WorldWideScience

Sample records for production vsmc nox

  1. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...... rotary kilns, while NOx formation from fuel-N and reduction of NOx take place in calciners. NOx formation in the rotary kiln is mainly governed by the necessary clinker burning temperature and is not very amenable to control, while net NOx formation in calciners depends strongly on calciner design......, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...

  2. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  3. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  4. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  5. Estimates of lightning NOx production from GOME satellite observations

    NARCIS (Netherlands)

    Boersma, K.F.; Eskes, H.J.; Meijer, E.W.; Kelder, H.M.

    2005-01-01

    Tropospheric NO2 column retreivals from the Global Ozone Monitoring Expeiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing

  6. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.

  7. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  8. On the Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates Parameterization of Lightning NOx Production in CMAQ

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  9. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    Science.gov (United States)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO

  10. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe

    Science.gov (United States)

    Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry

    2018-02-01

    High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 °C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the

  11. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx in Europe

    Directory of Open Access Journals (Sweden)

    E. Oikonomakis

    2018-02-01

    Full Text Available High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx. The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥  60 ppb by 10–20 ppb and overestimates the lower ones (<  40 ppb by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i increased volatile organic compound (VOC emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii increased nitrogen oxide (NOx emissions by a factor of 2, (iii a combination of the first two scenarios and (iv increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario

  12. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  13. Formaldehyde production from isoprene oxidation across NOx regimes

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2016-03-01

    Full Text Available The chemical link between isoprene and formaldehyde (HCHO is a strong, nonlinear function of NOx (i.e., NO + NO2. This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban–rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons. Over the range of observed NOx values (roughly 0.1–2 ppbv, the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv−1, while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv. We apply the same method to evaluate the performance of both a global chemical transport model (AM3 and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100 % increase in OH and a 40 % increase in branching of organic peroxy radical reactions to produce HCHO.

  14. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  15. Exploring the Production of NOx by Lightning and Its Impact on Tropospheric Ozone

    Science.gov (United States)

    Gillani, Noor; Koshak, William; Biazar, Arastoo; Doty, Kevin; Mahon, Robert; Newchurch, Michael; Byun, Daewon; Emmons, Louisa

    2006-01-01

    Our quantitative understanding of free tropospheric (FT) chemistry is quite poor. State-of-the-art regional air quality models (e.g., US EPA's CMAQ) perform very poorly in simulating FT chemistry, with Uniform ozone around 70 ppb throughout the FT in summer, while ozonesonde data show much higher levels of ozone and much spatial-temporal structure. Such models completely neglect lightning-NOx (LNOx) emissions (the most significant source of NOx in the FT), and also contain large uncertainties in the specifications of intercontinental transport, stratosphere-troposphere exchange (STE) and PBLFT exchange (PFTE). Global air chemistry models include LNOx, but in very crude fashion, with the frequency and distribution of lightning being based on modeled cloud parameters (hence large uncertainty), lightning energetics being assumed to be constant for all flashes (literature value, while in reality there is at least a two-orders of magnitude variability from flash-to-flash), and the production of NOx in the surrounding heated air, per Joule of heating, being assumed to be constant also (literature value, while in fact it is a non-linear function of the dissipated heat and local air density, p). This situation is commonly blamed on paucity of pertinent observational data, but for the USA, there is now a wealth of surface- and satellite-based data of lightning available to permit much improved observation-based estimation of LNOx emissions. In the FT, such NOx has a long residence time, and also the ozone production efficiency from NOx there is considerably higher than in the PBL. It is, therefore, of critical importance in FT chemistry. This paper will describe the approach and data products of an ongoing NSSTC project aimed at a much-improved quantification of not only LNOx production on the scale of continental USA based on local and regional lightning observations, but also of intercontinental transport, STE and PFTE, all in upgraded simulations of tropospheric

  16. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  18. Lightning NOx Production in CMAQ: Part II - Parameterization Based on Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  19. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  20. Estimates of Lightning NOx Production Based on OMI NO2 Observations Over the Gulf of Mexico

    Science.gov (United States)

    Pickering, Kenneth E.; Bucsela, Eric; Allen, Dale; Ring, Allison; Holzworth, Robert; Krotkov, Nickolay

    2016-01-01

    We evaluate nitrogen oxide (NO(sub x) NO + NO2) production from lightning over the Gulf of Mexico region using data from the Ozone Monitoring Instrument (OMI) aboard NASAs Aura satellite along with detection efficiency-adjusted lightning data from the World Wide Lightning Location Network (WWLLN). A special algorithm was developed to retrieve the lightning NOx [(LNO(sub x)] signal from OMI. The algorithm in its general form takes the total slant column NO2 from OMI and removes the stratospheric contribution and tropospheric background and includes an air mass factor appropriate for the profile of lightning NO(sub x) to convert the slant column LNO2 to a vertical column of LNO(sub x). WWLLN flashes are totaled over a period of 3 h prior to OMI overpass, which is the time an air parcel is expected to remain in a 1 deg. x 1 deg. grid box. The analysis is conducted for grid cells containing flash counts greater than a threshold value of 3000 flashes that yields an expected LNO(sub x) signal greater than the background. Pixels with cloud radiance fraction greater than a criterion value (0.9) indicative of highly reflective clouds are used. Results for the summer seasons during 2007-2011 yield mean LNO(sub x) production of approximately 80 +/- 45 mol per flash over the region for the two analysis methods after accounting for biases and uncertainties in the estimation method. These results are consistent with literature estimates and more robust than many prior estimates due to the large number of storms considered but are sensitive to several substantial sources of uncertainty.

  1. Functional Analysis of the Trichoderma harzianum nox1 Gene, Encoding an NADPH Oxidase, Relates Production of Reactive Oxygen Species to Specific Biocontrol Activity against Pythium ultimum▿†

    Science.gov (United States)

    Montero-Barrientos, M.; Hermosa, R.; Cardoza, R. E.; Gutiérrez, S.; Monte, E.

    2011-01-01

    The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum. PMID:21421791

  2. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    Science.gov (United States)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next

  3. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. NOx Emission in Iron and Steel Production: A Review of Control Measures for Safe and Eco-Friendly Environment

    Directory of Open Access Journals (Sweden)

    U. A. Mukhtar

    2017-12-01

    Full Text Available Iron and steel manufacturing involved preparation of raw materials through processes such as sintering, pelletizing and coke making. During these processes, pollutants such as Sulphur (iv oxides (SO2 Carbon II oxides (CO, Nitrogen oxides (NOX, Volatile organic compounds (VOC and Particulate matter (PM etc. are emitted. The present work is aimed at describing some mitigation technologies of controlling emissions in iron and steel production. The processes involved in the production of iron and steel using Blast Furnace (BF and Basic Oxygen Furnace (BOF has been described. The mitigation technologies of controlling emissions were analyzed and discussed with environmental impacts based on the economical and technical factors. In this work, the data presented is based on existing reviews. The combination of low NOX burner (LNB and Selective catalytic reduction (SCR is capable of reducing emission for up to 90% and above. Emissions of other pollutants into the atmosphere as a result of ammonia slip, formation of acids and other gases are harmful to the environment and causes damage to the SCR systems. Installation and operation cost are the major impacts of the SCR technology in the process of iron and steel production.

  5. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.

    Science.gov (United States)

    Jiménez-Altayó, Francesc; Meirelles, Thayna; Crosas-Molist, Eva; Sorolla, M Alba; Del Blanco, Darya Gorbenko; López-Luque, Judit; Mas-Stachurska, Aleksandra; Siegert, Ana-Maria; Bonorino, Fabio; Barberà, Laura; García, Carolina; Condom, Enric; Sitges, Marta; Rodríguez-Pascual, Fernando; Laurindo, Francisco; Schröder, Katrin; Ros, Joaquim; Fabregat, Isabel; Egea, Gustavo

    2018-04-01

    Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1 C1039G/+ -Nox4 -/- ). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1 C1039G/+ -Nox4 -/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1 C1039G/+ -Nox4 -/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H 2 O 2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Luteolin Inhibits Angiotensin II-Stimulated VSMC Proliferation and Migration through Downregulation of Akt Phosphorylation

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    2015-01-01

    Full Text Available Luteolin is a naturally occurring flavonoid found in many plants that possesses cardioprotective properties. The purpose of this study was to elucidate the effect of luteolin on vascular smooth muscle cells (VSMCs proliferation and migration induced by Angiotensin II (Ang II and to investigate the mechanism(s of action of this compound. Rat VSMCs were cultured in vitro, and the proliferation and migration of these cells following Ang II stimulation were monitored. Different doses of luteolin were added to VSMC cultures, and the proliferation and migration rate were observed by MTT and Transwell chamber assays, respectively. In addition, the expressions of p-Akt (308, p-Akt (473, and proliferative cell nuclear antigen (PCNA in VSMCs were monitored by Western blotting. This study demonstrated that luteolin has an inhibitory effect on Ang II-induced VSMC proliferation and migration. Further, the levels of p-Akt (308, p-Akt (473, and PCNA were reduced in VSMCs treated with both Ang II and luteolin compared to VSMCs treated with only Ang II. These findings strongly suggest that luteolin inhibits Ang II-stimulated proliferation and migration of VSMCs, which is partially due to downregulation of the Akt signaling pathway.

  7. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    F. Friederich

    2013-03-01

    Full Text Available We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite, for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude-dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates.

  8. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Allen, Dale J.; DeCaria, Alex J.; Ridley, Brian; Lin, Ruei-Fong; Lang, Stephen; Tao, Wei-Kuo

    2010-01-01

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four

  9. Utilization of low NOx coal combustion by-products. Quarterly report, July 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of this project was to commercialize fly ash beneficiation at various facilities around the country. The paper describes laboratory characterization of fly ash samples, pilot plant testing, product testing, and market and economic analyses. Products include concrete, concrete blocks and bricks, plastic fillers, activated carbon, and metal matrix composites.

  10. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC

    International Nuclear Information System (INIS)

    Congrains, Ada; Kamide, Kei; Katsuya, Tomohiro; Yasuda, Osamu; Oguro, Ryousuke; Yamamoto, Koichi; Ohishi, Mitsuru; Rakugi, Hiromi

    2012-01-01

    Highlights: ► ANRIL maps in the strongest susceptibility locus for cardiovascular disease. ► Silencing of ANRIL leads to altered expression of tissue remodeling-related genes. ► The effects of ANRIL on gene expression are splicing variant specific. ► ANRIL affects progression of cardiovascular disease by regulating proliferation and apoptosis pathways. -- Abstract: ANRIL is a newly discovered non-coding RNA lying on the strongest genetic susceptibility locus for cardiovascular disease (CVD) in the chromosome 9p21 region. Genome-wide association studies have been linking polymorphisms in this locus with CVD and several other major diseases such as diabetes and cancer. The role of this non-coding RNA in atherosclerosis progression is still poorly understood. In this study, we investigated the implication of ANRIL in the modulation of gene sets directly involved in atherosclerosis. We designed and tested siRNA sequences to selectively target two exons (exon 1 and exon 19) of the transcript and successfully knocked down expression of ANRIL in human aortic vascular smooth muscle cells (HuAoVSMC). We used a pathway-focused RT-PCR array to profile gene expression changes caused by ANRIL knock down. Notably, the genes affected by each of the siRNAs were different, suggesting that different splicing variants of ANRIL might have distinct roles in cell physiology. Our results suggest that ANRIL splicing variants play a role in coordinating tissue remodeling, by modulating the expression of genes involved in cell proliferation, apoptosis, extra-cellular matrix remodeling and inflammatory response to finally impact in the risk of cardiovascular disease and other pathologies.

  11. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC

    Energy Technology Data Exchange (ETDEWEB)

    Congrains, Ada; Kamide, Kei [Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine (Japan); Katsuya, Tomohiro [Clinical Gene Therapy, Osaka University Graduate School of Medicine (Japan); Yasuda, Osamu [Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital (Japan); Oguro, Ryousuke; Yamamoto, Koichi [Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine (Japan); Ohishi, Mitsuru, E-mail: ohishi@geriat.med.osaka-u.ac.jp [Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine (Japan); Rakugi, Hiromi [Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer ANRIL maps in the strongest susceptibility locus for cardiovascular disease. Black-Right-Pointing-Pointer Silencing of ANRIL leads to altered expression of tissue remodeling-related genes. Black-Right-Pointing-Pointer The effects of ANRIL on gene expression are splicing variant specific. Black-Right-Pointing-Pointer ANRIL affects progression of cardiovascular disease by regulating proliferation and apoptosis pathways. -- Abstract: ANRIL is a newly discovered non-coding RNA lying on the strongest genetic susceptibility locus for cardiovascular disease (CVD) in the chromosome 9p21 region. Genome-wide association studies have been linking polymorphisms in this locus with CVD and several other major diseases such as diabetes and cancer. The role of this non-coding RNA in atherosclerosis progression is still poorly understood. In this study, we investigated the implication of ANRIL in the modulation of gene sets directly involved in atherosclerosis. We designed and tested siRNA sequences to selectively target two exons (exon 1 and exon 19) of the transcript and successfully knocked down expression of ANRIL in human aortic vascular smooth muscle cells (HuAoVSMC). We used a pathway-focused RT-PCR array to profile gene expression changes caused by ANRIL knock down. Notably, the genes affected by each of the siRNAs were different, suggesting that different splicing variants of ANRIL might have distinct roles in cell physiology. Our results suggest that ANRIL splicing variants play a role in coordinating tissue remodeling, by modulating the expression of genes involved in cell proliferation, apoptosis, extra-cellular matrix remodeling and inflammatory response to finally impact in the risk of cardiovascular disease and other pathologies.

  12. Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign

    Science.gov (United States)

    Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Blake, N. J.; Barth, M. C.; Weinheimer, A.; Cantrell, C.; Rutledge, S. A.; Basarab, B.; Crawford, J.; Diskin, G.; Homeyer, C. R.; Campos, T.; Flocke, F.; Fried, A.; Blake, D. R.; Brune, W.; Pollack, I.; Peischl, J.; Ryerson, T.; Wennberg, P. O.; Crounse, J. D.; Wisthaler, A.; Mikoviny, T.; Huey, G.; Heikes, B.; O'Sullivan, D.; Riemer, D. D.

    2015-03-01

    As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14 ppbv of O3, respectively, downwind of the storm over 2 days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNOx. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0 ± 0.5 and 2.3 ± 0.5 pptv ppbv-1, respectively, and 1.4 ± 0.3 pptv ppbv-1 for acrolein in the outflow only.

  13. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Zhang, Yu; Wang, Tao; He, Jianyu; He, Huaizhen; He, Langchong, E-mail: helc@mail.xjtu.edu.cn

    2015-04-15

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed the Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.

  14. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  16. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1.

    Science.gov (United States)

    Elatrech, Imen; Marzaioli, Viviana; Boukemara, Hanane; Bournier, Odile; Neut, Christel; Darfeuille-Michaud, Arlette; Luis, José; Dubuquoy, Laurent; El-Benna, Jamel; My-Chan Dang, Pham; Marie, Jean-Claude

    2015-05-01

    Increased reactive oxygen species (ROS) production is associated with inflamed ileal lesions in Crohn's disease colonized by pathogenic adherent-invasive Escherichia coli LF82. We investigated whether such ileal bacteria can modulate ROS production by epithelial cells, thus impacting on inflammation and mucin expression. Ileal bacteria from patients with Crohn's disease were incubated with cultured epithelial T84 cells, and ROS production was assayed using the luminol-amplified chemiluminescence method. The gentamicin protection assay was used for bacterial invasion of T84 cell. The expression of NADPH oxidase (NOX) subunits, mucin, and IL-8 was analyzed by quantitative real-time PCR and Western blots. Involvement of NOX and ROS was analyzed using diphenyleneiodonium (DPI) and N-acetylcysteine (NAC). Among different bacteria tested, only LF82 induced an increase of ROS production by T84 cells in a dose-dependent manner. This response was inhibited by DPI and NAC. Heat- or ethanol-attenuated LF82 bacteria and the mutant LF82ΔFimA, which does not express pili type 1 and poorly adheres to epithelial cells, did not induce the oxidative response. The LF82-induced oxidative response coincides with its invasion in T84 cells, and both processes were inhibited by DPI. Also, we observed an increased expression of NOX1 and NOXO1 in response to LF82 bacteria versus the mutant LF82ΔFimA. Furthermore, LF82 inhibited mucin gene expression (MUC2 and MUC5AC) in T84 cells while increasing the chemotactic IL-8 expression, both in a DPI-sensitive manner. Adherent-invasive E. coli LF82 induced ROS production by intestinal NADPH oxidase and altered mucin and IL-8 expression, leading to perpetuation of inflammatory lesions in Crohn's disease.

  17. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  18. Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study

    Directory of Open Access Journals (Sweden)

    H. Schlager

    2010-06-01

    Full Text Available Within the African Monsoon Multidisciplinary Analysis (AMMA, we investigate the impact of nitrogen oxides produced by lightning (LiNOx and convective transport during the West African Monsoon (WAM upon the composition of the upper troposphere (UT in the tropics. For this purpose, we have performed simulations with 4 state-of-the-art chemistry transport models involved within AMMA, namely MOCAGE, TM4, LMDz-INCA and p-TOMCAT. The model intercomparison is complemented with an evaluation of the simulations based on both spaceborne and airborne observations. The baseline simulations show important differences between the UT CO and O3 distributions simulated by each of the 4 models when compared to measurements from the MOZAIC program and fom the Aura/MLS spaceborne sensor. We show that such model discrepancies can be explained by differences in the convective transport parameterizations and, more particularly, the altitude reached by convective updrafts (ranging between ~200–125 hPa. Concerning UT O3, the models exhibit a good agreement with the main observed features. Nevertheless the majority of models simulate low O3 concentrations compared to both MOZAIC and Aura/MLS observations south of the equator, and rather high concentrations in the Northern Hemisphere. Sensitivity studies are performed to quantify the effect of deep convective transport and the influence of LiNOx production on the UT composition. These clearly indicate that the CO maxima and the elevated O3 concentrations south of the equator are due to convective uplift of air masses impacted by Southern African biomass burning, in agreement with previous studies. Moreover, during the WAM, LiNOx from Africa are responsible for the highest UT O3 enhancements (10–20 ppbv over the tropical Atlantic between 10° S–20° N. Differences between models are primarily due to the performance of the parameterizations used to simulate lightning activity which are evaluated using spaceborne

  19. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  20. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  1. Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production.

    Science.gov (United States)

    Shao, Min; Zhang, Yuanhang; Zeng, Limin; Tang, Xiaoyan; Zhang, Jing; Zhong, Liuju; Wang, Boguang

    2009-01-01

    In many regions of China, very rapid economic growth has been accompanied by air pollution caused by vehicle emissions. In one of these regions, the Pearl River Delta, the variations of ground-level ozone and its precursors were investigated. Overall, the ambient concentrations of NO(2) increased quickly between 1995 and 1996, but then slightly decreased due to stringent nitrogen oxide (NO(x)) emission controls. Nonetheless, ambient NO(2) levels in the Pearl River Delta remained high. The regional average concentrations of volatile organic compounds (VOCs) were 290 ppbC in summer and 190 ppbC in autumn. Local emissions and long-distance transportation of pollutants play important roles in the regional distribution of VOCs. Ambient O(3) production is significant in urban areas and also downwind of cities. The relative incremental reactivities (RIRs), determined by an observation-based model, showed that ground-level ozone formation in the Guangzhou urban area is generally limited by the concentrations of VOCs, but there are also measurable impacts of NO(x).

  2. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    Science.gov (United States)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  3. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.

    Science.gov (United States)

    Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David

    2010-03-23

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.

  4. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  5. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sayo Koike

    2016-09-01

    Full Text Available Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD. To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs stimulated calcium deposition in vascular smooth muscle cells (VSMCs through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5 was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA. Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(PH oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(PH oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.

  6. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  7. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  8. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin.

    Science.gov (United States)

    Seo, Seung Un; Kim, Tae Hwan; Kim, Dong Eun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2017-10-01

    Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin

    Directory of Open Access Journals (Sweden)

    Seung Un Seo

    2017-10-01

    Full Text Available Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4, human breast carcinoma (MDA-MB231, and human glioma (U87MG cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926. We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5 expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.

  10. NOx trade. Case studies

    International Nuclear Information System (INIS)

    Jantzen, J.

    2002-01-01

    Some of the questions with respect to the trade of nitrogen oxides that businesses in the Netherlands have to deal with are dealt with: should a business buy or sell rights for NOx emission; which measures must be taken to reduce NOx emission; how much must be invested; and how to deal with uncertainties with regard to prices. Simulations were carried out with the MOSES model to find the answers to those questions. Results of some case studies are presented, focusing on the chemical sector in the Netherlands. Finally, the financial (dis)advantages of NOx trade and the related uncertainties for a single enterprise are discussed [nl

  11. Photooxidation of farnesene mixtures in the presence of NOx: Analysis of reaction products and their implication to ambient PM2.5

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical analysis of SOA produced from the irradiation of a mixture of α/β-farnesene/NOx was conducted in a 14.5 cubic meter smog chamber. SOA collected on...

  12. Novel p47phox-related organizers regulate NADPH oxidase 1 (Nox1) activity and localization

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A.; Bokoch, Gary M.

    2010-01-01

    The mechanisms that determine localized formation of reactive oxygen species (ROS) via NADPH oxidases (Nox) in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 and Tks5 are functional members of a p47phox-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (vs. Nox2 and Nox4) activity in reconstituted cellular systems, and interact with the NoxA1 activator protein through an SH3-mediated interaction. Endogenous Tks4 is required for Rac GTPase-dependent ROS production by DLD1 colon cancer cells. Tks4 recruits Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent novel members of an organizer superfamily that link Nox to localized ROS formation. PMID:19755710

  13. On the Relationship Between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates: Parameterization of Lightning NOx Production in CMAQ

    Science.gov (United States)

    In the middle and upper troposphere, lightning is the most important source of nitrogen oxides (NO X = NO + NO 2), which play an essential role in the production of ozone (O 3) and influence the oxidizing capacity of the troposphere (Murray 2016). Despite much effort in both obse...

  14. NoxO1 Controls Proliferation of Colon Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Franziska Moll

    2018-05-01

    Full Text Available AimReactive oxygen species (ROS produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut.ResultsNoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells.ConclusionNoxO1 affects colon epithelium homeostasis and prevents inflammation.

  15. Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation

    Directory of Open Access Journals (Sweden)

    M. Sarrafzadeh

    2016-09-01

    Full Text Available In this study, the NOx dependence of secondary organic aerosol (SOA formation from photooxidation of the biogenic volatile organic compound (BVOC β-pinene was comprehensively investigated in the Jülich Plant Atmosphere Chamber. Consistent with the results of previous NOx studies we found increases of SOA yields with increasing [NOx] at low-NOx conditions ([NOx]0  <  30 ppb, [BVOC]0 ∕ [NOx]0  >  10 ppbC ppb−1. Furthermore, increasing [NOx] at high-NOx conditions ([NOx]0  >  30 ppb, [BVOC]0 ∕ [NOx]0  ∼  10 to  ∼  2.6 ppbC ppb−1 suppressed the SOA yield. The increase of SOA yield at low-NOx conditions was attributed to an increase of OH concentration, most probably by OH recycling in NO + HO2  →  NO2 + OH reaction. Separate measurements without NOx addition but with different OH primary production rates confirmed the OH dependence of SOA yields. After removing the effect of OH concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower [NO] ∕ [NO2] ratio showed less pronounced increase in both OH concentration and SOA yield. This result was consistent with our assumption of OH recycling by NO and to SOA yields being dependent on OH concentrations. Our results furthermore indicated that NOx dependencies vary for different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at high-NOx conditions was caused by NOx-induced suppression of new particle formation (NPF, which subsequently limits the particle surface where low volatiles condense. This was shown by probing the NOx dependence of SOA formation in the presence of seed particles. After eliminating the effect of NOx-induced suppression of NPF and NOx-induced changes of OH concentrations, the remaining effect of NOx on the SOA yield from

  16. Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake

    Science.gov (United States)

    Freymond, C. V.; Wenk, C. B.; Frame, C. H.; Lehmann, M. F.

    2013-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas, generated through microbial nitrogen (N) turnover processes, such as nitrification, nitrifier denitrification, and denitrification. Previous studies quantifying natural sources have mainly focused on soils and the ocean, but the potential role of terrestrial water bodies in the global N2O budget has been widely neglected. Furthermore, the biogeochemical controls on the production rates and the microbial pathways that produce benthic N2O in lakes are essentially unknown. In this study, benthic N2O fluxes and the contributions of the microbial pathways that produce N2O were assessed using 15N label flow-through sediment incubations in the eutrophic, monomictic south basin of Lake Lugano in Switzerland. The sediments were a significant source of N2O throughout the year, with production rates ranging between 140 and 2605 nmol N2O h-1 m-2, and the highest observed rates coinciding with periods of water column stratification and stably anoxic conditions in the overlying bottom water. Nitrate (NO3-) reduction via denitrification was found to be the major N2O production pathway in the sediments under both oxygen-depleted and oxygen-replete conditions in the overlying water, while ammonium oxidation did not contribute significantly to the benthic N2O flux. A marked portion (up to 15%) of the total NO3- consumed by denitrification was reduced only to N2O, without complete denitrification to N2. These fluxes were highest when the bottom water had stabilized to a low-oxygen state, in contrast with the notion that stable anoxia is particularly conducive to complete denitrification without accumulation of N2O. This study provides evidence that lake sediments are a significant source of N2O to the overlying water and may produce large N2O fluxes to the atmosphere during seasonal mixing events.

