WorldWideScience

Sample records for production scale demonstration

  1. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass product from each experiment was leached according to the Product Consistency Test. In this paper results of the campaign are summarized

  2. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  3. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass produce from each experiment was leached according to the Product Consistency Test. Results of the campaign are summarized

  4. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    International Nuclear Information System (INIS)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin Dan; Elleskov, Michael; Rodrigues, Ana Cristina; Gama, Miguel; Jørgensen, Henning; Felby, Claus

    2015-01-01

    Highlights: • Results from continuous experiments in demonstration scale for a total of 16 days. • Reuse of enzymes is possible through recycling fermentation broth. • Recycling fermentation broth can increase ethanol concentration with lower dry matter. - Abstract: Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations.

  5. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  6. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Sessions, K

    2004-01-01

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented

  7. Lab-scale demonstration of recuperative thickening technology for enhanced biogas production and dewaterability in anaerobic digestion processes.

    Science.gov (United States)

    Cobbledick, Jeffrey; Aubry, Nicholas; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2016-05-15

    There is growing interest in the use of high performance anaerobic digestion (AD) processes for the production of biogas at wastewater treatment facilities to offset the energy demands associated with wastewater treatment. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the incoming feed. In general there exists a significant number of knowledge gaps in the field of RT because the studies that have been conducted to date have almost exclusively occurred in pilot plant or full scale trials; this approach greatly limits the amount of process optimization that can be done in a given trial. In this work, a detailed and comprehensive study of RT was conducted at the lab scale; two custom designed digesters (capacity = 1.5 L) were operated in parallel with one acting as a 'control' digester and the other operating under a semi-batch RT mode. There was no significant change in biogas methane composition for the two digesters, however the RT digester had an average biogas productivity over two times higher than the control one. It was found that the recycling of the polymer flocculant back into the RT digester resulted in a significant improvement in dewatering performance. At the highest polymer concentration tested, the capillary suction time (CST) values for flocculated samples for the RT digester were over 6 times lower than the corresponding values for the control digester. Thus, there exists an opportunity to decrease the overall consumption of polymer flocculants through judicious selection of the dose of polymer flocculant that is used both for the thickening and end-stage dewatering steps in RT processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pelamis WEC - intermediate scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Yemm, R.

    2003-07-01

    This report describes the successful building and commissioning of an intermediate 1/7th scale model of the Pelamis Wave Energy Converter (WEC) and its testing in the wave climate of the Firth of Forth. Details are given of the design of the semi-submerged articulated structure of cylindrical elements linked by hinged joints. The specific programme objectives and conclusions, development issues addressed, and key remaining risks are discussed along with development milestones to be passed before the Pelamis WEC is ready for full-scale prototype testing.

  9. Optimized solar heat production in a liberalised electricity market. Demonstration of full-scale plant in Braedstrup; Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlaeg i Braedstrup

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Kristensen, Per (Braedstrup Fjernvarme, Braedstrup (Denmark)); Furbo, S. (Danmarks Tekniske Univ. DTU BYG, Kgs. Lyngby (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Holm, L. (Marstal Fjernvarme, Marstal (Denmark)); Schmidt, T. (Steinbeis-Research Institute for Solar and Sustainable Thermal Systems, Stuttgart (Denmark))

    2009-03-15

    The project demonstrates for the first time a combination between CHP and solar power systems. 8,019 m2 solar collectors producing 8% of the annual consumption in Braedstrup, Denmark, and nearly the total consumption on a good summer day were combined with a natural gas-fired CHP plant. An optimised ARCON HT2006 collector was developed for this purpose, and the control system was designed to ensure that supply-pipe temperature from solar collectors is always as low as possible and that the temperature in the existing water storage tank does not drop below 90 deg. C. (ln)

  10. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER

    International Nuclear Information System (INIS)

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-01-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  11. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    Science.gov (United States)

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1992-01-01

    The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility (SCF) of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter and analysis of the glass product both for its composition and durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition similar to that predicted using the PCCS

  13. Prototype scale demonstration of CECE detritiation

    International Nuclear Information System (INIS)

    Sadhankar Ramesh; Cobanoglu, Macit

    2004-01-01

    AECL has developed and demonstrated the Combined Electrolysis and Catalytic Exchange (CECE) Process for detritiation of heavy water. Although CECE has been the subject of pilot-scale demonstrations by various organizations, AECL is the first to demonstrate this technology in an industrial prototype plant. AECL designed, built and operated a CECE demonstration facility under CAN/CSA N286 Quality Assurance Program. The facility was licensed by the Canadian nuclear regulator. This was a two-fold demonstration of the CECE technology - for upgrading (removal of light water) and for detritiation of heavy water. In 1998 June, AECL began operating the facility in upgrading mode. The design feed rate ranged up to 25 Mg/a for 95 mol% D 2 O feed water. After 18 months of operation in upgrading mode, the facility was reconfigured and operated for an additional 9 months from 2000 August in detritiation mode. Design capacity for detritiation was 5 Mg/a with a detritiation factor (DF) of 100. However, significantly higher DFs, up to 56 000, were demonstrated. Highlights of the detritiation demonstration were: Proven robustness of AECL's proprietary wetproofed catalyst for Liquid Phase Catalytic Exchange; Demonstration of a trickle-bed-recombiner for stoichiometric combination of deuterium and oxygen; Demonstration of electrolysis of highly tritiated heavy water; High process availability and controllability was demonstrated by a long interrupted run; Low emissions; Demonstration of high DF - up to 56 000 - a significant advantage of the CECE process over other approaches to detritiation; Validation of AECL's simulation code for the CECE process over a range of DFs from 100 to 50 000. Apart from the technology, AECL has expertise in all aspects of setting up a new detritiation facility including design, engineering, safety assessment, licensing support, project management and training. AECL is also the engineering and design contractor for a tritium removal facility that is under

  14. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  15. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  16. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  17. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  18. THOR Bench-Scale Steam Reforming Demonstration

    International Nuclear Information System (INIS)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful

  19. Preparation for full scale demonstration of an air staged gasifier plant. Technical project development; For combined heat and power production with wood chips; Forberedelse til fuldskala demonstration af trinopdelt forgasningsanlaeg. Teknisk projektudvikling. Delrapport

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.

    2011-04-15

    The project has aimed to further develop the technology for staged biomass gasification and establish an organizational and financial model to ensure that the technology can be introduced on the market. This report describes the technique in an upcoming demonstration plant. A complete planning and design of a demonstration plant with a capacity of 300 kW electric power and 700 kW heat was prepared. That is four times more than the pilot plant at Graested District Heating (Castor plant) can produce. A full scale demonstration plant with bio-gasification technology for wood chips will be established and put into operation in 2012. (ln)

  20. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1994-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process reliability and product quality are ensured by proper control of the melter feed composition. The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter an analysis of the glass product both for its composition an durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition very close to that predicted using the PCCS. 10 refs., 4 tabs

  1. Strontium Removal: Full-Scale Ohio Demonstrations

    Science.gov (United States)

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  2. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  3. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This project describes a new approach to coal liquefaction, the biological conversion of coal synthesis gas into a liquid fuel, ethanol. A new bacterium, Clostridium Ijungdahlii, strain PETC, has been discovered and developed for this conversion, which also produces acetate as a by-product. Based upon the results of an exhaustive literature search and experimental data collected in the ERI laboratories, secondary and/or branched alcohols have been selected for ethanol extraction from the fermentation broth. 2,6 Methyl 4-heptanol has a measured distribution coefficient of 0.44 and a separation factor of 47. Methods to improve the results from extraction by removing water prior to distillation are under consideration. Several runs were performed in the two-stage CSTR system with Clostridium Ijungdahlii, strain PETC, with and without cell recycle between stages. Reduced gas flow rate, trypticase limitation and ammonia limitation as methods of maximizing ethanol production were the focus of the studies. With ammonia limitation, the ethanol:acetate product ratio reached 4.0.

  4. Test plan for engineering scale electrostatic enclosure demonstration

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan

  5. Scale-up of high specific activity {sup 186g}Re production using graphite-encased thick {sup 186}W targets and demonstration of an efficient target recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric [Washington Univ., Seattle, WA (United States). Dept. of Radiation Oncology; and others

    2017-07-01

    Production of high specific activity {sup 186g}Re is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity {sup 186g}Re can be obtained by cyclotron irradiation of enriched {sup 186}W via the {sup 186}W(d,2n){sup 186g}Re reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched {sup 186}W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched {sup 186}W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick {sup 186}W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the {sup 186}W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased {sup 186}W target made from recycled {sup 186}W was irradiated for ∝2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of {sup 186g}Re, decay-corrected to the end of bombardment. ICP-MS analysis of the

  6. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    Science.gov (United States)

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  7. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  8. Engineering scale demonstration of a prospective Cast Stone process

    International Nuclear Information System (INIS)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-01-01

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  9. Engineering scale demonstration of a prospective Cast Stone process

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  10. Large scale gas chromatographic demonstration system for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Cheh, C.H.

    1988-01-01

    A large scale demonstration system was designed for a throughput of 3 mol/day equimolar mixture of H,D, and T. The demonstration system was assembled and an experimental program carried out. This project was funded by Kernforschungszentrum Karlsruhe, Canadian Fusion Fuel Technology Projects and Ontario Hydro Research Division. Several major design innovations were successfully implemented in the demonstration system and are discussed in detail. Many experiments were carried out in the demonstration system to study the performance of the system to separate hydrogen isotopes at high throughput. Various temperature programming schemes were tested, heart-cutting operation was evaluated, and very large (up to 138 NL/injection) samples were separated in the system. The results of the experiments showed that the specially designed column performed well as a chromatographic column and good separation could be achieved even when a 138 NL sample was injected

  11. Preliminary conceptual study of engineering-scale pyroprocess demonstration facility

    International Nuclear Information System (INIS)

    Moon, Seong-In; Chong, Won-Myung; You, Gil-Sung; Ku, Jeong-Hoe; Kim, Ho-Dong

    2013-01-01

    Highlights: ► The conceptual design of a pyroprocess demonstration facility was performed. ► The design requirements for the pyroprocess hot cell and equipment were determined. ► The maintenance concept for the pyroprocess hot cell was presented. -- Abstract: The development of an effective management technology of spent fuel is important to enhance environmental friendliness, cost viability and proliferation resistance. In Korea, pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems. PRIDE (PyRoprocess Integrated inactive DEmonstration facility) has been developed from 2007 to 2012 in Korea as a cold test facility to support integrated pyroprocessing and an equipment demonstration, which is essential to verify the pyroprocess technology. As the next stage of PRIDE, the design requirements of an engineering-scale demonstration facility are being developed, and the preliminary conceptual design of the facility is being performed for the future. In this paper, the main design requirements for the engineering-scale pyroprocess demonstration facility were studied in the throughput of 10tHM a year. For the preliminary conceptual design of the facility, the design basis of the pyroprocess hot cell was suggested, and the main equipment, main process area, operation area, maintenance area, and so on were arranged in consideration of the effective operation of the hot cells. Also, the argon system was designed to provide and maintain a proper inert environment for the pyroprocess. The preliminary conceptual design data will be used to review the validity of the engineering-scale pyroprocess demonstration facility that enhances both safety and nonproliferation

  12. Demonstration test operation of Feed Materials Production Center Biodenitrification Facility

    International Nuclear Information System (INIS)

    Benear, A.K.; Patton, J.B.

    1987-01-01

    A fluidized-bed biological denitrification (BDN) system was used to treat high-nitrate wastewater streams from a DOE owned uranium processing plant. A two-column system was used to demonstrate BDN operation on a production scale. In a continuous 200 hour rate determination period, the BDN processed over 1.6 million gallons that contained over 4700 kilograms of nitrate and nitrite nitrogen. The BDN removed an average 97% of the incoming nitrate and nitrite. The BDN effluent was discharged to the FMPC sewage treatment plant where it caused increased levels of TOD, TSS and fecal coliforms in the STP discharge. This indicated the BDN effluent will require treatment prior to discharge to the environment. Preliminary chemical consumption rates and associated costs of operation were determined. Several modifications and additions to the system were identified as necessary for the permanent production facility. 3 refs., 11 figs., 2 tabs

  13. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    International Nuclear Information System (INIS)

    Alan E. Bland; Jesse Newcomer

    2007-01-01

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production

  14. Full scale demonstration of air-purifying pavement

    International Nuclear Information System (INIS)

    Ballari, M.M.; Brouwers, H.J.H.

    2013-01-01

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO x concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO x reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO 2 over a length of 150 m (“DeNO x street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO 2 and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO x concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO x concentration decrease of 45% could be observed

  15. Large-scale demonstration of D ampersand D technologies

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Black, D.B.; Rose, R.W.

    1997-01-01

    It is becoming increasingly evident that new technologies will need to be utilized for decontamination and decommissioning (D ampersand D) activities in order to assure safe and cost effective operations. The magnitude of the international D ampersand D problem is sufficiently large in anticipated cost (100's of billions of dollars) and in elapsed time (decades), that the utilization of new technologies should lead to substantial improvements in cost and safety performance. Adoption of new technologies in the generally highly contaminated D ampersand D environments requires assurances that the technology will perform as advertised. Such assurances can be obtained from demonstrations of the technology in environments that are similar to the actual environments without being quite as contaminated and hazardous. The Large Scale Demonstration Project (LSDP) concept was designed to provide such a function. The first LSDP funded by the U.S. Department Of Energy's Environmental Management Office (EM) was on the Chicago Pile 5 (CP-5) Reactor at Argonne National Laboratory. The project, conducted by a Strategic Alliance for Environmental Restoration, has completed demonstrations of 10 D ampersand D technologies and is in the process of comparing the performance to baseline technologies. At the conclusion of the project, a catalog of performance comparisons of these technologies will be developed that will be suitable for use by future D ampersand D planners

  16. Large-scale demonstration of waste solidification in saltstone

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Oblath, S.B.; Wilhite, E.L.

    1988-05-01

    The saltstone lysimeters are a large scale demonstration of a disposal concept for decontaminated salt solution resulting from in-tank processing of defense waste. The lysimeter experiment has provided data on the leaching behavior of large saltstone monoliths under realistic field conditions. The results also will be used to compare the effect of capping the wasteform on contaminant release. Biweekly monitoring of sump leachate from three lysimeters has continued on a routine basis for approximately 3 years. An uncapped lysimeter has shown the highest levels of nitrate and 99 Tc release. Gravel and clay capped lysimeters have shown levels equivalent to or slightly higher than background rainwater levels. Mathematical model predictions have been compared to lysimeter results. The models will be applied to predict the impact of saltstone disposal on groundwater quality. 9 refs., 5 figs., 3 tabs

  17. Full scale demonstration of air-purifying pavement

    Energy Technology Data Exchange (ETDEWEB)

    Ballari, M.M., E-mail: ballari@santafe-conicet.gov.ar [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Brouwers, H.J.H., E-mail: jos.brouwers@tue.nl [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-06-15

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO{sub x} concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO{sub x} reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO{sub 2} over a length of 150 m (“DeNO{sub x} street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO{sub 2} and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO{sub x} concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO{sub x} concentration decrease of 45% could be observed.

  18. Scale up of proteoliposome derived Cochleate production.

    Science.gov (United States)

    Zayas, Caridad; Bracho, Gustavo; Lastre, Miriam; González, Domingo; Gil, Danay; Acevedo, Reinaldo; del Campo, Judith; Taboada, Carlos; Solís, Rosa L; Barberá, Ramón; Pérez, Oliver

    2006-04-12

    Cochleate are highly stable structures with promising immunological features. Cochleate structures are usually obtaining from commercial lipids. Proteoliposome derived Cochleate are derived from an outer membrane vesicles of Neisseria meningitidis B. Previously, we obtained Cochleates using dialysis procedures. In order to increase the production process, we used a crossflow system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The raw material and solutions used in the production process are already approved for human application. This work demonstrates that CFS is very efficient process to obtain Cochleate structures with a yield of more than 80% and the immunogenicity comparable to that obtained by dialysis membrane.

  19. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  20. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  1. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.

    Science.gov (United States)

    2015-05-01

    This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of : the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and : performance in an opera...

  2. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  3. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    International Nuclear Information System (INIS)

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product

  4. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.

    Science.gov (United States)

    2015-01-01

    This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...

  5. Laboratory and field scale demonstration of reactive barrier systems

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy's Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems

  6. Full scale demonstration of thermoactive constructions; Fuldskala demonstration af termoaktive konstruktioner. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    , the large temperature fluctuations throughout the day can be avoided. In both cases, this can result in increased productivity by the employees. With thermo-active slabs it is possible to achieve lower construction costs than with conventional solutions, because the extra cost to floor structure and control system is compensated by savings on the technical installations (ventilation, cooling system, automation etc.). The building owner has more options at disposal regarding the building design, because energy savings make it easier to meet the energy performance requirements in the new building. (LN)

  7. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER; Hacia la demostracion de capacidad de produccion industrial del acero ferritico-martensitico espanol ASTURFER a escala de demanda ITER

    Energy Technology Data Exchange (ETDEWEB)

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-07-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  8. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    Science.gov (United States)

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  9. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    International Nuclear Information System (INIS)

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-01-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW t

  10. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  11. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    International Nuclear Information System (INIS)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-01-01

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kW th . A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign

  12. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Juan Daniel, E-mail: juand.martinez@upb.edu.co [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain); Grupo de Investigaciones Ambientales, Instituto de Energía, Materiales y Medio Ambiente, Universidad Pontificia Bolivariana, Circular 1 N°70-01, Bloque 11, piso 2, Medellín (Colombia); Murillo, Ramón; García, Tomás; Veses, Alberto [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain)

    2013-10-15

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kW{sub th}. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  13. Productivity and production efficiency among small scale irrigated ...

    African Journals Online (AJOL)

    The study examined productivity and production efficiency among small scale irrigated sugarcane farmers in Niger State, Nigeria using a stochastic translog frontier function. Data for the study were obtained using structured questionnaires administered to 100 randomly selected sugarcane farmers from Paiko and Gurara ...

  14. Integrated laboratory scale demonstration experiment of the hybrid sulphur cycle and preliminary scale-up

    International Nuclear Information System (INIS)

    Leybros, J.; Rivalier, P.; Saturnin, A.; Charton, S.

    2010-01-01

    The hybrid sulphur cycle is today one of the most promising processes to produce hydrogen on a massive scale within the scope of high temperature nuclear reactors development. Thus, the Fuel Cycle Technology Department at CEA Marcoule is involved in studying the hybrid sulphur process from a technical and economical performance standpoint. Based on mass and energy balance calculations, a ProsimPlus TM flow sheet and a commercial plant design were prepared. This work includes a study on sizing of the main equipment. The capital cost has been estimated using the major characteristics of main equipment based upon formulae and charts published in literature. A specific approach has been developed for electrolysers. Operational costs are also proposed for a plant producing 1000 mol/s H 2 . Bench scale and pilot experiments must focus on the electrochemical step due to limited experimental data. Thus, a pilot plant with a hydrogen capacity of 100 NL/h was built with the aim of acquiring technical and technological data for electrolysis. This pilot plant was designed to cover a wide range of operating conditions: sulphuric acid concentrations up to 60 wt.%, temperatures up to 100 deg. C and pressures up to 10 bar. New materials and structures recently developed for fuel cells, which are expected to yield significant performance improvements when applied to classical electrochemical processes, will be tested. All experiments will be coupled with phenomenological simulation tools developed jointly with the experimental programme. (authors)

  15. RPC Production at General Tecnica: a mass scale production

    International Nuclear Information System (INIS)

    Della Volpe, D.; Morganti, S.

