fine dispersers, and slicers is reviewed in the context of structure creation in meat products. Finally, trends in future developments of ingredient and processing systems for meat products are highlighted.

  8. Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE).

    Science.gov (United States)

    Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj

    2015-01-01

    Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.

  9. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  10. All-Embracing Manufacturing Roadmap System

    CERN Document Server

    Halevi, Gideon

    2012-01-01

    All-embracing manufacturing is a system that aims to dissolve the complexity of the manufacturing process and restore the inherent simplicity. It claims that production is very simple and flexible by nature. However, the complexity is a result of the production system approach which makes it rigid and therefore complex. All-embracing manufacturing introduces flexibility to production planning, it eliminates constraints, bottlenecks, and disruptions automatically while it restores the simplicity. No decision is made ahead of time, but only at the time of execution. It introduces technology as dominant part of manufacturing. It is a computer oriented system that imitates human behavior i.e. practically as any of us behave in daily personal life.

  11. Design process optimization, virtual prototyping of manufacturing, and foundry-portable DFM (Invited Paper)

    Science.gov (United States)

    Hogan, James; Progler, Christopher; Chatila, Ahmad; Bruggeman, Bert; Heins, Mitchell; Pack, Robert; Boksha, Victor

    2005-05-01

    We consider modern design for manufacturing (DFM) as a manifestation of IC industry re-integration and intensive cost management dynamics. In that regard DFM is somewhat different from so-called design for yield (DFY) which essentially focuses on productivity (yield) management (that is not to say that DFM and DFY do not have significant overlaps and interactions). We clearly see the shaping of a new "full-chip DFM" infrastructure on the background of the "back to basics" design-manufacturing re-integration dynamics. In the presented work we are focusing on required DFM-efficiencies in a "foundry-fabless" link. Concepts of "virtual prototyping of manufacturing", "design process optimization", and "foundry-portable DFM" models are explored. Both senior management of the industry and leading design groups finally realize the need for a radical change of design styles. Some of the DFM super-goals are to isolate designers from process details and to make designs foundry portable. It requires qualification of designs at different foundries. In their turn, foundries specified and are implementing a set of DFM rules: "action-required", "recommended", and "guidelines" while asking designers to provide netlist and testing information. Also, we observe strong signs of innovation coming back to the mask industry. Powerful solutions are emerging and shaping up toward mask-centered IP as a business. While it seems that pure-play foundries have found their place for now in the "IDM+" model (supporting manufacturing capacity of IDMs) it is not obvious how sustainable the model is. Wafer as a production unit is not sufficient anymore; foundries are being asked by large customers to price products in terms of good die. It brings back the notion of the old ASIC business model where the foundry is responsible for dealing with both random and systematic yield issues for a given design. One scenario of future development would be that some of the leading foundries might eventually

  12. Good manufacturing practices for medicinal products for human use.

    Science.gov (United States)

    Gouveia, Bruno G; Rijo, Patrícia; Gonçalo, Tânia S; Reis, Catarina P

    2015-01-01

    At international and national levels, there are public and private organizations, institutions and regulatory authorities, who work and cooperate between them and with Pharmaceutical Industry, in order to achieve a consensus of the guidelines and laws of the manufacturing of medicinal products for human use. This article includes an explanation of how operate and cooperate these participants, between them and expose the current regulations, following the line of European Community/European Economic Area, referencing, wherever appropriate, the practiced guidelines, outside of regulatory action of space mentioned. In this way, it is intended to achieve quality, security and effectiveness exceptional levels in the manufacturing of health products. Good Manufacturing Practice aim the promotion of the human health and consequently, to the improvement of quality of life. For achieve the proposed objectives, it is necessary to ensure the applicability of the presented concepts and show the benefits arising from this applicability.

  13. Good manufacturing practices for medicinal products for human use

    Science.gov (United States)

    Gouveia, Bruno G.; Rijo, Patrícia; Gonçalo, Tânia S.; Reis, Catarina P.

    2015-01-01

    At international and national levels, there are public and private organizations, institutions and regulatory authorities, who work and cooperate between them and with Pharmaceutical Industry, in order to achieve a consensus of the guidelines and laws of the manufacturing of medicinal products for human use. This article includes an explanation of how operate and cooperate these participants, between them and expose the current regulations, following the line of European Community/European Economic Area, referencing, wherever appropriate, the practiced guidelines, outside of regulatory action of space mentioned. In this way, it is intended to achieve quality, security and effectiveness exceptional levels in the manufacturing of health products. Good Manufacturing Practice aim the promotion of the human health and consequently, to the improvement of quality of life. For achieve the proposed objectives, it is necessary to ensure the applicability of the presented concepts and show the benefits arising from this applicability. PMID:25883511

  14. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives.

    Science.gov (United States)

    Singh, Nripen; Arunkumar, Abhiram; Chollangi, Srinivas; Tan, Zhijun George; Borys, Michael; Li, Zheng Jian

    2016-04-01

    Considerable progress has been made increasing productivity of cell cultures to meet the rapidly growing demand for antibody biopharmaceuticals through increased cell densities and longer culture times. This in turn has dramatically increased the burden of process and product related impurities on the purification processes. In addition, current trends in the biopharmaceutical industry point toward both increased productivity and targeting smaller patient populations for new indications. Taken together, these developments are driving the industry to explore alternative separation technologies as a future manufacturing strategy. Clarification technologies well established in other industries, such as flocculation and precipitation are increasingly considered as a viable solution to address this bottleneck in antibody processes. However, several technical issues need to be fully addressed including suitability as a platform application, robustness, process cost, toxicity, and clearance. This review will focus on recent efforts to incorporate new generation clarification technologies for mammalian cell cultures producing monoclonal antibodies as well as challenges to their implementation supported by a case study. © 2015 Wiley Periodicals, Inc.