  17. Suppression of new particle formation from monoterpene oxidation by NOx

    Science.gov (United States)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  18. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  19. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, Vitaly Y. [ORNL; Pihl, Josh A. [ORNL; Toops, Todd J. [ORNL; Parks, II, James E. [ORNL

    2018-04-01

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.

  20. Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain?

    OpenAIRE

    Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David

    2010-01-01

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ? 10 ?M. The concentration of Nox4 in cell lysates was esti...

  1. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  2. Cardiac and renal upregulation of Nox2 and NF-κB and repression of Nox4 and Nrf2 in season- and diabetes-mediated models of vascular oxidative stress in guinea-pig and rat.

    Science.gov (United States)

    Gajos-Draus, Anna; Duda, Monika; Beręsewicz, Andrzej

    2017-11-01

    The superoxide-forming NADPH oxidase homologues, Nox1, Nox2, and Nox5, seem to mediate the pro-atherosclerotic vascular phenotype. The hydrogen peroxide-forming Nox4 afforded vascular protection, likely via NF-E2-related factor-2 (Nrf2) activation and/or Nox2 downregulation in transgenic mice. We hypothesized that oxidative stress in the intact vasculature involves, aside from the upregulation of the superoxide-forming Noxs, the downregulation of the Nox4/Nrf2 pathway. Guinea-pigs and rats were studied either in winter or in summer, and the streptozotocin diabetic rats in winter. Plasma nitrite, and superoxide production by isolated hearts were measured, while frozen tissues served in biochemical analyses. Summer in both species and diabetes in rats downregulated myocardial Nox4 while reciprocally upregulating Nox2 and Nox5 in guinea-pigs, and Nox2 in rats. Simultaneously, myocardial Nrf2 activity and the expression of the Nrf2-directed heme oxygenase-1 and endothelial NO synthase were reduced while activity of the nuclear factor κ B (NF- κ B) and the expression of NF- κ B-directed inducible NO synthase and the vascular cell adhesion molecule-1 were increased. Cardiac superoxide production was increased while plasma nitrite was decreased reciprocally. Analogous disregulation of Noxs, Nrf2, and NF- κ B, occurred in diabetic rat kidneys. Given the diversity of the experimental settings and the uniform pattern of the responses, we speculate that: (1) chronic vascular oxidative stress is a nonspecific (model-, species-, organ-independent) response involving the induction of Nox2 (and Nox5 in guinea-pigs) and the NF- κ B pathway, and the repression of Nox4 and the Nrf2 pathway; and (2) the systems Nox2-NF- κ B and Nox4-Nrf2 regulate each other negatively. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  4. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  5. Gas Turbines: ''low NOx'' technologies at EGT

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For more than 15 years, European Gas Turbines (EGT - GEC Alsthom Group) has gained an important know-how culture and can use its rich feedback experience in the domain of gas turbine emissions. The EGT gas turbine units equipped with denitrogenation technologies cover the 4 to 226 MW power range and cumulate more than 1.7 hours of functioning in the different existing installations in the world. This paper describes the economical and environmental interests of gas turbines for power production and the combustion technologies developed by EGT to reduce the NOx emissions. The selective catalytic reduction technique is the only available secondary technique with can allow NOx and CO emissions lower than 10 ppm. Other technologies involving diluent injection (water, water-fuel mixture, vapor..) are also described and were developed in several countries to reduce the emission of these pollutants. (J.S.)

  6. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted by...

  7. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity.

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A; Bokoch, Gary M

    2009-09-15

    The mechanisms that determine localized formation of reactive oxygen species (ROS) through NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox) family members in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 (tyrosine kinase substrate with four SH3 domains) and Tks5 are functional members of a p47(phox)-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (and not Nox2 and Nox4) activity in reconstituted cellular systems and interact with the NoxA1 activator protein through an Src homology 3 domain-mediated interaction. Endogenous Tks4 is required for Rac guanosine triphosphatase- and Nox1-dependent ROS production by DLD1 colon cancer cells. Our results are consistent with the Tks-mediated recruitment of Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent previously unrecognized members of an organizer superfamily that link Nox to localized ROS formation.

  8. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  9. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  10. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase.

    Science.gov (United States)

    Gandara, Ana Caroline Paiva; Torres, André; Bahia, Ana Cristina; Oliveira, Pedro L; Schama, Renata

    2017-03-29

    NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H 2 O 2 . Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H 2 O 2 production is considerably diminished in A. aegypti cells. Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H 2 O 2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many

  11. Nuclear Nox4-Derived Reactive Oxygen Species in Myelodysplastic Syndromes

    Directory of Open Access Journals (Sweden)

    Marianna Guida

    2014-01-01

    Full Text Available A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(PH oxidase (Nox complexes, are frequently activated in AML (acute myeloid leukemia blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.

  12. NOx reduction using biomass as reburning fuel

    Energy Technology Data Exchange (ETDEWEB)

    Niu Sheng-li; Lu Chun-mei; Gao Pan; Han Kui-hua; Geng Ping; Cheng Zhong-jie [Shandong University, Jinan (China). School of Energy and Power Engineering

    2008-10-15

    A series of experiments were conducted in a multiple-functional combustion test bed with several kinds of biomass as reburning fuel to reduce NOx. The character and experimental parameters are, emphasized to examine the influences on NOx reduction. The results show that biomass could get about 55% to 70% NOx reduction. Within a certain range of the parameters tested, NOx reduction increases with the increasing temperature of reburning zone and initial concentration of NOx and with decreasing excess air ratio and diameter of fuel particle. Under the same test conditions, cornstalk gets the highest NOx reduction and wheat straw, peanut shell, wood chip follow in turn. 14 refs., 7 figs., 1 tab.

  13. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension.

    Science.gov (United States)

    Drummond, Heather A

    2012-01-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na(+) Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.

  14. Reburning technology - a means to reduce NOx emissions

    International Nuclear Information System (INIS)

    Kremer, H.; Lorra, M.

    1999-01-01

    Nitrogen oxide emission control technologies can be classified as either combustion modifications to minimize the NO production or post-combustion flue gas treatment to reduce the NO concentration afterwards. The techniques for minimizing NOx Production includes the use of low-NOx burners, overfire air (staged combustion) and boiler combustion optimization. Procedures for flue gas treatment can be subdivided into selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR). The re burning process is a selective non-catalytic technology which is applicable to a wide variety of boilers and can be implemented within a relatively short period of time. The NOx reduction potential of this technique is in the range of 50 % up to 70 %. (author)

  15. Experimental investigation on NOx removal using pulsed dielectric barrier discharges in combination with catalysts

    NARCIS (Netherlands)

    Chirumamilla, V.R.; Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Huiskamp, T.; Pemen, A.J.M.

    2015-01-01

    In this study, an experimental investigation of the removal of NOx has been carried out with a dielectric barrier discharge reactor filled with different catalytic materials. NOx removal efficiency and by-products formation were studied as a function of energy density using plasma catalytic

  16. Effect of NOx level on secondary organic aerosol (SOA formation from the photooxidation of terpenes

    Directory of Open Access Journals (Sweden)

    R. C. Flagan

    2007-10-01

    Full Text Available Secondary organic aerosol (SOA formation from the photooxidation of one monoterpene (α-pinene and two sesquiterpenes (longifolene and aromadendrene is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well may be more efficient in polluted air.

  17. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  18. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  19. Pilot test and optimization of plasma based deNOx

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Michelsen, Poul

    . Experiments are in good agreement with numerical simulations. An optimized oxidation scheme for NOx reduction processes with time dependent combustion, such as the biomass power plants, was developed. Ozone production by micro-hollow and capillary discharges at atmospheric pressures was investigated......The NOx reduction of flue gas by plasma generated ozone was investigated in pilot test experiments at two industrial power plants running on natural gas (Ringsted) and biomass (Haslev). Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx of 1.56. Fourier transform infrared...... and ultraviolet absorption spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled including the influence of the flue gas temperature, water droplets and SOx and HCl content...

  20. NOx from lightning: 1. Global distribution based on lightning physics

    Science.gov (United States)

    Price, Colin; Penner, Joyce; Prather, Michael

    1997-03-01

    This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NOx) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NOx (LNOx) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20-30 flashes/s with a mean energy per flash of 6.7×109 J. Intracloud (IC) flashes are more frequent, 50-70 flashes/s but have 10% of the energy of CG strokes and, consequently, produce significantly less NOx. It appears to us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NOx, thus overestimating the NOx production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10×1016 molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNOx on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNOx is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNOx, is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NOx, in the upper troposphere where it is important in ozone production. On an annual basis, 64% of the LNOx, is produced in the northern hemisphere, implying that the northern hemisphere should have natural ozone levels as much as 2 times greater than the southern hemisphere

  1. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    Science.gov (United States)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary

  2. Regional Marginal Abatement Cost Curves for NOx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data underlying the figures included in the manuscript "Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and...

  3. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  4. Ambient NOx concentrations in the UK, 1976-84: a summary

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.L.; Broughton, G.F.J.; Bower, J.S.; Drury, V.J.; Lilley, K.

    1987-01-01

    This report summarizes NOx concentration data obtained at Warren Spring Laboratory (WSL) sites up to and including 1984. The statistics of NO and NO/sub 2/ concentrations are discussed, and an extreme value analysis of upper-percentile NO/sub 2/ concentrations is presented. The seasonal behavior, diurnal averages, and weekday/weekend differences of NO and NO/sub 2/ concentrations are discussed in terms of the more-important sources of NOx and the mechanisms for the production and loss of NO/sub 2/. An investigation of the NO/sub 2//NOx relationship is presented.

  5. Formation of fuel NOx during black-liquor combustion

    International Nuclear Information System (INIS)

    Nichols, K.M.; Lien, S.J.

    1993-01-01

    Fuel NOx and thermal NOx were measured in combustion gases from black liquors in two laboratory furnaces. Combustion at 950 C in air (8% O 2 ) produced NOx concentrations of 40-80ppm. Combustion at 950 C in synthetic air containing no nitrogen (21% 0 2 in Ar) produced the same result, demonstrating that all of the NOx produced during combustion at 950 C was fuel NOx. Formation of fuel NOx increased moderately with increasing temperature in the range of 800-1,000 C, but temperature sensitivity of fuel NOx was much less than that of thermal NOx. The results imply that the major source of NOx in recovery furnace emissions is the fuel NOx in recovery furnace formed by conversion of liquor-bound nitrogen during combustion. This is consistent with thermal NOx theory, which postulates that black-liquor combustion temperatures are too low to generate significant amounts of thermal NOx

  6. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  7. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor....../NO ratios (waste product, together with its demonstrated NOx reduction capability and its calorific value contribution, makes it attractive as an additive...

  8. Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  9. Neural networks prove effective at NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Radl, B.J. [Pegasus Technologies, Mentor, OH (USA)

    2000-05-01

    The availability of low cost computer hardware and software is opening up possibilities for the use of artificial intelligence concepts, notably neural networks, in power plant control applications, delivering lower costs, greater efficiencies and reduced emissions. One example of a neural network system is the NeuSIGHT combustion optimisation system, developed by Pegasus Technologies, a subsidiary of KFx Inc. It can help reduce NOx emissions, improve heat rate and enable either deferral or elimination of capital expenditures. on other NOx control technologies, such as low NOx burners, SNCR and SCR. This paper illustrates these benefits using three recent case studies. 4 figs.

  10. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  11. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  12. Rise and fall of the NOx emissions trade; Opkomst en ondergang van NOx-emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velde, R. [Royal Haskoning DHV, Amersfoort (Netherlands); Van der Kolk, J. [Van der Kolk Advies, Soest (Netherlands)

    2013-04-15

    In 2005, the Netherlands started NOx emission trading. In 2014 they are terminating these activities. Are they stopping because the targets have been realized? This article provides an overview of the developments and experiences that have ultimately led to the termination of the NOx emission trade in the Netherlands [Dutch] In 2005 is Nederland begonnen in NOx-emissiehandel. In 2014 stoppen we er weer mee. Stoppen we omdat de doelen zijn gehaald? Een overzicht wordt gegeven van de ontwikkelingen en ervaringen die uiteindelijk hebben geleid tot beeindiging van de NOx-emissiehandel in Nederland.

  13. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids....... The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...

  14. Nox regulation of smooth muscle contraction

    OpenAIRE

    Ritsick, Darren R.; Edens, William A.; Finnerty, Victoria; Lambeth, J. David

    2007-01-01

    The catalytic subunit, gp91phox (a.k.a., Nox2) of the NADPH-oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology is being extensively studied in many labor...

  15. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice

    Directory of Open Access Journals (Sweden)

    Flávia Rezende

    2018-05-01

    Innovation and conclusion: ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.

  16. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-07-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30 % between 2001 and 2008. Here we use an observation-based method to quantify net ozone (O3) production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions and other temperature-related effects can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-h O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30 % (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30 % decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  17. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  18. The Gothenburg Protocol: NOx emissions problematic for Norway

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    The Gothenburg Protocol concerns long-range air pollution and is a continuation of earlier protocols and agreements. Its recommendations are based on calculations of where the greatest possible health- and environmental impact is obtained per dollar invested. European countries have done much to reduce the emission of sulphur dioxide. Norway and most other countries, however, have difficulties reducing their emissions of nitrogen oxides. In Norway, the emission of sulphur dioxide must also be substantially reduced, as the tolerance limit for SO2 in nature is low. It is socio-economically profitable for Norway to conform to the Gothenburg Protocol. One of the largest environmental problems in Norway is acid rain and death of fish. Although it is difficult to calculate the exact values of fishing-lakes and of reduced health injuries when the emissions of harmful waste gases are reduced, the profit is very high. 90% of the SO2 pollution in Norway is long-range transported from abroad. Yet Norway must reduce the domestic emissions from 30 000 to 22 000 tonnes the next 10 years. Most of the present emission of SO2 in Norway comes from the production of metals. The reduction goal can be achieved by a combination of improving industrial processes, SO2 cleaning, and reducing the sulphur content of oil. In many European countries, the greatest problem is the increasing emission of NOx and formation of ozone at the ground, which is largely due to the rapidly increasing motor traffic. In Norway, most of the NOx emission comes from the coastal traffic and the fishing fleet, followed by the motor traffic, the petroleum industry and the processing industry. The most cost-effective NOx reductions can be obtained in the North Sea by installing low-NOx gas turbines. In ships, catalytic cleaning of NOx and engine improvements will contribute. On land, the goods traffic can be made more efficient. Most of the emission of ammonia comes from agriculture, where special measures are

  19. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  20. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Guan-Lin [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Wu, Jing-Yiing [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Yeh, Chang-Ching [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Kuo, Cheng-Chin, E-mail: kuocc@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  1. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Lee, Guan-Lin; Wu, Jing-Yiing; Yeh, Chang-Ching; Kuo, Cheng-Chin

    2016-01-01

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  2. TGF-β1-induced cell migration in pancreatic carcinoma cells is RAC1 and NOX4-dependent and requires RAC1 and NOX4-dependent activation of p38 MAPK.

    Science.gov (United States)

    Witte, David; Bartscht, Tobias; Kaufmann, Roland; Pries, Ralph; Settmacher, Utz; Lehnert, Hendrik; Ungefroren, Hendrik

    2017-12-01

    Transforming growth factor (TGF)-β promotes epithelial-mesenchymal transition and cell invasion of cancer cells in part through the small GTPase RAC1. Since RAC1 can signal through reactive oxygen species (ROS), we probed the role of the ROS-producing NADPH oxidase (NOX) and p38 mitogen-activated protein kinase (MAPK) in mediating TGF-β1/RAC1-driven random cell migration (chemokinesis). Although the NOX isoforms NOX2, 4, 5, 6, and RAC1 were readily detectable by RT-PCR in pancreatic ductal adenocarcinoma (PDAC)-derived Panc1 and Colo357 cells, only NOX4 and RAC1 were expressed at higher levels comparable to those in peripheral blood monocytes. TGF-β1 treatment resulted in upregulation of NOX4 (and NOX2) and rapid intracellular production of ROS. To analyze whether RAC1 functions through NOX and ROS to promote cell motility, we performed real-time cell migration assays with xCELLigence® technology in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and various NOX inhibitors. NAC, the NOX4 inhibitor diphenylene iodonium or small interfering RNA (siRNA) to NOX4, and the NOX2 inhibitor apocynin all suppressed TGF-β1-induced chemokinesis of Panc1 and Colo357 cells as did various inhibitors of RAC1 used as control. In addition, we showed that blocking NOX4 or RAC1 function abrogated phosphorylation of p38 MAPK signaling by TGF-β1 and that inhibition of p38 MAPK reduced TGF-β1-induced random cell migration, while ectopic expression of a kinase-active version of the p38 activating kinase MKK6 was able to partially rescue the decline in migration after RAC1 inhibition. Our data suggest that TGF-β1-induced chemokinesis in PDAC cells is mediated through a RAC1/NOX4/ROS/p38 MAPK cascade.

  3. NOx processing on Solar gas turbines; Turbines, traitement des nox sur les turbines a gaz solar

    Energy Technology Data Exchange (ETDEWEB)

    Chausse, X. [Spie Trindel, 95 - Cergy (France). Service TAG

    1997-12-31

    The Solar Company, in cooperation with Tuma Turbomach, has developed the SoLoNOx combustion system with a dry, lean, premixed compound, allowing for reduced NOx and CO emission levels (respectively 42 ppmv and 50 ppmv at 15 pc O{sub 2}). The combustor size is larger than a conventional combustor in order to maintain combustion efficiency and reduce carbon monoxide levels. Leaner combustion occurs at lower temperatures which produce less nitrogen oxides but require more volume to complete the combustion process. New developments should allow for a further reduction of NOx level at 25 ppmv

  4. Role of Nox2 and p22phox in Persistent Postoperative Hypertension in Aldosterone-Producing Adenoma Patients after Adrenalectomy

    Directory of Open Access Journals (Sweden)

    Xiaojing Geng

    2016-01-01

    Full Text Available Adrenal aldosterone-producing adenoma (APA, producing the salt-retaining hormone aldosterone, commonly causes secondary hypertension, which often persists after unilateral adrenalectomy. Although persistent hypertension was correlated with residual hormone aldosterone, the in vivo mechanism remains unclear. NADPH oxidase is the critical cause of aldosterone synthesis in vitro. Nox2 and p22phox comprise the NADPH oxidase catalytic core, serving to initiate a reactive oxygen species (ROS cascade that may participate in the pathology. mRNAs of seven NADPH oxidase isoforms in APA were evaluated by RT-PCR and Q-PCR and their proteins by immunohistochemistry and Western blotting. NADPH oxidase activity was also detected. Nox2 and p22phox were especially abundant in APA. Particularly higher Nox2 and p22phox gene and protein levels were seen in APA than controls. Significant correlations between Nox2 mRNA and aldosterone synthase (CYP11B2 mRNA (R=0.66, P<0.01 and Nox2 protein and baseline plasma aldosterone concentration (PAC (R=0.503, P<0.01 were detected in APA; however, none were found between p22phox mRNA, CYP11B2 mRNA, p22phox protein, and baseline PAC. Importantly, we found that Nox2 localized specifically in hyperplastic zona glomerulosa cells. In conclusion, our results highlight that Nox2 and p22phox may be directly involved in pathological aldosterone production and zona glomerulosa cell proliferation after APA resection.

  5. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  6. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  7. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    completeness of the partial fuel oxidation reaction up to 100%. Nitrogen was found to be the most effective gas for the synthesis gas production by a plasmatron. The preliminary experiments of introducing the reformation products into a diesel engine resulted in ∼25% NOx cut in the exhaust gas flow. A simulation experiment with the pure hydrogen addition to the inlet of a diesel engine showed that both components of the synthesis gas H 2 and CO fed into the engine play significant role in cutting NOx content in the engine's emission. The selective catalytic reduction (SCR) with propylene and decane as reductants in the presence of excess air over (Fe, Co-Pt)/ZSM-5 catalyst was conducted to remove NOx from Diesel exhaust gases. The SO 2 effect and deactivation test over above catalyst were also executed. ZSM-5 supported Co, Pt, Fe mixed oxide catalyst showed about 80% of conversion in the presence of NO. However, the activity was decreased when the catalyst was wash coated onto the ceramic monolith. We found that the deNOx activity over the catalyst was strongly depended on the amount of reductant. Therefore, the amount reductant and how to feed the reductant into the system should be considered as important factors to remove NOx. In order to develop the high removal NOx activity at low temperature and maintain the stable activity at the real exhaust gases condition, metallosilicate and Pt/ZSM-5 catalysts have been used. In case of metallosilicate catalyst, the deNOx activity was low at the oxidation atmospheric condition. When the Pt was ion-exchanged with ZSM-5, the H-form of ZSM-5 catalyst showed high deNOx activity. The effect of reductant type on deNOx activity exhibited that the olefin system provided more higher activity than octane system. The methane conversion observed in the presence of NO and excess O 2 over alumina supported Pt catalyst. In order to improve the activity and durability, the Co metal ion was added. The result showed that the Co-Pt catalyst gave

  8. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  9. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  10. Photocatalytic NO_x abatement. Theory, applications, current research, and limitations

    International Nuclear Information System (INIS)

    Bloh, Jonathan Z.

    2017-01-01

    Nitrogen oxides are one of the major air pollutants that threaten our air quality and health. As a consequence, increasingly stricter regulations are in place forcing action to reduce the concentration of these dangerous compounds. Conventional methods of reducing the NO_x pollution level are reducing the emission directly at the source or restrictive measures such as low emission zones. However, there are recent reports questioning the efficacy of the strategy to reduce ambient NO_x levels solely by reducing their emissions and existing threshold values are still frequently exceeded in many European cities. Semiconductor photocatalysis presents an appealing alternative capable of removing NO_x and other air pollutants from the air once they have already been released and dispersed. Recent field tests have shown that a reduction of a few percent in NO_x values is possible with available photocatalysts. Current research focuses on further increasing the catalysts' efficacy as well as their selectivity to suppress the formation of undesired by-products. Especially using these improved materials, photocatalytic NO_x abatement could prove a very valuable contributor to better air quality.

  11. The Use of Amine Reclaimer Wastes as a NOx Reduction Agent

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2013-01-01

    that of aqueous ammonia, i.e. the most common SNCR chemical reagent used in industry (above 60% NOx reduction efficiency), ARW is nonetheless shown to possess valuable SNCR qualities (at least 20% NOx reduction efficiency) considering its availability as a waste product which has to be safely disposed. A series...... of thermo-gravimetric analyses provided important information on vaporization characteristics of amine reclaimer bottom wastes. The proposed methodology can lead to simultaneous energy and material resource recovery while primarily solving two environmental pollution problems, i.e. toxic ARW wastes...

  12. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox

  13. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  14. Stereodynamics in NO(X) + Ar inelastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brouard, M., E-mail: mark.brouard@chem.ox.ac.uk; Chadwick, H.; Gordon, S. D. S.; Hornung, B.; Nichols, B. [The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Aoiz, F. J., E-mail: aoiz@quim.ucm.es [Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid (Spain); Stolte, S., E-mail: s.stolte@vu.nl [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2016-06-14

    The effect of orientation of the NO(X) bond axis prior to rotationally inelastic collisions with Ar has been investigated experimentally and theoretically. A modification to conventional velocity-map imaging ion optics is described, which allows the orientation of hexapole state-selected NO(X) using a static electric field, followed by velocity map imaging of the resonantly ionized scattered products. Bond orientation resolved differential cross sections are measured experimentally for a series of spin-orbit conserving transitions and compared with quantum mechanical calculations. The agreement between experimental results and those from quantum mechanical calculations is generally good. Parity pairs, which have previously been observed in collisions of unpolarized NO with various rare gases, are not observed due to the coherent superposition of the two j = 1/2, Ω = 1/2 Λ-doublet levels in the orienting field. The normalized difference differential cross sections are found to depend predominantly on the final rotational state, and are not very sensitive to the final Λ-doublet level. The differential steric effect has also been investigated theoretically, by means of quantum mechanical and classical calculations. Classically, the differential steric effect can be understood by considering the steric requirement for different types of trajectories that contribute to different regions of the differential cross section. However, classical effects cannot account quantitatively for the differential steric asymmetry observed in NO(X) + Ar collisions, which reflects quantum interference from scattering at either end of the molecule. This quantum interference effect is dominated by the repulsive region of the potential.

  15. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  16. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  17. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice.

    Science.gov (United States)

    Rezende, Flávia; Moll, Franziska; Walter, Maria; Helfinger, Valeska; Hahner, Fabian; Janetzko, Patrick; Ringel, Christian; Weigert, Andreas; Fleming, Ingrid; Weissmann, Norbert; Kuenne, Carsten; Looso, Mario; Rieger, Michael A; Nawroth, Peter; Fleming, Thomas; Brandes, Ralf P; Schröder, Katrin

    2018-05-01

    NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes. In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice. ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Estimates of the changes in tropospheric chemistry which result from human activity and their dependence on NO(x) emissions and model resolution

    Science.gov (United States)

    Kanakidou, Maria; Crutzen, Paul J.; Zimmermann, Peter H.