    2006-01-01

    The construction of LHC has deeply changed the RPC production. The enormous amount of detector needed and the strong requirements on gas volume quality had a deep impact on the production chain and on the QC and QA at the production site. This basically has brought the RPC from an almost hand-crafted detector to a medium scale mass product. The most critical aspects of the production chain have been modified and/or improved introducing new and more rigorous QC and QA procedures to guarantee the detector quality and improve the management of storage and the procurement on materials. Here it will be presented the work carried on in the last four year at the production site to improve and check the quality and the results achieved. Something like 10000 RPC were produced between 2002 and 2005. Also a preliminary and rough analysis on the efficiencies of the various phases in the chain production based on ATLAS production will be presented

  16. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  17. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji

    1999-01-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  18. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  19. Commercial Scale Production of Mushroom Liquid Seeds

    International Nuclear Information System (INIS)

    Rosnani Abdul Rashid; Hassan Hamdani Hassan Mutaat; Mohd Meswan Maskom; Khairuddin Abdul Rahim

    2015-01-01

    Mushroom liquid seed production technology was developed by Malaysian Nuclear Agency (Nuclear Malaysia) in the late 1990s. Initially, the liquid seeds were used mainly in the solid state fermentation process for converting oil palm empty fruit bunch fibres into ruminant feed. Considering widespread problems encountered by mushroom growers from use of solid seeds, especially in cases of contaminant agents infecting cultivated bags and inconsistencies in yield, we diverted our focus to utilising liquid seeds as alternative inocula for mushroom cultivation. These problems provide us opportunities to look into the issues and address the problems faced by mushroom growers. However, the technology of producing liquid seed at laboratory scale needs to be primed for commercial production. This paper discusses developmental aspects of mushroom liquid seed at commercial scale for the advancement of the country's mushroom industry. (author)

  20. Unit Price Scaling Trends for Chemical Products

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathre, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  1. Fluidized column biodenitrification demonstration facility at the FMPC [Feed Materials Production Center

    International Nuclear Information System (INIS)

    Patton, J.B.

    1987-02-01

    The mission of the Fernald Ohio Feed Materials Production Center, owned by DOE and operated by Westinghouse Materials Company of Ohio, is to produce uranium metal primarily for fuel in production reactors at Hanford, Washington, and Savannah River, South Carolina. Several waste streams result from production that are combined in the plant general sump and processed through settling basins prior to discharge. Individual streams have varying nitrate concentrations which, when combined, may range up to about 10,000 milligrams/liter. A fluidized-bed technology has been operated to demonstrate nitrate reduction by bacteriological denitrification on production scale. The system consists of two columns operating in series. The demonstration run will be considering: rate of biodenitrification; methyl alcohol consumption (bacterial substrate); sulfuric acid requirement (pH adjustment); accommodation of the biomass by the plant sewage treatment facility; flexibility of the system to receive a waste stream which varies in both volume and nitrate concentration; and modification and/or additions needed in the system to function as a permanent production operation. 8 figs

  2. Irreversible Wash Aid Additive for Cesium Mitigation. Small-Scale Demonstration and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part of the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.

  3. A design study for a medium-scale field demonstration of the viscous barrier technology

    International Nuclear Information System (INIS)

    Moridis, G.; Yen, P.; Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K.

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory's new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier

  4. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  5. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jesse; Townson, Paul; Vanatta, Matt [EnergySolutions, Engineering and Technology Group, Richland, WA, 99354 (United States)

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution

  6. Radial scaling in inclusive jet production at hadron colliders

    Science.gov (United States)

    Taylor, Frank E.

    2018-03-01

    Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.

  7. Adopting small-scale production of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Tengvard, Maria; Palm, Jenny (Linkoeping Univ., Dept. of Technology and Social Change, Linkoeping (Sweden)). e-mail: maria.tengvard@liu.se

    2009-07-01

    In Sweden in 2008, a 'new' concept for small-scale electricity production attracted massive media attention. This was mainly due to the efforts of Swedish company Egen El, which is marketing small-scale photovoltaics (PVs) and wind turbines to households, both homeowners and tenants. Their main selling point is simplicity: their products are so easy to install that everyone can do it. Autumn 2008 also saw IKEA announce that within three years it would market solar panels. How, then, do households perceive these products? Why would households choose to buy them? How do households think about producing their own electricity? Analysis of material based on in-depth interviews with members of 20 households reveals that environmental concerns supply the main motive for adopting PVs or micro wind power generation. In some cases, the adopting households have an extensively ecological lifestyle and such adoption represents a way to take action in the energy area. For some, this investment is symbolic: a way of displaying environmental consciousness or setting an example to others. For still others, the adoption is a protest against 'the system' with its large dominant actors or is a way to become self-sufficient. These microgeneration installations are rejected mainly on economic grounds; other motives are respect for neighbours and difficulties finding a place to install a wind turbine.

  8. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...

  9. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  10. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  11. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dengwei; Guo, Liejin; Zhao, Liang; Zhang, Ximin; Liu, Huan; Li, Mingtao; Shen, Shaohua; Liu, Guanjie; Hu, Xiaowei; Zhang, Xianghui; Zhang, Kai; Ma, Lijin; Guo, Penghui [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China)

    2010-07-15

    Photocatalytic water splitting with solar light is one of the most promising technologies for solar hydrogen production. From a systematic point of view, whether it is photocatalyst and reaction system development or the reactor-related design, the essentials could be summarized as: photon transfer limitations and mass transfer limitations (in the case of liquid phase reactions). Optimization of these two issues are therefore given special attention throughout our study. In this review, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed. Research progress of our lab, from fundamental study of photocatalyst preparation to reactor configuration and pilot level demonstration, were introduced, showing the complete process of our effort for this technology to be economic viable in the near future. Our systematic and continuous study in this field lead to the development of a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar rector for the first time. We have demonstrated the feasibility for efficient photocatalytic hydrogen production under direct solar light. The exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed. These issues have been the object of our research and would also be the direction of our study in future. (author)

  12. E-ELT M5 field stabilisation unit scale 1 demonstrator design and performances evaluation

    Science.gov (United States)

    Casalta, J. M.; Barriga, J.; Ariño, J.; Mercader, J.; San Andrés, M.; Serra, J.; Kjelberg, I.; Hubin, N.; Jochum, L.; Vernet, E.; Dimmler, M.; Müller, M.

    2010-07-01

    The M5 Field stabilization Unit (M5FU) for European Extremely Large Telescope (E-ELT) is a fast correcting optical system that shall provide tip-tilt corrections for the telescope dynamic pointing errors and the effect of atmospheric tiptilt and wind disturbances. A M5FU scale 1 demonstrator (M5FU1D) is being built to assess the feasibility of the key elements (actuators, sensors, mirror, mirror interfaces) and the real-time control algorithm. The strict constraints (e.g. tip-tilt control frequency range 100Hz, 3m ellipse mirror size, mirror first Eigen frequency 300Hz, maximum tip/tilt range +/- 30 arcsec, maximum tiptilt error < 40 marcsec) have been a big challenge for developing the M5FU Conceptual Design and its scale 1 demonstrator. The paper summarises the proposed design for the final unit and demonstrator and the measured performances compared to the applicable specifications.

  13. Australian pyrolysis technology leads the world in demonstrating renewable energy production and biosequestration

    International Nuclear Information System (INIS)

    Downie, Adriana; Crosky, Alan; Munroe, Paul; Zwieten, Lukas Van; Cowie, Annette; Chan, Yin; Kimber, Stephen

    2007-01-01

    Full text: Australian-developed slow pyrolysis technology is leading the world in carbon negative (removing C02 from the atmosphere) renewable energy production. The collaborative research, development and commercialisation program between BEST Energies and the NSW Department of Primary Industries (DPI) was awarded the United Nations Association of Australia 2007 World Environment Day Awards top honour for 'Meeting the Greenhouse Challenge'. 'BEST Energies' Australian developed pyrolysis technology is a genuinely innovative project with huge potential to reduce greenhouse gas emissions' according to the UN World Environment Day Awards Judging Panel. The technology has been recognised as a vital tool for climate change mitigation because it not only produces a renewable energy to displace the use of fossil fuel, but it also produces a very stable form of solid carbon which can be beneficially sequestered over the long term in soils. The technology involves heating low grade biomass without oxygen to generate a gaseous biofuel and a very stable, carbon-rich, char product. BEST Energies has a fully integrated pilot plant which has demonstrated the viability of the technology and assisted the design of commercial scale units. It is accepted that immediate action is required to reverse the adverse impacts on atmospheric C02 levels resulting from industrial processes. The logical next step for this technology is immediate industry adoption and large-scale roll out. Preliminary life cycle assessments have demonstrated that pyrolysis technology will deliver significant reductions in atmospheric C02 at a global scale in a relatively short time frame. Prof. Johannes Lehmann from Cornell University estimates that by the end of this century, char schemes and pyrolysis programs could store up to 9.5 billion tons of carbon a year. Once the high carbon char product is added as an amendment to agricultural soils some of the most remarkable and promising benefits of this technology

  14. Modelling and Simulation of National Electronic Product Code Network Demonstrator Project

    Science.gov (United States)

    Mo, John P. T.

    The National Electronic Product Code (EPC) Network Demonstrator Project (NDP) was the first large scale consumer goods track and trace investigation in the world using full EPC protocol system for applying RFID technology in supply chains. The NDP demonstrated the methods of sharing information securely using EPC Network, providing authentication to interacting parties, and enhancing the ability to track and trace movement of goods within the entire supply chain involving transactions among multiple enterprise. Due to project constraints, the actual run of the NDP was 3 months only and was unable to consolidate with quantitative results. This paper discusses the modelling and simulation of activities in the NDP in a discrete event simulation environment and provides an estimation of the potential benefits that can be derived from the NDP if it was continued for one whole year.

  15. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  16. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  17. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  18. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  19. Urban scaling and the production function for cities.

    Science.gov (United States)

    Lobo, José; Bettencourt, Luís M A; Strumsky, Deborah; West, Geoffrey B

    2013-01-01

    The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a systematic dependence of urban productivity on city population size, resulting from the mismatch between the size dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform the development of economic theory related to growth.

  20. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  1. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2015-12-01

    Full Text Available In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton’s laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  2. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  3. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  4. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    Science.gov (United States)

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  5. The MOX Demonstration Facility - the stepping stone to commercial MOX production

    International Nuclear Information System (INIS)

    Macdonald, A.G.

    1994-01-01

    The paper provides an insight into MOX fuel and the economic benefits of its use in pressurized water reactors (PWRs). BNFL and AEA are collaborating in the design, construction and operation of a thermal MOX Demonstration Facility (MDF) on the AEA Windscale site in Cumbria. The process flowsheet and equipment employed in MDF are discussed and the special precautions required to handle plutonium bearing materials are highlighted. The process flowsheet includes the short binderless route which has been specially developed for use in MDF and results in fuel pellets with an homogeneous structure. MDF is the forerunner to the design and construction of a larger scale Sellafield MOX Plant and hence is the stepping-stone to commercial MOX production. (author)

  6. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  7. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    Science.gov (United States)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  8. Demonstration of Mobile Auto-GPS for Large Scale Human Mobility Analysis

    Science.gov (United States)

    Horanont, Teerayut; Witayangkurn, Apichon; Shibasaki, Ryosuke

    2013-04-01

    The greater affordability of digital devices and advancement of positioning and tracking capabilities have presided over today's age of geospatial Big Data. Besides, the emergences of massive mobile location data and rapidly increase in computational capabilities open up new opportunities for modeling of large-scale urban dynamics. In this research, we demonstrate the new type of mobile location data called "Auto-GPS" and its potential use cases for urban applications. More than one million Auto-GPS mobile phone users in Japan have been observed nationwide in a completely anonymous form for over an entire year from August 2010 to July 2011 for this analysis. A spate of natural disasters and other emergencies during the past few years has prompted new interest in how mobile location data can help enhance our security, especially in urban areas which are highly vulnerable to these impacts. New insights gleaned from mining the Auto-GPS data suggest a number of promising directions of modeling human movement during a large-scale crisis. We question how people react under critical situation and how their movement changes during severe disasters. Our results demonstrate a case of major earthquake and explain how people who live in Tokyo Metropolitan and vicinity area behave and return home after the Great East Japan Earthquake on March 11, 2011.

  9. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  10. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    International Nuclear Information System (INIS)

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results

  11. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons

  12. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOW Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, initial planning and procurement work began on the seven project sites which have been accepted for participation in the off-site, methanol product-use test plan. Two of the projects have begun pre-testing of equipment and three other projects have commenced with equipment procurement, Methanol produced from carbon monoxide (CO)- rich syngas at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX has been shipped to four of the project sites in anticipation of the start of testing during the first quarter of calendar year 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), continued to decline more rapidly than expected. In response to concentrations of arsenic and sulfbr detected on catalyst samples from the LPMEOW Reactor, Eastman replaced both the arsine- and sulfiwremoval material in the Eastman guard bed which treats the primary syngas feed stream (&danced Gas) prior to its introduction into both the Eastman fixed-bed methanol plant and the LPMEOWM Demonstration Unit. After restarting the demonstration unit, the catalyst deactivation rate remained essentially unchanged. Parallel testing in the laboratory using arsine-doped, and subsequently arsine- and SuIfi-doped syngas, ako ftiIed to prove that arsine was responsible for the higher-than-expected rate of

  13. Large-scale demonstration of reliability centered maintenance at two nuclear generating stations

    International Nuclear Information System (INIS)

    Gaertner, J.P.; Edgar, C.; Rodin, M.E.

    1989-01-01

    This paper reports that after successful single-system pilot applications of Reliability Centered Maintenance (RCM) at various utilities, EPRI with Rochester Gas and Electric and Southern California Edison is undertaking multiple-system applications of RCM at their respective nuclear plants. The objective is to demonstrate the feasibility and cost-effectiveness of large-scale RCM application. In addition, each utility has plant-specific objectives to improve maintenance and plant availability. Each project has selected a prioritized list of some 15-20 systems on which to perform RCM. Each project is employing somewhat different RCM analysis methods, both of which conform to a global RCM definition applicable to all EPRI RCM work to date. Each project has developed important insights for improving cost and value of future analyses. Both projects will have applied the RCM process, including implementation, on several plant systems by April 1989

  14. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    Science.gov (United States)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  15. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism......Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  16. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-31

    The Liquid Phase Methanol (LPMEOH(TM)) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOIWM Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. During this quarter, the Cooperative Agreement was modified (Mod AO11) on 8 October 1996, authorizing the transition born Budget Period No. 2 (Design and Construction) to the . final Budget Period (Commissioning, Start-up, and Operation), A draft Topical Report on Process Economics Studies concludes that methanol coproduction with integrated gasification combined cycle (IGCC) electric power utilizing the LPMEOW process technology, will be competitive in serving local market needs. Planning for a proof-of- concept test run of the liquid phase dimethyl ether (DME) process at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended; and a deeision to proceed is pending. Construction (Task 2.2) is 97'Mo complete, asof31 December 1996. Completion of pipe pressure testing has taken longer than expected. This will delay completion of construction by about three weeks. Commissioning activities (Task 2.3) commenced in mid-October of 1996, and the demonstration unit is scheduled to be mechanically complete on 24 January 1997.

  17. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  18. The scale of biomass production in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima-shi 739-8527 (Japan); Inoue, Takashi; Fukuda, Katsura [Global Warming Research Department, Mitsubishi Research Institute, Inc., 2-3-6 Ohtemachi, Chiyoda-ku, Tokyo 100-8141 (Japan); Komoto, Keiichi; Hada, Kenichiro [Renewable energy Team, Environment, Natural Resources and Energy Division, Mizuho Information and Research Institute, Inc., 2-3 Kanda-nishikicho, Chiyoda-ku, Tokyo 101-8443 (Japan); Hirata, Satoshi [Technical Institute, Kawasaki Heavy Industries, Ltd., 1-1 Kawasakicho, Akashi-shi, Hyogo 673-8666 (Japan); Minowa, Tomoaki [Biomass Recycle Research Laboratory, National Institute of Advanced and Industrial Science and Technology, 2-2-2 Hiro, Suehiro, Kure-shi, Hiroshima 737-0197 (Japan); Yamamoto, Hiromi [Socioeconomic Research Center, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 (Japan)

    2005-11-01

    Policymakers working to introduce and promote the use of bioenergy in Japan require detailed information on the scales of the different types of biomass resources generated. In this research, the first of its type in Japan, the investigators reviewed various statistical resources to quantify the scale distribution of forest residues, waste wood from manufacturing, waste wood from construction, cattle manure, sewage sludge, night soil, household garbage, and waste food oil. As a result, the scale of biomass generation in Japan was found to be relatively small, on the average is no more than several tons in dry weight per day. (author)

  19. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Brown, S.; McFee, J.; Broom, C.; Dugger, H.; Stallings, E.

    1999-01-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management's extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL's Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program

  20. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better

  1. PRODUCTION ELASTICITIES, RETURN TO SCALE AND ...

    African Journals Online (AJOL)

    thinkexploitsint'l

    estimates indicated that the farmers' production was in stage 1 (irrational stage) of the production ... security for a growing population is a central issue (Fu et al., 2011). ... to have attained optimal level which proper allocation of inputs can achieve. ... normally distributed with zero mean and constant variance N (0, Sv2).

  2. Full scale demonstration of shotcrete sealing plug under realistic working conditions

    International Nuclear Information System (INIS)

    Barcena, Ignacio; Garcia-Sineriz, Jose-Luis

    2008-01-01

    Module No. 4 of the IP ESDRED aims at the demonstration of the technical feasibility, at an industrial scale, for the closure of deep geological repositories for the disposal of high activity wastes in compliance with requirements on operational safety, retrievability and monitoring. Both the construction and closure of a deep geological repository will require the use of big amounts (up to thousands of tons) of cementitious materials for the construction of auxiliary structures needed for the operation of the repositories, in particular temporary or permanent plugs. One main concern for the use of concrete in radioactive waste repositories comes from the potential chemical interaction with the disposal components, which can undergo physicochemical transformations and changes in their radionuclide confinement properties. The reduction of the pH of the concrete is a long-term safety issue to avoid this interaction. Another key issue addressed in relation to the feasibility of the construction of concrete sealing plugs in a real repository is the introduction of the shotcreting technique. This technique provides a very good contact between concrete and rock, filling all voids and holes, even at the roof part. In addition, a good quality shotcrete has a lower porosity and permeability than standard concrete, and can be easily reinforced using fibres if needed. Another practical advantage is that forms are not needed, and therefore the plug can be constructed very quickly, which is a critical factor in a real repository, in cases when a fast temporary or permanent closure of a gallery or drift is required. In terms of safety, shotcrete arms and robots make possible to perform this operation in a semi-automated mode, with the operator situated at some distance from the working face. Although the utilization and performance of standard shotcrete in conventional construction works is well known, there is no experience in either the workability or the performance of

  3. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  4. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    International Nuclear Information System (INIS)

    Crawford, C. L.; Cozzi, A. D.; Hill, K. A.

    2016-01-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2'' diameter x 11'' long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass

  5. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  6. A miniature research vessel: A small-scale ocean-exploration demonstration of geophysical methods

    Science.gov (United States)

    Howell, S. M.; Boston, B.; Sleeper, J. D.; Cameron, M. E.; Togia, H.; Anderson, A.; Sigurdardottir, T. D.; Tree, J. P.

    2015-12-01

    Graduate student members of the University of Hawaii Geophysical Society have designed a small-scale model research vessel (R/V) that uses sonar to create 3D maps of a model seafloor in real-time. A pilot project was presented to the public at the School of Ocean and Earth Science and Technology's (SOEST) Biennial Open House weekend in 2013 and, with financial support from the Society of Exploration Geophysicists and National Science Foundation, was developed into a full exhibit for the same event in 2015. Nearly 8,000 people attended the two-day event, including children and teachers from Hawaii's schools, home school students, community groups, families, and science enthusiasts. Our exhibit demonstrates real-time sonar mapping of a cardboard volcano using a toy size research vessel on a programmable 2-dimensional model ship track suspended above a model seafloor. Ship waypoints were wirelessly sent from a Windows Surface tablet to a large-touchscreen PC that controlled the exhibit. Sound wave travel times were recorded using an ultrasonic emitter/receiver attached to an Arduino microcontroller platform and streamed through a USB connection to the control PC running MatLab, where a 3D model was updated as the ship collected data. Our exhibit demonstrates the practical use of complicated concepts, like wave physics, survey design, and data processing in a way that the youngest elementary students are able to understand. It provides an accessible avenue to learn about sonar mapping, and could easily be adapted to talk about bat and marine mammal echolocation by replacing the model ship and volcano. The exhibit received an overwhelmingly positive response from attendees and incited discussions that covered a broad range of earth science topics.

  7. Demonstration of production of tungsten metal powder and its consolidation into shapes

    International Nuclear Information System (INIS)

    Majumdar, S.; Kishor, J.; Paul, B.; Kain, V.; Dey, G.K.