  15. An analytical hierarchy process and fuzzy inference system tsukamoto for production planning: a review and conceptual research

    Directory of Open Access Journals (Sweden)

    Abdul Talib Bon

    2015-03-01

    Full Text Available Production planning is an area that is very important on the corporate strategy-level decision-making, especially in the manufacturing companies. The problems that often arise in the production planning are the factors that affect the decline of production and uncertainty that often complicate the decision-making in the production process. These factors are derived from the company’s internal and external factors. The purpose of this study is to introduce the Analytical Hierarchy Process as an effective method that can help to determine the priority of the production factors, so as to facilitate and accelerate decision-making. Other than the AHP methods, this paper will introduce the Tsukamoto Fuzzy Inference System as a method that can help to determine how much product to be manufactured by the company using the variables in the form of fuzzy numbers. These methods hopefully can assist in a better decision making process in the production process and manufacturing generally.

  16. Training for successful lean manufacturing implementation

    OpenAIRE

    Ichimura, Maki; Jahankhani, Hamid; Arunachalam, Subramaniam

    2006-01-01

    Implementing lean manufacturing is a complex and everlasting task. The workers involving in production processes are the pivot of the lean manufacturing implementation. Training is known as a vehicle to assist the implementation process. Despite awareness of the training importance, so far, a little is available to assist to organise an efficient training. This paper summarises the overview of lean manufacturing and discuss the importance of human resource within lean implementation process. ...

  17. Energy use in the food manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-01-01

    A survey was conducted to find the level of energy consumption in the food manufacturing industry, which is the food processing industry excluding meat, dairy, and brewing. Data were used from 74 factories. The manufacturing industry was divided into 14 industry groups and the 4 major energy consumers were found to be fruit and vegetable processing, sugar refining, animal feed production, and bread and pastry baking. The present report summarizes results from the survey. It determined the following: the sources of energy used by the insu industry and the annual consumption of each energy form; the consumption of fuel and electricity in the production of the various manufactured food products; the minimum practical energy requirement for processing the various food products; and the potential for conservation and the methods for achieving savings.

  18. Selection of Technology in Global Manufacturing Industries

    DEFF Research Database (Denmark)

    Bruun, Peter

    1997-01-01

    not work well. The host country's business and cultural environment must be taken into account in designing a production system which requires attention to the management elements of technology transfer. This paper presents a model for transfer of manufacturing technology to a foreign site based......Transferring a manufacturing system to another country has proven to be problematic for most multinational firms. Selection of the appropriate production process and technology is a critical decision as transplantation of an existing system from another country without adaptation usually does...... on a sociotechnical system approach. It views the decisions for selecting and implementing a production system as a five stage process. The first step is determining the strategic goals of the foreign plant followed by selection of the production process and manufacturing system types. The last stages involve...

  19. Human factors in agile manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, C.

    1995-03-01

    As industries position themselves for the competitive markets of today, and the increasingly competitive global markets of the 21st century, agility, or the ability to rapidly develop and produce new products, represents a common trend. Agility manifests itself in many different forms, with the agile manufacturing paradigm proposed by the Iacocca Institute offering a generally accepted, long-term vision. In its many forms, common elements of agility or agile manufacturing include: changes in business, engineering and production practices, seamless information flow from design through production, integration of computer and information technologies into all facets of the product development and production process, application of communications technologies to enable collaborative work between geographically dispersed product development team members and introduction of flexible automation of production processes. Industry has rarely experienced as dramatic an infusion of new technologies or as extensive a change in culture and work practices. Human factors will not only play a vital role in accomplishing the technical and social objectives of agile manufacturing. but has an opportunity to participate in shaping the evolution of industry paradigms for the 21st century.

  20. [Pharmaceutical product quality control and good manufacturing practices].

    Science.gov (United States)

    Hiyama, Yukio

    2010-01-01

    This report describes the roles of Good Manufacturing Practices (GMP) in pharmaceutical product quality control. There are three keys to pharmaceutical product quality control. They are specifications, thorough product characterization during development, and adherence to GMP as the ICH Q6A guideline on specifications provides the most important principles in its background section. Impacts of the revised Pharmaceutical Affairs Law (rPAL) which became effective in 2005 on product quality control are discussed. Progress of ICH discussion for Pharmaceutical Development (Q8), Quality Risk Management (Q9) and Pharmaceutical Quality System (Q10) are reviewed. In order to reconstruct GMP guidelines and GMP inspection system in the regulatory agencies under the new paradigm by rPAL and the ICH, a series of Health Science studies were conducted. For GMP guidelines, product GMP guideline, technology transfer guideline, laboratory control guideline and change control system guideline were written. For the GMP inspection system, inspection check list, inspection memo and inspection scenario were proposed also by the Health Science study groups. Because pharmaceutical products and their raw materials are manufactured and distributed internationally, collaborations with other national authorities are highly desired. In order to enhance the international collaborations, consistent establishment of GMP inspection quality system throughout Japan will be essential.

  1. PROVIDING RELIABILITY OF HUMAN RESOURCES IN PRODUCTION MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Anna MAZUR

    2014-07-01

    Full Text Available People are the most valuable asset of an organization and the results of a company mostly depends on them. The human factor can also be a weak link in the company and cause of the high risk for many of the processes. Reliability of the human factor in the process of the manufacturing process will depend on many factors. The authors include aspects of human error, safety culture, knowledge, communication skills, teamwork and leadership role in the developed model of reliability of human resources in the management of the production process. Based on the case study and the results of research and observation of the author present risk areas defined in a specific manufacturing process and the results of evaluation of the reliability of human resources in the process.