    1994-01-01

    As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry.

  19. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  20. On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2013-05-01

    Full Text Available The partitioning of reactive nitrogen (NOy was measured over the remote North Pacific during spring 2006. Aircraft observations of NO, NO2, total peroxy nitrates (ΣPNs, total alkyl and multi-functional nitrates (ΣANs and nitric acid (HNO3, made between 25° and 55° N, confirm a controlling role for peroxyacyl nitrates in NOx production in aged Asian outflow. ΣPNs account for more than 60% of NOy above 5 km, while thermal dissociation limits their contribution to less than 10% in the lower troposphere. Using simultaneous observations of NOx, ΣPNs, ΣANs, HNO3 and average wind speed, we calculate the flux of reactive nitrogen through the meridional plane of 150° W (between 20° and 55° N to be 0.007 ± 0.002 Tg N day−1, which provides an upper limit of 23 ± 6.5% on the transport efficiency of NOy from East Asia. Observations of NOx, and HOx are used to constrain a 0-D photochemical box model for the calculation of net photochemical ozone production or tendency (Δ O3 as a function of aircraft altitude and NOx concentrations. The model analysis indicates that the photochemical environment of the lower troposphere (altitude 3 destruction, with an experimentally determined crossover point between net O3 destruction and net O3 production of 60 pptv NOx. Qualitative indicators of integrated net O3 production derived from simultaneous measurements of O3 and light alkanes (Parrish et al., 1992, also indicate that the north Pacific is, on average, a region of net O3 destruction.

  1. Global inventory of NOx sources

    International Nuclear Information System (INIS)

    Delmas, R.; Serca, D.; Jambert, C.

    1997-01-01

    Nitrogen oxides are key compounds for the oxidation capacity of the troposphere. Their concentration depends on the proximity of sources because of their short atmospheric lifetime. An accurate knowledge of the distribution of their sources and sinks is therefore crucial. At the global scale, the dominant sources of nitrogen oxides - combustion of fossil fuel (about 50%) and biomass burning (about 20%) - are basically anthropogenic. Natural sources, including lightning and microbial activity in soils, represent therefore less than 30% of total emissions. Fertilizer use in agriculture constitutes an anthropogenic perturbation to the microbial source. The methods to estimate the magnitude and distribution of these dominant sources of nitrogen oxides are discussed. Some minor sources which may play a specific role in tropospheric chemistry such as NO x emission from aircraft in the upper troposphere or input from production in the stratosphere from N 2 O photodissociation are also considered

  2. Numerical simulation of flow in De-NOx catalyst honeycomb with NOx reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Makino, H. [Electric Power Industry, Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R.; Komori, S. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    The effect of flow behavior in a De-NOx honeycomb with NOx reduction reaction is investigated by direct numerical simulation (DNS). As the inlet flow, fully developed turbulent or laminar flow is given. The results show that the surface reaction is strongly affected by inner flow behavior. The surface reaction rate for the turbulent flow is higher than that for the laminar flow. This is due to the difference of inner flow behavior that the diffusion of NOx in the vicinity of the wall is dominated only by molecular diffusion for the laminar flow, whereas it is enhanced by turbulent motions for the turbulent flow. Moreover, surface reaction is suppressed towards downstream even though inlet flow is turbulent. This is due to the flow transition from turbulent to laminar.

  3. Top-down NOX Emissions of European Cities Derived from Modelled and Spaceborne Tropospheric NO2 Columns

    Science.gov (United States)

    Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.

    2017-12-01

    High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived

  4. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch.

    Directory of Open Access Journals (Sweden)

    Juri Vogel

    Full Text Available By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.Thus, exercise-induced muscle fibre switch is Nox4-independent.

  5. 40 CFR 96.85 - NOX Budget opt-in permit contents.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget opt-in permit contents. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in permit...

  6. 40 CFR 96.24 - Effective date of initial NOX Budget permit.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget permit...

  7. 40 CFR 97.85 - NOX Budget opt-in permit contents.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget opt-in permit contents. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in permit will contain all elements...

  8. Study on the Conversion of Fuel Nitrogen Into NOx

    Directory of Open Access Journals (Sweden)

    Raminta Plečkaitienė

    2011-12-01

    Full Text Available The aim of this work is to investigate NOx regularities combusting fuels having high concentration of nitrogen and to develop methods that will reduce the conversion of fuel nitrogen into NOx. There are three solutions to reducing NOx concentration: the combustion of fuel mixing it with other types of “clean” fuel containing small amounts of nitrogen, laundering fuel and the combustion of fuel using carbon additives. These solutions can help with reducing the amount of nitrogen in the wood waste of furniture by about 30% by washing fuel with water. Therefore, NOx value may decrease by about 35%.Article in Lithuanian

  9. A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel

    KAUST Repository

    Chun, Kangwoo; Chung, Hun J.; Chung, Suk-Ho; Choi, Jaehyuk

    2011-01-01

    The flame structure, extinction, and NOx emission characteristics of syngas/air nonpremixed flames, have been investigated numerically. The extinction stretch rate increased with the increase in the hydrogen proportion in the syngas and with lower fuel dilution and higher initial temperature. It also increased with pressure, except for the case of highly diluted fuel at high pressure. The maximum temperature and the emission index of nitric oxides (EINOx) also increased in aforementioned conditions. The EINOx decreased with stretch rate in general, while the decreasing rate was found to be somewhat different between the cases of N2 and CO2 dilutions. The reaction paths of NOx formation were analyzed and represented as NO reaction path diagram. The increase in N radical resulted in larger NOx production at high initial temperature and pressure. As the pressure increases, EINOx increases slower due to the third-body recombination. The thermal NO mechanism is weakened for high dilution cases and non-thermal mechanisms prevail. The combustion conditions achieving higher extinction stretch rate can be lead to more NOx emission, therefore that the selection of optimum operation range is needed in syngas combustion. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  10. A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel

    KAUST Repository

    Chun, Kangwoo

    2011-11-01

    The flame structure, extinction, and NOx emission characteristics of syngas/air nonpremixed flames, have been investigated numerically. The extinction stretch rate increased with the increase in the hydrogen proportion in the syngas and with lower fuel dilution and higher initial temperature. It also increased with pressure, except for the case of highly diluted fuel at high pressure. The maximum temperature and the emission index of nitric oxides (EINOx) also increased in aforementioned conditions. The EINOx decreased with stretch rate in general, while the decreasing rate was found to be somewhat different between the cases of N2 and CO2 dilutions. The reaction paths of NOx formation were analyzed and represented as NO reaction path diagram. The increase in N radical resulted in larger NOx production at high initial temperature and pressure. As the pressure increases, EINOx increases slower due to the third-body recombination. The thermal NO mechanism is weakened for high dilution cases and non-thermal mechanisms prevail. The combustion conditions achieving higher extinction stretch rate can be lead to more NOx emission, therefore that the selection of optimum operation range is needed in syngas combustion. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  11. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    Science.gov (United States)

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-07

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.

  12. Analysis of NOx Budget Trading Program Units Brought into the CAIR NOx Ozone Season Trading Program

    Science.gov (United States)

    EPA analyzed the effect of having the large non-EGU units in the NBP and the CAIR NOX ozone season trading program and evaluated whether or not emissions from this group of units were reduced as a result of their inclusion in those trading programs.

  13. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  14. Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    C. Roy

    2017-01-01

    78.5 mW m−2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.

  15. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China

    Science.gov (United States)

    Zou, Y.; Deng, X. J.; Zhu, D.; Gong, D. C.; Wang, H.; Li, F.; Tan, H. B.; Deng, T.; Mai, B. R.; Liu, X. T.; Wang, B. G.

    2015-06-01

    Guangzhou, one of China's megacities, is beset with frequent occurrence of high-concentration ozone events. In this study, online instruments were used to simultaneously monitor ozone, nitrogen oxides (NOx) and volatile organic compounds (VOCs) at GPACS (the Guangzhou Panyu Atmospheric Composition Station) of the China Meteorological Administration, from June 2011 to May 2012, in order to determine their characteristics, the effect of VOCs on ozone photochemical production and the relationship between VOC / NOx ratio and ozone formation. The results showed that during the observation period, the seasonal variation of ozone concentration was lower in spring and winter compared to summer and autumn, which is opposite that for VOCs and NOx. In terms of VOCs, aromatics had the largest ozone formation potential, among which toluene, xylenes, ethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were the most important species, with a total contribution of about 44%. As the VOC / NOx ratios were very high during high-concentration ozone events that occur all year round, we speculate ozone production was likely to be NOx-limited regime (12:00-16:00 LT) in Guangzhou. Further investigation based on numerical models is needed in the future to obtain more detailed and robust conclusions.

  16. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  17. ASCR{trademark}: lower NOx removal costs without sacrificing performance

    Energy Technology Data Exchange (ETDEWEB)

    Bible, S.; Rummenhohl, V.; Siebeking, M.; Thomas, R.; Triece, C. [Fuel Tech (United States)

    2011-05-15

    With recent regulatory initiatives, the new Industrial Emissions Directive in Europe, and new rules being proposed by EPA in the USA, the question for power plants is now whether they will be required to reduce NOx emissions in the future to stay in operation, but when. What is needed is a low-capital-cost but high-performance NOx removal technology. 7 figs.

  18. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    NARCIS (Netherlands)

    Maisuls, S.E.

    2000-01-01

    The combustion of fuels, to meet the society demands for energy, result in the emissi of large quantities of nitrogen oxides (NOx) to the environment. These pollutants cause severe environmental problems and present a serious hazard to the health. Nowadays, two methods for the control of NOx

  19. 40 CFR 96.142 - CAIR NOX allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... the 3 highest amounts of the unit's adjusted control period heat input for 2000 through 2004, with the adjusted control period heat input for each year calculated as follows: (A) If the unit is coal-fired... CAIR NOX Allowance Allocations § 96.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input...

  20. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  1. Ships going slow in reducing their NOx emissions

    NARCIS (Netherlands)

    Boersma, K.F.; Vinken, G.C.M.; Tournadre, J.

    2015-01-01

    Weaddress the lack of temporal information on ship emissions, and report on rapid short-term variations of satellite-derived shipNOx emissions between 2005 and 2012 over European seas. Our inversion is based onOMI observed troposphericNO2 columns and GEOS-Chem simulations. Average European shipNOx

  2. 40 CFR 76.12 - Phase I NOX compliance extension.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Phase I NOX compliance extension. 76.12 Section 76.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a...

  3. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  4. Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS.

    Directory of Open Access Journals (Sweden)

    Maarten A Ligtenberg

    Full Text Available Reactive oxygen species (ROS produced by the inducible NADPH oxidase type 2 (NOX2 complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC- and regulatory T cell (T(reg mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA induced sarcoma model. Superoxide production by NOX2 requires the p47(phox (NCF1 subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/* have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+ retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell

  5. OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations

    DEFF Research Database (Denmark)

    Klotz, B; Volkamer, R; Hurley, MD

    2002-01-01

    The present work represents a continuation of part I of this series of papers, in which we investigated the phenol yields in the OH-initiated oxidation of benzene under conditions of low to moderate concentrations of NOx, to elevated NOx levels. The products of the OH-initiated oxidation of benzene...... concentrations of NOx, the phenol yield increases with increasing O-2 partial pressure. The rate constant of the reaction of hydroxycyclohexadienyl peroxyl radicals with NO was determined to be (1.7 +/- 0.6) x 10(-11) cm(3) molecule(-1) s(-1). This reaction leads to the formation of E, E-2,4-hexadienedial...... as the main identiable product (29 +/- 16. The reaction of the hydroxycyclohexadienyl radical with NO2 gave phenol (5.9 +/- 3.4 and E,E-2,4-hexadienedial (3.4 +/- 1.9, no other products could be identified. The residual FTIR product spectra indicate the formation of unknown nitrates or other nitrogen...

  6. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1.

    Science.gov (United States)

    Meijles, Daniel N; Sahoo, Sanghamitra; Al Ghouleh, Imad; Amaral, Jefferson H; Bienes-Martinez, Raquel; Knupp, Heather E; Attaran, Shireen; Sembrat, John C; Nouraie, Seyed M; Rojas, Mauricio M; Novelli, Enrico M; Gladwin, Mark T; Isenberg, Jeffrey S; Cifuentes-Pagano, Eugenia; Pagano, Patrick J

    2017-10-17

    Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21 cip , both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21 cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21 cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21 cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Top-down NOx and SO2 emissions simultaneously estimated from different OMI retrievals and inversion frameworks

    Science.gov (United States)

    Qu, Z.; Henze, D. K.; Wang, J.; Xu, X.; Wang, Y.

    2017-12-01

    Quantifying emissions trends of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving understanding of air pollution and the effectiveness of emission control strategies. We estimate long-term (2005-2016) global (2° x 2.5° resolution) and regional (North America and East Asia at 0.5° x 0.667° resolution) NOx emissions using a recently developed hybrid (mass-balance / 4D-Var) method with GEOS-Chem. NASA standard product and DOMINO retrievals of NO2 column are both used to constrain emissions; comparison of these results provides insight into regions where trends are most robust with respect to retrieval uncertainties, and highlights regions where seemingly significant trends are retrieval-specific. To incorporate chemical interactions among species, we extend our hybrid method to assimilate NO2 and SO2 observations and optimize NOx and SO2 emissions simultaneously. Due to chemical interactions, inclusion of SO2 observations leads to 30% grid-scale differences in posterior NOx emissions compared to those constrained only by NO2 observations. When assimilating and optimizing both species in pseudo observation tests, the sum of the normalized mean squared error (compared to the true emissions) of NOx and SO2 posterior emissions are 54-63% smaller than when observing/constraining a single species. NOx and SO2 emissions are also correlated through the amount of fuel combustion. To incorporate this correlation into the inversion, we optimize seven sector-specific emission scaling factors, including industry, energy, residential, aviation, transportation, shipping and agriculture. We compare posterior emissions from inversions optimizing only species' emissions, only sector-based emissions, and both species' and sector-based emissions. In situ measurements of NOx and SO2 are applied to evaluate the performance of these inversions. The impacts of the inversion on PM2.5 and O3 concentrations and premature deaths are also evaluated.

  8. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    Science.gov (United States)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  9. AMMONOX-Ammonia for enhancing biogas yield & reducing NOx

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Kristensen, P.G.; Paamand, K.

    2013-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. However...... of innovative ammonia recovery technology and c) the coupling of the excess ammonia obtained from manure with the catalytic elimination of NOx emissions when the biogas is used for subsequent electricity generation with gas engines.......The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. However......, biogas plants digesting liquid manure alone are not economically viable due to the relatively low organic content of the manure, usually 3-5%.Thus, their economical profitable operation relies partly on increasing the methane yield from manure, and especially of its solid fraction, usually called...

  10. Development of an analytical method coupling cell membrane chromatography with gas chromatography-mass spectrometry via microextraction by packed sorbent and its application in the screening of volatile active compounds in natural products.

    Science.gov (United States)

    Li, Miao; Wang, Sicen; He, Langchong

    2015-01-01

    Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. NADPH Oxidase, NOX1, Mediates Vascular Injury in Ischemic Retinopathy

    Science.gov (United States)

    Deliyanti, Devy; Rana, Indrajeetsinh; Miller, Antonia G.; Agrotis, Alex; Armani, Roksana; Szyndralewiez, Cédric; Wingler, Kirstin; Touyz, Rhian M.; Cooper, Mark E.; Jandeleit-Dahm, Karin A.; Schmidt, Harald H.H.W.

    2014-01-01

    Abstract Aims: Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. Results: Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. Innovation: Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. Conclusions: Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies. Antioxid. Redox Signal. 20, 2726–2740. PMID:24053718

  12. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources

    Directory of Open Access Journals (Sweden)

    E. C. Browne

    2013-05-01

    Full Text Available In contrast with the textbook view of remote chemistry where HNO3 formation is the primary sink of nitrogen oxides, recent theoretical analyses show that formation of RONO2 (ΣANs from isoprene and other terpene precursors is the primary net chemical loss of nitrogen oxides over the remote continents where the concentration of nitrogen oxides is low. This then increases the prominence of questions concerning the chemical lifetime and ultimate fate of ΣANs. We present observations of nitrogen oxides and organic molecules collected over the Canadian boreal forest during the summer which show that ΣANs account for ~20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3. This confirms the primary role of reactions producing ΣANs as a control over the lifetime of NOx (NOx = NO + NO2 in remote, continental environments. However, HNO3 is generally present in larger concentrations than ΣANs indicating that the atmospheric lifetime of ΣANs is shorter than the HNO3 lifetime. We investigate a range of proposed loss mechanisms that would explain the inferred lifetime of ΣANs finding that in combination with deposition, two processes are consistent with the observations: (1 rapid ozonolysis of isoprene nitrates where at least ~40% of the ozonolysis products release NOx from the carbon backbone and/or (2 hydrolysis of particulate organic nitrates with HNO3 as a product. Implications of these ideas for our understanding of NOx and NOy budget in remote and rural locations are discussed.

  13. Experimental and Kinetic Investigation of the Influence of OH Groups on NOX Formation

    KAUST Repository

    Bohon, Myles

    2016-05-04

    This work investigates the influence of one or more OH groups present on the fuel molecule and the resultant formation of NOX emissions. Combustion of oxygenated fuels has been increasing globally and such fuels offer significant potential in the reduction of pollutant emissions. One such emission class is the oxides of nitrogen, which typically form through a combination of two regimes: the thermal and non-thermal mechanisms. While thermal NO formation can be reduced by lowering the combustion temperature, non-thermal NO formation is coupled to the fuel chemistry. An experimental and computational investigation of NOX formation in three different burner configurations and under a range of equivalence ratios and temperature regimes explored the differences in NO formation. Measurements of temperature profiles and in-flame species concentrations, utilizing both probed and non-intrusive laser based techniques, allowed for the investigation of NO formation through non-thermal pathways and the differences that exist between fuels with varying numbers of OH groups. The first burner configuration was composed of a high swirl liquid spray burner with insulted combustion chamber walls designed specifically for the combustion of low energy density fuels. In this system the combustion of alcohols and glycerol (the largest by-product of biodiesel production), along with other fuels with multiple hydroxyl groups, was studied. Measurements of the mean flame temperature and exhaust gas measurements of NOX showed significant reductions in non-thermal NO concentrations with increasing numbers of OH groups. An accompanying modeling study and detailed reaction path analysis showed that fuel decomposition pathways through formaldehyde were shown a preference due to the presence of the OH groups which resulted in reduced contributions to the hydrocarbon radical pools subsequent reductions to the Prompt NO mechanism. Two burner configurations with reduced dimensionality facilitated

  14. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  15. Co-controlling CO2 and NOx emission in China's cement industry: An optimal development pathway study

    Directory of Open Access Journals (Sweden)

    Xiang-Zhao Feng

    2018-03-01

    Full Text Available It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry. This paper firstly identifies key factors that influence China's future cement demand, and then uses the Gompertz model to project China's future cement demand and production. Furthermore, the multi-pollutant abatement planning model (MAP was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry. During modeling analysis, three scenarios such as basic as usual scenario (BAU, moderately low carbon scenario (MLC, and radically low carbon scenario (RLC, were built according to different policy constraints and emission control goals. Moreover, the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated. Finally, this paper proposes a cost-efficient, green, and low carbon development roadmap for the Chinese cement sector, and puts forwards countermeasures as follows: first, different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry. Second, co-control technology list should be issued timely for cement industry, and the R&D investment on new technologies and demonstration projects should be increased. Third, the phase-out of old cement capacity needs to be continued at policy level. Fourth, it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry. Keywords: Cement industry, CO2 abatement, NOx reduction, Co-benefit analysis

  16. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  17. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  18. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  19. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.386 Section 97.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program...

  20. 40 CFR 97.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.86 Withdrawal from NOX Budget Trading Program. (a) Requesting withdrawal. To...

  1. 40 CFR 96.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.86 Withdrawal from NOX Budget Trading Program. (a) Requesting...

  2. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  3. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX intake...

  4. 40 CFR 96.83 - Applying for NOX Budget opt-in permit.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applying for NOX Budget opt-in permit... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.83 Applying for NOX Budget opt-in permit. (a) Applying for...

  5. 40 CFR 97.83 - Applying for NOX Budget opt-in permit.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applying for NOX Budget opt-in permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.83 Applying for NOX Budget opt-in permit. (a) Applying for initial NO X Budget opt...

  6. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  7. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Science.gov (United States)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  8. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis

    International Nuclear Information System (INIS)

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Yu, Hak-Sun; Ahn, Soon-Cheol

    2016-01-01

    Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca 2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca 2+ level and ER stress response. Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca 2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer. The online version of this article (doi:10.1186/s12885-016-2516-6) contains supplementary material, which is available to authorized users

  9. Increases to Biogenic Secondary Organic Aerosols from SO2 and NOx in the Southeastern US

    Science.gov (United States)

    Russell, L. M.; Liu, J.; Ruggeri, G.; Takahama, S.; Claflin, M. S.; Ziemann, P. J.; Lee, A.; Murphy, B.; Pye, H. O. T.; Ng, N. L.; McKinney, K. A.; Surratt, J. D.

    2017-12-01

    During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock, Tennessee, and Centreville, Alabama. The low NOx, low wind, little rain, and increased daytime isoprene emissions led to multi-day stagnation events at Look Rock that provided clear evidence of particle-phase sulfate enhancing biogenic secondary organic aerosol (bSOA) by selective uptake. Organic mass (OM) sources were apportioned as 42% "vehicle-related" and 54% bSOA, with the latter including "sulfate-related bSOA" that correlated to sulfate (r=0.72) and "nitrate-related bSOA" that correlated to nitrate (r=0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r>0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, "sulfate-related bSOA" was on particles with high sulfate, and "nitrate-related bSOA" was on all particles. The similarity of the m/z spectra (cosine similarity=0.97) and the time series correlation (r=0.80) of the "sulfate-related bSOA" to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants. Since Look Rock had much less NOx than Centreville, comparing the bSOA at the two sites provides an evaluation of the role of NOx for bSOA. CO and submicron sulfate and OM concentrations were 15-60 % higher at Centreville than at Look Rock but their time series had moderate correlations of r= 0.51, 0.54, and 0.47, respectively. However, NOx had no correlation (r=0.08) between the two sites. OM correlated with the higher NOx levels at Centreville but with O3 at Look Rock. OM sources identified by Positive Matrix Factorization had three very similar factors at both sites from FTIR

  10. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  11. A review of NOx formation mechanisms in recovery furnaces

    International Nuclear Information System (INIS)

    Nichols, K.M.; Thompson, L.M.; Empie, H.J.

    1993-01-01

    Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0 2 ) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0 2 . An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion

  12. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  13. Experience from performance testing of low NOx burners for refinery heaters; Tests de performance avec des bruleurs de raffinerie a basse emission de NOx

    Energy Technology Data Exchange (ETDEWEB)

    Boden, J.C. [Refining Technology, BP Oil International, Sunbury (United Kingdom)

    2001-07-01

    Developments in low NOx burner technology have resulted in major reductions in NOx emissions from refinery process heaters. However, the techniques used in low NOx burners to reduce NOx emissions can potentially affect other key aspects of burner performance, particularly flame stability and completeness of combustion. BP has evaluated many of the currently available low and ultra-low NOx burners, both natural and forced draught, in its purpose-built test furnace. This extensive test programme has shown that to be a reliable predictor of actual performance a test rig must recreate accurately the real furnace conditions, particularly with respect to furnace and hearth temperatures. The testing has demonstrated the NOx emissions to be expected in practice from different generic types of burner, conventional, low NOx and ultra-low NOx, and has highlighted the sets of conditions most likely to lead to combustion performance problems. (authors)

  14. Federal NOx Budget Trading Program and CAIR NOx and SO2 Trading Programs (40 CFR Part 97)

    Science.gov (United States)

    This part establishes general provisions and the applicability, permitting, allowance, excess emissions, monitoring, and opt-in provisions for the federal NOx Budget Trading Program as a means of mitigating interstate transport of ozone and nitrogen oxides

  15. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  16. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  17. Muramyl dipeptide (MDP) induces reactive oxygen species (ROS) generation via the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells (HUVECs).

    Science.gov (United States)

    Kong, Ling-Jun; Liu, Xiao-Qian; Xue, Ying; Gao, Wei; Lv, Qian-Zhou

    2018-03-20

    Vascular endothelium dysfunction caused by oxidative stress accelerates the pathologic process of cardiovascular diseases. NOD2, an essential receptor of innate immune system, has been demonstrated to play a critical role in atherosclerosis. Here, the aim of our study was to investigate the effect and underlying molecular mechanism of muramyl dipeptide (MDP) on NOX4-mediated ROS generation in human umbilical vein endothelial cells (HUVECs). 2,7-dichlorofluorescein diacetate staining was to measure the intracellular ROS level and showed MDP promoted ROS production in a time- and dose-dependent manner. The mRNA and protein levels of NOX4 and COX-2 were detected by real-time PCR and western blot. Small interfering RNA (siRNA) was used to silence NOD2 or COX-2 gene expression and investigate the mechanism of NOD2-mediated signaling pathway in HUVECs. Data showed that MDP induced NOX4 and COX-2 expression in a time- and dose-dependent manner. NOD2 knock-down suppressed up-regulation of COX-2 and NOX4 in HUVECs treated with MDP. Furthermore, silence of COX-2 in HUVECs down-regulated the NOX4 expression after MDP stimulation. Collectively, we indicated that NOD2 played a leading role in MDP-induced COX-2/NOX4/ROS signaling pathway in HUVECs, which was a novel regulatory mechanism in the progress of ROS generation.