    2016-01-01

    Tungsten is a strategically important metal used as plasma facing component in fusion reactors, radiation shields in cancer therapy machines, ammunition in defence applications, high speed cutting tools etc. The primary resources or minerals occurring in India contain a very low value (0.25-0.5 wt. %) of tungsten. Mineral beneficiation processes involving crushing, grinding, primary and secondary gravity separation, floatation are essential to produce the ore-concentrate suitable for further processing up to the preparation of the intermediate ammonium para-tungstate (APT). APT was further converted to tungsten tri-oxide (WO_3). Hydrogen reduction of WO_3 producing high purity W metal powder was demonstrated in large scale batches. Densification of W powder was further studied using vacuum hot pressing at 1950°C, and high density W metal plates of 5 mm thickness and 60 mm diameter were produced. The products obtained at every stage were systematically characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD) techniques. (author)

  8. Scaling behavior of jet production at CDF

    International Nuclear Information System (INIS)

    Behrends, S.

    1992-11-01

    Inclusive jet cross-sections have been measured in bar pp collisions at √s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0(α s 3 ) QCD

  9. Scaling behavior of jet production at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; The CDF Collaboration

    1992-11-01

    Inclusive jet cross-sections have been measured in {bar p}p collisions at {radical}s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0({alpha}{sub s{sup 3}}) QCD.

  10. A field-scale demonstration of air sparging to remediate tritiated fluids

    International Nuclear Information System (INIS)

    Russell, C.E.; Gillespie, D.R.; Hokett, S.L.; Donithan, J.D.

    1996-09-01

    Two pilot field-scale studies were conducted during the period of May 24 to July 22, 1996, to evaluate the potential of air sparging to remediate tritiated fluids. Previous analytical solutions to the rate of tritium removal were evaluated and compared to the experimental results. The analytical solution of Craig and Gordon that describes isotopic fractionation of an evaporating body of water appears to most accurately describe the process, versus the more limited isotopic exchange equation of Slattery and Ingraham and the mass transfer equation of Wilson and Fordham, which are accurate only at moderate to high humidities and do not describe the tritium enrichment process that would occur at low humidities. The results of the two experiments demonstrated that air sparging of tritium is a viable process in the field. Tritium removal rates of 60 percent were reported during the first experiment and 66 percent for the second experiment. Comparison to previous laboratory work revealed that rates could have been improved by starting with higher concentrations, utilizing smaller bubbles, and longer bubble path lengths. Risks associated with the pilot study were greater the closer one worked to the experiment with a maximum increase in the Lifetime Excess Total Risk per Unit Uptake of 2.4 x 10 -5 . Conduct of this experiment at locations with much higher activities of tritium would significantly increase the associated risk

  11. Demonstrating multi-layered MAS in control of offshore oil and gas production

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in...

  12. Economic Analysis of Small Scale Fish Pond Production in Oguta ...

    African Journals Online (AJOL)

    What are the costs and returns of small-scale fishpond enterprises? What problems hinder the development of small-scale fishpond production? Data were collected with the aid of structured questionnaires and interviews. Descriptive statistics, gross margin and likert scale were employed in data analysis. Gross margin ...

  13. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.

    Science.gov (United States)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-10-15

    This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  15. Optimal Product Variety, Scale Effects and Growth

    NARCIS (Netherlands)

    de Groot, H.L.F.; Nahuis, R.

    1997-01-01

    We analyze the social optimality of growth and product variety in a model of endogenous growth. The model contains two sectors, one assembly sector producing a homogenous consumption good, and one intermediate goods sector producing a differentiated input used in the assembly sector. Growth results

  16. ECONOMIES OF SCALE AND PRODUCTION EFFICIENCY IN ...

    African Journals Online (AJOL)

    Admin

    high rate of population growth of 2.83% (FOS, 1996). The apparent disparity between the rate of food production and demand for food in Nigeria has led to: (i) a food demand-supply gap thus leading to a widening gap between domestic food supply and the total food requirement; (ii) an increased food importation and (iii).

  17. Optimization of large scale food production using Lean Manufacturing principles

    DEFF Research Database (Denmark)

    Engelund, Eva Høy; Friis, Alan; Breum, Gitte

    2009-01-01

    This paper discusses how the production principles of Lean Manufacturing (Lean) can be applied in a large-scale meal production. Lean principles are briefly presented, followed by a field study of how a kitchen at a Danish hospital has implemented Lean in the daily production. In the kitchen...... not be negatively affected by the rationalisation of production procedures. The field study shows that Lean principles can be applied in meal production and can result in increased production efficiency and systematic improvement of product quality without negative effects on the working environment. The results...... show that Lean can be applied and used to manage the production of meals in the kitchen....

  18. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    Marshall, Douglas W.

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic (TRISO) coatings on fuel kernels are influenced by the equipment scale and processing parameters. The standard deviations of some TRISO layer characteristics were diminished while others have become more significant in the larger processing equipment. The impact on statistical variability of the processes and the products, as equipment was scaled, are discussed. The prototypic production-scale processes produce test fuels meeting all fuel quality specifications. (author)

  19. Qualification testing and full-scale demonstration of titanium-treated zeolite for sludge wash processing

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, W.J.

    1997-06-30

    Titanium-treated zeolite is a new ion-exchange material that is a variation of UOP (formerly Union Carbide) IONSIV IE-96 zeolite (IE-96) that has been treated with an aqueous titanium solution in a proprietary process. IE-96 zeolite, without the titanium treatment, has been used since 1988 in the West Valley Demonstration Project`s (WVDP) Supernatant Treatment System (STS) ion-exchange columns to remove Cs-137 from the liquid supernatant solution. The titanium-treated zeolite (TIE-96) was developed by Battelle-Pacific Northwest Laboratory (PNL). Following successful lab-scale testing of the PNL-prepared TIE-96, UOP was selected as a commercial supplier of the TIE-96 zeolite. Extensive laboratory tests conducted by both the WVDP and PNL indicate that the TIE-96 will successfully remove comparable quantities of Cs-137 from Tank 8D-2 high-level radioactive liquid as was done previously with IE-96. In addition to removing Cs-137, TIE-96 also removes trace quantities of Pu, as well as Sr-90, from the liquid being processed over a wide range of operating conditions: temperature, pH, and dilution. The exact mechanism responsible for the Pu removal is not fully understood. However, the Pu that is removed by the TIE-96 remains on the ion-exchange column under anticipated sludge wash processing conditions. From May 1988 to November 1990, the WVDP processed 560,000 gallons of liquid high-level radioactive supernatant waste stored in Tank 8D-2. Supernatant is an aqueous salt solution comprised primarily of soluble sodium salts. The second stage of the high-level waste treatment process began November 1991 with the initiation of sludge washing. Sludge washing involves the mixing of Tank 8D-2 contents, both sludge and liquid, to dissolve the sulfate salts present in the sludge. Two sludge washes were required to remove sulfates from the sludge.

  20. Status of E-ELT M5 scale-one demonstrator

    Science.gov (United States)

    Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick

    2014-07-01

    The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.

  1. Simplified Summative Temporal Bone Dissection Scale Demonstrates Equivalence to Existing Measures.

    Science.gov (United States)

    Pisa, Justyn; Gousseau, Michael; Mowat, Stephanie; Westerberg, Brian; Unger, Bert; Hochman, Jordan B

    2018-01-01

    Emphasis on patient safety has created the need for quality assessment of fundamental surgical skills. Existing temporal bone rating scales are laborious, subject to evaluator fatigue, and contain inconsistencies when conferring points. To address these deficiencies, a novel binary assessment tool was designed and validated against a well-established rating scale. Residents completed a mastoidectomy with posterior tympanotomy on identical 3D-printed temporal bone models. Four neurotologists evaluated each specimen using a validated scale (Welling) and a newly developed "CanadaWest" scale, with scoring repeated after a 4-week interval. Nineteen participants were clustered into junior, intermediate, and senior cohorts. An ANOVA found significant differences between performance of the junior-intermediate and junior-senior cohorts for both Welling and CanadaWest scales ( P .05). Cohen's kappa found strong intrarater reliability (0.711) with a high degree of interrater reliability of (0.858) for the CanadaWest scale, similar to scores on the Welling scale of (0.713) and (0.917), respectively. The CanadaWest scale was facile and delineated performance by experience level with strong intrarater reliability. Comparable to the validated Welling Scale, it distinguished junior from senior trainees but was challenged in differentiating intermediate and senior trainee performance.

  2. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  3. Toyota production system beyond large-scale production

    CERN Document Server

    Ohno, Taiichi

    1998-01-01

    In this classic text, Taiichi Ohno--inventor of the Toyota Production System and Lean manufacturing--shares the genius that sets him apart as one of the most disciplined and creative thinkers of our time. Combining his candid insights with a rigorous analysis of Toyota's attempts at Lean production, Ohno's book explains how Lean principles can improve any production endeavor. A historical and philosophical description of just-in-time and Lean manufacturing, this work is a must read for all students of human progress. On a more practical level, it continues to provide inspiration and instruction for those seeking to improve efficiency through the elimination of waste.

  4. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  5. The potential for large scale uses for fission product xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  6. Returns to Scale in the Production of Hospital Services

    Science.gov (United States)

    Berry, Ralph E.

    1967-01-01

    The primary purpose of this article is to investigate whether or not economies of scale exist in the production of hospital services. In previous studies the results have implied the existence of economies of scale, but the question has not been satisfactorily resolved. The factor most responsible for clouding the issue is the overwhelming prevalence of product differences in the outputs of hospitals. In this study a method which avoids the problem of product differentiation is developed. The analysis strongly supports the conclusion that hospital services are produced subject to economies of scale. PMID:6054380

  7. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  8. Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale.

    Science.gov (United States)

    Sutherland, Ian; Hewitson, Peter; Ignatova, Svetlana

    2009-12-11

    Predictable scale-up from test tube derived distribution ratios and analytical-scale sample loading optimisation is demonstrated using a model sample system of benzyl alcohol and p-cresol in a heptane:ethyl acetate:methanol:water phase system with the new 18 L Maxi counter-current chromatography centrifuge. The versatility of having a liquid stationary phase with its high loading capacity and flexible operating modes is demonstrated at two different scales by separating and concentrating target compounds using a mixture of caffeine, vanillin, naringenin and carvone using a quasi-continuous technique called intermittent counter-current extraction.

  9. Large-Scale Production of Fuel and Feed from Marine Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, Mark [Cornell Univ., Ithaca, NY (United States)

    2015-09-30

    In summary, this Consortium has demonstrated a fully integrated process for the production of biofuels and high-value nutritional bioproducts at pre-commercial scale. We have achieved unprecedented yields of algal oil, and converted the oil to viable fuels. We have demonstrated the potential value of the residual product as a viable feed ingredient for many important animals in the global food supply.

  10. Laboratory scale production of glucose syrup by the enzymatic ...

    African Journals Online (AJOL)

    Jen

    Laboratory scale production of glucose syrup by the enzymatic ... The industrial processing of starch to glucose, maltose and dextrin involves gelatinization, ... due to non-availability of appropriate technology and industry to harness these into.

  11. Prediction and optimisation of Pb/Zn/Fe sulphide scales in gas production fields

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Sarah; Orski, Karine; Menezes, Carlos; Heath, Steve; MacPherson, Calum; Simpson, Caroline; Graham, Gordon

    2006-03-15

    Lead, zinc and iron sulphide scales are known to be a particular issue with gas production fields, particularly those producing from HP/HT reservoirs. However the prediction of sulphide scale and the methodologies available for their laboratory assessment are not as well developed as those for the more conventional sulphate and carbonate scales. This work examines a particular sulphide scaling regime from a North Sea high temperature gas condensate production field containing only 0.8ppm of sulphide ions. Sulphide scales were identified in the production system which was shown to be a mixture of lead and zinc sulphide, primarily lead sulphide. This formed as a result of cooling during production resulting in the over saturation of these minerals. This paper describes scale prediction and modified laboratory test protocols used to re-create the scales formed in the field prior to chemical performance testing. From the brine composition, scale prediction identified that the major scales that could be formed were calcium carbonate, iron carbonate, iron sulphide, lead sulphide and zinc sulphide. In addition, modification of the brine compositions led to prediction of primarily one scale or the other. Given the predicted over saturation of various minerals, preliminary laboratory tests were therefore conducted in order to ensure that the scale formed under laboratory conditions was representative of the field scale. Laboratory protocols were therefore developed to ensure that the scales formed in fully anaerobic dynamic performance tests and static performance tests were similar to those encountered in the field. The paper compares results from field analysis, scale predictions and laboratory scale formation tests using newly developed test protocols and shows differences between prediction and laboratory data. The paper therefore demonstrates the importance of ensuring that the correct scale is formed under laboratory test conditions and also indicates some potential

  12. Policy support for large scale demonstration projects for hydrogen use in transport. Deliverable D 5.1 (Part B)

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    This research addresses the possible policy support mechanisms for hydrogen use in transport to answer the question which policy support mechanism potentially is most effective to stimulate hydrogen in transport and especially for large scale demonstrations. This is done by investigating two approaches. First, the possible policy support mechanisms for energy innovations. Second, by relating these to the different technology development stages (R and D, early market and mass market stage) and reviewing their effect on different parts of the hydrogen energy chain (production, distribution and end-use). Additionally, a comparison of the currently policy support mechanisms used in Europe (on EU level) with the United States (National and State level) is made. The analysis shows that in principle various policy support mechanisms can be used to stimulate hydrogen. The choice for a policy support mechanism should depend on the need to reduce the investment cost (euros/MW), production/use cost (euros/GJ) or increase performance (euros/kg CO2 avoided) of a technology during its development. Careful thought has to be put into the design and choice of a policy support mechanism because it can have effects on other parts of the hydrogen energy chain, mostly how hydrogen is produced. The effectiveness of a policy support mechanism greatly depends on the ability to adapt to the developments of the technology and the changing requirements which come with technological progress. In time different policy support mechanisms have to be applied. For demonstration projects there is currently the tendency to apply R and D subsidies in Europe, while the United States applies a variety of policy support mechanisms. The United States not only has higher and more support for demonstration projects but also has stronger incentives to prepare early market demand (for instance requiring public procurement and sales obligations). In order to re-establish the level playing field, Europe may

  13. Mill demonstration of TMP production from forest thinnings: pulp quality, refining energy, and handsheet properties

    Science.gov (United States)

    J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards

    2007-01-01

    High-value, large-volume utilization of forest thinning materials from U.S. national forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...

  14. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  15. Theme II Joint Work Plan -2017 Collaboration and Knowledge Sharing on Large-scale Demonstration Projects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [World Resources Inst. (WRI), Washington, DC (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-25

    This effort is designed to expedite learnings from existing and planned large demonstration projects and their associated research through effective knowledge sharing among participants in the US and China.

  16. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate

    Science.gov (United States)

    Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron

    2016-01-01

    The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...

  17. Cost effective pilot scale production of biofertilizer using Rhizobium ...

    African Journals Online (AJOL)

    We standardized the protocol for pilot scale production of Rhizobium and Azotobacter biofertilizer technology using region specific and environmental stress compatible strains isolated from various agro climatic regions of Odisha, India. The cost benefit of biofertilizer production through a cottage industry is also presented.

  18. Economies of scale in biogas production and the significance of flexible regulation

    DEFF Research Database (Denmark)

    Nielsen, Lise Skovsgaard; Klinge Jacobsen, Henrik

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find...... that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study......, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated...

  19. Demonstration program for small-scale straw fuel systems. Pre-study for the Swedish Energy Agency; Demonstrationsprogram foer smaaskaliga straabraenslesystem. Foerstudie foer Energimyndigheten

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Wahlberg, Cecilia (Hushaallningssaellskapet, Stockholm (Sweden)); Arkeloev, Olof (LRF Konsult, Stockholm (Sweden))

    2008-02-15

    Energy crops from arable land is still an almost entirely untapped potential as a fuel for heating. Canary grass, straw and hemp could eventually form an important part of the raw-material from agriculture. For this production to increase and become a viable alternative to conventional farming it is required, however, that the whole production chain from cultivation to end-use is developed. The aim of this pilot study has been to make suggestions for the design of a Demonstration project of small-scale fuel straw-crops. The programme's vision is to within 6 years build up a number of demonstration plants for small-scale briquetting/pelletizing of straw fuels in different parts of the country. In addition, potential producers of raw materials and other actors in the programme will be made aware what opportunities and conditions there are to process the agro-fuels in small-scale production facilities. The overall objective of the programme is to increase knowledge about how straw fuels and/or residues can be used as raw material in small-scale production of briquettes/pellets, and enhance the understanding of how producers take part in different business models. In the short term, the objective of the programme to build up a network of pellets and briquettes producing demonstration. Within the activities of the programme it is proposed that demonstration is built up of at least 7 different places in the country. This is in order to be able to gain experience on the basis of local and regional conditions. Demonstration refers both to demonstrate the entire chain with existing proven technology, and to improve technologies, reduce costs and make the production and user experience. On the other hand, the intention may be to test the new technology. Demonstration refers to smaller installations and with a production capacity of plants should vary from about 100 to 500 kg/h produced fuel. Operations are limited to the supply of raw material, cultivation and harvest

  20. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  1. Experimental demonstration of correlated flux scaling in photoconductivity and photoluminescence of lead-halide perovskites

    OpenAIRE

    Yi, Hee Taek; Irkhin, Pavel; Joshi, Prakriti P.; Gartstein, Yuri N.; Zhu, Xiaoyang; Podzorov, Vitaly

    2018-01-01

    Lead-halide perovskites attracted attention as materials for high-efficiency solar cells and light emitting applications. Among their attributes are solution processability, high absorbance in the visible spectral range and defect tolerance, as manifested in long photocarrier lifetimes and diffusion lengths. The microscopic origin of photophysical properties of perovskites is, however, still unclear and under debate. Here, we have observed an interesting universal scaling behavior in a series...

  2. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  4. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  5. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  6. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Woolsey, G.B.; Galloway, R.M.; Baumgarten, P.M.; Eibling, R.E.

    1980-01-01

    Experiments have been made to demonstrate the feasibility of immobilizing SRP high-level waste in borosilicate glass. Results to date are encouraging. Equipment performance and processing characteristics for solidifying small batches of actual SRP waste have agreed well with previous experience with small- and large-scale tests synthetic waste, and with theoretical predictions

  7. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  8. Prelude to rational scale-up of penicillin production: a scale-down study.

    Science.gov (United States)

    Wang, Guan; Chu, Ju; Noorman, Henk; Xia, Jianye; Tang, Wenjun; Zhuang, Yingping; Zhang, Siliang

    2014-03-01

    Penicillin is one of the best known pharmaceuticals and is also an important member of the β-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the β-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and

  9. Why are small scale demonstration projects important for the future of CCS?

    Science.gov (United States)

    Leetaru, H. E.; Bauer, R. A.; McBride, J. H.; Freiburg, J. T.; Greenberg, S. E.