  2. The Selection of Materials for Roller Chains From The Perspective Of Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Rahmat Saptono

    2010-10-01

    Full Text Available The selection of materials for an engineering component is not only requested by its design function and shape, but also the sequence through which it is manufactured. The manufacturing operation of roller chains involves drawing and trimming processes aimed at producing semi-finished chain drives component with a well-standardized dimension. In addition to final combination of properties required by design constraints, the ability of materials to be formed into a desired shape and geometry without failure is also critical. The objective of materials selection should therefore involve additional attributes that are not typically  accommodated by the standard procedure of materials selection. The present paper deals with the selection of materials for roller chains from the perspective of manufacturing process. Ears and un-uniform wall thickness have been identified as a key problem in the mass production of component. Provided all process parameters were established, the  anisotropy factor of materials is critical. Simulative test can be reasonably used to obtain material performance indices that can be added up to the standard procedure of material selection. Of three commercially available steel grades evaluated with regard to the criteria defined, one grade is more suitable for the present objective.

  3. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    Science.gov (United States)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  4. Control of three different continuous pharmaceutical manufacturing processes: Use of soft sensors.

    Science.gov (United States)

    Rehrl, Jakob; Karttunen, Anssi-Pekka; Nicolaï, Niels; Hörmann, Theresa; Horn, Martin; Korhonen, Ossi; Nopens, Ingmar; De Beer, Thomas; Khinast, Johannes G

    2018-05-30

    One major advantage of continuous pharmaceutical manufacturing over traditional batch manufacturing is the possibility of enhanced in-process control, reducing out-of-specification and waste material by appropriate discharge strategies. The decision on material discharge can be based on the measurement of active pharmaceutical ingredient (API) concentration at specific locations in the production line via process analytic technology (PAT), e.g. near-infrared (NIR) spectrometers. The implementation of the PAT instruments is associated with monetary investment and the long term operation requires techniques avoiding sensor drifts. Therefore, our paper proposes a soft sensor approach for predicting the API concentration from the feeder data. In addition, this information can be used to detect sensor drift, or serve as a replacement/supplement of specific PAT equipment. The paper presents the experimental determination of the residence time distribution of selected unit operations in three different continuous processing lines (hot melt extrusion, direct compaction, wet granulation). The mathematical models describing the soft sensor are developed and parameterized. Finally, the suggested soft sensor approach is validated on the three mentioned, different continuous processing lines, demonstrating its versatility. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    Science.gov (United States)

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.

  6. Future supply chains enabled by continuous processing--opportunities and challenges. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The significant opportunities to moving to a supply chain flow-through operating model, with substantial opportunities in inventory reduction, lead-time to patient, and radically different product assurance/stability regimes. Scenarios for decentralized production models producing a greater variety of products with enhanced volume flexibility. Production, supply, and value chain footprints that are radically different from today's monolithic and centralized batch manufacturing operations. Clinical trial and drug product development cost savings that support more rapid scale-up and market entry models with early involvement of SC designers within New Product Development. The major supply chain and industrial transformational challenges that need to be addressed. The paper recognizes that although current batch operational

  7. 16 CFR 1205.35 - Product certification and labeling by manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Product certification and labeling by manufacturers. 1205.35 Section 1205.35 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS Certification § 1205.35 Product...

  8. The Economics of Big Area Addtiive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Laboratory (ORNL); Lloyd, Peter D [ORNL; Lindahl, John [Oak Ridge National Laboratory (ORNL); Lind, Randall F [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  9. Reduction of Defects in Jewelry Manufacturing

    Science.gov (United States)

    Ayudhya, Phitchaya Phanomwan na; Tangjitsitcharoen, Somkiat

    2017-06-01

    The aim of this research was to reduce the defects of gem bracelet found during manufacturing process at a jewelry company. It was found that gem bracelet product has the highest rejects compared to the rejects found in ring, earring, and pendant products. Types of defect were classified by using Pareto Diagram consisting of gem falling, seam, unclean casting, impinge, and deformation. The causes of defect were analyzed by Cause and Effect Diagram and applied Failure Mode and Effects Analysis (FMEA) was applied during manufacturing processes. This research found that the improvement of manufacturing process could reduce the Risk Priority Number (RPN) and total of all defects by 48.70% and 48.89%, respectively.

  10. The Future of Pharmaceutical Manufacturing Sciences

    DEFF Research Database (Denmark)

    Rantanen, Jukka; Khinast, Johannes

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies...... is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process...... control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed....

  11. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  12. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers

    Directory of Open Access Journals (Sweden)

    Ian David Lockhart Bogle

    2017-04-01

    Full Text Available The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.

  13. Energy consumption in the manufacture of sawn goods and wood-based panel products

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, A.

    1983-01-01

    A study was made of energy consumption in 1979 and the possibilities of saving energy in the sawmill, plywood, particle board, fibreboard, joinery, wooden houses, glulam, and wood preservation industries. The energy consumption per product unit is minimum in sawmilling, 1.38 GJ/cubic meters and maximum in fibreboard manufacturing, 9.98 GJ/t. In plywood production, the energy consumption (6.95 GJ/cubic meters) is about double that in particleboard production (3.40 GJ/cubic meters). The main part of the energy (70-85%) is heat. In the drying process about 70-85% of total energy is used in individual processes. Over half (53.9%) of the total energy consumption is in the sawmill industry, 19.2% in the plywood industry, 12.2% in the particleboard industry, and 7.2% in the fibreboard industry.