  18. Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    K. Sudo

    2012-03-01

    Full Text Available A data assimilation system has been developed to estimate global nitrogen oxides (NOx emissions using OMI tropospheric NO2 columns (DOMINO product and a global chemical transport model (CTM, the Chemical Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over eastern China, the eastern United States, southern Africa, and central-western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.

  19. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  20. Minimal NOx emission by Lysinibacillus sphaericus in nutrient poor soil

    Directory of Open Access Journals (Sweden)

    Melissa Sánchez

    2018-06-01

    Full Text Available The aim of this study was to determine whether nitrogen dioxide emissions by Lysinibacillus sphaericus exist in nutrient poor soil. First, we evaluated the presence of two genes involved in denitrification (nosF and nosD by PCR screening of five strains of L. sphaericus (III (37, OT4b.49, OT4b.25, OT4b.31 and CBAM5. We then applied a bacterial consortium made up by L. sphaericus III (37 and OT4b.49 into closed microcosms of soil and with minimum salts medium (MSM supplemented with ammonia to measure the concentration of produced nitrogen dioxide over time. The assays with closed microcosms showed a minimum level of nitrogen dioxide over time. The nosF and nosD primers amplified the expected fragment for the five strains and the sequenced nosF and nosD PCR product showed an ATPase domain and a copper-binding domain respectively, which was consistent with the function of these genes. The basal emission of nitrogen dioxide by L. sphaericus in soil is coupled to its ability to enhance the nitrogen bioavailability for soils deficient in nutrients. Therefore, our results indicate that this microorganism can be considered as a good candidate to validate the low emission of NOx in field and in the future as an alternative for biofertilization.

  1. NO_x reduction and N_2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO_x reduction and N_2O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO_2/NOx ratio. • Remarkable N_2O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO_x reduction technology, due to its high reduction and excellent fuel efficiencies. NO_x reduction by SCR catalysts is affected by variations in the NO_2/NO_x ratio, caused by oxidation catalysts such as the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) installed in diesel engines. Recently, it has been reported that the greenhouse gas (GHG) variant N_2O, which is a by-product of the NO_x conversion process in the after-treatment system, will be subject to regulation. Using a real diesel engine installed with DOC and DPF, the NO_x reduction and N_2O emission performances of commonly used Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were investigated under various operating conditions. The exhaust of the diesel engine used in this study had a NO_2/NO_x ratio of over 50% for temperatures below 400 °C due to the oxidation catalysts, while the NO_2/NO_x ratio was significantly lower for temperatures above 400 °C. Under such conditions, it was found that the Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were noticeably affected by the NO_2/NOx ratio and exhaust temperature. Although both catalysts showed satisfactory NO conversions, the V_2O_5-WO_3/TiO_2 catalyst showed decreasing NO_2 conversion rates between 250 °C and 320 °C. The V_2O_5-WO_3/TiO_2 catalyst exhibited NH_3 slip relatively frequently because of its low NH_3 storage capacity. For the Fe-zeolite catalyst, a significant increase in the amount of generated N_2O was observed for high NO_x conversion conditions due to side

  2. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4 mediated, elevated expression of canonical transient receptor potential (TRPC largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs. In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.We employed recombinant human BMP4 (rhBMP4 to determine the effects of BMP4 on NADPH oxidase 4 (NOX4 and reactive oxygen species (ROS production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4 and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13 %, and the mean ROS level was (123.65±1.62 % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001, the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001 (P<0.01. However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i and store-operated calcium entry (SOCE, suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.

  3. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells.

    Science.gov (United States)

    Salazar, G; Huang, J; Feresin, R G; Zhao, Y; Griendling, K K

    2017-07-01

    is upstream of NF-κB. Our data demonstrate that altered zinc distribution leading to accumulation of zinc in the mitochondria increases mitochondrial ROS production causing NF-κB activation which in turn upregulates Nox1 expression inducing senescence of VSMCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  6. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues

    NARCIS (Netherlands)

    Weyemi, Urbain; Caillou, Bernard; Talbot, Monique; Ameziane-El-Hassani, Rabii; Lacroix, Ludovic; Lagent-Chevallier, Odile; Al Ghuzlan, Abir; Roos, Dirk; Bidart, Jean-Michel; Virion, Alain; Schlumberger, Martin; Dupuy, Corinne

    2010-01-01

    NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR,

  7. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Control strategies for vehicular NOx emissions in Guangzhou, China

    International Nuclear Information System (INIS)

    Shao Min; Zhang Yuanhang; Raufer, Roger

    2001-01-01

    Guangzhou is a city in southern China that has experienced very rapid economic development in recent years. The city's air has very high concentrations of various pollutants, including sulphur dioxide (SO 2 , oxides of nitrogen (NOx), ozone (O 3 ) and particulate. This paper reviews the changes in air quality in the city over the past 15 years, and notes that a serious vehicular-related emissions problem has been superimposed on the traditional coal-burning problem evident in most Chinese cities. As NOx concentrations have increased, oxidants and photochemical smog now interact with the traditional SO 2 and particulate pollutants, leading to increased health risks and other environmental concerns. Any responsible NOx control strategy for the city must include vehicle emission control measures. This paper reviews control strategies designed to abate vehicle emissions to fulfill the city's air quality improvement target in 2010. A cost-effectiveness analysis suggests that, while NOx emission control is expensive, vehicular emission standards could achieve a relatively sizable emissions reduction at reasonable cost. To achieve the 2010 air quality target of NOx, advanced implementation of EURO3 standards is recommended, substituting for the EURO2 currently envisioned in the national regulations Related technical options, including fuel quality improvements and inspection/maintenance (I/M) upgrades (ASM or IM240) are assessed as well. (author)

  9. Impacts of the abolition of NOx emission trade; Effecten van de afschaffing van NOx- emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P [ECN Beleidsstudies, Petten (Netherlands)

    2012-09-15

    The consequences of abolishing the NOx emission trade have been analyzed for the installations that are covered by BEMS legislation (Dutch decree on emission limits for medium-sized combustion plants). The following aspects have been analyzed: What are the enforcement costs if these installations need to comply with BEMS requirements as of 2014?; How are these costs distributed across the various sectors and in particular for the sectors of onshore/offshore gas and oil extraction, greenhouse horticulture and hospitals?; To what extent can costs be lowered by allowing a 2-,3- or 5-year delay of the implementation date for existing installations in BEMS? To answer the above questions, data were used from the NEA (Netherlands Emission Authority) at sector level. Model calculations were conducted to determine the costs and effects [Dutch] De gevolgen van de afschaffing van NOx-emissiehandel zijn geanalyseerd voor het installatiepark dat terugvalt op BEMS-wetgeving (Besluit emissie-eisen middelgrote stookinstallaties). De volgende zaken zijn geanalyseerd: Wat zijn de nalevingskosten indien vanaf 2014 deze installaties aan de BEMS-eisen moeten voldoen?; Hoe zijn deze kosten verdeeld over de verschillende sectoren en in het bijzonder voor de sectoren offshore/onshore gas- en oliewinning, de glastuinbouw en ziekenhuizen?; In hoeverre zijn de kosten te verlagen door 2, 3 of 5 jaar uitstel te geven ten opzichte van de implementatiedatum voor bestaande installaties in BEMS? Voor het beantwoorden van de bovenstaande vragen is gebruik gemaakt van gegevens van de NEa (Nederlandse Emissie autoriteit) op sectorniveau. Met modelberekeningen zijn hiermee kosten en effecten bepaald.

  10. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    Science.gov (United States)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  11. NOx PREDICTION FOR FBC BOILERS USING EMPIRICAL MODELS

    Directory of Open Access Journals (Sweden)

    Jiří Štefanica

    2014-02-01

    Full Text Available Reliable prediction of NOx emissions can provide useful information for boiler design and fuel selection. Recently used kinetic prediction models for FBC boilers are overly complex and require large computing capacity. Even so, there are many uncertainties in the case of FBC boilers. An empirical modeling approach for NOx prediction has been used exclusively for PCC boilers. No reference is available for modifying this method for FBC conditions. This paper presents possible advantages of empirical modeling based prediction of NOx emissions for FBC boilers, together with a discussion of its limitations. Empirical models are reviewed, and are applied to operation data from FBC boilers used for combusting Czech lignite coal or coal-biomass mixtures. Modifications to the model are proposed in accordance with theoretical knowledge and prediction accuracy.

  12. NOx Emissions from Diesel Passenger Cars Worsen with Age.

    Science.gov (United States)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  13. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  14. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  15. Post combustion methods for control of NOx emission

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, H S; Curran, L M; Slack, A V; Ando, J; Oxley, J H

    1980-01-01

    Review of stack gas treatment methods for the control of NOx emissions. Particular emphasis is placed on status of development and factors affecting the performance of the processes. Catalytic, noncatalytic, and scrubbing processes are compared on a uniform engineering basis. Most of the active process development work is taking place in Japan. The three leading stack gas treatment techniques for NOx control are catalytic reduction with ammonia, noncatalytic reduction with ammonia, and direct scrubbing of NO with simultaneous absorption of SO2. The wet processes are much less developed than the dry processes.

  16. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    Science.gov (United States)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  17. Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2006-01-01

    Full Text Available Nitrogen oxides (NOxNO+NO2 play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere's oxidizing capacity. Recent estimates of lightning produced NOx (LNOx are of the order of 5 Tg [N] per year with still high uncertainties in the range of one order of magnitude. The Global Ozone Monitoring Experiment (GOME on board the ESA-satellite ERS-2 allows the retrieval of tropospheric column densities of NO2 on a global scale. Here we present the GOME NO2 measurement directly over a large convective system over the Gulf of Mexico. Simultaneously, cloud-to-ground (CG flashes are counted by the U.S. National Lightning Detection Network (NLDNTM, and extrapolated to include intra-cloud (IC+CG flashes based on a climatological IC:CG ratio derived from NASA's space-based lightning sensors. A series of 14 GOME pixels shows largely enhanced column densities over thick and high clouds, coinciding with strong lightning activity. The enhancements can not be explained by transport of anthropogenic NOx and must be due to fresh production of LNOx. A quantitative analysis, accounting in particular for the visibility of LNOx from satellite, yields a LNOx production of 90 (32-240 moles of NOx, or 1.3 (0.4-3.4 kg [N], per flash. If simply extrapolated, this corresponds to a global LNOx production of 1.7 (0.6-4.7Tg [N]/yr.

  18. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    Science.gov (United States)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  19. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    in the resistance of the low-frequency processes, which were ascribed to adsorption, diffusion, and transfer of O2 species and NOx species at or near the triple phase boundary (TPB) region and the formation of the reaction intermediate NO2. The BaO impregnation improved the adsorption of NOx on the LSM....../CGO electrode by selectively trapping NO2 in the form of nitrate over the BaO sites and provided availability for a direct reduction of the stored nitrate. The BaO-Pt-Al2O3 layer enhanced the NOx adsorption and promoted the formation of NO2 due to the NO oxidation ability of the Pt catalyst, but hindered...... the gas diffusion to the reaction sites....

  20. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  1. NOx emission trade. What is the state-of-the-art?

    International Nuclear Information System (INIS)

    Witkamp, J.

    2003-01-01

    In Leiden, Netherlands, 28 November 2002, a symposium was organized on the subject of NOx emission trade in preparation of a NOx emission trade system. In this article an overview is given of the developments so far [nl

  2. Chamber simulation of photooxidation of dimethyl sulfide and isoprene in the presence of NOx

    Directory of Open Access Journals (Sweden)

    M. Jang

    2012-11-01

    Full Text Available To improve the model prediction for the formation of H2SO4 and methanesulfonic acid (MSA, aerosol-phase reactions of gaseous dimethyl sulfide (DMS oxidation products [e.g., dimethyl sulfoxide (DMSO] in aerosol have been included in the DMS kinetic model with the recently reported gas-phase reactions and their rate constants. To determine the rate constants of aerosol-phase reactions of both DMSO and its major gaseous products [e.g., dimethyl sulfone (DMSO2 and methanesulfinic acid (MSIA], DMSO was photooxidized in the presence of NOx using a 2 m3 Teflon film chamber. The rate constants tested in the DMSO kinetic mechanisms were then incorporated into the DMS photooxidation mechanism. The model simulation using the newly constructed DMS oxidation mechanims was compared to chamber data obtained from the phototoxiation of DMS in the presence of NOx. Within 120-min simulation, the predicted concentrations of MSA increase by 200–400% and those of H2SO4, by 50–200% due to aerosol-phase chemistry. This was well substantiated with experimental data. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the newly constructed DMS kinetic model integrated with the Master Chemical Mechanism (MCM for isoprene oxidation, and compared to chamber data. With the high concentrations of DMS (250 ppb and isoprene (560–2248 ppb, both the model simulation and experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.

  3. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    OpenAIRE

    Abdullah Mohd Fareez Edzuan; Zhing Sim Shu; Bilong Bugik Clarence

    2017-01-01

    As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM) emissions however nitrogen oxides (NOx) emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coco...

  4. NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen

    OpenAIRE

    Shudo, Toshio; Omori, Kento; Hiyama, Osamu

    2008-01-01

    Hydrogen is a clean alternative to conventional hydrocarbon fuels, but it is very important to reduce the nitrogen oxides (NOx) emissions generated by hydrogen combustion. The rich-lean combustion or staged combustion is known to reduce NOx emissions from continuous combustion burners such as gas turbines and boilers, and NOx reduction effects have been demonstrated for hydrocarbon fuels. The authors applied rich-lean combustion to a hydrogen gas turbine and showed its NOx reduction effect in...

  5. Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Patti Hayes

    2015-09-01

    Full Text Available Background & Aims: Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD. Reactive oxygen species (ROS generated by nicotinamide-adenine dinucleotide phosphate (NADPH oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. Methods: After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 59 children with very early onset inflammatory bowel disease (VEOIBD, the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. Results: We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. Patients with both NOX1 and DUOX2 variants showed abnormal Paneth cell metaplasia. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. Conclusions: This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD. Keywords: Inflammatory Bowel Disease, NADPH Oxidase

  6. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  7. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.386 Section 96.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR... Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...

  8. Development of the Aqueous Processes for Removing NOx from Flue Gases.

    Science.gov (United States)

    Chappell, Gilford A.

    A screening study was conducted to evaluate the capability of aqueous solutions to scrub NOx from the flue gases emitted by stationary power plants fired with fossil fuels. The report summarizes the findings of this laboratory program. The experimental program studied the following media for absorption of NOx from flue gases containing no NOx:…

  9. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  10. Low-level NOx removal in ambient air by pulsed corona technology

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although removal of NOx by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NOx in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NOx levels exist in traffic tunnels due to accumulation of exhaust gases. The application

  11. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  12. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and

  13. The Reduction of NOx Using Pulsed Electron Beams

    Science.gov (United States)

    2015-12-30

    instantly with oxygen to form the brown gas NO2. Nitrogen dioxide is toxic . Dinitrogen trioxide (N2O3) exists as a deep blue solid (-21°C), but is... Fluoride Laser System,” Optical Engineering 47, 104202 (2008). [6] M.F. Wolford, M.C. Myers, F. Hegeler, J.D. Sethian, “NOx Removal with Multiple

  14. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jögi, I.; Erme, K.; Levoll, E.

    2017-01-01

    The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts in the im......The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts...... in the improvement of oxidation efficiency based on the stationary and time-dependent studies of the NOx oxidation at different reactor configurations and experimental conditions. The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst...... surfaces while the exact mechanism and extent of the effect depended on the reactor configuration. The effect of catalyst at different experimental conditions was quantitatively described with the aid of analytical lumped kinetic models derived for the NOx oxidation when the catalyst was directly...

  15. Effect of blending different rank coals on NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Esteban, R.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, Oviedo (Spain)

    1999-07-01

    A study was carried out to assess the NOx emissions when the fraction of high-volatile coals in blends with low-volatile coals, such as anthracitic and semianthracitic, was increased. Burnout and NO emissions were determined for individual coals and their blends. 4 refs., 4 figs., 1 tab.

  16. 40 CFR 97.142 - CAIR NOX allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... heat input for each year calculated as follows: (A) If the unit is coal-fired during the year, the unit... the first such 5 years. (2)(i) A unit's control period heat input, and a unit's status as coal-fired... Allocations § 97.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with...

  17. NOx and SO2 emission factors for Serbian lignite Kolubara

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir V.

    2012-01-01

    Full Text Available Emission factors are widely accepted tool for estimation of various pollutants emissions in USA and EU. Validity of emission factors is strongly related to experimental data on which they are based. This paper is a result of an effort to establish reliable NOx and SO2 emission factors for Serbian coals. The results of NOx and SO2 emissions estimations based on USA and EU emission factors from thermal power plants Nikola Tesla Obrenovac A and B utilizing the Serbian lignite Kolubara are compared with experimental data obtained during almost one decade (2000-2008 of emissions measurements. Experimental data are provided from regular annual emissions measurement along with operational parameters of the boiler and coal (lignite Kolubara ultimate and proximate analysis. Significant deviations of estimated from experimental data were observed for NOx, while the results for SO2 were satisfactory. Afterwards, the estimated and experimental data were plotted and linear regression between them established. Single parameter optimization was performed targeting the ideal slope of the regression line. Results of this optimization provided original NOx and SO2 emission factors for Kolubara lignite.

  18. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.

  19. 40 CFR 89.317 - NOX converter check.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX converter check. 89.317 Section 89.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED..., the chemiluminescent oxides of nitrogen analyzer shall be checked for NO2 to NO converter efficiency...

  20. THE EFFECT OF IRRADIATION DOSE AND AMMONIA CONCENTRATION ON THE APPLICATION OF ELECTRON BEAM FOR TREATMENT GASES POLLUTION OF SO2AND NOX

    Directory of Open Access Journals (Sweden)

    Erizal Erizal

    2010-06-01

    Full Text Available The application of electron beam for treatment gases pollution of SO2 and NOx has been studied.  The simulated SO2 and NOx gases stream produced from diesel fuel burning boiler were flown into electron beam chamber. Irradiation was conducted using 1000 keV electron beam machine at the dose up to 8.8 kGy, while   water vapour and the ammonia gas with variation concentration flew into the system during irradiation. The concentrations of the gases change were observed during processes. After evaluation, it was found that by increasing irradiation dose, the concentration of SO2 and NOx gases removal increases.  The efficiency of gases removal may reach 98 % for SO2 and 88 % for NOX at a dose of 8.8 kGy. By increasing ammonia concentration, the efficiency gas removal increases. Besides, by-products from the irradiation yield were sulfate and nitrate salt compound which are possible to be used as a fertilizer.      Keywords: radiation, electron beam, gas pollution, SO2, NOx, ammonia

  1. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  2. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.

    Science.gov (United States)

    Brun, Sylvain; Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Silar, Philippe

    2009-10-01

    NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.

  3. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  4. Lightning-produced NOx in an explicit electrical scheme: a STERAO case study

    Science.gov (United States)

    Barthe, C.; Pinty, J.; Mari, C.

    2006-12-01

    An explicit lightning-produced nitrogen oxide scheme has been implemented in the French mesoscale model Meso-NH. The electrical scheme simulates explicitly the whole electric charge life cycle: charge separation, transfer, transport and neutralization by lightning flashes. The frequency and the 3D morphology of the lightning flashes are reproduced realistically. Therefore, fresh nitrogen oxide molecules can be added along the complex flash path as a function of the pressure, as suggested by results from laboratory experiments. No integral constraint on the total LNOx production at the cloud scale is added. The scheme is tested on the 10 July 1996, STERAO (Stratosphere-Troposphere Experiment-Radiation, Aerosols, and Ozone) storm. The model reproduces many features of the observed increase of electrical activity and LNOx flux through the anvil between the multicell and supercell stages. A large amount of LNOx is selectively produced in the upper part of the cells close to the updraft cores. Instantaneous peak concentrations exceed a few ppbv, as observed. The computed flux of NOx across the anvil compares favorably with the observations. The NOx production is estimated to 36 moles per lightning flash.

  5. Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions

    Science.gov (United States)

    Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.

    2015-12-01

    In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).

  6. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  7. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO_x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  8. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  9. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    Science.gov (United States)

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  10. Biosphere-Atmosphere Exchange of NOx and O3 in Central Amazon

    Science.gov (United States)

    Wiedemann, K. T.; Swofsy, S. C.; Munger, J. W.; Saleska, S. R.; Rizzo, L. V.; Silva Campos, K.

    2017-12-01

    The primary source of atmospheric OH is the photolysis of O3 in the presence of water vapor. NOx gases are the main precursors of O3 and OH. In NOx-rich environments that have both high humidity and high solar radiation, OH concentrations are enhanced, making tropical forests dominant in global oxidation of long lived gases. The Amazon rain forest has a unique combination of vegetation with diverse characteristics, climate, and a dynamic land use, factors that altogether govern the emission and fate of trace gases, particle formation and atmospheric chemistry. Understanding the interactions among the mechanisms that govern local precursor emissions will lead to a better description of the local atmospheric chemistry and its global impacts. As part of the GoAmazon project, an array of complementary measurements was conducted in a research site in central Amazon, near Santarem (PA, Brazil), inside the Tapajos National Forest. The research site is surrounded by intact rain forest in a 6km radius, and a 45m canopy. The 67m tower was assembled in the site in 2001 for flux measurements (CO2 and H2O). In mid 2014 additional instrumentation were added, measuring NOx, O3, CH4, and SO2 fluxes and profiles. The low concentrations of SO2 (up to 0.1ppb during the peak of the dry season), and a small vertical gradient, suggest the predominance of biogenic sources. O3 show no significant seasonality between the daytime and nighttime vertical profiles, but occasional nighttime high concentrations for levels below canopy were observed. Hourly ozone fluxes suggest a production of O3 under canopy. NO soil emissions are indicated by concentrations in the ppb range for lower profile levels, decreasing to a few hundreds ppt above the canopy, and emission rates of NO from Amazonian soils may be higher than expected from earlier measurements. Daytime data indicate that not all of this NOx escapes to the atmosphere, however. Fluxes of NO average 133x109 molec cm-2 s-1, a factor of 4 higher

  11. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  12. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    Science.gov (United States)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  13. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  14. The NOx system in nuclear waste. 1997 annual progress report

    International Nuclear Information System (INIS)

    Camaioni, D.; Meisel, D.

    1997-01-01

    'The authors highlight their results from the title project. The project is a coordinated effort of the three Co-PIs to assist the Safety Programs at the Hanford and other DOE Environmental Management Sites. The authors present in the report their observations and interactively discuss their implications for safety concerns. They focus on three issues: (1) Reducing radicals in the NOx system The authors show that the only reducing radical that lasts longer than a few ns in typical waste solutions, and is capable of generating hydrogen, is NO 3 2- . The authors measured the lifetime of this species across the whole pH range (3 ≤ pH ≤ 14) and found it to be shorter than -15 265s, before it dissociates to give the strongly oxidizing NO, radicals. They found that it reacts with many proton donors (H + , phosphate, borate, NH', amines) in a reaction that is not merely an acid-base equilibrium reaction but is probably a dissociative proton transfer. They estimate the redox potential from theoretical considerations and obtain an experimental verification. They conclude that it is highly unlikely, although thermodynamically possible, that this radi-cal will generate hydrogen in waste solutions. (2) Aging of organic chelators and their degradation products by NO, Methodologies to study the degradation of organic substrates (including the important waste components, formate and oxalate) to CO;, or carbonate, by NO, were developed. This radical dimerizes and disproportionates to nitrate and nitrite. Therefore, mineralization of the organic substrates competes with the disproportionation of NO,. Among the organic substrates, formate and oxalate are also mineralized but because they are of low fuel value their mineralization is not very helpful, yet it consumes NO,. (3) Interfacial processes in aqueous suspensions Yields of charge transfer from solid silica particles to water and other liquids were meas-ured. If the particles are small enough, essentially all of the charge

  15. Lightning NOx and Impacts on Air Quality

    Science.gov (United States)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  16. Method for control of NOx emission from combustors using fuel dilution

    Science.gov (United States)

    Schefer, Robert W [Alamo, CA; Keller, Jay O [Oakland, CA

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  17. Lightning-Generated NO(x) Seen By OMI during NASA's TC-4 Experiment: First Results

    Science.gov (United States)

    Bucsela, Eric; Pickering, Kenneth E.; Huntemann, Tabitha; Cohen, Ronald; Perring, Anne; Gleason, James; Blakeslee, Richard; Navarro, Dylana Vargas; Segura, Ileana Mora; Hernandez, Alexia Pacheco; hide

    2009-01-01

    We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TCi)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.

  18. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  19. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  20. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  1. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using

  2. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  3. Effects space velocity and gas velocity on DeNOx catalyst with HC reductant; HC tenka NOx kangen shokubai no kukan sokudo oyobi gas ryusoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, K.; Tsujimura, K.