    2017-12-01

    Carbon Capture and Storage (CCS) is moving toward large-scale commercial projects and the U.S. Department of Energy is supporting a new CarbonSAFE initiative to assist in the development of a 50 million tonnes geologic storage project. This type of large commercial CCS project will rely on lessons learned from smaller DOE CCS projects such as the Illinois Basin-Decatur Project (IBDP) and the Illinois Industrial Carbon Capture and Storage (IL-ICCS) Project located one mile north of IBDP. Over a three year period ending 2014 IBDP injected almost one million tonnes of CO2 into the Mt. Simon Sandstone, and the IL-ICCS project which commenced injection in 2017 will inject another four million tonnes over a four year period. The IBDP has recorded microseismic events within the study area through continuous downhole seismic monitoring before, during, and after injection. Monitoring shows that microseismicity increased during injection and originate not only in the Cambrian Mt. Simon Sandstone (the target reservoir), but also in the underlying Argenta clastics and deeper Precambrian igneous rocks as SW-NE elongate clusters aligned in strike to the maximum in situ stress direction. An interpretation of site 3D seismic reflection data suggests that much of the microseismicity is proximal to interpreted faults that extend from the basement up into the lowermost Mt. Simon strata. The faults proximally associated with microseismic activity are oriented parallel with respect to the maximum stress direction. The seismic monitoring of the IBDP indicate that the assessment of induced seismic potential associated with commercial-scale CCS requires not only identification of a suitable reservoir and its petrophysical characteristics, but also the extent and orientation of existing faults and their relation to regional stress orientation. Assessment of regional fault orientation using 3D seismic reflection data can be extremely useful to understanding the risks of induced seismicity

  10. The necessity of and policy suggestions for implementing a limited number of large scale, fully integrated CCS demonstrations in China

    International Nuclear Information System (INIS)

    Li Zheng; Zhang Dongjie; Ma Linwei; West, Logan; Ni Weidou

    2011-01-01

    CCS is seen as an important and strategic technology option for China to reduce its CO 2 emission, and has received tremendous attention both around the world and in China. Scholars are divided on the role CCS should play, making the future of CCS in China highly uncertain. This paper presents the overall circumstances for CCS development in China, including the threats and opportunities for large scale deployment of CCS, the initial barriers and advantages that China currently possesses, as well as the current progress of CCS demonstration in China. The paper proposes the implementation of a limited number of larger scale, fully integrated CCS demonstration projects and explains the potential benefits that could be garnered. The problems with China's current CCS demonstration work are analyzed, and some targeted policies are proposed based on those observations. These policy suggestions can effectively solve these problems, help China gain the benefits with CCS demonstration soon, and make great contributions to China's big CO 2 reduction mission. - Highlights: → We analyze the overall circumstances for CCS development in China in detail. → China can garner multiple benefits by conducting several large, integrated CCS demos. → We present the current progress in CCS demonstration in China in detail. → Some problems exist with China's current CCS demonstration work. → Some focused policies are suggested to improve CCS demonstration in China.

  11. Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant

    International Nuclear Information System (INIS)

    Malato, Sixto; Blanco, Julian; Maldonado, Manuel I.; Oller, Isabel; Gernjak, Wolfgang; Perez-Estrada, Leonidas

    2007-01-01

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500 mg L -1 ) containing a non-biodegradable organic substance (α-methylphenylglycine at 500 mg L -1 ), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe 2+ = 20 mg L -1 . Based on pilot plant results, an industrial plant with 100 m 2 of CPC collectors for a 250 L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500 L h -1 at an average solar ultraviolet radiation of 22.9 W m -2 , under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant

  12. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  13. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Environmental assessment statement

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Solid, liquid, and gaseous by-products and wastes are generated during coal storage and processing, gasification, and gas cleanup. Recovery systems have been designed to collect and utilize by-products. Wastes will be placed in storage areas designed to prevent release of the materials to the environment. The coal gasification plant along with the solid waste disposal area will occupy approximately 115 acres. To prevent, to the fullest extent possible, degradation of groundwater and surface water resources, the coal stockpile, landfill, collection pond, settling basin, and drainage ditches will be constructed to prevent the seepage of potential contaminants into groundwater or the drainage of runoff into surface waters. Cooling water is the primary water requirement of the project. None of the water utilized in the gasification plant will be released into the area surface water system, but will be either recycled or directed into the settling basin. The gasification facility has the potential of emitting a broad spectrum of pollutants into the atmosphere. However, effective emission control procedures such as off-gas recycling, hydrogen sulfide removal, particulate removal, and flaring will be applied to minimize the plant's emissions. The necessity of monitoring the more exotic pollutants such as acid gases, trace elements, metal carbonyls, and a multitude of organic compounds, will be determined as the gasification facility becomes more of a reality and the latest literature and research developments can be surveyed to evaluate the emission rates, biological significance, and monitoring techniques for these pollutants.

  14. Charm production and mass scales in deep inelastic processes

    International Nuclear Information System (INIS)

    Close, F.E.; Scott, D.M.; Sivers, D.

    1976-07-01

    Because of their large mass, the production of charmed particles offers the possibility of new insight into fundamental dynamics. An approach to deep inelastic processes is discussed in which Generalized Vector Meson Dominance is used to extend parton model results away from the strict Bjorken scaling limit into regions where mass scales play an important role. The processes e + e - annihilation, photoproduction, deep inelastic leptoproduction, photon-photon scattering and the production of lepton pairs in hadronic collisions are discussed. The GCMD approach provides a reasonably unified framework and makes specific predictions concerning the way in which these reactions reflect an underlying flavour symmetry, broken by large mass differences. (author)

  15. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  16. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, Benjamin [Sustainx, Incorporated, Seabrook, NH (United States)

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  17. Parameters examination of a biosurfactant production at laboratory scale

    International Nuclear Information System (INIS)

    Rosero, Neira Gladys; Pimienta, Astrid Lorely; Dugarte, Fanny; Carvajal, Fredy Gonzalo

    2003-01-01

    This work presents the results obtained from the laboratory-scale experimentation for the optimization of production of rhamnolipid type biosurfactant in a batch process, through the calculation and analysis of yield parameters. Different carbon/nitrogen ratios were studied, for which the production rates of rhamnolipid under nitrogen limitation was defined. Bacterial growth yield parameters Y X/N and Y X/C , were also calculated

  18. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  19. Large-scale demonstration test plan for digface data acquisition system

    International Nuclear Information System (INIS)

    Roybal, L.G.; Svoboda, J.M.

    1994-11-01

    Digface characterization promotes the use of online site characterization and monitoring during waste retrieval efforts, a need that arises from safety and efficiency considerations during the cleanup of a complex waste site. Information concerning conditions at the active digface can be used by operators as a basis for adjusting retrieval activities to reduce safety risks and to promote an efficient transition between retrieval and downstream operations. Most importantly, workers are given advance warning of upcoming dangerous conditions. In addition, detailed knowledge of digface conditions provides a basis for selecting tools and methods that avoid contamination spread and work stoppages. In FY-94, work began in support of a largescale demonstration coordinating the various facets of a prototype digface remediation operation including characterization, contaminant suppression, and cold waste retrieval. This test plan describes the activities that will be performed during the winter of FY-95 that are necessary to assess the performance of the data acquisition and display system in its initial integration with hardware developed in the Cooperative Telerobotic Retrieval (CTR) program. The six specific objectives of the test are determining system electrical noise, establishing a dynamic background signature of the gantry crane and associated equipment, determining the resolution of the overall system by scanning over known objects, reporting the general functionality of the overall data acquisition system, evaluating the laser topographic functionality, and monitoring the temperature control features of the electronic package

  20. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  1. Characteristics of small-scale palm oil production enterprise in ...

    African Journals Online (AJOL)

    The study examined characteristics of small-scale palm oil production enterprise in Anambra State, Nigeria. All the palm oil producers in Anambra State formed the population of the study. Multi-stage sampling technique was used to select 120 respondents for the study. Data were collected from primary source through ...

  2. Economic Analysis of Small Scale Egg Production in Gombe Local ...

    African Journals Online (AJOL)

    This study was conducted to determine the economic profitability of small-scale egg production in Gombe L.G.A. Gombe State. Data were collected from 36 famers using simple random sampling technique. The data collected were analyzed using descriptive statistics, gross margin and farm financial ratio analysis. The study ...

  3. Resource-Use Efficiency in Rice Production Under Small Scale ...

    African Journals Online (AJOL)

    This was attested by the high ratios (greater than unity) of MVP/MFC of all the variables. For optimum resource allocation to fertilizer, labour and land about 85.7%, 83.3% and 69% increase in MVP is required respectively. The estimated elasticity of production summed up to 0.815 meaning decreasing return to scale.

  4. SEU blending project, concept to commercial operation, Part 3: production of powder for demonstration irradiation fuel bundles

    International Nuclear Information System (INIS)

    Ioffe, M.S.; Bhattacharjee, S.; Oliver, A.J.; Ozberk, E.

    2005-01-01

    The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)

  5. Multi-scale modeling for sustainable chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...

  6. HyLights: Preparation of the Large-Scale Demonstration Projects on Hydrogen for Transport in Europe

    International Nuclear Information System (INIS)

    Ulrich Bunger; Volker Blandow; Volker Jaensch; Harm Jeeninga; Cristina Morte Gomez

    2006-01-01

    The strategically important project HyLights has been launched by the European Commission in preparation of the large scale demonstration projects in transition to hydrogen as a fuel and long-term renewable energy carrier. HyLights, monitors concluded/ongoing demonstration projects and assists the planning of the next demonstration project phase, putting a clear focus on hydrogen in transport. HyLights is a coordination action that comprises 5 tasks to: 1) develop an assessment framework for concluded/ongoing demonstration projects, 2) analyse individual projects and establish a project database, 3) carry out a gaps analysis and prepare a requirement profile for the next stage projects, 4) assess and identify necessary financial and legal steps in preparation of the new projects, and 5) develop a European Initiative for the Growth of Hydrogen for Transport (EIGHT). (authors)

  7. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  8. Large-scale demonstration of disposal of decontaminated salt as saltstone. Part I. Construction, loading, and capping of lysimeters

    International Nuclear Information System (INIS)

    Wolf, H.C.

    1984-06-01

    The installation phase of a large-scale demonstration of the disposal concept for decontaminated, low-level radioactive salt waste at the Savannah River Plant was completed in December 1983 and January 1984. The installation entailed immobilizing 7500 gallons of decontaminated salt solution with a blended cement formulation and pouring the resulting grout, saltstone, into three specially designed lysimeters for extended in-field leaching tests under natural conditions. 4 references, 35 figures, 4 tables

  9. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  10. Initial demonstration of DWPF process and product control strategy using actual radioactive waste

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.; Jantzen, C.M.; Beam, D.C.

    1991-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process control and product quality are ensured by proper control of the melter feed composition. Algorithms have been developed to predict the processability of the melt and the durability of the final glass based on this feed composition. To test these algorithms, an actual radioactive waste contained in a shielded facility at SRS was analyzed and a frit composition formulated using a simple computer spreadsheet which contained the algorithms. This frit was then mixed with the waste and the resulting slurry fed to a research scale joule-heated melter operated remotely. Approximately 24 kg of glass were successfully prepared. This paper will describe the frit formulation, the vitrification process, and the glass durability

  11. An automatic refolding apparatus for preparative-scale protein production.

    Directory of Open Access Journals (Sweden)

    Yanye Feng

    flexible strategy may provide a powerful tool for preparative scale protein production.

  12. Economic feasibility of small scale button mushroom production in pakistan

    International Nuclear Information System (INIS)

    Tahir, A.; Hassan, S.

    2013-01-01

    Abstract:- Mushroom is widely cultivated as a proteineous vegetable in many countries of the world including Pakistan. Its cultivation requires less space, care, equipment and cost compared to many other crops and livestock. The present study was conducted in 2010 to estimate the profitability of small scale button mushroom production at National Agricultural Research Centre (NARC) Islamabad, Pakistan. The cost of production methodology was used for this study. The yield and gross return of mushroom was estimated at 155.6 kg ha and Rs.77,800 ha , respectively. The results indicated the fact that mushroom production is very much remunerative to its producers as it can give maximum net return by reducing their cost of production as its cultivation is dependent on the agricultural raw material which is cheaply available. (author)

  13. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  14. Holocene fluctuations in human population demonstrate repeated links to food production and climate.

    Science.gov (United States)

    Bevan, Andrew; Colledge, Sue; Fuller, Dorian; Fyfe, Ralph; Shennan, Stephen; Stevens, Chris

    2017-12-05

    We consider the long-term relationship between human demography, food production, and Holocene climate via an archaeological radiocarbon date series of unprecedented sampling density and detail. There is striking consistency in the inferred human population dynamics across different regions of Britain and Ireland during the middle and later Holocene. Major cross-regional population downturns in population coincide with episodes of more abrupt change in North Atlantic climate and witness societal responses in food procurement as visible in directly dated plants and animals, often with moves toward hardier cereals, increased pastoralism, and/or gathered resources. For the Neolithic, this evidence questions existing models of wholly endogenous demographic boom-bust. For the wider Holocene, it demonstrates that climate-related disruptions have been quasi-periodic drivers of societal and subsistence change. Copyright © 2017 the Author(s). Published by PNAS.

  15. Small scale studies of production of fissium aerosols

    International Nuclear Information System (INIS)

    Lindqvist, O.; Rydberg, J.

    1983-02-01

    A small scale study concerning the production and analysis of fission product aerosols formed at various temperatures as a function of the chemical composition of the fissium/corium mixture at the source is presented. CsOH, CsJ and Te are the main aerosol components to be expected. The thermodynamic characterization of occuring Te-iodides and other phases is of great importance for reactor core meltdown chemistry and for the evaluation of the aerosol transport tests. Elemental iodine seems not to be released in significant amounts in reducing atmosphere. Analysis data concerning elements, phases, themral analysis and gases are presented. (G.B.)

  16. Production of black holes in TeV-scale gravity

    International Nuclear Information System (INIS)

    Ringwald, A.

    2002-12-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider. (orig.)

  17. Production of black holes in TeV-scale gravity

    International Nuclear Information System (INIS)

    Ringwald, A.

    2003-01-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  18. Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

    Science.gov (United States)

    Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry

    2013-01-01

    A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

  19. A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar

    Science.gov (United States)

    Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan

    1998-10-01

    There is current interest in and concern for the development of environmentally friendly bioprocesses whereby biomass and the biodegradable content of municipal wastes can be converted to useful forms of energy. For example, cellulose, a glucose polymer that is the principal component of biomass and paper waste, can be enzymatically degraded to glucose, which can subsequently be converted by fermentation or further enzymatic reaction to fuels such as ethanol or hydrogen. These products represent alternative energy sources to fossil fuels such as oil. Demonstration of the relevant reactions in high-school and undergraduate college laboratories would have value not only in illustrating environmentally friendly biotechnology for the utilization of renewable energy sources, such as cellulosic wastes, but could also be used to teach the principles of enzyme-catalyzed reactions. In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter. Furthermore, it is shown that the renewable resource cellulose, in its soluble derivative from carboxymethylcellulose, as well as aspen-wood waste, is also a source of hydrogen if the enzyme cellulase is included in the reaction mixture.

  20. Scaling production and improving efficiency in DEA: an interactive approach

    Science.gov (United States)

    Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas

    2017-10-01

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

  1. Demonstration of physical phenomenas and scavenging activity from d-psicose and methionine maillard reaction products

    Directory of Open Access Journals (Sweden)

    Arum Tiyas Suminar

    2017-01-01

    Full Text Available Maillard reaction has been well understood as a non-enzymatic reaction between reducing sugars and amino acids to generate the Maillard reaction products (MRPs. This study is aimed to demonstrate the browning intensity, color development, spectra measurements, scavenging activity, and the correlation between browning intensity and scavenging activity of the MRPs generated from D-Psicose and Methionine (Psi-Met at 50℃. The browning intensity of MRPs was investigated based on the absorbance using spectrophotometer at 420 nm, the color development was observed using digital colorimeter to gained L*a*b* value then calculated as browning index, the spectra development was analyzed using spectrophotometer at 190 - 750 nm, and the scavenging activity was determined with ABTS method using spectrophotometer at 734 nm. The browning intensity, color development, and scavenging activity were improved along with the increase in heating process. Based on spectra analysis, MRPs from Psi-Met was initially detected at 21 h and Psi at 24 h of heating treatment, which indicating that Psi-Met have faster and better reaction than Psi during heating process. Positive non-linear and significant correlation between browning intensity and scavenging activity were assigned. This finding may provide beneficial information of D-psicose and MRPs to the next scientific research and to the food industries which applies MRPs in their products.

  2. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    Science.gov (United States)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  3. A full-scale demonstration of in situ chemical oxidation through recirculation at the X-701B site

    International Nuclear Information System (INIS)

    West, O.R.; Cline, S.R.; Holden, W.L.; Gardner, F.G.; Schlosser, B.M.; Thate, J.E.; Pickering, D.A.; Houk, T.C.

    1997-12-01

    In 1996, researchers at Oak Ridge National Laboratory (ORNL) proposed an oxidant delivery technique involving injection and recirculation of the oxidant solution into a contaminated aquifer through multiple horizontal and vertical wells. This technique would be applicable to saturated, hydraulically conductive formations. In the spring of 1997, the Department of Energy (DOE) at the Portsmouth Gaseous Diffusion Plant (PORTS) agreed to collaborate with the DOE's Subsurface Contaminants Focus Area to conduct a field-scale treatability study using in situ chemical oxidation through recirculation (ISCOR). PORTS agreed to support the demonstration at the X-701B site where the technology can potentially be used to remediate TCE-contaminated groundwater and sediments. The ISCOR field demonstration took advantage of existing infrastructure and extensive site characterization data generated from previous field demonstrations at X-701B. The field test was implemented using a pair of previously installed horizontal wells that transect an area of DNAPL contamination. Groundwater was extracted from one horizontal well, pumped to an existing pump and treat facility, dosed with KMnO 4 , and re-injected into a parallel horizontal well approximately 90 ft away. The field demonstration lasted approximately one month. Treatment effectiveness was determined by comparing contaminant levels in pre-treatment, during, and post-treatment groundwater samples and pre- and post-treatment soil samples

  4. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    Science.gov (United States)

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  6. Fed batch fermentation scale up in the production of recombinant streptokinase

    Directory of Open Access Journals (Sweden)

    Salvador Losada-Nerey

    2017-01-01

    Full Text Available Due to the high international demand of the recombinant streptokinase (Skr produced at the National Center for Bioproducts (BioCen, it was necessary to increase the production capacity of the drug, since the current production volume does not cover the demand. A scale up of the process of fermentation of the recombinant streptokinase was made using a fed batch culture, from the bank scale towards a 300L fermenter. The scaling criteria used were: the intensive variables of the process, the relationships of volumes of the fermentation medium and inoculum, the volumetric coefficient of oxygen transfer and air volume to liquid flow relationship which were kept constant. With this scale up procedure it was possible to reproduce the results obtained at the bank scale of and to double the biomass production volume with the same equipment, fulfilling all the quality requirements of the product and to cover the current demand of the market. Techno-economic indicators demonstrated the feasibility of this option.

  7. Assessing Impacts of National Scale Droughts on Cereal Production

    Science.gov (United States)

    Udmale, P. D.; Ichikawa, Y.

    2017-12-01

    Till date, several drought indices have been developed and used to monitor local to regional scale droughts on various temporal scales. However, there are no generalized criteria to define a threshold to declare a national level drought using drought indices. EM-DAT (a global database on natural and technological disasters) lists disasters (including drought) from 1900 until the present confirming one of the following criteria: 10 or more people dead; 100 or more people affected; the declaration of a state of emergency; or a call for international assistance. This data is gathered from various organizations like United Nations Institutes, Governments, etc. and do not cover all disasters or have political limitations that could affect the numbers. These criteria are neither objective nor quantitative, and accordingly may cause uncertainties when the data is used for further investigation on disaster impacts. Here we present a methodology to define drought at a national scale and its impacts on national level crop production (mainly cereals). We define drought based on the percentage of cropland area affected by drought in a country during its seasonal rainfall. For this purpose meteorological definition of drought in combination with country's cropland area is proposed to prepare a drought inventory for major cereal producing countries (1902-2012). This drought inventory together with FAO's Crop data is used to identify the impacts of drought on a national level cereal production (and yield) using Superposed Epoch Analysis for the period 1961-2012.

  8. 40 CFR 63.6004 - How do I demonstrate continuous compliance with the emission limits for tire production affected...

    Science.gov (United States)

    2010-07-01

    ... compliance with the emission limits for tire production affected sources? 63.6004 Section 63.6004 Protection... Pollutants: Rubber Tire Manufacturing Continuous Compliance Requirements for Tire Production Affected Sources § 63.6004 How do I demonstrate continuous compliance with the emission limits for tire production...

  9. The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly

    Science.gov (United States)

    2000-01-01

    The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight from NASA's Dryden Flight Research Center, Edwards, California. The X-40 is attached to a sling which is suspended from the CH-47 by a 110-foot-long cable during the tests, while a small parachute trails behind to provide stability. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software.

  10. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Jain, V.; Barnes, S.M.; Bindi, B.G.; Palmer, R.A.

    2000-01-01

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed

  11. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in 3 He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications

  12. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  13. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  14. Implementation of Canflex bundle manufacture - from 'bench scale' to production

    International Nuclear Information System (INIS)

    Pant, A.