  14. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The roles of communication process for an effective lean manufacturing implementation

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2009-07-01

    Full Text Available Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing.  This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practices and roles of communication in the implementation were compiled from related journals, books and websites. A study was conducted in an aerospace manufacturing in Malaysia. A five-point scale questionnaire is used as the study instrument. These questionnaires were distributed to 45 employees working in a kitting department and to 8 top management people. The results indicate that the degree of leanness were moderate.

  16. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...... main μIM process parameters (melt temperature, injection speed, packing pressure) using the Design of Experiment statistical technique. Measurements results demonstrated the importance of calibrating mould´s master geometries to ensure correct part production and effective quality conformance...... on the frequency in order to improve the signal quality and assure acoustic reproduction fidelity. Production quality of the TPE rings drastically influence the product functionality. In the present study, a procedure for μIM TPE micro rings production optimization has been established. The procedure entail using...

  17. Online scheduling of 2-re-entrant flexible manufacturing systems

    NARCIS (Netherlands)

    Pinxten, J. van; Waqas, U.; Geilen, M.; Basten, T.; Somers, L.

    2017-01-01

    Online scheduling of operations is essential to optimize productivity of flexible manufacturing systems (FMSs) where manufacturing requests arrive on the fly. An FMS processes products according to a particular flow through processing stations. This work focusses on online scheduling of re-entrant

  18. Social aspects in additive manufacturing of pharmaceutical products.

    Science.gov (United States)

    Lind, Johanna; Kälvemark Sporrong, Sofia; Kaae, Susanne; Rantanen, Jukka; Genina, Natalja

    2017-08-01

    Additive manufacturing (AM) techniques, such as drug printing, represent a new engineering approach that can implement the concept of personalized medicine via on-demand manufacturing of dosage forms with individually adjusted doses. Implementation of AM principles, such as pharmacoprinting, will challenge the entire drug distribution chain and affect the society at different levels. Areas covered: This work summarizes the concept of personalized medicine and gives an overview of possibilities for monitoring patients' health. The most recent activities in the field of printing technologies for fabrication of dosage forms and 'polypills' with flexible doses and tailored release profiles are reviewed. Different scenarios for the drug distribution chain with the required adjustments in drug logistics, quality systems and environmental safety are discussed, as well as whether AM will be used for production of on-demand medicine. The impact of such changes in the distribution chain on regulation, healthcare professionals and patients are highlighted. Expert opinion: Drug manufacturing by traditional methods is well-established, but it lacks the possibility for on-demand personalized drug production. With the recent approval of the first printed medicine, society should be prepared for the changes that will follow the introduction of printed pharmaceuticals.

  19. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.

    Science.gov (United States)

    Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V

    2014-02-01

    In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Use of statistical process control in the production of blood components

    DEFF Research Database (Denmark)

    Magnussen, K; Quere, S; Winkel, P

    2008-01-01

    Introduction of statistical process control in the setting of a small blood centre was tested, both on the regular red blood cell production and specifically to test if a difference was seen in the quality of the platelets produced, when a change was made from a relatively large inexperienced...... by an experienced staff with four technologists. We applied statistical process control to examine if time series of quality control values were in statistical control. Leucocyte count in red blood cells was out of statistical control. Platelet concentration and volume of the platelets produced by the occasional...... occasional component manufacturing staff to an experienced regular manufacturing staff. Production of blood products is a semi-automated process in which the manual steps may be difficult to control. This study was performed in an ongoing effort to improve the control and optimize the quality of the blood...

  1. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  2. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  3. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  4. System for manufacturing ash products and energy from refuse waste

    Energy Technology Data Exchange (ETDEWEB)

    Sutin, G.L.; Mahoney, P.F.

    1996-01-04

    The present invention provides a system of manufacturing energy and ash products from solid waste. The system includes apparatus for receiving solid waste for processing, apparatus for shredding the received solid waste, apparatus for removing ferrous material from the shredded solid waste to create processed refuse fuel (PRF) and apparatus for efficiently combusting the PRF. A conveyor transfers the PRF to the combusting apparatus such that the density of the PRF is always controlled for continuous non-problematic flow. Apparatus for recovering residual combustion particulate from the combustion residual gases and for recovering solid ash residue provides the system with the ability to generate steam and electrical energy, and to recover for reuse and recycling valuable materials from the solid ash residue. (author) figs.

  5. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    Science.gov (United States)

    Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.

    2017-05-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.

  6. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    International Nuclear Information System (INIS)

    Olsson, Anders; Hellsing, Maja S; Rennie, Adrian R

    2017-01-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented. (invited comment)

  7. Guidelines for the Deployment of Product-Related Environmental Legislation into Requirements for the Product Development Process

    DEFF Research Database (Denmark)

    Ferraz, Mariana; Pigosso, Daniela Cristina Antelmi; Teixeira, Cláudia Echevenguá

    2013-01-01

    Environmental legislation is increasingly changing its focus from end-of-pipe approaches to a life cycle perspective. Therefore, manufacturing companies are increasingly identifying the need of deploying and incorporating product-related environmental requirements into the product development...... process. This paper presents twelve guidelines, clustered into three groups, to support companies in the identification, analysis and deployment of product requirements from product-related environmental legislation....

  8. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  9. Performance evaluation and characterisation of EIGA produced titanium alloy powder for additive manufacturing processes

    CSIR Research Space (South Africa)

    Arthur, Nana KK

    2017-11-01

    Full Text Available affect powder quality, and hinder processing. In an investigation by Goso and Kale [3], Ti-6Al-4V alloy powder was produced by the hydride-dehydride (HDH) process in order to make titanium components by blended elemental approach. Chemical analysis.... 2016. Additive manufacturing of metals, Acta Materialia, 117, pp 371-392. 3 [3] Goso, X. and Kale, A. 2010. Production of titanium metal powder by the HDH process, (Paper presented at the South African Institute of Mining and Metallurgy Light...