    1995-04-20

    Discussions were given on the hydrocarbon added reduction catalyst method to reduce NOx in diesel engine exhaust gas. An experiment was carried out with actual exhaust gas from a diesel engine by using a copper ion exchanged zeolite catalyst that has been coated on a honeycomb type substrate, and using propylene as a reductant. When the catalyst volume was changed with the exhaust gas space velocity kept constant, the NOx conversion ratio decreased as the catalyst length is decreased, and the activity shifted to the lower temperature side. The NOx reduction efficiency increased if the faster the gas flow velocity. On the other hand, if the gas flow velocity is slow, the NOx reduction can be carried out with relatively small amount of the reductant. When the catalyst volume was changed with the passing gas amount kept constant, the NOx conversion ratio decreased largely if the catalyst length is decreased. Further, the NOx reduction characteristics shift to the higher temperature side. In the catalyst length direction, the NOx reduction activity shows a relatively uniform action. However, a detailed observation reveals that the reaction heat in the catalyst is transmitted to the wake improving the activity, hence the further down the flow, the NOx conversion ratio gets higher in efficiency. 5 refs., 5 figs., 3 tabs.

  4. Marginal abatement cost curves for NOx that account for ...

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  5. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  6. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    increase in lightning activity is caused by the indirect influx of aerosols, especially in the upper troposphere. This is due to the warming-effect of aerosol forcing via its effect on tropospheric ozone production. Due to the increased production of O3 by lightning-induced NOx and high aerosol loading in the pre-monsoon and monsoon months, the positive climate feedback indicates a warmer climate. As a consequence, convective activity as well as lightning flashes may increase due to this indirect effect of AOD over the region. The generation of induced NOx has a positive correlation (r = 0.723) with the LFR during 2001-2012 over Kolkata. Thus, our results have significant implications for understanding the tropospheric ozone forcing by investigating the coupled aerosol-cloud-chemistry system on the generation of lightning and lightning-induced NOx over the urban metropolis.

  7. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2015-08-01

    Full Text Available NADPH oxidases (Nox represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS. Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  8. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2011-08-01

    Full Text Available Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  9. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Yuan, Ye; Zhu, Ben-Zhan

    2013-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg 2+ . Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg 2+ inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg 2+ . These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via the β1

  10. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  11. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    Science.gov (United States)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  12. Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice

    Directory of Open Access Journals (Sweden)

    lili qiu

    2016-10-01

    Full Text Available Postoperative cognitive decline (POCD is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH oxidase mediated-abnormalities in parvalbumin (PV interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in sixteen-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO. Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β, markers of oxidative stress, and NADPH oxidase 2 (Nox2 in the hippocampus. In addition, lipopolysaccharide exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived ROS production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  14. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  15. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  16. Characteristics of fundamental combustion and NOx emission using various rank coals.

    Science.gov (United States)

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  17. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  18. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling.

    Science.gov (United States)

    Emmerson, Amber; Trevelin, Silvia Cellone; Mongue-Din, Heloise; Becker, Pablo D; Ortiz, Carla; Smyth, Lesley A; Peng, Qi; Elgueta, Raul; Sawyer, Greta; Ivetic, Aleksandar; Lechler, Robert I; Lombardi, Giovanna; Shah, Ajay M

    2018-04-24

    The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II (AngII)-induced pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline whereas AngII-induced T-effector cell (Teffs) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of AngII-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 Ab-depletion of Tregs. Mechanistically, Nox2-/y Tregs showed higher in vitro suppression of Teffs proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on AngII-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.

  19. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase

    OpenAIRE

    Gandara, Ana Caroline Paiva; Torres, Andr?; Bahia, Ana Cristina; Oliveira, Pedro L.; Schama, Renata

    2017-01-01

    Background NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not b...

  20. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  1. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  2. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide.

    Science.gov (United States)

    Banskota, Suhrid; Regmi, Sushil Chandra; Gautam, Jaya; Gurung, Pallavi; Lee, Yu-Jeong; Ku, Sae Kwang; Lee, Jin-Hyung; Lee, Jintae; Chang, Hyeun Wook; Park, Sang Joon; Kim, Jung-Ae

    2017-05-01

    Adherent-invasive E. coli colonization and Toll-like receptor (TLR) expression are increased in the gut of inflammatory bowel disease (IBD) patients. However, the underlying mechanism of such changes has not been determined. In the current study, it was examined whether gut serotonin (5-hydroxytryptamine, 5-HT) can induce adherent-invasive E. coli colonization and increase TLR expression. In a co-culture system, commensal E. coli strain (BW25113, BW) adhered minimally to colon epithelial cells, but this was significantly enhanced by 5-HT to the level of a pathogenic strain (EDL933). Without inducing bacterial virulence, such as, biofilm formation, 5-HT enhanced BW-induced signaling in colon epithelial cells, that is, NADPH oxidase (NOX)-dependent superoxide production, the up-regulations of IL-8, TLR2, TLR4, and ICAM-1, and the down-regulations of E-cadherin and claudin-2. In a manner commensurate with these gene modulations, BW induced an increase in NF-κB and a decrease in GATA reporter signals in colon epithelial cells. However, 5-HT-enhanced BW adhesion and colon epithelial responses were blocked by knock-down of NOX2, TLR2, or TLR4. In normal mice, 5-HT induced the invasion of BW into gut submucosa, and the observed molecular changes were similar to those observed in vitro, except for significant increases in TNFα and IL-1β, and resulted in death. In dextran sulfate sodium-induced colitis mice (an IBD disease model), in which colonic 5-HT levels were markedly elevated, BW administration induced death in along with large amount of BW invasion into colon submucosa, and time to death was negatively related to the amount of BW injected. Taken together, our results demonstrate that 5-HT induces the invasion of commensal E. coli into gut submucosa by amplifying commensal bacteria-induced epithelial signaling (superoxide production and the inductions of NOX2 and TLR2/TLR4). The authors suggest that these changes may constitute the molecular basis for the

  3. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  4. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  5. FY-2016 Methyl Iodide Higher NOx Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outlet gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.

  6. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  7. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization

    Directory of Open Access Journals (Sweden)

    P. Pisoft

    2010-07-01

    Full Text Available In general, regional and global chemistry transport models apply instantaneous mixing of emissions into the model's finest resolved scale. In case of a concentrated source, this could result in erroneous calculation of the evolution of both primary and secondary chemical species. Several studies discussed this issue in connection with emissions from ships and aircraft. In this study, we present an approach to deal with the non-linear effects during dispersion of NOx emissions from ships. It represents an adaptation of the original approach developed for aircraft NOx emissions, which uses an exhaust tracer to trace the amount of the emitted species in the plume and applies an effective reaction rate for the ozone production/destruction during the plume's dilution into the background air. In accordance with previous studies examining the impact of international shipping on the composition of the troposphere, we found that the contribution of ship induced surface NOx to the total reaches 90% over remote ocean and makes 10–30% near coastal regions. Due to ship emissions, surface ozone increases by up to 4–6 ppbv making 10% contribution to the surface ozone budget. When applying the ship plume parameterization, we show that the large scale NOx decreases and the ship NOx contribution is reduced by up to 20–25%. A similar decrease was found in the case of O3. The plume parameterization suppressed the ship induced ozone production by 15–30% over large areas of the studied region. To evaluate the presented parameterization, nitrogen monoxide measurements over the English Channel were compared with modeled values and it was found that after activating the parameterization the model accuracy increases.

  8. Nitric oxide in acute brain injury: a pilot study of NO(x) concentrations in human brain microdialysates and their relationship with energy metabolism.

    Science.gov (United States)

    Carpenter, Keri L H; Timofeev, Ivan; Al-Rawi, Pippa G; Menon, David K; Pickard, John D; Hutchinson, Peter J

    2008-01-01

    This pilot microdialysis study in acute brain injury patients assessed the relationship between nitric oxide products (total nitrite plus nitrate, termed NO(x)) and energy-related molecules: glucose, lactate, pyruvate, glutamate and glycerol. Twelve patients (11 major head-injury and one subarachnoid haemorrhage) were studied, 11 of which had single catheters and one had two catheters, in the cerebral cortex. Catheters were perfused at 0.3 microL/min with CNS perfusion fluid. Collection vials were changed hourly. Microdialysates were analysed for energy-related molecules on a CMA600 or ISCUS analyser, and for NO(x) using a purge vessel (VCl3 plus HCl at 95 degrees C, purged with nitrogen) connected to a Sievers NOA 280i analyser. The mean of mean NO(x) concentration (+/- SD) for the 13 catheters was 32.7 +/- 16.8 micromol/L, and the lactate/ pyruvate ratio was 38.6 +/- 20.1. Increasing NO(x) concentrations correlated significantly with decreasing lactate/ pyruvate ratio (Spearman r = -0.79, p = 0.0065), with decreasing lactate concentration (r = -0.59, p = 0.042), and with increasing glucose concentration (r = 0.71, p = 0.018). These pilot data suggest that in injured brains, higher concentrations of nitric oxide are associated with more favourable metabolism. Nitric oxide may act beneficially by increasing blood flow and delivery of oxygen and glucose. Further patients are being recruited.

  9. New NOx cleansing technology can reduce industry emissions

    International Nuclear Information System (INIS)

    2006-01-01

    The Norwegian, Bergen-based company ECO Energy has recently launched a new cleaning technology halving NO x emissions from industry plants without requiring large investments. Thus, governmental promises to finance NO x cleaning equipment for Norwegian industry have become less expensive to reach. ECO Energy has ensured world patent on the 'stopNOx' technology. Its method consists of adding water and urea to oil before the combustion process. The technology has been applied in Italy, reducing NO x emissions from industry in average with above 50 percent (ml)

  10. New NOx cleaning technology helps the government fulfil promise

    International Nuclear Information System (INIS)

    2006-01-01

    The Norwegian, Bergen-based company ECO Energy has recently launched a new cleaning technology halving NO x emissions from industry plants without requiring large investments. Thus, governmental promises to finance NO x cleaning equipment for Norwegian industry have become a less expensive to reach. ECO Energy has ensured world patent on the 'stopNOx' technology. Its method consists of adding water and urea to oil before the combustion process. The technology has been applied in Italy, reducing NO x emissions from industry in average with above 50 percent (ml)

  11. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  12. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  13. Assessing the influence of NOx concentrations and relative humidity on secondary organic aerosol yields from α-pinene photo-oxidation through smog chamber experiments and modelling calculations

    Science.gov (United States)

    Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad

    2017-04-01

    Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be

  14. Inhibition of CPU0213, a Dual Endothelin Receptor Antagonist, on Apoptosis via Nox4-Dependent ROS in HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-06-01

    Full Text Available Background/Aims: Our previous studies have indicated that a novel endothelin receptor antagonist CPU0213 effectively normalized renal function in diabetic nephropathy. However, the molecular mechanisms mediating the nephroprotective role of CPU0213 remain unknown. Methods and Results: In the present study, we first detected the role of CPU0213 on apoptosis in human renal tubular epithelial cell (HK-2. It was shown that high glucose significantly increased the protein expression of Bax and decreased Bcl-2 protein in HK-2 cells, which was reversed by CPU0213. The percentage of HK-2 cells that showed Annexin V-FITC binding was markedly suppressed by CPU0213, which confirmed the inhibitory role of CPU0213 on apoptosis. Given the regulation of endothelin (ET system to oxidative stress, we determined the role of redox signaling in the regulation of CPU0213 on apoptosis. It was demonstrated that the production of superoxide (O2-. was substantially attenuated by CPU0213 treatment in HK-2 cells. We further found that CPU0213 dramatically inhibited expression of Nox4 protein, which gene silencing mimicked the role of CPU0213 on the apoptosis under high glucose stimulation. We finally examined the role of CPU0213 on ET-1 receptors and found that high glucose-induced protein expression of endothelin A and B receptors was dramatically inhibited by CPU0213. Conclusion: Taken together, these results suggest that this Nox4-dependenet O2- production is critical for the apoptosis of HK-2 cells in high glucose. Endothelin receptor antagonist CPU0213 has an anti-apoptosis role through Nox4-dependent O2-.production, which address the nephroprotective role of CPU0213 in diabetic nephropathy.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  16. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  17. Experimental Validation of a Virtual Engine-Out NOx Sensor for Diesel Emission Control

    NARCIS (Netherlands)

    Escobar Valdivieso, D.; Mentink, P.; Külah, S.; Forrai, A.; Willems, F.P.T.

    2017-01-01

    Motivated by automotive emissions legislations, a Virtual NOx sensor is developed. This virtual sensor consists of a real-time, phenomenological model that computes engine-out NOx by using the measured in-cylinder pressure signal from a single cylinder as its main input. The implementation is made

  18. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

    NARCIS (Netherlands)

    Vinken, G.C.M.; Boersma, K.F.; Maasakkers, J.D.; Adon, M.; Martin, R.V.

    2014-01-01

    Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr-1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2

  19. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations.

    NARCIS (Netherlands)

    Vinken, G.C.M.; Boersma, K.F.; Maasakkers, J.D.; Adon, M.; Martin, R.V.

    2014-01-01

    Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr-1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2

  20. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...

  1. 40 CFR 1043.50 - Approval of methods to meet Tier 1 retrofit NOX standards.

    Science.gov (United States)

    2010-07-01

    ... retrofit NOX standards. 1043.50 Section 1043.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... SUBJECT TO THE MARPOL PROTOCOL § 1043.50 Approval of methods to meet Tier 1 retrofit NOX standards. Regulation 13 of Annex VI provides for certification of Approved Methods, which are retrofit procedures that...

  2. SEMS operating as a proven system for screening real-world NOx and NH3 emissions

    NARCIS (Netherlands)

    Vermeulen, R.J.; Goethem, S. van; Baarbe, H.L.; Zuidgeest, L.W.M.; Spreen, J.S.; Vonk, W.A.

    2014-01-01

    NOx emissions of heavy-duty and light-duty diesel vehicles depend strongly on the driving conditions. The introduction of combined emission reduction technologies in Euro VI vehicles have demonstrated that NOx emissions become less predictable when the data is based on relatively short test cycles.

  3. On-road NOx and CO2 investigations of Euro 5 Light commercial vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Spreen, J.S.

    2015-01-01

    NOx emissions of vehicles contribute to the ambient NO2 concentration. To gain insight into those NOx emissions, TNO, commissioned by the Dutch Ministry of Infrastructure and the Environment, regularly performs real-world emission measurements on vehicles. The measurements mainly focus on vehicles

  4. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false NOX emission limitations for Group 1 boilers. 76.5 Section 76.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations...

  5. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false NOX emission limitations for Group 2 boilers. 76.6 Section 76.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations...

  6. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised NOX...

  7. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  8. A rate based reactor model for BiodeNOx absorber units

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Gambardella, F.; Heeres, H. J.

    2007-01-01

    The reactive absorption of NO in aqueous solutions of Fe-II(EDTA), resulting in the formation of a nitrosyl complex, Fe-II(EDTA)(NO), is a key step of the BiodeNOx process for the removal of NOx from industrial flue gas. Oxygen present in the flue gas will also absorb and oxidize Fe-II(EDTA). This

  9. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    Science.gov (United States)

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  10. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO₂ removal with hydrogen peroxide.

    Science.gov (United States)

    Ding, Jie; Zhong, Qin; Zhang, Shule; Cai, Wei

    2015-01-01

    A novel, simple, reproducible and low-cost strategy is introduced for the size- and shape-controlled synthesis of iron-aluminum mixed oxide nanoparticles (NIAO(x/y)). The as-synthesized NIAO(x/y) catalyze decomposition of H2O2 yielding highly reactive hydroxyl radicals (OH) for NOX and SO2 removal. 100% SO2 removal is achieved. NIAO(x/y) with Fe/Al molar ratio of 7/3 (NIAO(7/3)) shows the highest NOX removal of nearly 80% at >170°C, whereas much lower NOX removal (oxides in NIAO(7/3) promotes the formation of lamellar products, thus improving the specific surface areas and mesoporous distribution, benefiting the production of OH radicals. Furthermore, the NIAO(7/3) leads to the minor increase of points of zero charges (PZC), apparent enhancement of FeOH content and high oxidizing ability of Fe(III), further improving the production of OH radicals. However, the NIAO(3/7) results in the formation of aluminum surface-enriched spherical particles, thus decreasing the surface atomic ratio of iron oxides, decreasing OH radical production. More importantly, the generation of FeOAl causes the decline of active sites. Finally, the catalytic decomposition of H2O2 on NIAO(x/y) is proposed. And the well catalytic stability of NIAO(7/3) is obtained for evaluation of 30 h. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  12. Utility boiler computer modeling experience in the USA for practical furnace air port and low NOx burner field design

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Urich, J.A.; Krippene, B.C. [ESA, Inc. (United States)

    2000-07-01

    This paper presents several examples of where effective furnace and low NOx burner modeling has produced substantial advantages to the low NOx combustion system designer. Using practical boiler furnace air injection port and low NOx burner maths modeling as an integral part of the design process has often made the difference between a successful low NOx combustion system field conversion project and an unsuccessful one.

  13. Nox2 and p47phox modulate compensatory growth of primary collateral arteries

    Science.gov (United States)

    DiStasi, Matthew R.; Unthank, Joseph L.

    2014-01-01

    The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47phox. Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47phox interaction was involved. Functional significance of p47phox expression was assessed by evaluation of collateral growth in rats administered p47phox small interfering RNA and in p47phox−/− mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47phox, mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease. PMID:24633549

  14. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    Energy Technology Data Exchange (ETDEWEB)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  15. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  16. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  17. Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2015-01-01

    Full Text Available Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7. Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO production, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2 expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9 expression, focal adhesion kinase (FAK activation, and Rho-family of small GTPases (Cdc42 and RhoA expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.

  18. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  19. Understanding NOx emission trends in China based on OMI observations

    Science.gov (United States)

    Wang, Y.; Ga, D.; Smeltzer, C. D.; Yi, R.; Liu, Z.

    2012-12-01

    We analyze OMI observations of NO2 columns over China from 2005 to 2010. Simulations using a regional 3-D chemical transport model (REAM) are used to derive the top-down anthropogenic NOx emissions. The Kendall method is then applied to derive the emission trend. The emission trend is affected by the economic slowdown in 2009. After removing the effect of one year abnormal data, the overall emission trend is 4.35±1.42% per year, which is slower than the linear-regression trend of 5.8-10.8% per year reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trend. The annual emission trends of Northeast China, Central China Plain, Yangtze River Delta and Pearl River Delta are 44.98±1.39%, 5.24±1.63%, 3.31±1.02% and -4.02±1.87%, respectively. The annual emission trends of four megacities, Beijing, Shanghai, Guangzhou and Shenzhen are 0.7±0.27%, -0.75±0.31%, -4.08±1.21% and -6.22±2.85%,, considerably lower than the regional averages. These results appear to suggest that a number of factors, including migration of high-emission industries, vehicle emission regulations, emission control measures of thermal power plants, increased hydro-power usage, have reduced or reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions.

  20. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  1. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  2. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2018-05-01

    Full Text Available Arctigenin (ARG, one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21 and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α and transforming growth factor beta1 (TGF-β1 in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126. Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  3. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway.

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L. , has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  4. Investigation of OH Radical Regeneration from Isoprene Oxidation Across Different NOx Regimes in the Atmosphere Simulation Chamber SAPHIR

    Science.gov (United States)

    Novelli, A.; Bohn, B.; Dorn, H. P.; Häseler, R.; Hofzumahaus, A.; Kaminski, M.; Yu, Z.; Li, X.; Tillmann, R.; Wegener, R.; Fuchs, H.; Kiendler-Scharr, A.; Wahner, A.

    2017-12-01

    The hydroxyl radical (OH) is the dominant daytime oxidant in the troposphere. It starts the degradation of volatile organic compounds (VOC) originating from both anthropogenic and biogenic emissions. Hence, it is a crucial trace species in model simulations as it has a large impact on many reactive trace gases. Many field campaigns performed in isoprene dominated environment in low NOx conditions have shown large discrepancies between the measured and the modelled OH radical concentrations. These results have contributed to the discovery of new regeneration paths for OH radicals from isoprene-OH second generation products with maximum efficiency at low NO. The current chemical models (e.g. MCM 3.3.1) include this novel chemistry allowing for an investigation of the validity of the OH regeneration at different chemical conditions. Over 11 experiments focusing on the OH oxidation of isoprene were performed at the SAPHIR chamber in the Forschungszentrum Jülich. Measurements of VOCs, NOx, O3, HONO were performed together with the measurement of OH radicals (by both LIF-FAGE and DOAS) and OH reactivity. Within the simulation chamber, the NO mixing ratio was varied between 0.05 to 2 ppbv allowing the investigation of both the "new" regeneration path for OH radicals and the well-known NO+HO2 mechanism. A comparison with the MCM 3.3.1 that includes the upgraded LIM1 mechanism showed very good agreement (within 10%) for the OH data at all concentrations of NOx investigated. Comparison with different models, without LIM1 and with updated rates for the OH regeneration, will be presented together with a detailed analysis of the impact of this study on results from previous field campaigns.

  5. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  6. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  7. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  8. Modeling of nitrogen oxides (NO(x)) concentrations resulting from ships at berth.

    Science.gov (United States)

    Abdul-Wahab, Sabah A; Elkamel, Ali; Al Balushi, Abdullah S; Al-Damkhi, Ali M; Siddiqui, Rafiq A

    2008-12-01

    Oxides of nitrogen (NO(x)) emissions from ships (marine vessels) contribute to poor air quality that negatively impacts public health and communities in coastal areas and far inland. These emissions often excessively harm human health, environment, wildlife habituates, and quality of life of communities and indigenous of people who live near ports. This study was conducted to assess the impact of NO(x) emissions origination from ships at berth on a nearby community. It was undertaken at Said Bin Sultan Naval base in Wullayat Al-Mussana (Sultanate of Oman) during the year 2005. The Industrial Source Complex Short Term (ISCST) model was adopted to determine the dispersion of NO(x) into port and beyond into surrounding urban areas. The hourly and monthly contours (isopleths) of NO(x) concentrations in and around the port were plotted. The results were analyzed to determine the affected area and the level of NO(x) concentrations. The highest concentration points in the studied area were also identified. The isopleths of NO(x) indicated that most shipping emissions of NO(x) occur at the port can be transported over land. The output results can help to derive advice of recommendations ships operators and environmentalists to take the correct decision to prevent workers and surrounded environment from pollution.

  9. Assessment and identification of some novel NOx reducing reagents for SNCR process

    International Nuclear Information System (INIS)

    Mahmood, A.; Javed, M.T.; Irfan, N.; Hamid, A. and K.; Waheed, K.

    2009-01-01

    Nitrogen oxides (NOx) are one of the most hazardous air pollutants arising from the combustion processes. Because of the implementation of strict emission limits many NOx removal technologies have been developed. In the present work post combustion NOx removal technique that is Selective Non-Catalytic Reduction (SNCR) has been investigated in a pilot scale 150 kW combustion rig facility. Investigation has been performed using some novel NOx reducing reagents like urea, ammonium carbonate and mixture of their 50%-50% aqueous solution within the temperature range of 700 to 1200 deg. C., at 1.1% excess oxygen and background NOx level of 500 ppm. The effects of these reagents were determined in term of their temperature characteristics and molar ratio. Among the reducing reagents used urea solution gave the highest NOx removal efficiency (81%) and was attractive due to its superior high temperature (1000 to 1150 deg. C) performance, ammonium carbonate was more effective at lower temperature range (850 to 950 deg. C) though its efficiency (32%) was lower than urea, while 50-50% solution of urea and ammonium carbonate gave higher efficiency than ammonium carbonate but slightly lesser than urea within a wide temperature range (875 to 1125 deg. C). It was also observed that the NOx removal efficiency was increased with increasing the molar ratio. (author)

  10. Electrochemical Removal of NOx-Gasses by Use of LSM-Cathodes Impregnated with a NOx Storage Compound

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Kammer Hansen, Kent

    2010-01-01

    Electrochemical decomposition of NO on La0.85Sr0.15MnO3-- Ce0.90Gd0.10O1.95electrodes with and without KNO3 impregnation is investigated. The KNO3 is added as this compound is expected to work as a NOx-storage compound. Measurements are made in the temperature range 300-400 degree C and in three...... in the NO-conversion, when KNO3 is added to the La0.85Sr0.15MnO3-- Ce0.90Gd0.10O1.95electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  11. Dióxido de estanho nanoestruturado como sensor de NOx Nanostructured tin dioxide as a NOx gas sensor

    Directory of Open Access Journals (Sweden)

    A. P. Maciel

    2003-09-01

    Full Text Available Neste trabalho, nanopartículas de SnO2 foram obtidas pelo método do precursor polimérico e caracterizadas por difração de raios X, isotermas de adsorção-dessorção, microscopia eletrônica de varredura e microscopia eletrônica de transmissão. Apenas a fase cassiterita (tetragonal foi observada. O material obtido apresenta com alta área superficial e porosidade. Estas características são pré-requisitos para um bom sensor de gás. A sensibilidade ao NOx para o SnO2 foi estudado na faixa de temperatura compreendida entre 200 e 500 ºC. Observou-se uma baixa sensibilidade entre 200 e 350 ºC, porém, a partir de 400 ºC ocorreu um aumento de três vezes na sensibilidade do sensor. A máxima sensibilidade ocorreu em 400 ºC, com um tempo de resposta de 730 s.In this work SnO2 nanoparticles were obtained by the polimeric precursor method and characterized by X-ray diffraction, gas adsorption and desorption isotherms, scanning electron microscopy and transmission electron microscopy. Only the cassiterite (tetragonal phase was observed. The obtained material presents a high surface area and high porosity. These characteristics are prerequisites for a good gas sensor. The NOx sensibility was studied in the temperature range between 200 and 500 °C. A low sensibility between 200 to 350 °C is also observed; however, starting from 400 °C, an increase of three times in the sensor sensibility occurs. The maximum sensibility was measured at 400 °C with a response time of 730 s.