    1999-01-01

    Zircatec Precision Industries (ZPI) has been involved with the development of the 43 element Canflex bundle design since 1986. This development included several 'prototype' campaigns involving the manufacture of small quantities of test bundles using enriched fuel. Manufacturing and inspection methods for this fuel were developed at ZPI as the design progressed. The most recent campaign involved the production of 26 bundles of the final Canflex design for a demonstration irradiation in the Point Lepreau Generating Station. This presentation will explore issues pertaining to the introduction of a new product line from initial trial quantities to full production levels. The Canflex fuel experience and a brief review of development efforts will be used as an example. (author)

  15. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    Science.gov (United States)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications

  16. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    Science.gov (United States)

    Appelhagen, Ingo; Wulff-Vester, Anders Keim; Wendell, Micael; Hvoslef-Eide, Anne-Kathrine; Russell, Julia; Oertel, Anne; Martens, Stefan; Mock, Hans-Peter; Martin, Cathie; Matros, Andrea

    2018-06-08

    Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13 C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 % and 65-77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  18. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    Science.gov (United States)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  19. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  1. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  2. Economies of scale in biogas production and the significance of flexible regulation

    International Nuclear Information System (INIS)

    Skovsgaard, Lise; Jacobsen, Henrik Klinge

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated by the new regulation providing similar support to upgraded biogas fed into the natural gas grid, however in order to keep transport costs low, we suggest that the biogas plants should be allowed to use and combine as many co-substrates as possible, respecting the sustainability criteria regarding energy crops in Danish legislation. - Highlights: • For Denmark we find economies of scale in biogas production based on pure manure. • Adding sugar beet outweigh economy of scale due to increased transport costs. • We investigate the main risks associated with input prices, yield and output prices. • Biogas fed into the gas grid should receive similar support as directly used in CHP. • Regulation should allow large biogas plants with few restrictions on co-substrates.

  3. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    Science.gov (United States)

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  4. Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector

    International Nuclear Information System (INIS)

    Hild, S; Grote, H; Hewtison, M; Lueck, H; Smith, J R; Strain, K A; Willke, B; Danzmann, K

    2007-01-01

    The British/German gravitational wave detector GEO 600 located near Hannover in Germany is the first large-scale gravitational-wave detector using the advanced technique of signal recycling. Currently the instrument operates in detuned signal recycling mode. Several problems arise due to the fact that the signal recycling cavity changes amplitude and phase of all light fields (carrier and sidebands) present at the dark-port. In addition, in the case of detuned signal recycling this leads to unbalanced sideband fields at the detector output. The large amplitude modulation caused by this asymmetry does not carry any gravitational wave information, but might be the cause of saturation and nonlinearities on the main photodiode. We developed and demonstrated a new control method to realize tuned signal recycling operation in a large-scale gravitational wave detector. A detailed comparison of tuned and detuned signal recycling operation is given. The response function of the system (optical gain) was measured and compared, as was the size of amplitude modulation on the main photodiode. Some important noise couplings were measured and partly found to be strongly reduced in the case of tuned signal recycling operation

  5. Removal of radiocesium from low level radioactive effluents by hexacyanoferrate loaded synthetic zeolite. Laboratory to pilot plant scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Dayamoy; Rao, Manjula A.; Khot, Shantinath A.; Shah, Jayesh G.; Banerjee, Kalyan [Bhabha Atomic Research Centre, Mumbai (India). Nuclear Recycle Group; Pawaskar, Chandrahas S.; Gangadharan, Anand; Rao, Shankar N.; Jain, Savita [Bhabha Atomic Research Centre, Mumbai (India)

    2017-06-01

    Present paper reports removal of radiocesium from low level waste using a modified sorbent (13X-CFC) prepared by in-situ precipitation of potassium copper hexacyanoferrate(II) inside the macropores of a synthetic zeolite. The Cs exchange isotherm of the sorbent is established and it found to follow Fruendlich absorption isotherm equation. It is varified that presence of hexacyanoferrate on zeolite facilitates rapid Cs uptake performance. This is further confirmed in laboratory scale column tests, wherein excellent Cs removal performance from low level waste simulant was observed even at higher flow rates (40 bed volumes per hour). The utility of the sorbent is established through successful demonstration in a pilot scale (50 L) trial with almost complete removal of {sup 137}Cs from more than 14,000 bed volumes of actual low level waste. The sorbent, owing to its low cost and excellent {sup 137}Cs removal performance, is expected to find application in treatment of very low active waste streams.

  6. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  7. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  8. Product Stewardship in Uranium: A Way for the Industry to Demonstrate its High Performance

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    Conclusions: • Product stewardship is an means for communicating the high performance on health, safety and environment of the nuclear fuel cycle including uranium mining. • It has been effective with other products and is appropriate for uranium. • Can be a vehicle for addressing public concerns across the industry. • Due to uranium’s unique characteristics it has the potential to be a best practice example of product stewardship. • Work is underway in the international arena to progress uranium product stewardship and it represent a unique opportunity to provide whole of industry benefits

  9. 78 FR 72840 - Drug Products That Present Demonstrable Difficulties for Compounding Under Sections 503A and 503B...

    Science.gov (United States)

    2013-12-04

    ... reasonably demonstrate an adverse effect on the safety or effectiveness of that drug product'' (section 503A... because it included restrictions on the advertising or promotion of the compounding of any particular drug... effect on the safety or effectiveness of that drug product. In addition, the DQSA adds a new section 503B...

  10. 40 CFR 63.5996 - How do I demonstrate initial compliance with the emission limits for tire production affected...

    Science.gov (United States)

    2010-07-01

    ... with the emission limits for tire production affected sources? 63.5996 Section 63.5996 Protection of... Pollutants: Rubber Tire Manufacturing Testing and Initial Compliance Requirements for Tire Production Affected Sources § 63.5996 How do I demonstrate initial compliance with the emission limits for tire...

  11. 40 CFR 63.6006 - How do I demonstrate continuous compliance with the emission limits for tire cord production...

    Science.gov (United States)

    2010-07-01

    ... compliance with the emission limits for tire cord production affected sources? 63.6006 Section 63.6006... Hazardous Air Pollutants: Rubber Tire Manufacturing Continuous Compliance Requirements for Tire Cord... tire cord production affected sources? (a) You must demonstrate continuous compliance with each...

  12. 40 CFR 63.5999 - How do I demonstrate initial compliance with the emission limits for tire cord production...

    Science.gov (United States)

    2010-07-01

    ... with the emission limits for tire cord production affected sources? 63.5999 Section 63.5999 Protection... Pollutants: Rubber Tire Manufacturing Testing and Initial Compliance Requirements for Tire Cord Production Affected Sources § 63.5999 How do I demonstrate initial compliance with the emission limits for tire cord...

  13. Productivity, Efficiency, and Competitiveness of Small-Scale Organic Cotton Production in Tanzania

    DEFF Research Database (Denmark)

    Mgeni, Dotto; Henningsen, Arne

    cannot be adjusted in the short run. However, land, labor, and organic fertilizer can neither be traded on a perfect market nor are their quantities completely fixed for cotton production, but these input quantities can be adjusted by adjusting their use for other activities of the household. Hence......Cotton is known as the “white gold” of Africa since it is the only export crop in which the continent’s share in the world market has increased over the past decades. Total cotton production as well as productivity grew particularly in Western and Central Africa. In contrast, cotton production grew...... and output, as well as socio-economic and agronomic factors, but also on the shadow prices of all sparsely traded inputs, i.e. land, labor, and organic fertilizer. Hence, we can not only analyze productivity, technical efficiency, and scale efficiency, but also allocative efficiency, profitability...

  14. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  15. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O'Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994

  16. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  17. Pilot-scale demonstration of the modified direct denitration process to prepare uranium oxide for fuel fabrication evaluation

    International Nuclear Information System (INIS)

    Kitts, F.G.

    1994-04-01

    The Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has the objective of developing a cost-competitive enrichment process that will ultimately replace the gaseous diffusion process used in the United States. Current nuclear fuel fabricators are set up to process only the UF 6 product from gaseous diffusion enrichment. Enriched uranium-iron alloy from the U-AVLIS separator system must be chemically converted into an oxide form acceptable to these fabricators to make fuel pellets that meet American Society for Testing and Materials (ASTM) and utility company specifications. A critical step in this conversion is the modified direct denitration (MDD) that has been selected and presented in the AVLIS Conceptual Design for converting purified uranyl nitrate to UO 3 to be shipped to fabricators for making UO 2 pellets for power reactor fuel. This report describes the MDD process, the equipment used, and the experimental work done to demonstrate the conversion of AVLIS product to ceramic-grade UO 3 suitable for making reactor-grade fuel pellets

  18. The Smallest R/V: A Small-scale Ocean Exploration Demonstration of Real-time Bathymetric Measurements

    Science.gov (United States)

    Howell, S. M.; Boston, B.; Maher, S. M.; Sleeper, J. D.; Togia, H.; Tree, J. P.

    2014-12-01

    In October 2013, graduate student members of the University of Hawaii Geophysical Society designed a small-scale model research vessel (R/V) that uses sonar to create 3D maps of a model seafloor in real-time. This pilot project was presented to the public at the School of Ocean and Earth Science and Technology's (SOEST) Biennial Open House weekend. An estimated 7,600 people attended the two-day event, including children and teachers from Hawaii's schools, home school students, community groups, families, and science enthusiasts. Our exhibit demonstrated real-time sonar mapping of a cardboard volcano using a toy size research vessel on a fixed 2D model ship track suspended above a model seafloor. Sound wave travel times were recorded using an unltrasonic emitter/receiver attached to an Arduino microcontroller platform, while the same system measured displacement along the ship track. This data was streamed through a USB connection to a PC running MatLab, where a 3D model was updated as the ship collected data. Our exhibit demonstrates the practical use of complicated concepts, like wave physics and data processing, in a way that even the youngest elementary students are able to understand. It provides an accessible avenue to learn about sonar mapping, and could easily be adapted to talk about bat and marine mammal echolocation by replacing the model ship and volcano. The exhibit received an overwhelmingly positive response from attendees, and has inspired the group to develop a more interactive model for future exhibitions, using multiple objects to be mapped that participants could arrange, and a more robust ship movement system that participants could operate.

  19. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  20. Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey

    DEFF Research Database (Denmark)

    Meyer, A.; Hansen, D.B.; Goncalves Gomes, Claudia Sofia

    2005-01-01

    and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at similar to50-fold increased scale (cf. magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85...

  1. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC

    Directory of Open Access Journals (Sweden)

    Ángel Jesús Molina-Viedma

    2018-02-01

    Full Text Available In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.

  2. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  3. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production

    Directory of Open Access Journals (Sweden)

    Laura Navone

    2018-06-01

    Full Text Available Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP, Zwf (glucose-6-phosphate 1-dehydrogenase and Pgl (6-phosphogluconolactonase. Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK and sodium-pumping methylmalonyl-CoA decarboxylase (MMD was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  4. An Historical Overview of the Production Requirement for the Satellite Technology Demonstration. Technical Report No. 0504.

    Science.gov (United States)

    Smith, Myron P.; Sosey, Phillip

    The Satellite Technology Demonstration employs the latest telecommunications technology to deliver community oriented programing to rural areas. To meet the demand for contemporary broadcasts responsive to community needs, a studio was constructed in the Denver area to produce and coordinate future programs for the Rocky Mountains area. Problems…

  5. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Blouin, J. [Air Liquide Canada, Hamilton, Ontario (Canada)

    2002-09-01

    Heavy-water (D{sub 2}0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  6. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-09-01

    Heavy-water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  7. Prototype CIRCE plant - industrial demonstration of heavy water production from reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-01-01

    Heavy water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the Combined Industrial Reforming and Catalytic Exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil-upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, Ontario. The plant became fully operational in 2000 July and is expected to operate to at least late fall of 2002. To-date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  8. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    Science.gov (United States)

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  9. Greenlys, the smart energy of the future. The first full-scale Smart Grid demonstrator in France. Press file

    International Nuclear Information System (INIS)

    2013-05-01

    In its first part, this document presents the main characteristics of Greenlys: its role in the evolution towards a new energetic model, an ambitious project which benefits to all types of consumers, is based on two complementary demonstration platforms (in the two metropolitan areas of Lyons and Grenoble). It also discusses its several objectives: assessment of economic viability, identification of benefits for consumers, implementation of a right sizing for tomorrow's grid, exploitation of a communicating infrastructure, anticipation of the deployment of electric vehicles, definition of the aggregative function, development of user participation, experimentation of advanced grid control functions, equipment test and installation. The second part comments the first returns on experience in terms of grid quality and safety, of grid self-healing, of use of the communicating counter, of impact of decentralised production and new usages on the grid, of transformation of the consumer into an aware and responsible actor, of equipment and installations in housing, of services proposed to residential tester-customers, of flexibility aggregation. The third part proposes an overview of future fields of experiment: cost-benefit analysis, innovating solutions for the grid, massive integration of decentralised resources and new usages related to electric vehicles, local experiment in Grenoble and Lyons. The various partners are presented in appendix

  10. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, Elango [Ceramatec, Inc., West Valley City, UT (United States); Rao, Ranjeet [PARC, Palo Alto, CA (United States); Colella, Whitney [Gaia Energy Research Inst. LLC, Arlington, VA (United States)

    2017-12-20

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lower polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.

  11. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garino, Terry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Croes, Kenneth James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  12. Commercial scale demonstration: enhanced oil recovery by micellar-polymer flood. Annual report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.C.

    1982-05-01

    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.5-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5-acre pattern has decreased from 11.0% in September 1980, to 7.9% in September 1981. The 2.5-acre pattern had been on a plateau since May 1980, and as of May 1981 appears to be on a decline. The oil cut of the 5.0-acre pattern has increased from 5.9% in September 1980, to 10.9% in September 1981. The 5.0-acre pattern experienced a sharp increase in oil cut after 34% of a pore volume of total fluid had been injected and appears to be continuing its incline. This fifth annual report is organized under the following three work breakdown structures: fluid injection; production; and performance monitoring.

  13. LARGE SCALE METHOD FOR THE PRODUCTION AND PURIFICATION OF CURIUM

    Science.gov (United States)

    Higgins, G.H.; Crane, W.W.T.

    1959-05-19

    A large-scale process for production and purification of Cm/sup 242/ is described. Aluminum slugs containing Am are irradiated and declad in a NaOH-- NaHO/sub 3/ solution at 85 to 100 deg C. The resulting slurry filtered and washed with NaOH, NH/sub 4/OH, and H/sub 2/O. Recovery of Cm from filtrate and washings is effected by an Fe(OH)/sub 3/ precipitation. The precipitates are then combined and dissolved ln HCl and refractory oxides centrifuged out. These oxides are then fused with Na/sub 2/CO/sub 3/ and dissolved in HCl. The solution is evaporated and LiCl solution added. The Cm, rare earths, and anionic impurities are adsorbed on a strong-base anfon exchange resin. Impurities are eluted with LiCl--HCl solution, rare earths and Cm are eluted by HCl. Other ion exchange steps further purify the Cm. The Cm is then precipitated as fluoride and used in this form or further purified and processed. (T.R.H.)

  14. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  15. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    Science.gov (United States)

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.

  16. Construction sequence scale model: an aid to productivity and quality assurance

    International Nuclear Information System (INIS)

    Clothier, W.A. Sr.

    1978-01-01

    The natural tendencies of an engineering scale model to promote a high level of quality by error prevention during design and construction stages of a project are studied. A brief section on the basic history of engineering modeling is used to describe TVA's usage of the model. The basic design model is explored in an overview touching the highlights of that form of modeling. A detailed look at the construction sequence model, a relatively new form of model, is presented to demonstrate quality and productivity awareness

  17. A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel; Norrman, Kion

    2009-01-01

    , complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material and electrical contacting post-production using crimped contacts. We detail the production of more than 2000 modules in one production run and show......A complete polymer solar cell module prepared in the ambient atmosphere under industrial conditions is presented. The versatility of the polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution...

  18. Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Timothy C. [Antares Group Inc., Lanham, MD (United States); Comer, Kevin S. [Antares Group Inc., Lanham, MD (United States); Belden, Jr., William S. [Antares Group Inc., Lanham, MD (United States)

    2016-04-30

    This three-year project developed and demonstrated four innovative, first-of-their-kind pieces of equipment that are aimed at significantly reducing the cost of delivered herbaceous biomass. This equipment included a Self-Propelled Baler (SPB), a Bale Picking Truck (BPT), a Self-Loading Trailer (SLT), and a Heavy Crop Header for harvesting high yielding energy crops. This equipment was designed and fabricated during the first two years of the project and demonstrated on available crops (corn stover, wheat straw, and warm season grasses) across the nation, as available. Operational performance and cost data was collected and analyzed throughout the project to measure the costs of baseline harvesting (using conventional harvesting equipment) and advanced harvesting with the newly developed equipment. This data revealed that the project met its original goal of developing equipment that is realistically capable of reducing the cost of delivered biomass by $13 per dry ton. Each machine was tested after fabrication and put to the test in one or more commercial harvesting seasons. During these tests, operational flaws were found and fixed through upgrades and improvements. The first new SPB, BPT, and two new SLTs were ready for use during the 2013 harvest season. Since then, over 40 SLTs have been ordered and are currently under fabrication. All of the equipment will be commercially available to the industry as demand increases.

  19. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  20. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-01

    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.

  1. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.

    1997-01-01

    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000's of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in αFe during irradiation at 600 K

  2. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  3. Performance Evaluation of CRW Reef-Scale and Broad-Scale SST-Based Coral Monitoring Products in Fringing Reef Systems of Tobago

    Directory of Open Access Journals (Sweden)

    Shaazia S. Mohammed

    2015-12-01

    Full Text Available Satellite-derived sea surface temperature (SST is used to monitor coral bleaching through the National Oceanic and Atmospheric Administration’s Coral Reef Watch (CRW Decision Support System (DSS. Since 2000, a broad-scale 50 km SST was used to monitor thermal stress for coral reefs globally. However, some discrepancies were noted when applied to small-scale fringing coral reefs. To address this, CRW created a new DSS, specifically targeted at or near reef scales. Here, we evaluated the new reef-scale (5 km resolution products using in situ temperature data and coral bleaching surveys which were also compared with the heritage broad-scale (50 km for three reefs (Buccoo Reef, Culloden and Speyside of the southern Caribbean island of Tobago. Seasonal and annual biases indicated the new 5 km SST generally represents the conditions at these reefs more accurately and more consistently than the 50 km SST. Consistency between satellite and in situ temperature data influences the performance of anomaly-based predictions of bleaching: the 5 km DHW product showed better consistency with bleaching observations than the 50 km product. These results are the first to demonstrate the improvement of the 5 km products over the 50 km predecessors and support their use in monitoring thermal stress of reefs in the southern Caribbean.

  4. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  5. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.

    Science.gov (United States)

    Navone, Laura; McCubbin, Tim; Gonzalez-Garcia, Ricardo A; Nielsen, Lars K; Marcellin, Esteban

    2018-06-01

    Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp . shermanii and the pan- Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp . shermanii , two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  6. Reproducible, large-scale production of thallium-based high-temperature superconductors

    International Nuclear Information System (INIS)

    Gay, R.L.; Stelman, D.; Newcomb, J.C.; Grantham, L.F.; Schnittgrund, G.D.

    1990-01-01

    This paper reports on the development of a large scale spray-calcination technique generic to the preparation of ceramic high-temperature superconductor (HTSC) powders. Among the advantages of the technique is that of producing uniformly mixed metal oxides on a fine scale. Production of both yttrium and thallium-based HTSCs has been demonstrated using this technique. In the spray calciner, solutions of the desired composition are atomized as a fine mist into a hot gas. Evaporation and calcination are instantaneous, yielding an extremely fine, uniform oxide powder. The calciner is 76 cm in diameter and can produce metal oxide powder at relatively large rates (approximately 100 g/h) without contamination

  7. On the random cascading model study of anomalous scaling in multiparticle production with continuously diminishing scale

    International Nuclear Information System (INIS)

    Liu Lianshou; Zhang Yang; Wu Yuanfang

    1996-01-01

    The anomalous scaling of factorial moments with continuously diminishing scale is studied using a random cascading model. It is shown that the model currently used have the property of anomalous scaling only for descrete values of elementary cell size. A revised model is proposed which can give good scaling property also for continuously varying scale. It turns out that the strip integral has good scaling property provided the integral regions are chosen correctly, and that this property is insensitive to the concrete way of self-similar subdivision of phase space in the models. (orig.)