  10. A system approach to controlling semiconductor manufacturing operations

    OpenAIRE

    Σταυράκης, Γιώργος Δ.

    1987-01-01

    Semicoductor manufacturers, faced with stiffening competition in both product cost and quality, require improved utilization of their development and manufacturing resources. Manufacturing philosophy must be changed, from focusing on short term results, to support continuous improvements in both output and quality. Such improvements demand better information management to monitor and control the manufacturing process. From these considerations, a process control methodology was develope...

  11. VALUE STREAM MAPPING AS LEAN PRODUCTION TOOL TO IMPROVE THE PRODUCTION PROCESS ORGANIZATION – CASE STUDY IN PACKAGING MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka-Tatar

    2018-01-01

    Full Text Available In the paper, the method of the production process improvement with the use of lean production tools has been presented. The Value Stream Mapping (VSM for the cardboard packaging produc-tion process has been presented. On the basis of the current state map (CSM, areas for improvement have been designated - 5 organizational changes of the process were marked out. To minimize the three basic losses excessive storage, unnecessary movement and delays, the changes were introduced in the method of inter-operative transport, supervision of the storage condition (input and output of the process, control at the processing operation and the use of a production loop. As a result of the changes, it is possible to shorten the process time, shorten the total time of operations adding value and reduce the number of non-compliant products.

  12. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    OpenAIRE

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adop...

  13. Implementation of Canflex bundle manufacture - from 'bench scale' to production

    International Nuclear Information System (INIS)

    Pant, A.

    1999-01-01

    Zircatec Precision Industries (ZPI) has been involved with the development of the 43 element Canflex bundle design since 1986. This development included several 'prototype' campaigns involving the manufacture of small quantities of test bundles using enriched fuel. Manufacturing and inspection methods for this fuel were developed at ZPI as the design progressed. The most recent campaign involved the production of 26 bundles of the final Canflex design for a demonstration irradiation in the Point Lepreau Generating Station. This presentation will explore issues pertaining to the introduction of a new product line from initial trial quantities to full production levels. The Canflex fuel experience and a brief review of development efforts will be used as an example. (author)

  14. Electronics manufacturing and assembly in Japan

    Science.gov (United States)

    Kukowski, John A.; Boulton, William R.

    1995-02-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  15. 23rd International Conference on Flexible Automation & Intelligent Manufacturing

    CERN Document Server

    2013-01-01

    The proceedings includes the set of revised papers from the 23rd International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2013). This conference aims to provide an international forum for the exchange of leading edge scientific knowledge and industrial experience regarding the development and integration of the various aspects of Flexible Automation and Intelligent Manufacturing Systems covering the complete life-cycle of a company’s Products and Processes. Contents will include topics such as: Product, Process and Factory Integrated Design, Manufacturing Technology and Intelligent Systems, Manufacturing Operations Management and Optimization and Manufacturing Networks and MicroFactories.

  16. Selection of an Alternative Production Part Approval Process to Improve Weapon Systems Production Readiness

    Science.gov (United States)

    2017-09-01

    production outcomes: 1) knowledge gaps in technology, 2) design instability and 3) manufacturing knowledge gaps. Only manufacturing knowledge gaps...ability to produce at a desired production rate. Each item produced under this manufacturing development is to meet that item’s design requirements. The...represented with respect to assessing manufacturing design and development with a verification and demonstration. DOD acquisition waits to assess production

  17. IMPLEMENTATION OF LEAN MANUFACTURING IN FISH CANNING COMPANY: A CASE STUDY OF A CANNED SARDINES PRODUCTION COMPANY IN MOROCCO

    Directory of Open Access Journals (Sweden)

    I. Idrıssi

    2015-12-01

    Full Text Available Lean is a powerful tool, which can bring significant benefit to manufacturing industries by creating value through reduction of waste. Although the lean concept has become very popular in mass production industries such as the automotive industry, more recently the concept has been adopted in different batch processing industries and service sectors. The application of lean tools into the food processing industry has not received the same level of attention compared to the traditional manufacturing industries. The paper discusses how the lean concept could be applied to a fish manufacturing company. The paper first presents the lean concept tools. The empirical section discusses how a case company, operating as a contract manufacturer in the food industry, has applied the lean production concept and tools. In the case study, three analysis tools are examined and the structures of demand chains of different customers are presented. The delivery times will decrease and more flexibility will be needed from the contract manufacturer. The case study shows that much movement is possible toward the lean supply chain and partnership-based cooperation. By implementing the lean concept, food companies can increase customer value through cost reduction or through provision of additional value-enhanced services.

  18. Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety.

    Science.gov (United States)

    Leiva, A; Granados-Chinchilla, F; Redondo-Solano, M; Arrieta-González, M; Pineda-Salazar, E; Molina, A

    2018-06-01

    Animal by-product rendering establishments are still relevant industries worldwide. Animal by-product meal safety is paramount to protect feed, animals, and the rest of the food chain from unwanted contamination. As microbiological contamination may arise from inadequate processing of slaughterhouse waste and deficiencies in good manufacturing practices within the rendering facilities, we conducted an overall establishment's inspection, including the product in several parts of the process.An evaluation of the Good Manufacturing Practices (GMP) was carried out, which included the location and access (i.e., admission) to the facilities, integrated pest management programs, physical condition of the facilities (e.g., infrastructure), equipments, vehicles and transportation, as well as critical control points (i.e., particle size and temperature set at 50 mm, 133°C at atmospheric pressure for 20 min, respectively) recommended by the OIE and the European Commission. The most sensitive points according to the evaluation are physical structure of the facilities (avg 42.2%), access to the facilities (avg 48.6%), and cleaning procedures (avg 51.4%).Also, indicator microorganisms (Salmonella spp., Clostridium spp., total coliforms, E. coli, E. coli O157:H7) were used to evaluate the safety in different parts of the animal meal production process. There was a prevalence of Salmonella spp. of 12.9, 14.3, and 33.3% in Meat and Bone Meal (MBM), poultry by-products, and fish meal, respectively. However, there were no significant differences (P = 0.73) in the prevalence between the different animal meals, according to the data collected.It was also observed that renderings associated with the poultry industry (i.e., 92.0%) obtained the best ratings overall, which reflects a satisfactory development of this sector and the integration of its production system as a whole.