  12. Sensitizing effects of NOx on CH4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Rasmussen, Anja Egede; Glarborg, Peter

    2008-01-01

    The CH4/O2/NOx system is investigated in a laboratory-scale high pressure laminar flow reactor with the purpose of elucidating the sensitizing effects of NOx on CH4 oxidation at high pressures and medium temperatures. Experiments are conducted at 100, 50, and 20 bar, 600-900 K, and stoichiometric...... ratios ranging from highly reducing to oxidizing conditions. The experimental results are interpreted in terms of a detailed kinetic model drawn from previous work of the authors, including an updated reaction subset for the direct interactions of NOx and C1-2 hydrocarbon species relevant...

  13. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  14. Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi.

    Science.gov (United States)

    Lacaze, Isabelle; Lalucque, Hervé; Siegmund, Ulrike; Silar, Philippe; Brun, Sylvain

    2015-03-01

    NADPH oxidases (Nox) are membrane complexes that produce O2(-). Researches in mammals, plants and fungi highlight the involvement of Nox-generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91(phox)/Nox2 is associated with p22(phox) forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22(phox) gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22(phox) homologue as being mutated in the Podospora anserina mutant IDC(509). Functional studies show that the fungal p22(phox), PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91(phox) homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co-localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system. © 2014 John Wiley & Sons Ltd.

  15. Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures

    Science.gov (United States)

    Riedel, Theran P.; DeMarini, David M.; Zavala, Jose; Warren, Sarah H.; Corse, Eric W.; Offenberg, John H.; Kleindienst, Tadeusz E.; Lewandowski, Michael

    2018-04-01

    Although many volatile organic compounds (VOCs) are regulated to limit air pollution and the consequent health effects, the photooxidation products generally are not. Thus, we examined the mutagenicity in Salmonella TA100 of photochemical atmospheres generated in a steady-state atmospheric simulation chamber by irradiating mixtures of single aromatic VOCs, NOx, and ammonium sulfate seed aerosol in air. The 10 VOCs examined were benzene; toluene; ethylbenzene; o-, m-, and p-xylene; 1,2,4- and 1,3,5-trimethylbenzene; m-cresol; and naphthalene. Salmonella were exposed at the air-agar interface to the generated atmospheres for 1, 2, 4, 8, or 16 h. Dark-control exposures produced non-mutagenic atmospheres, illustrating that the gas-phase precursor VOCs were not mutagenic at the concentrations tested. Under irradiation, all but m-cresol and naphthalene produced mutagenic atmospheres, with potencies ranging from 2.0 (p-xylene) to 11.4 (ethylbenzene) revertants m3 mgC-1 h-1. The mutagenicity was due exclusively to direct-acting late-generation products of the photooxidation reactions. Gas-phase chemical analysis showed that a number of oxidized organic chemical species enhanced during the irradiated exposure experiments correlated (r ≥ 0.81) with the mutagenic potencies of the atmospheres. Molecular formulas assigned to these species indicated that they likely contained peroxy acid, aldehyde, alcohol, and other functionalities.

  16. What do PANs Tell us about VOC-NOx Photochemistry in the Urban/Rural Interface?

    Science.gov (United States)

    Roberts, J. M.; Flocke, F. M.; Zheng, W.; Bertman, S.; Marchewka, M.; Williams, E.; Lerner, B.; Kuster, W.; Goldan, P.; Gilman, J.; Sommariva, R.; Trainer, M.; Fehsenfeld, F.

    2006-12-01

    Peroxycarboxylic Nitric Anhydrides (PANs) are co-products of the VOC-NOx photochemistry that is responsible for O3 and secondary organic aerosol (SOA) formation in the troposphere. The relative abundance of the various PAN type compounds can provide important diagnostic information as to the contribution of different VOC sources to these processes. Anthropogenic, biogenic and petrochemical VOC sources have shown distinct profiles of PAN, PPN, MPAN, PiBN, and APAN, which can be analyzed using simple numerical models and compared to the results of detailed chemical mechanisms. One result of these studies is that the PAN compounds can be used to better define the contribution of isoprene to O3 production in the urban/rural interface. Another result is that high relative concentrations of APAN are characteristic of high petrochemical source impact. In addition, changes in the relative abundance of PPN and PAN can indicate the aging of a continental photochemical plume. This paper will present selected results from five field experiments and modeling studies from the Nashville 1999 Southern Oxidant Study up through the TexAQS 2006 study, in and around Houston, TX.

  17. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Science.gov (United States)

    Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.

    2018-02-01

    Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NOx conditions (nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol-1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H / C), compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the combining effect of SO2 and NOx may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.

  18. Troxerutin Reduces Kidney Damage against BDE-47-Induced Apoptosis via Inhibiting NOX2 Activity and Increasing Nrf2 Activity

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2017-01-01

    Full Text Available 2,2,4,4-Tetrabromodiphenyl ether (BDE-47, one of the persistent organic pollutants, seriously influences the quality of life; however, its pathological mechanism remains unclear. Troxerutin is a flavonoid with pharmacological activity of antioxidation and anti-inflammation. In the present study, we investigated troxerutin against BDE-47-induced kidney cell apoptosis and explored the underlying mechanism. The results show that troxerutin reduced renal cell apoptosis and urinary protein secretion in BDE-47-treated mice. Western blot analysis shows that troxerutin supplement enhanced the ratio of Bcl-2/Bax; inhibited the release of cytochrome c from mitochondria, the activation of procaspase-9 and procaspase-3, and the cleavage of PARP; and reduced FAS, FASL, and caspase-8 levels induced by BDE-47. In addition, troxerutin decreased the production of reactive oxygen species (ROS and increased the activities of antioxidative enzymes. Furthermore, troxerutin blunted Nrf2 ubiquitylation, enhanced the activity of Nrf2, decreased the activity of NOX2, and ameliorated kidney oxidant status of BDE-47-treated mice. Together, these results confirm that troxerutin could alleviate the cytotoxicity of BDE-47 through antioxidation and antiapoptosis, which suggests that its protective mechanism is involved in the inhibition of apoptosis via suppressing NOX2 activity and increasing Nrf2 signaling pathway.

  19. The NOx Budget Trading Program: A Collaborative, Innovative Approach to Solving a Regional Air Pollution Problem

    Science.gov (United States)

    This article examines the development and implementation of the NOx Budget Trading Program (NBP) and the lessons the Environmental Protection Agency has learned from this seasonal emissions cap-and-trade program.

  20. The NOx Budget. Market-based control of tropospheric ozone in the northeastern United States

    International Nuclear Information System (INIS)

    Farrell, Alex; Carter, Robert; Raufer, Roger

    1999-01-01

    The NOx Budget is a marketable emissions allowance system currently being adopted by states in the Northeastern US to reduce tropospheric ozone concentrations to healthful levels in a cost-effective manner. Oxides of nitrogen (NOx) are currently regulated within the existing Command and Control (CAC) framework. The introduction of a market-based approach will further reduce emissions, but will not resolve all regulatory uncertainties. These implementation concerns are identified and discussed. Cost savings and emissions reductions patterns which will arise under several different scenarios are determined through the use of a dynamic, relaxed mixed-integer linear programming model of the NOx allowance market. Like other market-based pollution control programs, the NOx Budget is found to be more efficient than CAC options. Restrictions on the market designed to address perceived flaws are found to be expensive but ineffectual

  1. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  2. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  3. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4.

    Science.gov (United States)

    Tsubouchi, Kazuya; Araya, Jun; Minagawa, Shunsuke; Hara, Hiromichi; Ichikawa, Akihiro; Saito, Nayuta; Kadota, Tsukasa; Sato, Nahoko; Yoshida, Masahiro; Kurita, Yusuke; Kobayashi, Kenji; Ito, Saburo; Fujita, Yu; Utsumi, Hirofumi; Yanagisawa, Haruhiko; Hashimoto, Mitsuo; Wakui, Hiroshi; Yoshii, Yutaka; Ishikawa, Takeo; Numata, Takanori; Kaneko, Yumi; Asano, Hisatoshi; Yamashita, Makoto; Odaka, Makoto; Morikawa, Toshiaki; Nakayama, Katsutoshi; Nakanishi, Yoichi; Kuwano, Kazuyoshi

    2017-08-03

    Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.

  4. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  5. Soot and NOx simultaneous reduction by use of CO2 mixed fuel; Ekika CO2 yokai nenryo ni yoru diesel kikan no susu, NOx no doji teigen

    Energy Technology Data Exchange (ETDEWEB)

    Senda, J; Yokoyama, T; Ikeda, M; Fujimoto, H [Doshisha University, Kyoto (Japan); Ifuku, Y [Kubota Corp., Osaka (Japan)

    1997-10-01

    We propose the new fuel injection system by use of diesel fuel dissolved with CO2 to reduce both soot and NOx simultaneously. In this paper spray combustion characteristics of CO2 mixed fuel is reported. It is revealed that flame temperature and KL factor at the CO2 mixed fuel combustion are lower than at the only n-tridecane combustion due to separation or partly flashing of CO2component. And the result of exhaust gas measurement shows the capability that CO2 mixed fuel is able to reduce both soot and NOx simultaneously. 12 refs., 7 figs., 1 tab.

  6. Microwave catalytic NOx and SO{sub 2} removal using FeCu/zeolite as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Z.S. Wei; G.H. Zeng; Z.R. Xie; C.Y. Ma; X.H. Liu; J.L. Sun; L.H. Liu [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2011-04-15

    Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO{sub 2} removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO{sub 2} to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO{sub 2} in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH{sub 4}HCO{sub 3}) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO{sub 2} and NOx treatment, and microwave addition can increases SO{sub 2} removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO{sub 2} removal follows Langmuir-Hinshelwood (L-H) kinetics. 25 refs., 7 figs., 1 tab.

  7. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    Science.gov (United States)

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  8. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  9. Simultaneous removal of SO{sub 2} and NOx by microwave with potassium permanganate over zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Zai-shan Wei; He-jingying Niu; Yong-feng Ji [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2009-02-15

    Simultaneous sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) removal from flue gas can be achieved with high efficiency by microwave with potassium permanganate (KMnO{sub 4}) over zeolite. The experimental results showed that the microwave reactor could be used to oxidation of SO{sub 2} to sulfate with the best desulfurization efficiency of 96.8% and oxidize NOx to nitrates with the best NOx removal efficiency of 98.4%. Microwave accentuates catalytic oxidation treatment, and microwave addition can increase the SO{sub 2} and NOx removal efficiency by 7.2% and 12.2% separately. The addition of zeolite to microwave potassium permanganate increases from 16.5% to 43.5% the microwave removal efficiency for SO{sub 2}, and the NOx removal efficiency from 85.6% to 98.2%. The additional use of potassium permanganate to the microwave zeolite leads to the enhancement of SO{sub 2} removal efficiency up from 53.9% to 95%, and denitrification efficiency up from 85.6% to 98.2%. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and denitrification are 259 W and 0.357 s, respectively. SO{sub 2} and NOx were rapidly oxidized in microwave induced catalytic oxidation reaction using potassium permanganate with zeolite being the catalyst and microwave absorbent. 13 refs., 6 figs.

  10. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  11. Adsorption of SOX and NOX in activated viscose fibers

    Directory of Open Access Journals (Sweden)

    Ana Carolina O. Plens

    2015-06-01

    Full Text Available SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  12. NOx AND HETEROGENEITY EFFECTS IN HIGH LEVEL WASTE (HLW)

    International Nuclear Information System (INIS)

    Meisel, Dan; Camaioni, Donald M.; Orlando, Thom

    2000-01-01

    We summarize contributions from our EMSP supported research to several field operations of the Office of Environmental Management (EM). In particular we emphasize its impact on safety programs at the Hanford and other EM sites where storage, maintenance and handling of HLW is a major mission. In recent years we were engaged in coordinated efforts to understand the chemistry initiated by radiation in HLW. Three projects of the EMSP (''The NOx System in Nuclear Waste,'' ''Mechanisms and Kinetics of Organic Aging in High Level Nuclear Wastes, D. Camaioni--PI'' and ''Interfacial Radiolysis Effects in Tanks Waste, T. Orlando--PI'') were involved in that effort, which included a team at Argonne, later moved to the University of Notre Dame, and two teams at the Pacific Northwest National Laboratory. Much effort was invested in integrating the results of the scientific studies into the engineering operations via coordination meetings and participation in various stages of the resolution of some of the outstanding safety issues at the sites. However, in this Abstract we summarize the effort at Notre Dame

  13. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  14. Low NOx Burner Development Program - Final Report - 09/15/1996 - 09/30/2000

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W.

    2000-09-30

    This report describes the work performed to develop and demonstrate the VISTA combustor. The development effort was planned for three phases. Laboratory testing at a 1.5 and 6 MMBtu/hr scale was performed at thermo Power Corporation during the first phase. Also during the first phase, analytic modeling was performed to guide the design modifications evaluated in the experimental testing. Toward the end of the first phase, John Zink Company entered the program to participate in the design, evaluation, testing, and demonstration of a 30 MMBtu/hr combustor. The results of the second phase testing were to be used in the demonstration of the 30 MMBtu/hr combustor in a Koch Industries boiler. The program proceeded into the second phase. Two models of the VISTA combustor were tested. Measurements of the first stage NOx production were in the range anticipated to achieve the program goals, based on analytical modeling results. While testing the VISTA combustor at the John Zink facility, John Zink elected to discontinue the development of the VISTA combustor in favor of an alternative in-house concept. As a result, this program was terminated.

  15. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  16. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Directory of Open Access Journals (Sweden)

    D. Zhao

    2018-02-01

    Full Text Available Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb. In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO2 induced nucleation and enhanced SOA mass formation. NOx strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO2 which induced a high number concentration of particles after oxidation to H2SO4, the suppression of the mass yield of SOA by NOx was completely or partly compensated for. This indicates that the suppression of SOA yield by NOx was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57–77 %, even in low-NOx conditions (<  ∼  1 ppb. Organic nitrate contributed 7–26 % of total organics assuming a molecular weight of 200 g mol−1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H ∕ C, compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the

  17. Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  18. Wintertime Overnight NOx Removal in a Southeastern United States Coal-Fired Power Plant Plume: A Model for Understanding Winter NOx Processing and Its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; hide

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  19. Enhancement of removal of SO2 and NOx by powdery materials in radiation treatment of exhaust gases

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Namba, Hideki; Suzuki, Nobutake

    1985-01-01

    We studied the effect of powdery silica on radiation removal of SO 2 and NOx from mixtures of SO 2 , NOx, water vapour, oxygen and nitrogen under irradiation by electron beams of 1.5 MeV at 120 0 C. The SO 2 and NOx concentrations decreased when powdery silica was fed without irradiation. Decrements of SO 2 and NOx concentrations were markedly enhanced when powdery silica was fed together with the irradiation. The enhancement of SO 2 - and NOx-removal is attributed to the adsorption of SO 2 and NO on the water-covered surface of powdery silica, and the effective removal of NO 2 due to the reaction with water adsorbed on the surface of powdery silica. The results obtained show that the addition of powdery silica under irradiation is an effective method of enhancing the removal of SO 2 and NOx. (author)

  20. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate

  1. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  2. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    International Nuclear Information System (INIS)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates

  3. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  4. Graphene and g-C3N4 based photocatalysts for NOx removal: A review

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2018-02-01

    NOx liberated into atmosphere from automobile exhausts and fossil fuel combustion, comprise the major air pollutants. They are responsible for serious environmental problems such as acid rain, ozone accumulation, haze and photochemical smog. Besides they contribute to the deterioration of human health by causing decrease of the lung function and respiratory problems. The application of photocatalytic methods in order to mitigate the presence of NOx in the atmosphere is preferable as they are environmentally friendly, mild and low cost. Therefore, in this review, the photocatalytic activity of g-C3N4 and graphene based composites towards NOx removal was discussed. NOx oxidation to non volatile nitrates on the surface of graphene and g-C3N4 based photocatalysts has attracted much interest during the last years due to their structures with unique features such as large specific surface area, thermal and chemical stability and enhanced visible light utilization. The formation of 2D-2D intimate heterojunctions between graphene or g-C3N4 and other components ensures the enhanced charge transfer, lifetime of electron/hole pairs and thus photocatalytic activity. The increased visible light harvesting also contributes to their usefulness as effective photocatalytic materials. In the present work, the advantages of these novel photocatalysts and the differences/similarities between them were exhaustively highlighted. The role of graphene as catalyst promoter, electron reservoir, support and photosensitizer in its photocatalytic composites was emphasized. The effect of g-C3N4 doping and copolymerization with metals/semiconductors on its photocatalytic activity towards NOx oxidation was thoroughly discussed. Besides, the preparation methods, photocatalytic efficiencies, type of irradiation, utilization of appropriate cocatalysts, and reaction mechanisms during the photocatalytic NOx removal by graphene and g-C3N4 composies, were summarized. It was demonstrated that in the vast

  5. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  6. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  7. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Science.gov (United States)

    2010-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...

  8. Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury

    Directory of Open Access Journals (Sweden)

    Zheng Lou

    2018-04-01

    Full Text Available Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX-derived reactive oxygen species (ROS play an important role in cerebral ischemia/reperfusion (I/R injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R and/or treated with activin receptor-like kinase (ALK5 inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis, TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3 and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]. However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.

  9. Composite TiO{sub 2}/clays materials for photocatalytic NOx oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece); Vaimakis, T. [Department of Chemistry, University of Ioannina, P.O. Box 1186, 451 10, Ioannina (Greece); Trapalis, C., E-mail: trapalis@ims.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece)

    2014-11-15

    Graphical abstract: - Highlights: • Clays-supported TiO{sub 2} photocatalysts are prepared by simple, scalable method. • Visible light active TiO{sub 2} is incorporated in hydrotalcite, talk and kunipia clays. • The alkali substrates facilitate the NOx adsorption to the photocatalytic surface. • Low-content TiO{sub 2} photocatalysts demonstrated high NOx oxidation activity. • Titania/hydrotalcite photocatalyst exhibited remarkable NOx removal activity. - Abstract: TiO{sub 2} photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO{sub 2} in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO{sub 2}). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al{sup 3+} and Ca{sup 2+} intercalation was applied in order to improve the dispersion of TiO{sub 2} and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania

  10. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde. The subsequent

  11. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  12. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  13. Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates

    International Nuclear Information System (INIS)

    Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

    1999-01-01

    Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates

  14. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric [Texas A & M Univ., College Station, TX (United States); Krejci, Michael [Texas A & M Univ., College Station, TX (United States); Mathieu, Olivier [Texas A & M Univ., College Station, TX (United States); Vissotski, Andrew [Texas A & M Univ., College Station, TX (United States); Ravi, Sankat [Texas A & M Univ., College Station, TX (United States); Plichta, Drew [Texas A & M Univ., College Station, TX (United States); Sikes, Travis [Texas A & M Univ., College Station, TX (United States); Levacque, Anthony [Texas A & M Univ., College Station, TX (United States); Camou, Alejandro [Texas A & M Univ., College Station, TX (United States); Aul, Christopher [Texas A & M Univ., College Station, TX (United States)

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  15. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  16. ShenFu Preparation Protects AML12 Cells Against Palmitic Acid-Induced Injury Through Inhibition of Both JNK/Nox4 and JNK/NFκB Pathways

    Directory of Open Access Journals (Sweden)

    Jia-Fu Ji

    2018-02-01

    Full Text Available Background/Aims: Nonalcoholic steatohepatitis includes steatosis along with liver inflammation, hepatocyte injury and fibrosis. In this study, we investigated the protective role and the potential mechanisms of a traditional Chinese medicine ShenFu (SF preparation in an in vitro hepatic steatosis model. Methods: In palmitic acid (PA-induced murine hepatic AML12 cell injury, effects of SF preparation on cellular apoptosis and intracellular triglyceride (iTG level were assessed using TUNEL and TG Colorimetric Assay. Reactive oxygen species (ROS and mitochondrial membrane potential (MMP levels were measured using DCF and JC-1 assay. Cytokine levels were evaluated using ELISA assay. Immunoblot was used to compare the activation level of c-Jun N terminal kinase (JNK, NADPH oxidase (Nox4, and NFκB pathways. Results: Addition of SF preparation prevented PA-mediated increase of apoptosis and iTG as well as IL-8 and IL-6. In PA-treated cell, SF preparation reduced the level of Nox4 and ROS, while increasing the level of MMP and the expression of manganese superoxide dismutase (MnSOD and catalase, indicating emendation of mitochondrial dysfunction. Nox4 inhibitor GKT137381 prevented PA-induced increase of ROS and apoptosis, while decreasing iTG slightly and not influencing the level of IL-8 and IL-6. SF preparation prevented PA-induced upregulation of phospho-JNK. JNK inhibitor SP600125 prevented PA-mediated increase of Nox4, IL-8, IL-6 and iTG. Nuclear translocation of NFκB/p65 was detected in PA-treated cells, which was prevented by SF preparation. An IκB degradation inhibitor, BAY11-7082, prevented PA-induced increase of IL-8 and IL-6 as well as iTG, whereas it only decreased ROS levels slightly and showed no influence on cellular apoptosis. Conclusion: SF preparation shows a beneficial role in prevention of hepatocyte injury by attenuating oxidative stress and cytokines production at least partially through inhibition of JNK/Nox4 and JNK

  17. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pepping

    Full Text Available High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL and myeloid-deficient NOX2 (mNOX2-KO mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.

  18. Surface ozone and NOx trends observed over Kannur, a South Indian coastal location of weak industrial activities

    Science.gov (United States)

    Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.

    South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted

  19. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  20. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.

    Science.gov (United States)

    Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M

    2016-01-01

    Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  1. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Olguín

    2016-07-01

    Full Text Available Reactive oxygen species (ROS participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2 in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB. Moreover, exercise significantly increased NOX2 complex assembly (p47phox-gp91phox interaction demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD, glutathione peroxidase (GPx, citrate synthase (CS, mitochondrial transcription factor A (tfam and interleukin-6 (IL-6 in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p<0.001. These results were corroborated using gp91-dstat in an in-vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  2. Composite TiO2/clays materials for photocatalytic NOx oxidation

    Science.gov (United States)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  3. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  4. Low Temperature DeNOx Technologies for Power and Waste Incineration Plants

    DEFF Research Database (Denmark)

    Jakobsen, Peter Westergaard

    and induces respiratory diseases in humans. There is no doubt that anthropogenic effects are contributing to the global climate change. The largest contributor to anthropogenic greenhouse gas emissions is CO2. been of great interest as a method to decrease global CO2 emissions. Some of the fuels that have....... Consequently, NOx abatement is currently not possible when these are used exclusively. Since NOx gasses are strong pollutants, the increased emission caused by using these alternative fuels is highly undesirable and hinders a more widespread use of alternative fuels. The work presented here has primarily been...

  5. Characterization of Regional Marginal Abatement Cost Curves for NOx that Incorporate Control Measures, Renewable Energy, Energy Efficiency and Fuel Switching

    Science.gov (United States)

    Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...

  6. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art materia...

  7. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.

    Science.gov (United States)

    2010-07-01

    ... SO2, NOX, Hg, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION... Procedures § 75.33 Standard missing data procedures for SO2, NOX, Hg, and flow rate. (a) Following initial...—Missing Data Procedure for SO2 CEMS, CO2 CEMS, Moisture CEMS, Hg CEMS, and Diluent (CO2 or O2) Monitors...

  8. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  9. Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2015-09-01

    The study reveals great potential for the successful application of numerical flow simulation to predict flame structure and NOx emission level of micromix hydrogen combustion, help understanding the flow phenomena related with the micromixing, reaction zone and NOx formation and support further optimization of the burner performance.

  10. Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories

    Science.gov (United States)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.; McCoskey, J. K.; VanReken, T. M.; Lamb, B. K.; Vaughan, J. K.; Hardy, R. J.; Cole, J. L.; Strachan, S. M.; Zhang, W.

    2012-12-01

    The CO-to-NOx molar emission ratios from the US EPA vehicle emissions models MOVES and MOBILE6.2 were compared to urban wintertime measurements of CO and NOx. Measurements of CO, NOx, and volatile organic compounds were made at a regional air monitoring site in Boise, Idaho for 2 months from December 2008 to January 2009. The site is impacted by roadway emissions from a nearby busy urban arterial roads and highway. The measured CO-to-NOx ratio for morning rush hour periods was 4.2 ± 0.6. The average CO-to-NOx ratio during weekdays between the hours of 08:00 and 18:00 when vehicle miles travelled were highest was 5.2 ± 0.5. For this time period, MOVES yields an average hourly CO-to-NOx ratio of 9.1 compared to 20.2 for MOBILE6.2. Off-network emissions are a significant fraction of the CO and NOx emissions in MOVES, accounting for 65% of total CO emissions, and significantly increase the CO-to-NOx molar ratio. Observed ratios were more similar to the average hourly running emissions for urban roads determined by MOVES to be 4.3.