  8. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    Science.gov (United States)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for

  9. Pilot Scale Production of Irradiated Natural Rubber Latex and its Dipping Products

    Directory of Open Access Journals (Sweden)

    M. Utama

    2005-07-01

    Full Text Available One hundred and fifty kg natural rubber latex (NRL before and after concentration were added with 3 phr (part hundred ratio of rubber normal butyl acrylate, then the mixture were irradiated at 25 kGy by gamma rays of 60Co in pilot scale. The irradiated natural rubber latex (INRL were then being to use for producing rubber products such as condom, surgical gloves, and spygmomanometer in factory scale. The quality of INRL and rubber products such as : total solid content (TSC, dry rubber content (DRC, KOH, VFA and MST number, tensile strength, modulus, elongation at break, extractable protein content, and response against Type I allergy etc. were evaluated. The economic aspect for producing INRL by means of Gamma Irradiator (GI and Electron Beam Machine (EBM such as payback period (PP, net present value (NPV and internal rate return (IRR were calculated. The results showed that the latex properties of INRL such as DRC, TSC, KOH, VFA, and MST number are not only found to the requirement of the ISO 2004 standard but also the latex has low protein, lipid, and carbohydrate content. The physical and mechanical properties (tensile strength, modulus, and elongation at break of rubber dipping products such as condom, gloves, and sphygmomanometer are not only found to the requirement of ISO 4074, ISO 10282, and ANSI/AAMI SP-1994 standards, but also the allergic response tested clinical latex-sensitive protein allergen by ELISA test on gloves, and by SPT test on condom are found to be negative. It indicates that production of INRL or PVNRL or RVNRL by EBM 250 keV/10 mA, was more cheap than by using gamma γ irradiator 200 kCi, or sulfur vulcanization. The value of PBP (payback period was 2,1 years, NPV (net present value was 4,250 US $, PI (profitability index 1,06 and IRR (internal rate of returns was 25,0%.

  10. Resource use efficiency in small-scale rice production in Nigeria ...

    African Journals Online (AJOL)

    The production function for rice, elasticity of production, return to scale, marginal productivity and level of efficiency of inputs used in rice production were determined. ... With the exception of fertilizer that was over-utilized, all other inputs were underutilized with ratios of marginal value products to unit prices greater than unity ...

  11. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  12. Productive Efficiency of Small Scale Sawmilling Industries in Mufindi ...

    African Journals Online (AJOL)

    A structured questionnaire was used to collect data from 80 small-scale sawmills in Mufindi District. Data were analysed using descriptive as well as quantitative methods. Technical, scale and allocative efficiency score of sawmills were computed using data envelopment analysis programme developed by Coelli. Censored ...

  13. Centennial-scale variations in diatom productivity off Peru over the last 3000 years

    Science.gov (United States)

    Fleury, Sophie; Crosta, Xavier; Schneider, Ralph; Blanz, Thomas; Ther, Olivier; Martinez, Philippe; Kim, Jung-Hyun

    2016-04-01

    The Peruvian coastal upwelling is one of the most productive systems in the global ocean, with important impacts on the carbon cycle. Primary productivity there displays strong variations at the inter-annual to decadal timescales. However, down-core investigations rarely reach sufficient temporal resolution to assess the response of productivity to climatic variations at these timescales beyond the instrumental and historical periods. We here analyzed diatom assemblages, sea-surface temperatures, nitrogen and organic carbon contents on a laminated sediment core from the Peruvian continental shelf to trace variations in regional productivity over the last 3000 years. Our record provides evidence for different climatic and oceanic conditions with more humid and less productive conditions older than 2500 Cal years BP and drier and more productive conditions younger than 2500 Cal years BP. The last 2500 years also present much stronger centennial-scale variability with the occurrence of six intervals with higher total diatom abundances and stronger percentages in upwelling-related diatom species, representative of intensified productivity, congruent to lower percentages in benthic diatoms, indicative of reduced rainfall. These six periods were synchronous to intervals of enhanced Walker circulation, suggesting a strong imprint of the Pacific zonal circulation on productivity variations off Peru. Our record also demonstrates that SSTs did not vary in phase with productivity, arguing against the idea of regional SSTs controlled by the upwelling intensity, but were rather in agreement to SST records off southern Chile, suggesting that Peruvian SSTs variations were largely controlled by oceanic currents at southern high latitudes.

  14. Luminescence property and large-scale production of ZnO nanowires by current heating deposition

    International Nuclear Information System (INIS)

    Singjai, P.; Jintakosol, T.; Singkarat, S.; Choopun, S.

    2007-01-01

    Large-scale production for ZnO nanowires has been demonstrated by current heating deposition. Based on the use of a solid-vapor phase carbothermal sublimation technique, a ZnO-graphite mixed rod was placed between two copper bars and gradually heated by passing current through it under constant flowing of argon gas at atmospheric pressure. The product seen as white films deposited on the rod surface was separated for further characterizations. The results have shown mainly comb-like structures of ZnO nanowires in diameter ranging from 50 to 200 nm and length up to several tens micrometers. From optical testing, ionoluminescence spectra of as-grown and annealed samples have shown high green emission intensities centered at 510 nm. In contrast, the small UV peak centered at 390 nm was observed clearly in the as-grown sample which almost disappeared after the annealing treatment

  15. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  16. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  17. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production

  18. Full-scale demonstration of EBS construction technology I. Block, pellet and in-situ compaction method

    International Nuclear Information System (INIS)

    Toguri, Satohito; Asano, Hidekazu; Takao, Hajime; Matsuda, Takeshi; Amemiya, Kiyoshi

    2008-01-01

    (i) Bentonite Block: Applicability of manufacturing technology of buffer material was verified by manufacturing of full scale bentonite ring which consists of one-eight (1/8) dividing block (Outside Diameter (OD): 2.220 mm H: 300 mm). Density characteristic, dimension and scale effect, which were considered the tunnel environment under transportation, were evaluated. Vacuum suction technology was selected as handling technology for the ring. Hoisting characteristic of vacuum suction technology was presented through evaluation of the mechanical property of buffer material, the friction between blocks, etc. by using a full-scale bentonite ring (OD 2.200 mm, H 300 mm). And design of bentonite block and emplacement equipment were presented in consideration of manufacturability of the block, stability of handling and improvement of emplacement efficiency. (ii) Bentonite Pellet Filling: Basic characteristics such as water penetration, swelling and thermal conductivity of various kinds of bentonite pellet were collected by laboratory scale tests. Applicability of pellet filling technology was evaluated by horizontal filling test using a simulated full-scale drift tunnel (OD 2.200 mm, L 6 m) . Filling density, grain size distribution, etc. were also measured. (iii) In-Situ Compaction of Bentonite: Dynamic compaction method (heavy weight fall method) was selected as in-situ compaction technology. Compacting examination which used a full scale disposal pit (OD 2.360 mm) was carried out. Basic specification of compacting equipment and applicability of in-situ compaction technology were presented. Density, density distribution of buffer material and energy acted on the wall of the pit, were also measured. (author)

  19. Process improvement of knives production in a small scale industry

    Science.gov (United States)

    Ananto, Gamawan; Muktasim, Irfan

    2017-06-01

    Small scale industry that produces several kinds of knive should increase its capacity due to the demand from the market. Qualitatively, this case study consisted of formulating the problems, collecting and analyzing the necessary data, and determining the possible recommendations for the improvement. While the current capacity is only 9 (nine), it is expected that 20 units of knife will produced per month. The processes sequence are: profiling (a), truing (b), beveling (c), heat treatment (d), polishing (e), assembly (f), sharpening (g) and finishing (h). The first process (a) is held by out-house vendor company while other steps from (b) to (g) are executed by in-house vendor. However, there is a high dependency upon the high skilled operator who executes the in -house processes that are mostly held manually with several unbalance successive tasks, where the processing time of one or two tasks require longer duration than others since the operation is merely relied on the operator's skill. The idea is the improvement or change of the profiling and beveling process. Due to the poor surface quality and suboptimal hardness resulted from the laser cut machine for profiling, it is considered to subst itute this kind of process with wire cut that is capable to obtain good surface quality with certain range levels of roughness. Through simple cutting experiments on the samples, it is expected that the generated surface quality is adequate to omit the truing process (b). In addition, the cutting experiments on one, two, and four test samples resulted the shortest time that was obtained through four pieces in one cut. The technical parameters were set according to the recommendation of machine standard as referred to samples condition such as thickness and path length that affect ed the rate of wear. Meanwhile, in order to guarantee the uniformity of knife angles that are formed through beveling process (c), a grinding fixture was created. This kind of tool diminishes the

  20. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    laboratory results, with a typical hydrogen and methane specific productivity of 2.2 and 0.5 Nm3/m3reactor per day, in the first and second stage of the plant respectively. At our best knowledge, this plant is one of the very first prototypes producing biohydrogen at farm scale, and it represents a distributed, small scale demonstration to obtain hydrogen from renewable waste-sources.

  1. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    Science.gov (United States)

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Woolsey, G.B.; Baumgarten, P.K.; Eibling, R.E.; Ferguson, R.B.

    1981-01-01

    A small-scale pilot plant for chemical processing and vitrification of actual high-level waste has been constructed at the Savannah River Laboratory (SRL). This fully integrated facility has been constructed in six shielded cells and has eight major unit operations. Equipment performance and processing characteristics of the unit operations are reported

  4. A paradigm shift needed for nuclear reactors. From economies of unit scale to economies of production scale

    International Nuclear Information System (INIS)

    Li, Ning

    2009-01-01

    The success and sustainability of the nascent 'Nuclear Renaissance' will depend heavily on the timely development and deployment SMRs (small and modular reactors) as a new paradigm to increase economic competitiveness and broaden markets and applications for nuclear energy. A critical assessment of the historical and current reactor construction cost data reveals a troubling trend of rapid escalation in practically all countries, while showing little or negative economies of (unit) scale. The escalation cannot be fully accounted for by cost inflation in materials and labors, or by ratcheting regulations and other external factors. Rather, it appears that the intrinsic complexity and the associated risks and costs of extremely large systems have offset all returns of (unit) scale in power engineering and learning effects in practice. The construction heavy nature of the nuclear power plants exacerbates the cost problem as compared to that of the manufactured goods. The power markets have evolved away from the very large monolithic generation units toward modular units more amenable for manufacturing and transportation. This is clearly illustrated through the increasingly bi-modal distribution of generation units around a few MWe (wind, micro-turbines etc) and 100-200 MWe (gas turbine and combined cycle). The rapid market adoption and penetration of these units dwarf the addition rates of the very large units. This is not merely an outcome based on economic and financial risk reduction (important in their own right) or better match of applications - the technological and operational performances are equal or even superior in these smaller modular units. This presentation will use the industry, market and application data analyses, and successful examples from other sectors and industries with different organizing principles to demonstrate the benefits and potentials of SMRs. The resultant paradigm shift, from the singular pursuit of economies of unit scale to

  5. Matching Social and Biophysical Scales in Extensive Livestock Production as a Basis for Adaptation to Global Change

    Science.gov (United States)

    Sayre, N. F.; Bestelmeyer, B.

    2015-12-01

    Global livestock production is heterogeneous, and its benefits and costs vary widely across global contexts. Extensive grazing lands (or rangelands) constitute the vast majority of the land dedicated to livestock production globally, but they are relatively minor contributors to livestock-related environmental impacts. Indeed, the greatest potential for environmental damage in these lands lies in their potential for conversion to other uses, including agriculture, mining, energy production and urban development. Managing such conversion requires improving the sustainability of livestock production in the face of fragmentation, ecological and economic marginality and climate change. We present research from Mongolia and the United States demonstrating methods of improving outcomes on rangelands by improving the fit between the scales of social and biophysical processes. Especially in arid and semi-arid settings, rangelands exhibit highly variable productivity over space and time and non-linear or threshold dynamics in vegetation; climate change is projected to exacerbate these challenges and, in some cases, diminish overall productivity. Policy and governance frameworks that enable landscape-scale management and administration enable range livestock producers to adapt to these conditions. Similarly, livestock breeds that have evolved to withstand climate and vegetation change improve producers' prospects in the face of increasing variability and declining productivity. A focus on the relationships among primary production, animal production, spatial connectivity, and scale must underpin adaptation strategies in rangelands.

  6. Resource-Use Efficiency in Rice Production Under Small Scale ...

    African Journals Online (AJOL)

    acer

    specific objectives of the study were to determine resource use efficiency, describe ... economic level. ... this key variable with a view to stepping ... focused on small-scale irrigation systems for ... farmers were assumed to be operating under.

  7. Production of U3O8 by uranyl formate precipitation and calcination in a full-scale pilot facility

    International Nuclear Information System (INIS)

    Kendrick, L.S.; Wilson, W.A.; Mosley, W.C.

    1984-08-01

    The uranyl formate process for the production of U 3 O 8 with a controlled particle size has been extensively studied on a laboratory scale. Based on this study, a pilot-scale facility (the Uranyl Formate Facility) was built to investigate the key steps of the process on a larger scale. These steps were the precipitation of a uranyl formate monohydrate salt and the calcination of this salt to U 3 O 8 . Tests of the facility and process were conducted at conditions recommended by the laboratory-scale studies for a full-scale production facility. These tests demonstrated that U 3 O 8 of the required particle size for the PM process can be produced on a plant scale by the calcination of uranyl formate crystals. The performance of the U 3 O 8 produced by the uranyl formate process in fuel tube fabrication was also investigated. Small-scale extrusion tests of U 3 O 8 -Al cores which used the U 3 O 8 produced in the Uranyl Formate Facility were conducted. These tests demonstrated that the U 3 O 8 quality was satisfactory for the PM process

  8. Demonstration of generic handbooks for assisting in the management of contaminated food production systems and inhabited areas in Europe

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Andersson, Kasper Grann; Duranova, T.

    2010-01-01

    Two handbooks have been developed in conjunction with a wide range of stakeholders that provide assistance in the management of contaminated food production systems and inhabited areas following a radiological incident. Emergency centres in Member States not involved in the development...... of these handbooks were invited to take part in demonstration activities to establish whether the handbooks would be useful for the purposes of contingency planning and accident management. Some eight centres took part. Emergency exercises or similar events based on scenarios involving contamination of the foodchain...... and inhabited areas were used. Feedback from all of the demonstrations was positive with constructive criticism given on how to improve the navigation, structure and format of the handbooks. All of the key improvements highlighted during the demonstrations were taken into account and included in version 2...

  9. Performance of mushroom fruiting for large scale commercial production

    International Nuclear Information System (INIS)

    Mat Rosol Awang; Rosnani Abdul Rashid; Hassan Hamdani Mutaat; Mohd Meswan Maskom

    2012-01-01

    The paper described the determination of mushroom fruiting yield, which is vital to economics of mushroom production. Consistency in mushroom yields enabling an estimation to be made for revenues and hence profitability could be predicted. It has been reported by many growers, there are a large variation in mushroom yields over different times of production. To assess such claims we have run four batches of mushroom fruiting and the performance fruiting body productions are presented. (author)

  10. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Keywords. Primary production; upwelling; winter cooling; Ekman-pumping, nutrient transport; Arabian Sea ... on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter.

  11. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  12. Full-scale demonstration. Fire testing of a system for penetration sealing based on foamed silicone elastomer: Studsvik 77-05-26

    International Nuclear Information System (INIS)

    Brown, A.

    1978-06-01

    Testing of a system for making fire retardant penetration seals based on foamed-in-place silicone elastomer is described. The report covers - Concept of fire retardant penetration seals and the Chemtrol system, Design FC 225 - Account of materials used to prepare seals and method of application - Test assembly and full-scale facility at Studsvik - Classification of seals used in demonstration - Diagrams of seals and photographs taken after demonstration

  13. Full-scale demonstration. Fire testing of a system for penetration sealing based on foamed silicone elastomer: Studsvik 77-05-26

    International Nuclear Information System (INIS)

    Brown, A.

    1978-06-01

    Testing of a system for making fire retardant penetration seals based on foamed-in-place silicone elastomer is described. The report covers - Concept of fire retardant penetration seals and the Chemtrol system, Design FC 225 - Account of materials used to prepare seals and method of application - Test assembly and full-scale facility at Studsvik - Classification of seals used in demonstration - Diagrams of seals and photographs taken after demonstration (author)

  14. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  15. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    Science.gov (United States)

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  16. Scaling Up the Production of More Nutritious Yellow Potatoes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    English · Français ... Researchers will scale up improved yellow potato varieties that -yield 15% more than other varieties -are ... -have nearly 20% more iron and zinc than the most cultivated Colombian variety The project will deliver these ...

  17. Optimization of laboratory scale production and purification of ...

    African Journals Online (AJOL)

    Microcystin content is however highly variable and optimised culture conditions are essential to produce viable yields of microcystin for purification. We describe the optimization of culture conditions and evaluation of various purification methods to enhance the yield of microcystin from laboratory scale culture.

  18. Massive scale production and installation of flexible printed solar cells

    DEFF Research Database (Denmark)

    Hösel, Markus

    Printed solar cells can be prepared on a large scale (kilometers) on relatively small equipment using little material. The performance and lifetime are lower and shorter than many conventional PV technology but manufacturing speed, manufacturing cost, energy pay back time and installation speed can...... by far exceed known energy technologies with a significant potential for further improvement through architecture development and process intensification....

  19. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  20. Evaluation of enzymatic reactors for large-scale panose production.

    Science.gov (United States)

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  1. Large-scale distribution of tritium in a commercial product

    International Nuclear Information System (INIS)

    Combs, F.; Doda, R.J.

    1979-01-01

    Tritium enters the environment from various sources including nuclear reactor operations, weapons testing, natural production, and from the manufacture, use and ultimate disposal of commercial products containing tritium. A recent commercial application of tritium in the United States of America involves the backlighting of liquid crystal displays (LCD) in digital electronic watches. These watches are distributed through normal commercial channels to the general public. One million curies (MCi) of tritium were distributed in 1977 in this product. This is a significant quantity of tritium compared with power reactor-produced tritium (3MCi yearly) or with naturally produced tritium (6MCi yearly). This is the single largest commercial application involving tritium to date. The final disposition of tritium from large quantities of this product, after its useful life, must be estimated by considering the means of disposal and the possibility of dispersal of tritium concurrent with disposal. The most likely method of final disposition of this product will be disposal in solid refuse; this includes burial in land fills and incineration. Burial in land fills will probably contain the tritium for its effective lifetime, whereas incineration will release all the tritium gas (as the oxide) to the atmosphere. The use and disposal of this product will be studied as part of an environmental study that is at present being prepared for the U.S. Nuclear Regulatory Commission. (author)

  2. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    .49/MT CO2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO2 captured can be further reduced to $125.51/MWh and $39.90/MT CO2 for a further optimized PCC process defined as LB1-CREB. Most notably, the Linde-BASF process options assessed have already demonstrated the potential to lower the cost of CO2 captured below the DOE target of $40/MT CO2 at the 550 MWe scale for second generation PCC technologies. Project organization, structure, goals, tasks, accomplishments, process criteria and milestones will be presented in this report along with highlights and key results from parametric and long-duration testing of the Linde-BASF PCC pilot. The parametric and long-duration testing campaigns were aimed at validating the performance of the PCC technology against targets determined from a preliminary techno-economic assessment. The stability of the solvent with extended operation in a realistic power plant setting was measured with performance verified. Additionally, general solvent classification information, process operating conditions, normalized solvent performance data, solvent stability test results, flue gas conditions data, CO2 purity data in the gaseous product stream, steam requirements and process flow diagrams, and updated process economic data for a scaled-up 550 MWe supercritical power plant with CO2 capture are presented and discussed in this report.

  3. Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I

    Science.gov (United States)

    The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

  4. Test results of full-scale high temperature superconductors cable models destined for a 36 kV, 2 kA(rms) utility demonstration

    DEFF Research Database (Denmark)

    Daumling, M.; Rasmussen, C.N.; Hansen, F.

    2001-01-01

    Power cable systems using high temperature superconductors (HTS) are nearing technical feasibility. This presentation summarises the advancements and status of a project aimed at demonstrating a 36 kV, 2 kA(rms) AC cable system by installing a 30 m long full-scale functional model in a power...