  19. Additive manufacturing: state-of-the-art and application framework

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; de Senzi Zancul, Eduardo; Gonçalves Mançanares, Cauê

    2017-01-01

    Additive manufacturing encompasses a class of production processes with increasing applications indifferent areas and supply chains. Due to its flexibility for production in small batches and the versatilityof materials and geometries, this technology is recognized as being capable...... of revolutionizing theproduction processes as well as changing production strategies that are currently employed. However,there are different technologies under the generic label of additive manufacturing, materials and applicationareas with different requirements. Given the growing importance of additive...... manufacturingas a production process, and also considering the need to have a better insight into the potential applicationsfor driving research and development efforts, this article presents a proposal of organizationfor additive manufacturing applications in seven areas. Additionally, the article provides...

  20. Achievement report on developing inverse manufacturing system in fiscal 1998; 1998 nendo inverse manufacturing system no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development has been performed on a circulating type production system, or an inverse manufacturing system, to minimize the environmental load in the entire life cycle of industrial products from design to manufacturing, maintenance, recovery, and re-utilization. In developing the recycling information system, discussion and extraction were executed on the data to be exchanged between manufacturers and users in the inverse society. A new individual parts history control system was developed. In developing the recycling processing system, a prototype system was evaluated by using hypothetical data, wherein the possibility of improving the recycling processing efficiency and reducing the cost was verified. In addition, trial design was made on a recycling processing plant in consideration of the cost effect to get the future plant image. In fabricating the inverse manufacturing products, a prototype concept model was made for information terminal devices. Development was performed on such elementary technologies as the easy-to-disintegrate structure technology, self-integration connecting structure and environmental hysteresis detection system. (NEDO)

  1. Manufacture of Nano Structures in Polymer Material

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Pedersen, H.C.; Staun, Jacob

    2003-01-01

    The incorporation of micro and nano technology into the products of the future is an area of increasing interest. The ideas for new products based on this technology often take their starting point in specific scientific fields whereas the subsequent design and product development not necessarily...... is based on a systematic approach including manufacturing processes and production system capabilities. The process chain associated with micro and nano injection moulding usually comprises silicon or photoresist mastering, electroforming and polymer processing. Additionally, if the produced polymer...... components are to be used in a microsystem, subsequent handling and assembly is necessary. The present paper describes the process chain related to the manufacture of optical gratings with nanometer-sized structures. The problems of each process step and the challenges of establishing a coherent production...

  2. Fusion of product and process data: Batch-mode and real-time streaming

    Energy Technology Data Exchange (ETDEWEB)

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  3. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics

    DEFF Research Database (Denmark)

    Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter

    2018-01-01

    -oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger...... proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control...... and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic...

  4. Does private-label production by national-brand manufacturers create discounter goodwill?

    NARCIS (Netherlands)

    Ter Braak, A.M.; Deleersnyder, B.; Geyskens, I.; Dekimpe, M.G.

    2013-01-01

    Discount stores have a private-label dominated assortment where national brands have only limited shelf access. These limited spots are in high demand by national-brand manufacturers. We examine whether private-label production by leading national-brand manufacturers for two important discounters

  5. Foundations & principles of distributed manufacturing elements of manufacturing networks, cyber-physical production systems and smart automation

    CERN Document Server

    Kühnle, Hermann

    2015-01-01

    The book presents a coherent description of distributed manufacturing, providing a solid base for further research on the subject as well as smart implementations in companies. It provides a guide for those researching and working in a range of fields, such as smart manufacturing, cloud computing, RFID tracking, distributed automation, cyber physical production and global design anywhere, manufacture anywhere solutions. Foundations & Principles of Distributed Manufacturing anticipates future advances in the fields of embedded systems, the Internet of Things and cyber physical systems, outlining how adopting these innovations could rapidly bring about improvements in key performance indicators, which could in turn generate competition pressure by rendering successful business models obsolete. In laying the groundwork for powerful theoretical models, high standards for the homogeneity and soundness of the suggested setups are applied. The book especially elaborates on the upcoming competition in online manu...

  6. Computational Process Modeling for Additive Manufacturing (OSU)

    Science.gov (United States)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  7. Application of Lean Focus onManufacturing Process : A Case Study of an American Furniture Company

    OpenAIRE

    ZHAO, QIAN; ZHOU, BOWEN

    2010-01-01

    Introduction: To improvement the target company’s manufacturing process by applyinglean principles, including using and analyzing the internal value stream mapping. Asmore and more companies have paid attention to implement lean thinking in theirmanufacturing process, the value stream mapping played an important role for manycompanies to make a transition from their traditional production systems to lean systems.The content and resources of this master thesis come from an American furnitureco...

  8. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Science.gov (United States)

    2010-10-01

    ... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron, or... 49 Transportation 7 2010-10-01 2010-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to...

  9. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  10. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays.