  11. Environmental impact of the nox and results in Mexico of the technologies for its control; Impacto ambiental de los NOx y resultados en Mexico de tecnologias de control

    Energy Technology Data Exchange (ETDEWEB)

    Ribera Flores, Marco Antonio [Nissan Mexicana S. A. de C. V. Cuernavaca (Mexico)

    1994-12-31

    This paper presents the experience gained in the project development for the installation of three burners for industrial boilers with low nitrogen oxides emission technology. The paper begins with a short reference to the effects on the environment, derived from the generation of these gases in combustion equipment and the reasons why this thermal NOx and the associated NOx are generated. A revision is made of the existing regulations to limit the emissions of these pollutants in industrial equipment in different countries, including Mexico. Mention is made of the existing control technologies and in particular indicating the emission reduction method determined for the burners in functional tests, using propane gas and diesel, before and after installing the control technology, to demonstrate the important reductions obtained. The other results such as the thermal efficiency are also plotted as well as other important pollutant emissions such as CO and CO{sub 2} for the observation of their behavior. [Espanol] El presente trabajo expone la experiencia obtenida en el desarrollo del proyecto de instalacion de tres quemadores para calderas industriales con tecnologia de baja emision de oxidos de nitrogeno. Se inicia haciendo una breve mencion de las repercusiones al medio ambiente que se derivan de la generacion de estos gases en equipos de combustion y las razones por las cuales se generan los NOx termicos y los NOx asociados a los combustibles. Se hace una revision sobre las regulaciones existentes para limitar las emisiones de estos contaminantes en equipos industriales en diferentes paises incluyendo a Mexico. Se mencionan las tecnologias de control existentes y en particular indicando el metodo de reduccion de emisiones determinadas para los quemadores en pruebas funcionales utilizando como combustibles gas propano y diesel antes y despues de instalar la tecnologia de control para demostrar las fuertes reducciones obtenidas, se grafican tambien otros resultados

  12. Genome-wide association study identifies nox3 as a critical gene for susceptibility to noise-induced hearing loss.

    Directory of Open Access Journals (Sweden)

    Joel Lavinsky

    2015-04-01

    Full Text Available In the United States, roughly 10% of the population is exposed daily to hazardous levels of noise in the workplace. Twin studies estimate heritability for noise-induced hearing loss (NIHL of approximately 36%, and strain specific variation in sensitivity has been demonstrated in mice. Based upon the difficulties inherent to the study of NIHL in humans, we have turned to the study of this complex trait in mice. We exposed 5 week-old mice from the Hybrid Mouse Diversity Panel (HMDP to a 10 kHz octave band noise at 108 dB for 2 hours and assessed the permanent threshold shift 2 weeks post exposure using frequency specific stimuli. These data were then used in a genome-wide association study (GWAS using the Efficient Mixed Model Analysis (EMMA to control for population structure. In this manuscript we describe our GWAS, with an emphasis on a significant peak for susceptibility to NIHL on chromosome 17 within a haplotype block containing NADPH oxidase-3 (Nox3. Our peak was detected after an 8 kHz tone burst stimulus. Nox3 mutants and heterozygotes were then tested to validate our GWAS. The mutants and heterozygotes demonstrated a greater susceptibility to NIHL specifically at 8 kHz both on measures of distortion product otoacoustic emissions (DPOAE and on auditory brainstem response (ABR. We demonstrate that this sensitivity resides within the synaptic ribbons of the cochlea in the mutant animals specifically at 8 kHz. Our work is the first GWAS for NIHL in mice and elucidates the power of our approach to identify tonotopic genetic susceptibility to NIHL.

  13. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  14. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  15. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  16. Source apportionment and health effect of NO_x over the Pearl River Delta region in southern China

    International Nuclear Information System (INIS)

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C.H.; Lau, Alexis K.H.

    2016-01-01

    As one of the most notorious atmospheric pollutants, NO_x not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NO_x and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NO_x from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NO_x sources, accounting for 30.8% and 18.5% of local NO_x sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NO_x in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NO_x on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0–4405) respiratory deaths and 991 (0–2281) lung cancer deaths due to long-term exposure to NO_x in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NO_x emissions, especially for those sources that make a substantial contribution to NO_x emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources. - Highlights: • WRF-CAMx modeling system with OSAT was used to study the source of NO_x over Pearl River Delta region in China. • The results indicated that local emission and regional transportation are important contributors for NO_x in this region. • Heavy duty diesel vehicle, marine emission and industrial point source are three important contribution sectors. • Long-term exposure to NO_x is estimated to cause 2119 respiratory deaths and 991 lung cancer deaths in PRD during 2011. - Result indicated that heavy duty

  17. Selective catalytic oxidation of NO as a process stage in NOx separation from power plant and production systems off-gases. Catalyst development and reaction kinetics. Final report. Die selektive katalytische Oxidation des NO als Prozess-Stufe bei der Stickoxidabscheidung aus Abgasen von Kraftwerken und Produktionsanlagen. Katalysatorentwicklung und Reaktionskinetik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Seifert, J.

    1989-06-01

    The research project was to investigate the heterogeneously catalyzed oxidation of NO in flue gas using 1. metal oxide catalysts (commonly on a MnO{sub 2} basis), 2. ZSM5 zeolites (pentasil), and 3. noble metal catalysts. Apart from the reaction kinetics, also the activity and resistance to typical catalyst poisons (SO{sub 2}, HCl, HF, heavy metals) were investigated. A fully automatic, computer-controlled experimental apparatus was developed which apart from the analysis of reaction products permitted also dynamic experiments with time constants in the seconds range and experiments with cyclic variation of concentration, temperature, and time of residue. (RB).

  18. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  19. Low cost combustion tuning and fuel nozzles modification to reduce NOx emission in large coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    B. Chudnovsky; L. Levin; A. Talanker; E. Bar-Ziv; A. Vikhansky; A.F. Sarofim [Israel Electric Corporation (IEC), Haifa (Israel)

    2003-07-01

    This work focuses on low-cost combustion tuning to reduce NOx emission in coal-fired tangential boilers, testing the furnace in various operation modes. We have also experimented different coal nozzle types. The measurements were accompanied by computer simulations of the combustion process. We also used an on-line supervision system. The data obtained from 575 MW boilers show that with tuning and modified nozzles NOx was considerably reduced. The emission of NOx was reduced from 1200 to 570 mg/dNm{sup 3} at 6% O{sub 2} for South African coal at full load. At partial load NOx emission dropped from 1400 to 750-850 mg/dNm{sup 3} at 6% O{sub 2}. High volatile coal firing led to additional NOx reduction. A series of tests were performed with Colombian and Indonesian coals as well, dropping NOx emission to 400-450 mg/dNm{sup 3} at6% O{sub 2} at full load. Sootblowing optimization using the supervision system enabled us to further reduce NOx emission by approximately 10%. The boiler and unit performance was not influenced by any of the techniques used for NOx reduction. In such a manner, the results presented in this work clearly show that technological methods for reduction NOx are available and capable of obtaining the required NOx emission. We believe that the conclusions of the present study are general and may be applied to other utility boilers as well. 13 refs., 12 figs., 7 tabs.

  20. 40 CFR 60.4340 - How do I demonstrate continuous compliance for NOX if I do not use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... compliance for NOX if I do not use water or steam injection? 60.4340 Section 60.4340 Protection of....4340 How do I demonstrate continuous compliance for NOX if I do not use water or steam injection? (a) If you are not using water or steam injection to control NOX emissions, you must perform annual...

  1. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  2. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence

    Directory of Open Access Journals (Sweden)

    Modesto Rojas

    2017-06-01

    Full Text Available Increases in reactive oxygen species (ROS and decreases in nitric oxide (NO have been linked to vascular dysfunction during diabetic retinopathy (DR. Diabetes can reduce NO by increasing ROS and by increasing activity of arginase, which competes with nitric oxide synthase (NOS for their commons substrate l-arginine. Increased ROS and decreased NO can cause premature endothelial cell (EC senescence leading to defective vascular repair. We have previously demonstrated the involvement of NADPH oxidase 2 (NOX2-derived ROS, decreased NO and overactive arginase in DR. Here, we investigated their impact on diabetes-induced EC senescence. Studies using diabetic mice and retinal ECs treated with high glucose or H2O2 showed that increases in ROS formation, elevated arginase expression and activity, and decreased NO formation led to premature EC senescence. NOX2 blockade or arginase inhibition prevented these effects. EC senescence was also increased by inhibition of NOS activity and this was prevented by treatment with a NO donor. These results indicate that diabetes/high glucose-induced activation of arginase and decreases in NO bioavailability accelerate EC senescence. NOX2-generated ROS contribute importantly to this process. Blockade of NOX2 or arginase represents a strategy to prevent diabetes-induced premature EC senescence by preserving NO bioavailability.

  3. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  4. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  5. Development of Green Pavement for Reducing Oxides of Nitrogen (NOx in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Kania Dewi

    2016-05-01

    Full Text Available The transportation sector is the biggest contributor to air pollution in Indonesia, especially in metropolitan cities. Gases such as oxides of nitrogen (NOx are produced during the combustion of fossil fuels in the internal combustion of vehicle engines. Oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 are important air pollutants, because they cause significant harm to human health and play an important role in being precursors of other dangerous pollutants such as photochemical smog. One of the simple ways to reduce NOx concentrations is utilizing a catalytic process involving UV light and semiconductor particles such as TiO2. Illuminated TiO2 UV light is capable of producing an electron (e- and hole (h- pair, which initiates a chemical reaction that alters the NOx to become NO3- or NO2-. A field scale paving block reactor coated with TiO2 placed by the roadside was exposed to UV light using various exposure times. The results showed that the sample with a composition of 200 g/m2 TiO2 was capable of adsorbing NOx gas at an average rate of 0.0046 mg/m2/minute. Additional costs due to TiO2 coating for every square meter of paving are IDR 13,180.

  6. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  7. Modelling NOx-formation for application in a biomass combustion furnace

    NARCIS (Netherlands)

    Kuijk, van H.A.J.A.; Bastiaans, R.J.M.; Oijen, van J.A.; Goey, de L.P.H.

    2005-01-01

    To optimize the design for biomass combustion furnaces for NOx-emission reduction, numerical models can be used. In these models, the Eddy Dissipation Concept and the PDF-flamelet approach can be applied to describe the interaction between the chemistry and the turbulence. As a first step in

  8. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation

    Directory of Open Access Journals (Sweden)

    K. Miyazaki

    2017-01-01

    underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr−1 and 2014 (47.5 Tg N yr−1.

  9. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  10. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NARCIS (Netherlands)

    Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S.

    2016-01-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro

  11. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Industrial... combusts only coal, oil, or natural gas shall cause to be discharged into the atmosphere from that affected facility any gases that contain NOX (expressed as NO2) in excess of the following emission limits: Fuel...

  12. Theoretical investigation of dinitrosyl complexes in Cu-zeolites as intermediates in deNOx process

    Czech Academy of Sciences Publication Activity Database

    Pulido, Maria Angeles; Nachtigall, Petr

    2009-01-01

    Roč. 11, č. 9 (2009), s. 1447-1458 ISSN 1463-9076 R&D Projects: GA ČR GA203/06/0324; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : zeolites * deNOx * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.116, year: 2009

  13. Field test of available methods to measure remotely SOx and NOx emissions from ships

    NARCIS (Netherlands)

    Balzani Lööv, J.M.; Alfoldy, B.; Gast, L.F.L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D.P.J.; Berkhout, A.J.C.; Jalkanen, J.P.; Prata, A.J.; Van Der Hoff, G.R.; Borowiak, A.

    2014-01-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the

  14. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach.

  15. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...

  16. Emissioner af SO2 og NOX fra kraftværker

    DEFF Research Database (Denmark)

    Illerup, J. B.; Bruun, H. G.

    Rapporten indeholder beregninger af SO2- og NOx- emissioner fra kraftværker, der er reguleret af kvoteloven. Emissionerne er for tre forskellige produktionsscenarier beregnet ud fra emissionsfaktorer baseret på EU-direktivet om store forbrændingsanlæg og emissionsfaktorer beregnet ud fra en...

  17. Neutron studies of nanostructured CuO-Al2O3 NOx removal catalysts

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Loong Chun-Keung

    1997-01-01

    Nanostructured powders of automotive catalytic system CuO0Al 2 O 3 , targeted for nitrogen oxides (NOx) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure of 10 mol% Cu-Al 2 O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NOx removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature programmed reaction measurements. The γ-(Cu, Al) 2 O 3 phase and the mass-fractal-like aggregate of particles (size ∼ 26 nm) at annealing temperatures below 900 degrees C were found to be crucial to the high NOx removal performance. The transformation to bulk crystalline phases of α-Al 2 O 3 + CuAl 2 O 4 spinel above ∼1050 degrees C corresponds to a drastic drop of Nox removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed

  18. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

    Directory of Open Access Journals (Sweden)

    F. Liu

    2016-04-01

    Full Text Available We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in a polluted background. NO2 patterns under calm wind conditions are used as proxy for the spatial patterns of NOx emissions, and the effective atmospheric NOx lifetime is determined from the change of spatial patterns measured at larger wind speeds. Emissions are subsequently derived from the NO2 mass above the background, integrated around the source of interest. Lifetimes and emissions are estimated for 17 power plants and 53 cities located in non-mountainous regions across China and the USA. The derived lifetimes for the ozone season (May–September are 3.8 ± 1.0 h (mean ± standard deviation with a range of 1.8 to 7.5 h. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Regional inventory shows better agreement with top-down estimates for Chinese cities compared to global inventory, most likely due to different downscaling approaches adopted in the two inventories.

  19. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    Science.gov (United States)

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  20. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... calculated as follows: (A) If the unit is coal-fired during the year, the unit's control period heat input... control period heat input, and a unit's status as coal-fired or oil-fired, for a calendar year under... allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...

  1. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... as follows: (A) If the unit is coal-fired during the year, the unit's control period heat input for... control period heat input, and a unit's status as coal-fired or oil-fired, for a calendar year under... baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...

  2. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Directory of Open Access Journals (Sweden)

    Jaco H. Visser

    2012-03-01

    Full Text Available The accumulating-type (or integrating-type NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s, the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.

  3. Mathematical modeling of an in-line low-NOx calciner

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Lars Skaarup

    2002-01-01

    The reduction of the NOx content in in-line-calciner-type kiln systems can be made by optimization of the primary filing in the rotary kiln and of the secondary firing in the calciner. Because the optimization of calciner offers greater opportunities the mathematical modeling of this reactor...

  4. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.

    Science.gov (United States)

    Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John

    2015-12-15

    Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem.

  5. Supported Metal Zeolites as Environmental Catalysts for Reduction of NOx Molecules

    International Nuclear Information System (INIS)

    May Nwe Win; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn; Maung Maung Htay

    2005-09-01

    The NOx contamination of air is a major pollutant due to its reaction with the volatile organic compounds, which give rise to ground level (tropospheric) ozone. It is a conventional fact that NOx are one of the major components of car exhaust. In view of that fact, to sustain the tropospheric ozone is to reduce the amount of NOx in the air. Therefore, this paper is concerned with the catalytic activity of Fe-loaded zeolite and Cu-loaded zeolite used to decompose NIOx by SCR (selective catalytic reduction) reaction with very high activity have been studied. Their preparations, characterization by XRD, FT-IR and SEM were also studied. Fe and Cu containig were prepared by soild state ion-exchange method under ambient presure and at the temperature of 600C for 4 hours. From this study, selective catalytic reduction rection was observed, showing about 87% conversion of the NOx molecule with the corresponding optimum amount of catalyst (1.0+-0.5)g working under the reactor space volume of 30cm3 at ambient temperature (30-32)C

  6. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  7. Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array

    Science.gov (United States)

    Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo

    2010-01-01

    The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.

  8. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

    Science.gov (United States)

    Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H. A. C.; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q. J.

    2015-09-01

    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories - the EMEP inventory and the so-called TNO and TNO-MP inventories - over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.

  9. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2017-08-01

    Full Text Available When hydrocarbons (HCs are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs. These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t =  30 min of dithiothreitol (DTTt, a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2–5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC ∕ NOx ratio from 30 to 5. The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm was determined over an extended period of reaction time (t =  2 h to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC ∕ NOx ratio: 5–36 ppbC ppb−1 applied in

  10. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  11. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  12. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  13. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    Science.gov (United States)

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

  14. Formation pathways of DMSO from DMS-OH in the presence of O(2) and NO(x): A theoretical study.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Angels; Lluch, José M

    2009-01-30

    The relative importance of the reaction pathways and thus the product yields in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been said to be influenced by the content of nitrogen oxides (NO(x)) in chamber experiments. In this study, ab initio and density functional electronic structure calculations of all the possible reaction pathways corresponding to the reaction process initiated by DMS-OH + oxygen (O(2)), leading to the formation of the dimethyl sulfoxide (DMSO) product in the presence of NO(x) (NO and NO(2)), are carried out for the first time. The results for the different pathways are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO formation yields. Our theoretical results clearly show the existence of NO(x)-dependent pathways leading to the formation of DMSO in addition to O(2)-dependent channels. So then, NO(x)-containing conditions would have to modify the relative importance of the addition channel in the DMS oxidation process. (c) 2008 Wiley Periodicals, Inc.

  15. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy.

    Science.gov (United States)

    Yaribeygi, Habib; Mohammadi, Mohammad T; Rezaee, Ramin; Sahebkar, Amirhossein

    2018-03-25

    Oxidative damage, inflammation and apoptosis play significant roles in diabetic nephropathy. Previous studies demonstrated anti-inflammatory and anti-oxidative effects of crocin, but there is no evidence about its effects on IL-18, NOX-4, and p53 expression in diabetic kidneys. The aim of this study was to evaluate possible effects of crocin on improving main mechanisms underlying diabetic nephropathy. Male Wistar rats were randomly divided into four separate groups as normal (C), normal treated (CC), diabetic (D), and diabetic treated (DC) (n = 6). Diabetes was induced by a single dose of streptozotocin (40 mg/kg/intravenous). Treated groups received crocin (40 mg/kg, intraperitoneal) for 8 weeks. At the end of the 8th week of the study, all rats were sacrificed and urine, blood and tissue were collected. Levels of urea, uric acid, creatinine and glucose were determined collected sera, and proteinuria was measured in urine samples. Moreover, the contents of malondialdehyde (MDA), nitrate, and glutathione (GLT) as well as catalase (CAT) and superoxide dismutase (SOD) enzymes activities were measured. The expression of NOX-4, IL-18, and p53 at both mRNA and protein levels were also assessed. Hyperglycemia significantly increased proteinuria in diabetic rats (D). Also, depressed antioxidant defense system potency, but increased NOX-4 expression and free radicals production resulting in oxidative stress, were observed. Moreover, expressions of IL-18 (as a marker of inflammation) and p53 (as a marker of apoptosis) were increased. These outcomes were accompanied by enhanced histological damages and renal failure but, treatment with crocin improved these deteriorations, and ameliorated renal function. It potentiated renal cells antioxidant defense system and declined inflammation. Also, crocin lowered apoptosis and improved histological damages in renal cells. Oxidative stress, inflammation and apoptosis are considered three main mechanisms underlying diabetic

  16. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    Science.gov (United States)

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  17. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD.

    Science.gov (United States)

    Liu, Xianyan; Hao, Binwei; Ma, Ailing; He, Jinxi; Liu, Xiaoming; Chen, Juan

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF- β ) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF- β , along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α -SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF- β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF- β signaling in the pathogenesis of COPD, which warrants further investigation.

  18. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Loffredo, L; Del Ben, M; Perri, L; Carnevale, R; Nocella, C; Catasca, E; Baratta, F; Ceci, F; Polimeni, L; Gozzo, P; Violi, F; Angelico, F

    2016-08-01

    Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is considered a pathogenetic mechanism determining fibrosis and disease progression in non-alcoholic steatohepatitis (NASH). Polyphenols exert antioxidant action and inhibit NADPH oxidase in humans. To analyse the effect of cocoa polyphenols on NADPH oxidase isoform 2 (NOX2) activation, oxidative stress and hepatocyte apoptosis in a population affected by NASH. In a cross-sectional study comparing 19 NASH and 19 controls, oxidative stress, as assessed by serum NOX2 activity and F2-isoprostanes, and hepatocyte apoptosis, as assessed by serum cytokeratin-18 (CK-18) levels, were measured. Furthermore, the 19 NASH patients were randomly allocated in a crossover design to 40 g/day of dark chocolate (>85% cocoa) or 40 g/day of milk chocolate (chocolate intake. Compared to controls, NASH patients had higher sNOX2-dp, serum isoprostanes and CK-18 levels. A significant difference for treatments was found in subjects with respect to sNOX2-dp, serum isoprostanes and serum CK-18. The pairwise comparisons showed that, compared to baseline, after 14 days of dark chocolate intake, a significant reduction in sNOX2-dp serum isoprostanes and CK-18 M30 was found. No change was observed after milk chocolate ingestion. A simple linear regression analysis showed that ∆ of sNOX2-dp was associated with ∆ of serum isoprostanes. Cocoa polyphenols exert an antioxidant activity via NOX2 down-regulation in NASH patients. © 2016 John Wiley & Sons Ltd.

  19. Productivity

    DEFF Research Database (Denmark)

    Spring, Martin; Johnes, Geraint; Hald, Kim Sundtoft

    Productivity is increasingly critical for developed economies. It has always been important: as Paul Krugman puts it, “Productivity isn’t everything, but in the long run it is almost everything. A country’s ability to improve its standard of living over time depends almost entirely on its ability...... to raise its output per worker”(Krugman, 1994). Analyses of productivity have, by and large, been the preserve of economists. Operations Management (OM) is rooted in a similar concern for the efficient use of scarce resources; Management Accounting (MA) is concerned with the institutionalised measurement...... and management of productivity. Yet the three perspectives are rarely connected. This paper is a sketch of a literature review seeking to identify, contrast and reconcile these three perspectives. In so doing, it aims to strengthen the connections between policy and managerial analyses of productivity....

  20. Variation of a Lightning NOx Indicator for National Climate Assessment

    Science.gov (United States)

    Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).

  1. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  2. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  3. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  4. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Han, Ke; Lv, Biao; Bao, Kaiji; Wu, Xuecheng; Gao, Xiang; Cen, Kefa

    2017-02-01

    Atmospheric soot aging process is always accompanied by secondary particle formation, which is a comprehensive environmental issue that deserves great attention. On one hand, aging of primary soot could change its own physicochemical properties; on the other hand, complex air pollution caused by pollutant emission from various sources (e.g., vehicle exhausts, coal-fired flue gases and biogenic VOCs emission) may contribute to secondary particle formation onto primary particle surface. In this study, aging of combustion soot in isoprene/SO2/NOx system was investigated under controlled laboratory conditions in several smog chamber experiments. During the evolution of soot, several physical properties such as mass, size, effective density, morphology and mixing state were determined simultaneously by an integrated aerosol analytical system of Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer-Aerosol Particle Mass Analyzer-Condensation Particle Counter (DMA-APM-CPC) and Transmission Electron Microscopy coupled with Energy-dispersive X-ray Spectrometry (TEM/EDX) techniques. Here, based on the experimental results of soot aging under different gas-phase composition and relative humidity (RH), we firstly proposed possible aging pathways of soot in isoprene/SO2/NOx system. A synergetic effect was speculated to exist between SO2 and isoprene on soot aging process, which led to more secondary particle formation. At the same time, TEM/EDX analysis showed that a competitive mechanism between H2SO4(g) and isoprene oxidation vapor may exist: H2SO4(g) firstly condensed onto fresh soot, then an acceleration of isoprene oxidation products formed onto H2SO4 pre-coated soot. In isoprene/SO2/NOx system, high RH conditions could contribute to soot aging and new particle formation. The changes of effective density and dynamic shape factor of soot also indicated that high RH conditions could accelerate soot aging process, and led chain-like soot into more spherical

  5. Measurement of NOx and CO Fluxes from a Tall Tower in Beijing.

    Science.gov (United States)

    Squires, F. A.; Drysdale, W. S.; Hamilton, J.; Lee, J. D.; Vaughan, A. R.; Wild, O.; Mullinger, N.; Nemitz, E.; Metzger, S.; Zhang, Q.

    2017-12-01

    China's air quality problems are well publicised; in 2010, 1.2 million premature deaths were attributed to outdoor air pollution in China. One of the major air quality issues is high concentrations of nitrogen oxides (NOx). China is the largest NOx emitter, contributing an estimated 18 % to global NOx emissions. Beijing itself is reported to have NO2 concentrations 42 % higher than the annual national standard. Given the high levels of pollution, increased focus has been placed on improving emissions estimates which are typically developed using a `bottom-up' approach where emissions are predicted from their sources. Emission inventories in China have large uncertainties and are rapidly changing with time in response to economic development, environmental regulation and new technologies. In fact, China is the largest contributor to the uncertainty in the source and the magnitude of air pollutants in air quality models. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. 5 Hz measurements of NOx and CO concentration were made as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) project during two field campaigns in Nov-Dec 2016 and May-June 2017. Sampling took place from an inlet co-located with a sonic anemometer at 102 m on a meteorological tower in central Beijing. Analysis of the covariance between vertical wind speed and concentration enabled the calculation of emission flux, with an estimated footprint of between 2 - 5 km from the tower (which typically included some major ring roads and expressways). Fluxes were quantified using the continuous wavelet transformation (CWT) method, which enabled one minute resolved fluxes to be calculated. These data were compared to existing emissions estimates from the Multi-resolution Emission Inventory for China (MEIC). It is

  6. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  7. NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs

    International Nuclear Information System (INIS)

    Mauzerall, D.L.; Namsoug Kim

    2005-01-01

    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3 ) produced from nitrogen oxides (NO x =NO+NO 2 ) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3 , depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3 -related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used 'cap and trade' approach to NO x regulation, which presumes that shifts of emission over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage. (author)

  8. In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO

    Science.gov (United States)

    Kowsari, Elaheh; Abdpour, Soheil

    2017-12-01

    A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.