  5. Ecogrid EU: a large scale smart grids demonstration of real time market-based integration of numerous small der and DR

    NARCIS (Netherlands)

    Ding, Y.; Nyeng, P.; Ostergaard, J.; Trong, M.D.; Pineda, S.; Kok, K.; Huitema, G.B.; Grande, O.S.

    2012-01-01

    This paper provides an overview of the Ecogrid EU project, which is a large-scale demonstration project on the Danish island Bornholm. It provides Europe a fast track evolution towards smart grid dissemination and deployment in the distribution network. Objective of Ecogrid EU is to illustrate that

  6. An Empirical Study on the Moderate Scale of Food-production-based Family Farm in Guangxi

    Institute of Scientific and Technical Information of China (English)

    Yaogui WU

    2016-01-01

    The moderate scale family farm is the future agricultural business entity in China,and the scale of family farm is a key factor affecting its development.With Guigang City in Guangxi as a point for the study,from the perspective of maximizing income of rural households,this paper uses production function model to calculate the moderate scale of food-production-based family farm at 5.7 ha,and makes policy recommendations.

  7. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion.

    Science.gov (United States)

    Grimm, Philipp; Risse, Joe M; Cholewa, Dominik; Müller, Jakob M; Beshay, Usama; Friehs, Karl; Flaschel, Erwin

    2015-12-10

    In this study the use of Euglena gracilis biomass for α-tocopherol, paramylon and biogas production in a value-added chain was investigated. Therefore, we analyzed the dry cell weight and product concentrations at different growth phases during heterotrophic, photoheterotrophic and photoautotrophic cultivation in a low-cost minimal medium. Furthermore, the specific biogas yields for differently derived biomass with and without product recovery were investigated. We demonstrate that growth phase and cultivation mode not only have a significant impact on product formation, but also influence the yield of biogas obtained from anaerobic digestion of Euglena gracilis biomass. The maximum dry cell weight concentration ranged from 12.3±0.14gL(-1) for heterotrophically to 3.4±0.02gL(-1) for photoautotrophically grown Euglena gracilis cells. The heterotrophically grown biomass accumulated product concentrations of 5.3±0.12mgL(-1) of α-tocopherol and 9.3±0.1gL(-1) of paramylon or 805±10.9mL of biogasgvs(-1) (per gram volatile solids). The results for photoautotrophically grown cells were 8.6±0.22mgL(-1) of α-tocopherol and 0.78±0.01gL(-1) of paramylon or 648±7.2mL of biogasgvs(-1). For an energy-saving downstream procedure the extracting agent methanol does not have to be removed strictly. Samples with residual methanol showed a significantly increased biogas yield, because the solvent can be used as an additional substrate for methane production by archaebacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  9. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  10. Test Production of Anti-Corrosive Paint in Laboratory Scale

    International Nuclear Information System (INIS)

    Thein Thein Win, Daw; Khin Aye Tint, Daw; Wai Min Than, Daw

    2003-02-01

    The main purpose of this project is to produce the anti-corrosive paint in laboratory scale. In these experiments, local raw materials, natural resin (shellac), pine oil, turpentine and ethyl alcohol wer applied basically. Laboratory trials were undrtaken to determine the suitablity of raw materials ane their composition for anti-corrosive paint manufacture.The results obtained show that the anti-corrosive paint from experiment No.(30) is suitable for steel plate and this is also considered commercially economics

  11. Scaling Law for Irreversible Entropy Production in Critical Systems.

    Science.gov (United States)

    Hoang, Danh-Tai; Prasanna Venkatesh, B; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-06-09

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism.

  12. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  13. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  14. Large scale production of antitumor cucurbitacins from Ecballium ...

    African Journals Online (AJOL)

    ajl6

    2012-08-16

    Aug 16, 2012 ... 1Department of Plant Biotechnology, National Research Center, Cairo, 12622 Egypt. ... Bioreactor plays a vital role in the commercial production of secondary metabolites .... comparing the peak area with that at the same retention time with ... air dried by rotatory evaporator and then extracted using ethanol:.

  15. Resource Use Productivity Among Small-Scale Farmers In Yola ...

    African Journals Online (AJOL)

    The findings of the study revealed that characteristics of the farmers such as age, level of education, farm size, sources of farm labour and of farm finance do not have significant relationship with resource use productivity. However, net annual income from farming was found to have a significant relationship with resource ...

  16. Guide to Large Scale Production of Moringa oleifera (Lam.) for ...

    African Journals Online (AJOL)

    Thus, the use of environmentally safe natural pesticides as an alternative is being embraced in aquaculture because they have a short time of toxicity disappearance and biodegradable. This will enhance the principles of sustainable aquaculture production and its management in Nigeria. In Southwestern Nigeria, there is ...

  17. Economic Analysis Of Small Scale Poultry Production In Zaria ...

    African Journals Online (AJOL)

    Data collected was analyzed using descriptive statistics, farm budgeting analysis, production and profit functions. Fixed and variable costs were estimated and deducted from gross returns to give net cash returns. The major investment includes cost of day old chicks and feeding. Feeding constitute the highest, accounting for ...

  18. Quality Assurance in Large Scale Online Course Production

    Science.gov (United States)

    Holsombach-Ebner, Cinda

    2013-01-01

    The course design and development process (often referred to here as the "production process") at Embry-Riddle Aeronautical University (ERAU-Worldwide) aims to produce turnkey style courses to be taught by a highly-qualified pool of over 800 instructors. Given the high number of online courses and tremendous number of live sections…

  19. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  20. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH{sub 4}+H{sub 2}O = 3H{sub 2}+CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm{sup 3}/h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  1. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH 4 +H 2 O = 3H 2 +CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm 3 /h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  2. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Science.gov (United States)

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  3. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  4. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    . The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of 125/129 I and 99 Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  5. SWEET CORN FARMING: THE EFFECT OF PRODUCTION FACTOR, EFFICIENCY AND RETURN TO SCALE

    Directory of Open Access Journals (Sweden)

    Dwijatenaya I.B.M.A.

    2017-10-01

    Full Text Available This research aims to determine the effect of production factors on the sweet corn production, the efficiency of sweet corn farming, and the return to scale of sweet corn production. The sampling technique was taken by proportionate stratified random sampling method with the sample number of 57 people while the analyzer used was the program of Frointer 4.1c. The results show that the production factors of the land farm, seed, and fertilizer have a positive and significant effect on sweet corn production. On the other hand, labor production factors have a positive but not significant effect on sweet corn production. It also found that technical efficiency, price efficiency, and economic efficiency of sweet corn farming in Muara Wis Sub-district of Kutai Kartanegara Regency are not efficient yet. The return to scale of sweet corn yield has an increasing return to scale condition.

  6. APPLE VINEGAR PRODUCTION BY FERMENTATION IN PILOT SCALE

    OpenAIRE

    Reyna M., Leoncio; Robles, R.; Huamán R., M. A.

    2014-01-01

    Vinegar has been elaborated from apple juice by inmersed fermentation at room temperature. The process was developed in two stages, firstly, the alcoholic termentation was carried out using Saccharomyces Cerevísíae yeast, Ellipsoideus variety. Secondly, an acetic fermentation was carried out using acetobacter. The global yield of the process, based on row material usage was around 52%. The product obtained has an acidity of 6,8% in acetic acid and fulfill the market requirements. Se ha ela...

  7. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  8. Ready-to-use foods for management of moderate acute malnutrition: considerations for scaling up production and use in programs.

    Science.gov (United States)

    Osendarp, Saskia; Rogers, Beatrice; Ryan, Kelsey; Manary, Mark; Akomo, Peter; Bahwere, Paluku; Belete, Hilina; Zeilani, Mamane; Islam, Munirul; Dibari, Filippo; De Pee, Saskia

    2015-03-01

    Ready-to-use foods are one of the available strategies for the treatment of moderate acute malnutrition (MAM), but challenges remain in the use of these products in programs at scale. This paper focuses on two challenges: the need for cheaper formulations using locally available ingredients that are processed in a safe, reliable, and financially sustainable local production facility; and the effective use of these products in large-scale community-based programs. Linear programming tools can be used successfully to design local compositions that are in line with international guidelines, low in cost, and acceptable, and the efficacy of these local formulations in the treatment of MAM was recently demonstrated in Malawi. The production of local formulations for programs at scale relies on the existence of a reliable and efficient local production facility. Technical assistance may be required in the development of sustainable business models at an early stage in the process, taking into account the stringent product quality and safety criteria and the required investments. The use of ready-to-use products, as of any food supplement, in programs at scale will be affected by the practice of household sharing and diversion of these products for other uses. Additional measures can be considered to account for sharing. These products designed for the treatment and prevention of MAM are to be used in community-based programs and should therefore be used in conjunction with other interventions and designed so that they do not replace the intake of other foods and breastmilk. Remaining challenges and implications for the (operations) research agenda are discussed.

  9. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mohagheghi, Ali [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagle, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stickel, Jonathan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dong, Tao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kruger, Jacob S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hyman, Deborah A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid was recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.

  10. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.

  11. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  12. Potential for large-scale uses for fission-product Xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  13. The scale of hospital production in different settings

    DEFF Research Database (Denmark)

    Asmild, Mette; Hollingsworth, Bruce; Birch, Stephen

    2013-01-01

    This paper analyses the productive efficiency of 141 public hospitals from 1998-2004 in two Canadian provinces; one a small province with a few small cities and a generally more rural population and the other a large province that is more urban in nature, with a population who mainly live in large...... - different hospitals may have different optimal sizes, or different efficient modes of operation, depending on location, the population they serve, and the policies their respective provincial governments wish to implement. In addition, there are lessons to be learned by comparing the hospitals across...

  14. Toward Elimination of Dog-Mediated Human Rabies: Experiences from Implementing a Large-scale Demonstration Project in Southern Tanzania.

    Science.gov (United States)

    Mpolya, Emmanuel Abraham; Lembo, Tiziana; Lushasi, Kennedy; Mancy, Rebecca; Mbunda, Eberhard M; Makungu, Selemani; Maziku, Matthew; Sikana, Lwitiko; Jaswant, Gurdeep; Townsend, Sunny; Meslin, François-Xavier; Abela-Ridder, Bernadette; Ngeleja, Chanasa; Changalucha, Joel; Mtema, Zacharia; Sambo, Maganga; Mchau, Geofrey; Rysava, Kristyna; Nanai, Alphoncina; Kazwala, Rudovick; Cleaveland, Sarah; Hampson, Katie

    2017-01-01

    A Rabies Elimination Demonstration Project was implemented in Tanzania from 2010 through to 2015, bringing together government ministries from the health and veterinary sectors, the World Health Organization, and national and international research institutions. Detailed data on mass dog vaccination campaigns, bite exposures, use of post-exposure prophylaxis (PEP), and human rabies deaths were collected throughout the project duration and project areas. Despite no previous experience in dog vaccination within the project areas, district veterinary officers were able to implement district-wide vaccination campaigns that, for most part, progressively increased the numbers of dogs vaccinated with each phase of the project. Bite exposures declined, particularly in the southernmost districts with the smallest dog populations, and health workers successfully transitioned from primarily intramuscular administration of PEP to intradermal administration, resulting in major cost savings. However, even with improved PEP provision, vaccine shortages still occurred in some districts. In laboratory diagnosis, there were several logistical challenges in sample handling and submission but compared to the situation before the project started, there was a moderate increase in the number of laboratory samples submitted and tested for rabies in the project areas with a decrease in the proportion of rabies-positive samples over time. The project had a major impact on public health policy and practice with the formation of a One Health Coordination Unit at the Prime Minister's Office and development of the Tanzania National Rabies Control Strategy, which lays a roadmap for elimination of rabies in Tanzania by 2030 by following the Stepwise Approach towards Rabies Elimination (SARE). Overall, the project generated many important lessons relevant to rabies prevention and control in particular and disease surveillance in general. Lessons include the need for (1) a specific unit in the

  15. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  16. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  17. The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    Science.gov (United States)

    Finnerty, P.; Aguayo, E.; Amman, M.; Avignone, F. T., Iii; Barabash, A. S.; Barton, P. J.; Beene, J. R.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Fraenkle, F. M.; Galindo-Uribarri, A.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; Luke, P. N.; MacMullin, S.; Marino, M. G.; Martin, R. D.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Perumpilly, G.; Phillips, D. G., Ii; Poon, A. W. P.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Yaver, H.; Young, A. R.; Yu, C.-H.; Yumatov, V.; Majorana Collaboration

    2014-03-01

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2).

  18. Logistics of large scale commercial IVF embryo production.

    Science.gov (United States)

    Blondin, P

    2016-01-01

    The use of IVF in agriculture is growing worldwide. This can be explained by the development of better IVF media and techniques, development of sexed semen and the recent introduction of bovine genomics on farms. Being able to perform IVF on a large scale, with multiple on-farm experts to perform ovum pick-up and IVF laboratories capable of handling large volumes in a consistent and sustainable way, remains a huge challenge. To be successful, there has to be a partnership between veterinarians on farms, embryologists in the laboratory and animal owners. Farmers must understand the limits of what IVF can or cannot do under different conditions; veterinarians must manage expectations of farmers once strategies have been developed regarding potential donors; and embryologists must maintain fluent communication with both groups to make sure that objectives are met within predetermined budgets. The logistics of such operations can be very overwhelming, but the return can be considerable if done right. The present mini review describes how such operations can become a reality, with an emphasis on the different aspects that must be considered by all parties.

  19. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  20. Large Scale Production of Stem Cells and Their Derivatives

    Science.gov (United States)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  1. A test trial irradiation of natural rubber latex on large scale for the production of examination gloves in a production scale

    International Nuclear Information System (INIS)

    Devendra, R.; Kulatunge, S.; Chandralal, H.N.K.K.; Kalyani, N.M.V.; Seneviratne, J.; Wellage, S.

    1996-01-01

    Radiation Vulcanization of natural rubber latex has been developed extensively through various research and development programme. During these investigations many data was collected and from these data it was proved that radiation vulcanized natural rubber latex (RVNRL) can be used as a new material for industry (RVNRL symposium 1989; Makuuchi IAEA report). This material has been extensively tested in making of dipped goods and extruded products. However these investigations were confined only to laboratory experiments and these experiments mainly reflected material properties of RVNRL and only a little was observed about its behavior in actual production scale operation. The present exercise was carried out mainly to study the behavior of the material in production scale by irradiating latex on a large scale and producing gloves in a production scale plant. It was found that RVNRL can be used in conventional glove plants without making major alteration to the plant. Quality of the gloves that were produced using RVNRL is acceptable. It was also found that the small deviation of vulcanization dose will affect the crosslinking density of films. This will drastically reduce the tensile strength of the film. Crosslinking density or pre-vulcanized relax modulus (PRM) at 100% is a reliable property to control the pre vulcanization of latex by radiation

  2. Bench- and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils

    International Nuclear Information System (INIS)

    Morris, M.I.; Sams, R.J.; Gillis, G.; Helsel, R.W.; Alperin, E.S.; Geisler, T.J.; Groen, A.; Root, D.

    1995-01-01

    Thermal desorption is an innovative technology that has seen significant growth in applications to organically contaminated soils and sludges for the remediation of hazardous, radioactive and mixed waste sites. This paper will present the results of a bench and pilot-scale demonstration of this technology for the removal of mercury from the Lower East Fork Poplar Creek floodplain soil. Results demonstrate that the mercury in this soil can be successfully removed to the target treatment levels of 10 milligrams per kilogram (mg/kg) and that all process residuals could be rendered RCRA-nonhazardous as defined by the Resource Conservation and Recovery Act. Sampling and analyses of the desorber off-gas before and after the air pollution control system demonstrated effective collection of mercury and organic constituents. Pilot-scale testing was also conducted to verify requirements for material handling of soil into and out of the process. This paper will also present a conceptual design and preliminary costs of a full-scale system, including feed preparation, thermal treatment, and residuals handling for the soil

  3. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  4. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Directory of Open Access Journals (Sweden)

    Yann Nicolas Barbot

    2015-09-01

    Full Text Available The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP and biomethane recovery of industrial Laminaria japonica waste (LJW in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC, as well as a co-digestion approach with maize silage (MS did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.

  5. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  6. Scale-up of industrial biodiesel production to 40 m3using a liquid lipase formulation

    DEFF Research Database (Denmark)

    Price, Jason; Nordblad, Mathias; Martel, Hannah H.

    2016-01-01

    In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m3 along with the design of a 4 m3continuous process for enzymatic biodiesel production catalysed by NS-40116 (a liquid formulation of a modified Thermomyces lanuginosus lipase). Based on the analysis of actual pilot plant...... the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling...... price of 0.6 USD/kg and a one-time use of the enzyme (0.1% (w/woil) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. This article is protected by copyright. All rights reserved...

  7. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    NARCIS (Netherlands)

    de Jong, S.A.|info:eu-repo/dai/nl/41200836X; Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.|info:eu-repo/dai/nl/202130703

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  8. Wind and Photovoltaic Large-Scale Regional Models for hourly production evaluation

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Maule, Petr; Hahmann, Andrea N.

    2015-01-01

    This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesosca...... of the transmission system, especially regarding the cross-border power flows. The tuning of these regional models is done using historical meteorological data acquired on a per-country basis and using publicly available data of installed capacity.......This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesoscale...

  9. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  10. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  11. Review of AVLIS technology for production-scale LIS systems and construction

    International Nuclear Information System (INIS)

    Davis, J.I.; Moses, E.I.

    1983-12-01

    The use of lasers for uranium and/or plutonium isotope separation is expected to be the first application of lasers utilizing specific atomic processes for large-scale materials processing. Specific accomplishments toward the development of production-scale technology for LIS systems will be presented, along with the status of major construction projects. 24 figures

  12. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  13. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  14. Scale up of NiTi shape memory alloy production by EBM

    Science.gov (United States)

    Otubo, J.; Rigo, O. D.; Moura Neto, C.; Kaufman, M. J.; Mei, P. R.

    2003-10-01

    The usual process to produce NiTi shape memory alloy is by vacuum induction melting (VIM) using a graphite crucible, which causes contamination of the melt with carbon. Contamination with oxygen originates from the residual oxygen inside the melting chamber. An alternative process to produce NiTi alloys is by electron beam melting (EBM) using a water-cooled copper crucible that eliminates carbon contamination, and the oxygen contamination would be minimal due to operation in a vacuum of better than 10^{-2} Pa. In a previous work, it was demonstrated that the technique is feasible for button shaped samples weighing around 30g. The present work presents the results on the scale up program that enables the production of larger samples/ingots. The results are very promising in terms of chemical composition homogeneity as well as in terms of carbon contamination, the latter being four to ten times lower than the commercially-produced VIM products, and in terms of final oxygen content which is shown to depend primarily on the starting raw materials.

  15. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    Science.gov (United States)

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  16. Micro-scale energy valorization of grape marcs in winery production plants

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  17. Micro-scale energy valorization of grape marcs in winery production plants

    International Nuclear Information System (INIS)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-01-01

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year −1 electrical and 8900 kW h year −1 thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective

  18. Some effects of integrated production planning in large-scale kitchens

    DEFF Research Database (Denmark)

    Engelund, Eva Høy; Friis, Alan; Jacobsen, Peter

    2005-01-01

    Integrated production planning in large-scale kitchens proves advantageous for increasing the overall quality of the food produced and the flexibility in terms of a diverse food supply. The aim is to increase the flexibility and the variability in the production as well as the focus on freshness ...

  19. Results of a pilot scale melter test to attain higher production rates

    International Nuclear Information System (INIS)

    Elliott, M.L.; Perez, J.M. Jr.; Chapman, C.C.

    1991-01-01

    A pilot-scale melter test was completed as part of the effort to enhance glass production rates. The experiment was designed to evaluate the effects of bulk glass temperature and feed oxide loading. The maximum glass production rate obtained, 86 kg/hr-m 2 , was over 200% better than the previous record for the melter used

  20. Large-scale enzymatic production of natural flavour esters in organic solvent with continuous water removal.

    Science.gov (United States)

    Gubicza, L; Kabiri-Badr, A; Keoves, E; Belafi-Bako, K

    2001-11-30

    A new, large-scale process was developed for the enzymatic production of low molecular weight flavour esters in organic solvent. Solutions for the elimination of substrate and product inhibitions are presented. The excess water produced during the process was continuously removed by hetero-azeotropic distillation and esters were produced at yields of over 90%.