    Science.gov (United States)

    Lutton, Rebecca E M; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A David; Donnelly, Ryan F

    2015-10-15

    A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14×14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Productivity improvement in the production line with lean manufacturing approach: case study PT. XYZ

    Directory of Open Access Journals (Sweden)

    diah Halimatussa’

    2018-01-01

    Full Text Available The increaseing productivity is one of the competitive strategies that can be applied in a company in order to survive in an intense competitive presure. PT. XYZ is a textile industry manufacturing golf gloves and caddy bag. Every day, the company has a production target of 600 pieces per line. However, the desired target is not achieved that it will affect the delay in delivery of products to customers. In this research, a case study on implementing value stream mapping and Kaizen as the lean manufacturing concept is reported. The purpose of this study is to map the current production line, analyse and design the future value stream mapping by eliminating waste occured. It is obtained a lead time reduction as much as 440.4 seconds through eliminating 17 non-value added activities. Then, the output can be increased up to 21% which is equal to 502 pieces.

  12. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  13. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  14. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  15. The Application of Lean Manufacturing for Operation Improvement: A Case Study of Black Cough Medicine Production in Indonesia

    Directory of Open Access Journals (Sweden)

    Pramadona Pramadona

    2013-09-01

    Full Text Available Nowadays, the pharmaceutical industry has a market tends to be unstable and volatile in meeting customer needs. This is due to the economic crisis that occurred in different parts of the world. The pharmaceutical industry currently uses good manufacturing practices (cGMP to ensure that products are consistently produced and controlled according to the required standards. Pharmaceutical industry slowly started to move from cGMP to lean manufacturing that focused on reducing operating costs while ensuring compliance. The purpose of this paper is to analyze the usage of lean manufacturing instead of the usage of cGMP to eliminate wastes. To conduct this study, literature review and company visit has been done. This analysis was applied by using value stream mapping (VSM and 7-wastes methodology to analyze the problems in the OBH (Black Cough Medicine production line one of the pharmaceutical industry in Bandung, Indonesia. For the improvement, the lean manufacturing approach has been carried out and the future VSM has been developed. Finding reveals that the application of lean manufacturing in the cGMP environment helps the company to eliminate wastes in reducing lead time and cycle time in the manufacturing process. Keywords: pharmaceutical industry, cGMP, lean manufacturing, value stream mapping, 7-wastes.

  16. Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel Manufacturing

    DEFF Research Database (Denmark)

    Su, Yung-Chieh; Liu, Y. A.; Díaz Tovar, Carlos Axel

    2011-01-01

    To optimize biodiesel manufacturing, many reported studies have built simulation models to quantify the relationship between operating conditions and process performance. For mass and energy balance simulations, it is essential to know the four fundamental thermophysical properties of the feed oil...... prediction methods on our group Web site (www.design.che.vt.edu) for the reader to download without charge....

  17. THE PRODUCT DESIGN PROCESS USING STYLISTIC SURFACES

    Directory of Open Access Journals (Sweden)

    Arkadiusz Gita

    2017-06-01

    Full Text Available The increasing consumer requirements for the way what everyday use products look like, forces manufacturers to put more emphasis on product design. Constructors, apart from the functional aspects of the parts created, are forced to pay attention to the aesthetic aspects. Software for designing A-class surfaces is very helpful in this case. Extensive quality analysis modules facilitate the work and allow getting models with specific visual features. The authors present a design process of the product using stylistic surfaces based on the front panel of the moped casing. In addition, methods of analysis of the design surface and product technology are presented.

  18. Good manufacturing practice

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    2001-01-01

    In this presentation author deals with the Implementation of good manufacturing practice for radiopharmaceuticals. The presentation is divided into next parts: Batch size; Expiration date; QC Testing; Environmental concerns; Personnel aspects; Radiation concerns; Theoretical yields; Sterilizing filters; Control and reconciliation of materials and components; Product strength; In process sampling and testing; Holding and distribution; Drug product inspection; Buildings and facilities; Renovations at BNL for GMP; Aseptic processing and sterility assurance; Process validation and control; Quality control and drug product stability; Documentation and other GMP topics; Building design considerations; Equipment; and Summary

  19. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    Science.gov (United States)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  20. Scalable manufacturing processes with soft materials

    OpenAIRE

    White, Edward; Case, Jennifer; Kramer, Rebecca

    2014-01-01

    The emerging field of soft robotics will benefit greatly from new scalable manufacturing techniques for responsive materials. Currently, most of soft robotic examples are fabricated one-at-a-time, using techniques borrowed from lithography and 3D printing to fabricate molds. This limits both the maximum and minimum size of robots that can be fabricated, and hinders batch production, which is critical to gain wider acceptance for soft robotic systems. We have identified electrical structures, ...

  1. Cyber physical systems role in manufacturing technologies

    Science.gov (United States)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  2. New Product Development (NPD) Process - An Example of Industrial Sector

    Science.gov (United States)

    Kazimierska, Marianna; Grębosz-Krawczyk, Magdalena

    2017-12-01

    This aim of this article is to present the process of new product introduction on example of industrial sector in context of new product development (NPD) concept. In the article, the concept of new product development is discussed and the different stages of the process of new electric motor development are analysed taking into account its objectives, implemented procedures, functions and responsibilities division. In the article, information from secondary sources and the results of empirical research - conducted in an international manufacturing company - are used. The research results show the significance of project leader and regular cooperation with final client in the NPD process.

  3. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Seongchan [General Motors; Wilson, Daniel [General Motors; Aitharaju, Venkat [General Motors; Kia, Hamid [General Motors; Yu, Hang [ESI, Group.; Doroudian, Mark [ESI Group

    2017-09-05

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide various scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper

  4. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    Science.gov (United States)

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.