  9. Modeling the Formation of N2O and NO2 in the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Miller, James A.; Glarborg, Peter

    1996-01-01

    A chemical kinetic model is formulated that satisfactorily predicts the NO removed and the N2O and NO2 produced by the Thermal De-NOx process over a wide range of temperatures and initial oxygen concentrations....

  10. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases

    Czech Academy of Sciences Publication Activity Database

    Li, T.; Xu, G.; Rong, J.; Chen, H.; He, Ch.; Giordano, Mario; Wang, Q.

    2016-01-01

    Roč. 195, May (2016), s. 73-79 ISSN 0176-1617 Institutional support: RVO:61388971 Keywords : Acclimation * Biological NOx removal * Chlorella Subject RIV: EF - Botanics Impact factor: 3.121, year: 2016

  11. Measurements of the potential ozone production rate in a forest

    Science.gov (United States)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  12. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  13. Evaluating the NOx Storage Catalysts (NSC Aging: A Preliminary Analytical Study with Electronic Microscopy

    Directory of Open Access Journals (Sweden)

    Leonarda Bellebuono

    2017-10-01

    Full Text Available This paper describes an expeditious and reliable method for determining the thermal effects in a static condition of commercial NOx storage catalysts (NSCs using scanning electron microscopy with an energy dispersive X-ray analytical system (SEM/EDS. It is worth remarking that possible changes in the morphology and in the elemental composition of the catalyst may be considered as the most important causes of the lower conversion of NOx. The information attained in this work indicates that Pt nanoparticle sintering is strongly increased by the oxygen exposure, and this can be considered a very useful preliminary investigation for the studies already present in the literature on the efficiency of NSCs.

  14. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    Science.gov (United States)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  15. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    Science.gov (United States)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  16. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  17. NOx Monitoring in Humid Exhaust Gas Using Non-Dispersive Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine

    This PhD thesis is concerned with the measurement of NOX in moist exhaust gas onboard ships using non-dispersive infrared (NDIR) spectroscopy. In such a measurement one of the major challenges is spectral interference from water vapour which is present in high concentrations in the exhaust. The Ph......D study investigates a possible solution to this problem, which is to balance out the signal contribution from water vapour by means of carefully designed and manufactured optical bandpass filters. The thesis, presents a thorough theoretical description of the NDIR sensor concept together with simulations...... suggesting that it is possible but challenging to measure NOX in moist exhaust gas using NDIR. The characteristics of optical filters tend to change with temperature, and since this compromises the water signal balancing, much of the work presented in the thesis is devoted to the design of optical bandpass...

  18. Development of a microscale NOx- biosensor for the study of nitrogen cycling in marine sediment

    DEFF Research Database (Denmark)

    Marzocchi, Ugo

    application of this microscale biosensor is constrained mainly because of a short lifetime caused by the fragility of some of its components. Moreover a detailed study characterizing the ESC efficiency under different condition is still missing. The aims of this thesis are: (i) to contribute......-) microscale biosensor matches these requirements. In fact, it can be constructed with a tip diameter ranging between 25 and 100 µm. Its functioning is based on the reduction of NOx- to N2O by denitrifying bacteria and the subsequent detection of N2O by means of an amperometric microsensor. The sensitivity...... of the biosensor can be amplified by the electrophoretic sensitivity control system (ESC) which positively polarizes the inner side of the sensor against an external reference inserted into the analyzed medium, inducing the migration of NOx- anions into the bacterial chamber. However, nowadays the widespread...

  19. High Temperature Oxidation of Steel in an Oxygen-enriched Low NOX Furnace Environment

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, D.; Grandmaison, E.W. [Department of Chemical Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Matovic, M.D. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Barnes, K.R. [KB Technical Services, Inc (formerly) Stelco Inc, Research Manager, Stelco Inc., P.O. Box 2030, Hamilton, ON L8N 3T1 (Canada); Nelson, B.D. [Department of Chemical Engineering, Senior Researcher, Dofasco Inc., P.O. Box 2460, Hamilton, ON L8N 3J5 (Canada)

    2006-09-15

    Steel scaling tests have been performed in a research furnace utilizing an oxygen-enriched, low NOX, burner. This work was performed in conjunction with a study of the combustion characteristics for the Canadian Gas Research Institute (CGRI) low NOX burner. The furnace (a facility of the Centre for Advanced Gas Combustion Technology (CAGCT)) was fired with the burner mounted in a sidewall configuration similar to the geometry encountered in steel reheat furnaces. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations ({approx}0.8% - {approx}4.3%) and oxygen enrichment levels (0-90%) at 1100C. Steel grade had the largest effect on scaling properties examined in this work. Within the tests for each grade, stack oxygen concentration had the largest effect on the scaling properties while oxygen enrichment level had only a small effect.

  20. Improvement study for the dry-low-NOx hydrogen micromix combustion technology

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2015-09-01

    Full Text Available The dry-low-NOx (DLN micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300. The further decrease of NOx emissions along a wider operation range with pure hydrogen supports the introduction of the micromix technology to industrial applications. Experimental and numerical studies show the successful advance of the DLN micromix combustion to extended DLN operation range. The impact of the hydrogen fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using an eddy dissipation concept combustion model and validated against experimental results.

  1. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  2. Spectroscopic Insights into Copper-Based Microporous Zeolites for NH3-SCR of NOx and Methane-to-Methanol Activation

    OpenAIRE

    Oord, R.

    2017-01-01

    Smog has received a lot of attention and is still a major problem in big cities all over the world. A major contribution to smog are nitrogen oxides (NOx), which are mainly produced by road transport, industrial processes and power plants. A lot of research has been put into the reduction of these pollutants, and heterogeneous catalysts have made a major contribution to this field. Selective catalytic reduction (SCR) is an efficient technology to reduce these NOx, and is already used in diese...

  3. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  4. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    Science.gov (United States)

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  5. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    International Nuclear Information System (INIS)

    Sobhakumari, Arya; Schickling, Brandon M.; Love-Homan, Laurie; Raeburn, Ayanna; Fletcher, Elise V.M.; Case, Adam J.; Domann, Frederick E.; Miller, Francis J.

    2013-01-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy

  6. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  7. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  8. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  9. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    Science.gov (United States)

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  10. Field test of available methods to measure remotely SOx and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  11. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  12. Aviation NOx-induced CH4 effect: Fixed mixing ratio boundary conditions versus flux boundary conditions

    Science.gov (United States)

    Khodayari, Arezoo; Olsen, Seth C.; Wuebbles, Donald J.; Phoenix, Daniel B.

    2015-07-01

    Atmospheric chemistry-climate models are often used to calculate the effect of aviation NOx emissions on atmospheric ozone (O3) and methane (CH4). Due to the long (∼10 yr) atmospheric lifetime of methane, model simulations must be run for long time periods, typically for more than 40 simulation years, to reach steady-state if using CH4 emission fluxes. Because of the computational expense of such long runs, studies have traditionally used specified CH4 mixing ratio lower boundary conditions (BCs) and then applied a simple parameterization based on the change in CH4 lifetime between the control and NOx-perturbed simulations to estimate the change in CH4 concentration induced by NOx emissions. In this parameterization a feedback factor (typically a value of 1.4) is used to account for the feedback of CH4 concentrations on its lifetime. Modeling studies comparing simulations using CH4 surface fluxes and fixed mixing ratio BCs are used to examine the validity of this parameterization. The latest version of the Community Earth System Model (CESM), with the CAM5 atmospheric model, was used for this study. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions. Results show a 31.4 ppb change in CH4 concentration when estimated using the parameterization and a 1.4 feedback factor, and a 28.9 ppb change when the concentration was directly calculated in the CH4 flux simulations. The model calculated value for CH4 feedback on its own lifetime agrees well with the 1.4 feedback factor. Systematic comparisons between the separate runs indicated that the parameterization technique overestimates the CH4 concentration by 8.6%. Therefore, it is concluded that the estimation technique is good to within ∼10% and decreases the computational requirements in our simulations by nearly a factor of 8.

  13. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology

    Czech Academy of Sciences Publication Activity Database

    Žouželka, Radek; Rathouský, Jiří

    2017-01-01

    Roč. 217, NOV 2017 (2017), s. 466-476 ISSN 0926-3373 R&D Projects: GA ČR(CZ) GA17-18972S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : Air purification * Gaseous pollutants * NOx * Photocatalysis * TiO 2 Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.446, year: 2016

  14. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  15. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  16. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  17. Effects of stepwise gas combustion on NOx generation

    International Nuclear Information System (INIS)

    Woperane Seredi, A.; Szepesi, E.

    1999-01-01

    To decrease NO x emission from gas boilers, the combustion process of gas has been modified from continuous combustion to step-wise combustion. In this process the combustion temperature, the temperature peaks in the flame, the residence time of combustion products in the high-temperature zone and the oxygen partial pressure are changed advantageously. Experiments were performed using multistage burners, and the NO x emission was recorded. It was found that the air factor of the primary combustion space has a determining effect on the NO x reduction. (R.P.)

  18. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    Science.gov (United States)

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  19. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  20. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  1. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  2. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  3. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  4. NOx removal enhancement by a Jerks - and - Jumps type electrode in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Mercado-Cabrera, A; Villar, E L del; Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Pena-Eguiluz, R; Munozoz-Castro, A; Jaramillo-Sierra, B; Piedad-Beneitez, A de la

    2008-01-01

    In this study, the electrode surface of a NOx removal treatment reactor has been modified in order to reduce its electric potential level and, at the same time, to increase its removal capacity by generating a cold plasma using a non-homogenous electric field on the electrode surface. This electric field has been achieved by means of a jerks and jumps-like electrode profile. The other electrode conserves the original flat form. Then, experiments on the removal of NOx were carried out in this 22.4 cm 3 reactor. Concentrations of 30-80 μmol/mol of NOx in nitrogen were used with 1 SLPM flows. The exhaust gases were analysed as well as characterised by gas chromatography and mass spectrometry. Additional experiments were also carried out in a second reactor of the same reaction volume but where two conventional flat and parallel electrodes were used, in order to compare the results. The NO removal efficiency in the two flat electrode case approached 87% while ∼98% in the jerks and jumps reactor

  5. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  7. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin.

    Science.gov (United States)

    Qi, Meihao; Qiu, Yang; Zhou, Xueying; Tian, Keyong; Zhou, Ke; Sun, Fei; Yue, Bo; Chen, Fuquan; Zha, Dingjun; Qiu, Jianhua

    2018-06-02

    In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  9. Ozone Production and Control Strategies for Southern Taiwan

    Science.gov (United States)

    Shiu, C.; Liu, S.; Chang, C.; Chen, J.; Chou, C. C.; Lin, C.

    2006-12-01

    An observation-based modeling (OBM) approach is used to estimate the ozone production efficiency and production rate of O3 (P(O3)) in southern Taiwan. The approach can also provide an indirect estimate of the concentration of OH. Measured concentrations of two aromatic hydrocarbons, i.e. ethylbenzene/m,p-xylene, are used to estimate the degree of photochemical processing and the amounts of photochemically consumed NOx and NMHCs. In addition, a one-dimensional (1d) photochemical model is used to compare with the OBM results. The average ozone production efficiency during the field campaign in Kaohsiung-Pingtung area in Fall 2003 is found to be about 5, comparable to previous works. The relationship of P(O3) with NOx is examined in detail and compared to previous studies. The derived OH concentrations from this approach are in fair agreement with values calculated from the 1d photochemical model. The relationship of total oxidants (e.g. O3+NO2) versus initial NOx and NMHCs suggests that reducing NMHCs are more effective in controlling total oxidants than reducing NOx. For O3 control, reducing NMHC is even more effective than NOx due to the NO titration effect. This observation-based approach provides a good alternative for understanding the production of ozone and formulating ozone control strategy in urban and suburban environment without measurements of peroxy radicals.

  10. Constraints on Eurasian ship NOx emissions using OMI NO2 observations and GEOS-Chem

    Science.gov (United States)

    Vinken, Geert C. M.; Boersma, Folkert; van Donkelaar, Aaron; Zhang, Lin

    2013-04-01

    Ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Ships burn low-grade marine heavy fuel due to the limited regulations that exist for the maritime sector in international waters. Previous studies showed that global ship NOx emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NOx emissions), with most emissions close to land and affecting air quality in densely populated coastal regions. Bottom-up inventories depend on the extrapolation of a relatively small number of measurements that are often unable to capture annual emission changes and can suffer from large uncertainties. Satellites provide long-term, high-resolution retrievals that can be used to improve emission estimates. In this study we provide top-down constraints on ship NOx emissions in major European ship routes, using observed NO2 columns from the Ozone Monitoring Instrument (OMI) and NO2 columns simulated with the nested (0.5°×0.67°) version of the GEOS-Chem chemistry transport model. We use a plume-in-grid treatment of ship NOx emissions to account for in-plume chemistry in our model. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO2 profiles as a priori. We find evidence that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km and biased high by a factor of 4 as compared to the most recent (EMEP) ship emission inventory. Better agreement is found over the shipping lane between Spain and the English Channel. We extend our approach and also provide constraints for major ship routes in the Red Sea and Indian Ocean. Using the full benefit of the long-term retrieval record of OMI, we present a new Eurasian ship emission inventory for the years 2005 to 2010, based on the EMEP and AMVER-ICOADS inventories, and top-down constraints from the satellite retrievals. Our work shows that satellite retrievals can

  11. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    Science.gov (United States)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  12. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller

    2005-01-01

    Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease

  13. Urea thermolysis and NOx reduction with and without SCR catalysts

    International Nuclear Information System (INIS)

    Fang, Howard L.; DaCosta, Herbert F.M.

    2003-01-01

    Urea-selective catalytic reduction (SCR) has been a leading contender for removal of nitrogen oxides (deNO x ) from diesel engine emissions. Despite its advantages, the SCR technology faces some critical detriments to its catalytic performance such as catalyst surface passivation (caused by deposit formation) and consequent stoichiometric imbalance of the urea consumption. Deposit formation deactivates catalytic performance by not only consuming part of the ammonia produced during urea decomposition but also degrading the structural and thermal properties of the catalyst surface. We have characterized the urea thermolysis with and without the urea-SCR catalyst using both spectroscopic (DRIFTS and Raman) and thermal techniques (thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)) to identify the deposit components and their corresponding thermal properties. Urea thermolysis exhibits two decomposition stages, involving ammonia generation and consumption, respectively. The decomposition after the second stage leads to the product of melamine complexes, (HNC=NH) x (HNCO) y , that hinder catalytic performance. The presence of catalyst accompanied with a good spray of the urea solution helps to eliminate the second stage. In this work, kinetics of the direct reduction of NO x by urea is determined and the possibility of using additives to the urea solution in order to rejuvenate the catalyst surface and improve its performance will be discussed

  14. THE NOx SYSTEM IN HOMOGENEOUS AND HETEROGENEOUS NUCLEAR WASTE

    International Nuclear Information System (INIS)

    Meisel, Dan; Bentley, John; Camaioni, Donald M.; Shaw, Wendy J.

    2002-01-01

    This report summarizes advances of the above-mentioned EMSP project during the period July 1, 2001-June 30, 2002. The project focuses on the effects of organic chemicals in stored nuclear waste and their impact on pretreatment and tank closure issues. Managing the tank wastes and site cleanup activities requires understanding of the chemistry of organics in aqueous basic solutions that contain high nitrate and nitrite concentrations under the field of g and b irradiation. The goal of this EMSP project is to quantitatively characterize the important chemical processes that are induced by radiolysis of the organic complexants, and their degradation products, during the storage in tanks. Furthermore, concerns that arise from pretreatment and tank closure issues, e.g., Tc speciation, can be rationalized with the mechanistic knowledge provided here. Recognizing that experiments cannot reproduce every conceivable realistic scenario, the project emphasizes computational methodologies . None of the Hanford tanks is currently on a watch list, partially due to the predictive understanding of the tanks' chemistry that was developed by these projects and their predecessor activities. The project is closely coupled to another EMSP project (81883) and exchange of information between the two related studies is frequent

  15. [Characterizing spatial patterns of NO(x), SO2 and O3 in Pearl River Delta by passive sampling].

    Science.gov (United States)

    Zhao, Yang; Shao, Min; Wang, Chen; Wang, Bo-Guang; Lu, Si-Hua; Zhong, Liu-Ju

    2011-02-01

    Concentrations of NO(x), SO2 and O3 were measured by passive sampling within 200km x 200km grid in Pearl River Delta (PRD). Sampling period was two weeks in November, 2009. Spatial distributions of NO(x), SO2 and O3 were obtained by Kriging interpolation method. The results were compared with emission inventories and modeling results. The transportations of O3 were evaluated by using backward trajectories of air parcels. During the sampling period, the mean concentrations of NO(x), SO2 and O3 were 75.9 microg/m3, 37.3 microg/m3 and 36.2 microg/m3, respectively. And the highest concentrations of NO(x), SO2 and O3 were 195.7 microg/m3, 95.9 microg/m3 and 81.8 microg/m3. Comparing with routine measurements from the regional monitoring network in PRD, the results by passive method were 18.6%, 33.5% and 37.5% lower for NO(x), SO2 and O3, respectively. The spatial patterns demonstrated that higher NO(x) concentrations often appeared in cities such as Guangzhou, Foshan and Shenzhen. SO2 concentrations were higher in west and lower in east. High SO2 concentrations are mainly from emission of power plants and industrial sources. Concentrations of O3 showed the highest levels in the south of PRD. Backward trajectory analysis for higher ozone areas indicated that 53% of the air masses were from the region with high concentration of NO(x). The horizontal transportation caused higher ozone in the south while lower in north in PRD.

  16. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  17. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees

    Science.gov (United States)

    Sayegh, Arwa; Tate, James E.; Ropkins, Karl

    2016-02-01

    Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper

  18. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    Science.gov (United States)

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  19. Relationship Between Platelet and Urinary 8‐Iso‐PGF2α Levels in Subjects With Different Degrees of NOX2 Regulation

    Science.gov (United States)

    Carnevale, Roberto; Iuliano, Luigi; Nocella, Cristina; Bartimoccia, Simona; Trapè, Stefano; Russo, Roberta; Gentile, Maria Cristina; Cangemi, Roberto; Loffredo, Lorenzo; Pignatelli, Pasquale; Violi, Francesco

    2013-01-01

    Background Urinary 8‐iso‐PGF2α, a marker of oxidative stress, is influenced by the activation of NOX2. It is unclear if platelets 8‐iso‐PGF2α contribute to urinary 8‐iso‐PGF2α. Methods and Results In a cross‐sectional study, platelet, urinary, and serum 8‐iso‐PGF2α were determined in subjects with downregulation (X‐linked chronic granulomatous disease [X‐CGD], n=25) and upregulation (type II diabetic patients [T2D], n=121) of NOX2 and 153 controls matched for sex and age. In diabetic patients (n=18), the above variables were repeated before and after 7 days treatment with 100 mg/day aspirin or 100 mg/day aspirin plus 40 mg/day atorvastatin. In vitro study was performed to see the contribution of blood cells to serum 8‐iso‐PGF2α. Compared with controls, X‐CGD patients had lower platelet, serum, and urinary 8‐iso‐PGF2α values; conversely, diabetic patients had higher values of 8‐iso‐PGF2α compared with controls. Urinary 8‐iso‐PGF2α significantly correlated with both platelet and serum 8‐iso‐PGF2α in the 2 cohorts. A parallel increase of platelet, serum, and urinary 8‐iso‐PGF2α by aspirin and a parallel decrease by aspirin plus atorvastatin were detected in the interventional study. In vitro study demonstrated that platelets contribute to 37% of serum 8‐iso‐PGF2α and that only 13% of it is of extravascular origin. Conclusions The study suggests that NOX2 contributes to the formation of 8‐iso‐PGF2α in both platelets and urine. The direct correlation between platelet and urinary 8‐iso‐PGF2α suggests that, at least partly, urinary 8‐iso‐PGF2α reflects platelet 8‐iso‐PGF2α production. Analysis of serum 8‐iso‐PGF2α may represent a novel tool to investigate the production of 8‐iso‐PGF2α by blood cells including platelets. Clinical Trial Registration URL: ClinicalTrials.gov. Unique Identifier: NCT01250340. PMID:23770972

  20. Relationship between platelet and urinary 8-Iso-PGF2α levels in subjects with different degrees of NOX2 regulation.

    Science.gov (United States)

    Carnevale, Roberto; Iuliano, Luigi; Nocella, Cristina; Bartimoccia, Simona; Trapè, Stefano; Russo, Roberta; Gentile, Maria Cristina; Cangemi, Roberto; Loffredo, Lorenzo; Pignatelli, Pasquale; Violi, Francesco

    2013-06-14

    Urinary 8-iso-PGF2α, a marker of oxidative stress, is influenced by the activation of NOX2. It is unclear if platelets 8-iso-PGF2α contribute to urinary 8-iso-PGF2α. In a cross-sectional study, platelet, urinary, and serum 8-iso-PGF2α were determined in subjects with downregulation (X-linked chronic granulomatous disease [X-CGD], n=25) and upregulation (type II diabetic patients [T2D], n=121) of NOX2 and 153 controls matched for sex and age. In diabetic patients (n=18), the above variables were repeated before and after 7 days treatment with 100 mg/day aspirin or 100 mg/day aspirin plus 40 mg/day atorvastatin. In vitro study was performed to see the contribution of blood cells to serum 8-iso-PGF2α. Compared with controls, X-CGD patients had lower platelet, serum, and urinary 8-iso-PGF2α values; conversely, diabetic patients had higher values of 8-iso-PGF2α compared with controls. Urinary 8-iso-PGF2α significantly correlated with both platelet and serum 8-iso-PGF2α in the 2 cohorts. A parallel increase of platelet, serum, and urinary 8-iso-PGF2α by aspirin and a parallel decrease by aspirin plus atorvastatin were detected in the interventional study. In vitro study demonstrated that platelets contribute to 37% of serum 8-iso-PGF2α and that only 13% of it is of extravascular origin. The study suggests that NOX2 contributes to the formation of 8-iso-PGF2α in both platelets and urine. The direct correlation between platelet and urinary 8-iso-PGF2α suggests that, at least partly, urinary 8-iso-PGF2α reflects platelet 8-iso-PGF2α production. Analysis of serum 8-iso-PGF2α may represent a novel tool to investigate the production of 8-iso-PGF2α by blood cells including platelets. URL: ClinicalTrials.gov. Unique Identifier: NCT01250340.

  1. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  2. Studi Experimental Penggunaan Venturi Scrubber dan Cyclonic Separator Untuk Meningkatkan Kinerja pada Sistem Exhaust Gas Recirculation (EGR dalam Menurunkan NOX pada Motor Diesel

    Directory of Open Access Journals (Sweden)

    Samsu Dlukha N

    2012-09-01

    Full Text Available Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR. Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi NOX tanpa meningkatkan PM. Hasil pengujian menunjukkan NOX turun sebesar 48.89% dan PM turun dari 69,87%  menjadi 9.87%.

  3. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  4. On board catalytic NOx control: mechanistic aspects of the regeneration of Lean NOx Traps with H2

    International Nuclear Information System (INIS)

    Forzatti, Pio; Lietti, Luca; Nova, Isabella

    2008-01-01

    Mechanistic aspects of the reduction with H 2 of NO x stored on Lean NO x Trap catalysts are critically reviewed. It was shown that, under nearly isothermal conditions nitrogen formation occurs via an in series two-step process involving the participation of ammonia as an intermediate. The first step of this process is ammonia formation through the reaction of H 2 with stored nitrates; ammonia then reacts with the nitrates left on the catalysts surface leading to the formation of nitrogen. Over the investigated Ba-containing catalysts, the first step (i.e. NH 3 formation) is much faster than the second one which, therefore, is rate determining in the formation of nitrogen. Both steps are catalyzed by Pt and, under nearly isothermal conditions, do not involve the occurrence of a thermal decomposition step of the stored nitrates. Due to the fast reaction of the adsorbed nitrates with H 2 to give ammonia and to the integral behaviour of the trap, an H 2 front develops in the trap which travels along the reactor axis. Ammonia formed upon reaction of nitrates with H 2 reacts downstream of the H 2 front with nitrates leading to N 2 formation, if the temperature is high enough. This explains both the observed change in the selectivity of the process with time upon regeneration of the trap (with selectivity changing from N 2 to NH 3 ), and the increase in the N 2 selectivity with temperature as well. The identification of the pathway for the reduction of stored NO x , where ammonia is suggested as the intermediate product in the formation of nitrogen, may favour the improvement of the combined NSR + SCR technology that has been proposed by several car manufacturers to make NO x removal by NSR more effective and to simultaneously limit the ammon