  5. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  6. The Enterprise Derivative Application: Flexible Software for Optimizing Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Richard C [ORNL; Allgood, Glenn O [ORNL; Knox, John R [ORNL

    2008-11-01

    The Enterprise Derivative Application (EDA) implements the enterprise-derivative analysis for optimization of an industrial process (Allgood and Manges, 2001). It is a tool to help industry planners choose the most productive way of manufacturing their products while minimizing their cost. Developed in MS Access, the application allows users to input initial data ranging from raw material to variable costs and enables the tracking of specific information as material is passed from one process to another. Energy-derivative analysis is based on calculation of sensitivity parameters. For the specific application to a steel production process these include: the cost to product sensitivity, the product to energy sensitivity, the energy to efficiency sensitivity, and the efficiency to cost sensitivity. Using the EDA, for all processes the user can display a particular sensitivity or all sensitivities can be compared for all processes. Although energy-derivative analysis was originally designed for use by the steel industry, it is flexible enough to be applied to many other industrial processes. Examples of processes where energy-derivative analysis would prove useful are wireless monitoring of processes in the petroleum cracking industry and wireless monitoring of motor failure for determining the optimum time to replace motor parts. One advantage of the MS Access-based application is its flexibility in defining the process flow and establishing the relationships between parent and child process and products resulting from a process. Due to the general design of the program, a process can be anything that occurs over time with resulting output (products). So the application can be easily modified to many different industrial and organizational environments. Another advantage is the flexibility of defining sensitivity parameters. Sensitivities can be determined between all possible variables in the process flow as a function of time. Thus the dynamic development of the

  7. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  8. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  9. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  10. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  11. Effects of Processing Conditions During Manufacture on Retronasal-Aroma Compounds from a Milk Coffee Drink.

    Science.gov (United States)

    Ikeda, Michio; Akiyama, Masayuki; Hirano, Yuta; Miyazi, Kazuhiro; Kono, Masaya; Imayoshi, Yuriko; Iwabuchi, Hisakatsu; Onodera, Takeshi; Toko, Kiyoshi

    2018-03-01

    enabled the production of RTD milk coffee whose volatiles are closer to that of homemade milk coffee, as demonstrated by the results of RAS-GC-MS analysis. The BAS process has already been applied to the manufacture of RTD milk coffees in Japan. © 2018 Institute of Food Technologists®.

  12. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  13. Aid conditionalities, international Good Manufacturing Practice standards and local production rights: a case study of local production in Nepal.

    Science.gov (United States)

    Brhlikova, Petra; Harper, Ian; Subedi, Madhusudan; Bhattarai, Samita; Rawal, Nabin; Pollock, Allyson M

    2015-06-14

    medicines from the only public producer while donor funded programmes rely on international manufacturers compliant with international GMP standards. We also found evidence of private hospitals bypassing national medicines approvals process. Policies in support of local pharmaceutical production in developing countries as a source of essential medicines need to examine carefully how GMP regulations impact on regulators, local industry and production of essential medicines in practice.

  14. Manufacturing of ceramic microcomponents by a rapid prototyping process chain

    International Nuclear Information System (INIS)

    Knitter, R.; Bauer, W.; Goehring, D.; Hausselt, J.

    2001-01-01

    Manufacturing of new ceramic components may be improved significantly by the use of rapid prototyping processes especially in the development of miniaturized or micropatterned components. Most known generative ceramic molding processes do not provide a sufficient resolution for the fabrication of microstructured components. In contrast to this, a rapid prototyping process chain that for example, combines micro-stereolithography and low-pressure injection molding, allows the rapid manufacturing of ceramic microcomponents from functional models to preliminary or small-lot series. (orig.)

  15. Technology Innovation and Future Research Needs in Net Shape Manufacturing

    International Nuclear Information System (INIS)

    Yang, Dong-Yol

    2005-01-01

    The rapid change in customer needs and industrial environment has demanded innovations in the manufacturing sector. Metal forming industries have been confronted with new challenges of innovations in products, processes, machines, materials and production systems. From the viewpoints of competitiveness of products, new paradigms are required for innovation in manufacturing, especially in net shape manufacturing. Product innovations are increasingly put under emphasis beyond manufacturing innovations based on the holistic concurrent engineering approach. The presentation covers not only the innovation methodologies, but also the innovation directions in net shape manufacturing

  16. Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing.

    Science.gov (United States)

    Stauffer, F; Vanhoorne, V; Pilcer, G; Chavez, P-F; Rome, S; Schubert, M A; Aerts, L; De Beer, T

    2018-06-01

    Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flowability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any

  17. Comparison of Composites Properties Manufactured by Vacuum Process and Autoclave Process

    Directory of Open Access Journals (Sweden)

    MA Rufei

    2017-01-01

    Full Text Available Two kinds of prepregs ZT7G/LT-03A(unidirectional carbon fiber prepreg and ZT7G3198P/LT-03A(plain carbon fabric prepreg were used to manufacture three Bateches of composites by vacuum process and autoclave process respectively. The physical properties of the prepregs and mechanical properties of composite were tested. The performance, fiber volume content and porosity of composites manufactured by vacuum cure and autoclave process show that the physical property retention rates of vacuum cured composites are all over 75%, some even more than 100%. Interlaminar shear strength keeps the lowest retention rate and warp tensile strength keeps the highest retention in unidirectional carbon fiber composites. For fabric composite material, compression strength keeps the lowest and warp tensile strength keeps the highest retention. Vacuum cured composites perform lower fiber volume content and higher porosity, which are the main reasons of the lower performance.

  18. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    Science.gov (United States)

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  19. Additive manufacturing techniques for the production of tissue engineering constructs.

    Science.gov (United States)

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.