  1. Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production.

    Science.gov (United States)

    Tabanelli, Giulia; Pasini, Federica; Riciputi, Ylenia; Vannini, Lucia; Gozzi, Giorgia; Balestra, Federica; Caboni, Maria Fiorenza; Gardini, Fausto; Montanari, Chiara

    2018-03-01

    Because of the impossibility to consume food of animal origin, vegan consumers are looking for substitutes that could enrich their diet. Among many substitutes, fermented nut products are made from different nut types and obtained after soaking, grinding, and fermentation. Although other fermented vegetable products have been deeply investigated, there are few data about the fermentative processes of nut-based products and the microbial consortia able to colonize these products are not yet studied. This study characterized a hand-made vegan product obtained from cashew nut. Lactic acid bacteria responsible for fermentation were identified, revealing a succession of hetero- and homo-fermentative species during process. Successively, some lactic acid bacteria isolates from the home-made vegan product were used for a pilot-scale fermentation. The products obtained were characterized and showed features similar to the home-made one, although the microbiological hazards have been prevented through proper and rapid acidification, enhancing their safety features. Spontaneous fermented products are valuable sources of microorganisms that can be used in many food processes as starter cultures. The lactic acid bacteria isolated in this research can be exploited by industries to develop new foods and therefore to enter new markets. The use of selected starter cultures guarantees good organoleptic characteristics and food safety (no growth of pathogens). © 2018 Institute of Food Technologists®.

  2. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Vatsala, T.M.; Raj, S. Mohan; Manimaran, A. (Shri AMM Murugappa Chettiar Research Centre, Photosynthesis and Energy Division, Tharamani, Chennai, India, 600)

    2008-10-15

    We evaluated the feasibility of improving the scale of hydrogen (H{sub 2}) production from sugar cane distillery effluent using co-cultures of Citrobacter freundii 01, Enterobacter aerogenes E10 and Rhodopseudomonas palustris P2 at 100 m{sup 3} scale. The culture conditions at 100 ml and 2 L scales were optimized in minimal medium and we observed that the co-culture of the above three strains enhanced H{sub 2} productivity significantly. Results at the 100 m{sup 3} scale revealed a maximum of 21.38 kg of H{sub 2}, corresponding to 10692.6 mol, which was obtained through batch method at 40 h from reducing sugar (3862.3 mol) as glucose. The average yield of H{sub 2} was 2.76 mol mol{sup -1} glucose, and the rate of H{sub 2} production was estimated as 0.53 kg/100 m{sup 3}/h. Our results demonstrate the utility of distillery effluent as a source of clean alternative energy and provide insights into treatment for industrial exploitation. (author)

  3. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    Science.gov (United States)

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  4. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  5. Ecogrid EU - a large scale smart grids demonstration of real time market-based integration of numerous small DER and DR

    DEFF Research Database (Denmark)

    Ding, Yi; Nyeng, Preben; Ostergaard, Jacob

    2012-01-01

    that modern information and communication technology (ICT) and innovative market solutions can enable the operation of a distribution power system with more than 50% renewable energy sources (RES). This will be a major contribution to the European 20-20-20 goals. Furthermore, the proposed Ecogrid EU market......This paper provides an overview of the Ecogrid EU project, which is a large-scale demonstration project on the Danish island Bornholm. It provides Europe a fast track evolution towards smart grid dissemination and deployment in the distribution network. Objective of Ecogrid EU is to illustrate...... will offer the transmission system operator (TSO) additional balancing resources and ancillary services by facilitating the participation of small-scale distributed energy resources (DERs) and small end-consumers into the existing electricity markets. The majority of the 2000 participating residential...

  6. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  7. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    Science.gov (United States)

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  8. Centers for Disease Control and Prevention (CDC) Radiation Hazard Scale Data Product Review Feedback Report

    Energy Technology Data Exchange (ETDEWEB)

    Askin, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buddemeier, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alai, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-20

    In support of the Department of Energy (DOE) National nuclear Security Administration (NNSA) and the Centers for Disease Control and Prevention (CDC), Lawrence Livermore National Laboratory (LLNL) assisted in the development of new data templates for disseminating and communicating FRMAC1 data products using the CDC Radiation Hazard Scale communication tool. To ensure these data products will be useful to stakeholders during a radiological emergency, LLNL facilitated opportunities for product socialization and review.

  9. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia; FINAL

    International Nuclear Information System (INIS)

    Robert De Carrera; Mike Ohl

    2002-01-01

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill

  10. Large-scale production and properties of human plasma-derived activated Factor VII concentrate.

    Science.gov (United States)

    Tomokiyo, K; Yano, H; Imamura, M; Nakano, Y; Nakagaki, T; Ogata, Y; Terano, T; Miyamoto, S; Funatsu, A

    2003-01-01

    An activated Factor VII (FVIIa) concentrate, prepared from human plasma on a large scale, has to date not been available for clinical use for haemophiliacs with antibodies against FVIII and FIX. In the present study, we attempted to establish a large-scale manufacturing process to obtain plasma-derived FVIIa concentrate with high recovery and safety, and to characterize its biochemical and biological properties. FVII was purified from human cryoprecipitate-poor plasma, by a combination of anion exchange and immunoaffinity chromatography, using Ca2+-dependent anti-FVII monoclonal antibody. To activate FVII, a FVII preparation that was nanofiltered using a Bemberg Microporous Membrane-15 nm was partially converted to FVIIa by autoactivation on an anion-exchange resin. The residual FVII in the FVII and FVIIa mixture was completely activated by further incubating the mixture in the presence of Ca2+ for 18 h at 10 degrees C, without any additional activators. For preparation of the FVIIa concentrate, after dialysis of FVIIa against 20 mm citrate, pH 6.9, containing 13 mm glycine and 240 mm NaCl, the FVIIa preparation was supplemented with 2.5% human albumin (which was first pasteurized at 60 degrees C for 10 h) and lyophilized in vials. To inactivate viruses contaminating the FVIIa concentrate, the lyophilized product was further heated at 65 degrees C for 96 h in a water bath. Total recovery of FVII from 15 000 l of plasma was approximately 40%, and the FVII preparation was fully converted to FVIIa with trace amounts of degraded products (FVIIabeta and FVIIagamma). The specific activity of the FVIIa was approximately 40 U/ micro g. Furthermore, virus-spiking tests demonstrated that immunoaffinity chromatography, nanofiltration and dry-heating effectively removed and inactivated the spiked viruses in the FVIIa. These results indicated that the FVIIa concentrate had both high specific activity and safety. We established a large-scale manufacturing process of human plasma

  11. Assessment of Small-scale Buffalo Milk Dairy Production-A Premise for a Durable Development

    Directory of Open Access Journals (Sweden)

    Marian MIHAIU

    2012-05-01

    Full Text Available Buffalo husbandry is an important source of income for a number of small-scale producers in Romania that is why an assessment of its products quality is much needed for improvement and evaluation of their vulnerability to international competition. In order to ascertain possible developments in the buffalo dairy sector and to broadly identify areas of intervention that favor small-scale dairy producers, the study examined the potential to improve buffalo milk production by evaluating its authenticity and hygienic quality. The methods used involved the molecular testing (PCR-technique for identifying cow, sheep or goat DNA in the dairy products samples collected from the small-scale producers market. The hygienic quality of these samples was determined through classical microbiology methods, highly developed techniques (Trek System and PCR for bacterial species confirmation. The results showed that a high percent (65%, from the products found were adulterated with other species milk, mostly cow milk. The most commonly falsified buffalo dairy products were the cheese and the traditional product telemea. The prevalence of the bacterial species identified belonged to Listeria innocua and Listeria welshmeri. The conclusion of this study is the need of a durable development system in this particular dairy chain to improve and assure the authenticity and quality of the small-scale producers products and their reliability for the consumers.

  12. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  13. Decadal- to Orbital-Scale Links Between Climate, Productivity and Denitrification on the Peru Margin

    Science.gov (United States)

    Higginson, M. J.; Altabet, M. A.; Herbert, T. D.

    2002-12-01

    Denitrification is the predominant global loss term for combined nitrogen and can exert a major control on its oceanic inventory, global productivity and atmospheric CO2. Our prior work demonstrates that proxy records for changing denitrification, oxygenation and productivity in the recent geological past in the Arabian Sea exhibit unprecedented similarity with abrupt climate fluctuations recorded in high-latitude ice-cores. Since the Peru Margin and Arabian Sea together constitute almost two-thirds of global marine water-column denitrification, changes in concert in these two regions could potentially have effected rapid global climate changes through an oceanic mechanism. The Peru Margin is intimately coupled to the Equatorial Pacific, source of El Ni&ño-La Niña SST, productivity and precipitation anomalies. Here, biogeochemical cycles are especially sensitive to abrupt climatic changes on decadal time-scales by virtue of this ENSO coupling. The purpose of our research is to investigate whether longer changes in tropical Pacific oceanography represent a 'scaling up' of anomalous ENSO conditions, modulated by both internal (e.g. nutrient inventory or WPWP heat budget) and external (e.g. orbital) forcing throughout the last glacial/inter-glacial cycle. Here we present first results of a detailed investigation of recently-recovered sediments from ODP Site 1228 on the Peru margin upper continental slope, in an attempt to capture some of the essential aspects of ENSO-like variability. Despite the existing availability of high quality sediment cores from this margin, little detailed paleoclimatic information currently exists because of poor sedimentary carbonate preservation (exacerbated post-recovery) which has limited generation of essential chronostratigraphic controls. Instead, we rely on the development and novel application of compound-specific AMS dating verified and supplemented by intermittent foraminiferal and bulk-carbon AMS dates, a magnetic paleo

  14. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    CSIR Research Space (South Africa)

    Mbanjwa, M

    2014-06-01

    Full Text Available the design and fabrication of a multiplexed microfluidic system for producing biocatalytic microspheres. The microfluidic system consists of an array of 10 parallel microfluidic circuits, for simultaneous operation to demonstrate increased production...

  15. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Ruifang Guo

    2016-07-01

    Full Text Available Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipitation is the most important input in basin-scale water balance. This study uses quality-controlled rain gauge data and prevailing satellite products (Tropical Rainfall Measuring Mission (TRMM 3B43, 3B42 and 3B42RT to examine the consistency and discrepancies between them at different scales. Rain gauges and TRMM products were available in the Poyang Lake Basin, China, from 1998 to 2007 (3B42RT: 2000–2007. Our results show that the performance of TRMM products generally increases with increasing spatial scale. At both the monthly and annual scales, the accuracy is highest for TRMM 3B43, with 3B42 second and 3B42RT third. TRMM products generally overestimate precipitation because of a high frequency and degree of overestimation in light and moderate rain cases. At the daily scale, the accuracy is relatively low between TRMM 3B42 and 3B42RT. Meanwhile, the performances of TRMM 3B42 and 3B42RT are highly variable in different seasons. At both the basin and pixel scales, TRMM 3B43 and 3B42 exhibit significant discrepancies from July to September, performing worst in September. For TRMM 3B42RT, all statistical indices fluctuate and are low throughout the year, performing worst in July at the pixel scale and January at the basin scale. Furthermore, the spatial distributions of the statistical indices of TRMM 3B43 and 3B42 performed well, while TRMM 3B42RT displayed a poor performance.

  16. Consumer involvement with products: comparison of PII and NIP scales in the Brazilian context

    Directory of Open Access Journals (Sweden)

    Victor Manoel Cunha de Almeida

    2014-05-01

    Full Text Available This study aims to evaluate the extent to which two scales of consumer involvement with products converge: PII (Personal Involvement Inventory, by Zaichkowsky (1994, and NIP (New Involvement Profile, by Jain and Srinivasan (1990. The literature review encompasses the main studies on measuring the involvement of consumers with products. Data was collected through a survey that was applied to a nonprobabilistic quota sample of undergraduate students from different institutions across the state of Rio de Janeiro. A total of 1,122 questionnaires were collected, of which 1,025 (91.4% were considered valid. In order to investigate the different levels of consumer involvement through different product categories, four products were used – sneakers, mobile phone, sports drinks and soft drinks. ANOVA and post hoc tests were used to verify the existence of significant difference on answers among product groups. This study’s substantive hypothesis, the degree of convergence between the classification results of the PII and NIP scales, was verified in two ways: through Spearman’s non-parametric correlation test and through the observation of the scales’ similar classification proportion rates. The scores’ independence was evaluated through the nonparametric Chi-Square test. Results show high classification convergence. The main contribution of this study is thus to empirically test the PII and NIP scales in the Brazilian context. Furthermore, the convergence of the scores of these scales suggests the possibility of comparing results of studies, using either scale.

  17. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Nilsson, Lars Ola; Hansen, Karin

    2012-01-01

    • Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal...... root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha¿¹ yr¿¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N...... availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N...

  18. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  19. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  20. Scale and diversity following manipulation of productivity and disturbance in Californian coastal grasslands

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Corbin, Jeff

    2012-01-01

    the responses of species–area relationships to experimental manipulations are more consistent than richness at any single scale. Location Northern Californian coastal grasslands. Methods We applied disturbance and productivity reduction treatments over 4 yr at two sites. We assessed changes in species richness...... known. We ask whether the response of species richness to experimental manipulation of productivity and disturbance varies across small spatial scales (0.016–4 m2). We show that species–area relationships are well suited to summarize cross-scale responses of species richness, and ask whether...... over five grain sizes, encompassing a 256-fold range of plot size. This allowed us to construct a species–area relationship for each experimental plot in each sampling year. We used the slope of the species–area relationship to summarize changes in species richness across multiple spatial scales...

  1. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    Science.gov (United States)

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  2. The use of production management techniques in the construction of large scale physics detectors

    CERN Document Server

    Bazan, A; Estrella, F; Kovács, Z; Le Flour, T; Le Goff, J M; Lieunard, S; McClatchey, R; Murray, S; Varga, L Z; Vialle, J P; Zsenei, M

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so- called Workflow Management software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector ...

  3. Micro-scaled products development via microforming deformation behaviours, processes, tooling and its realization

    CERN Document Server

    Fu, Ming Wang

    2014-01-01

    ‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and  presents a promising micromanufacturing process. When compared to other  micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, t...

  4. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    Science.gov (United States)

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  6. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  7. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor

    Directory of Open Access Journals (Sweden)

    Daniel Joe Dailin

    2016-07-01

    Full Text Available Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.

  8. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    Science.gov (United States)

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  9. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through experimental

  10. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  11. The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Arielle Muniz Kubota

    2017-07-01

    Full Text Available Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

  12. Testing the Scale Dependence of the Scale Factor $\\sigma_{eff}$ in Double Dijet Production at the LHC

    CERN Document Server

    Domdey, Svend; Wiedemann, Urs Achim

    2010-01-01

    The scale factor σ eff is the effective cross section used to characterize the measured rate of inclusive double dijet production in high energy hadron collisions. It is sensitive to the two-parton distributions in the hadronic projectile. In principle, the scale factor depends on the center of mass energy and on the minimal transverse energy of the jets contributing to the double dijet cross section. Here, we point out that proton-proton collisions at the LHC will provide for the first time experimental access to these scale dependences in a logarithmically wide, nominally perturbative kinematic range of minimal transverse energy between 10 GeV and 100 GeV. This constrains the dependence of two-parton distribution functions on parton momentum fractions and parton localization in impact parameter space. Novel information is to be expected about the transverse growth of hadronic distribution functions in the range of semi-hard Bjorken x (0.001 < x < 0.1) and high resolution Q^2. We discuss to what exten...

  13. Impact of livestock Scale on Rice Production in Battambang of Cambodia

    Science.gov (United States)

    Siek, D.; Xu, S. W.; Wyu; Ahmed, A.-G.

    2017-10-01

    Increasing the awareness of environmental protection especially in the rural regions is important as most the farmers reside in that region. Crop-livestock proudciton has proven in many ways to encourage environmental protection. This study analyzes among other factors the impacto of livestock scale on rice production. Two regressions: Ordinary Least Square (OLS) and stepwise regression was applied to investigate these interrelationship. The result stress of three factors encouraging livestock production namely size of farmland, scale of livestock and income acquired from other jobs. The study further provides recommends to the government based on the findings of the study.

  14. Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy.

    Science.gov (United States)

    Negrete, Alejandro; Esteban, Geoffrey; Kotin, Robert M

    2007-09-01

    A well-characterized manufacturing process for the large-scale production of recombinant adeno-associated vectors (rAAV) for gene therapy applications is required to meet current and future demands for pre-clinical and clinical studies and potential commercialization. Economic considerations argue in favor of suspension culture-based production. Currently, the only feasible method for large-scale rAAV production utilizes baculovirus expression vectors and insect cells in suspension cultures. To maximize yields and achieve reproducibility between batches, online monitoring of various metabolic and physical parameters is useful for characterizing early stages of baculovirus-infected insect cells. In this study, rAAVs were produced at 40-l scale yielding ~1 x 10(15) particles. During the process, dielectric spectroscopy was performed by real time scanning in radio frequencies between 300 kHz and 10 MHz. The corresponding permittivity values were correlated with the rAAV production. Both infected and uninfected reached a maximum value; however, only infected cell cultures permittivity profile reached a second maximum value. This effect was correlated with the optimal harvest time for rAAV production. Analysis of rAAV indicated the harvesting time around 48 h post-infection (hpi), and 72 hpi produced similar quantities of biologically active rAAV. Thus, if operated continuously, the 24-h reduction in the production process of rAAV gives sufficient time for additional 18 runs a year corresponding to an extra production of ~2 x 10(16) particles. As part of large-scale optimization studies, this new finding will facilitate the bioprocessing scale-up of rAAV and other bioproducts.

  15. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    Science.gov (United States)

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Assessment of Small-scale Buffalo Milk Dairy Production-A Premise for a Durable Development

    Directory of Open Access Journals (Sweden)

    Marian MIHAIU

    2012-05-01

    Full Text Available Buffalo husbandry is an important source of income for a number of small-scale producers in Romania that is why an assessment of its� product�s quality is much needed for improvement and evaluation of their vulnerability to international competition. In order to ascertain possible developments in the buffalo dairy sector and to broadly identify areas of intervention that favor small-scale dairy producers, the study examined the potential to improve buffalo milk production by evaluating its authenticity and hygienic quality. The methods used involved the molecular testing (PCR-technique for identifying cow, sheep or goat DNA in the dairy products� samples collected from the small-scale producers market. The hygienic quality of these samples was determined through classical microbiology methods, highly developed techniques (Trek System and PCR for bacterial species confirmation. The results showed that a high percent (65%, from the products found were adulterated with other species milk, mostly cow milk. The most commonly falsified buffalo dairy products were the cheese and the traditional product �telemea�. The prevalence of the bacterial species identified belonged to Listeria innocua and Listeria welshmeri. The conclusion of this study is the need of a durable development system in this particular dairy chain to improve and assure the authenticity and quality of the small-scale producers� products and their reliability for the consumers.

  17. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.

    Science.gov (United States)

    Gdowski, Andrew; Johnson, Kaitlyn; Shah, Sunil; Gryczynski, Ignacy; Vishwanatha, Jamboor; Ranjan, Amalendu

    2018-02-12

    The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters. The optimal total flow rate for synthesis of these nanolipomers was found to be 12 ml/min and flow rate ratio 1:1 (organic phase: aqueous phase). The PLGA polymer concentration of 10 mg/ml and a DSPE-PEG lipid concentration of 10% w/v provided optimal size, PDI and stability. Drug loading and encapsulation of a representative hydrophobic small molecule drug, curcumin, was optimized and found that high encapsulation efficiency of 58.8% and drug loading of 4.4% was achieved at 7.5% w/w initial concentration of curcumin/PLGA polymer. The final size and polydispersity index of the optimized nanolipomer was 102.11 nm and 0.126, respectively. Functional assessment of uptake of the nanolipomers in C4-2B prostate cancer cells showed uptake at 1 h and increased uptake at 24 h. The nanolipomer was more effective in the cell viability assay compared to free drug. Finally, assessment of in vivo retention in mice of these nanolipomers revealed retention for up to 2 h and were completely cleared at 24 h. In this study, we have demonstrated that a nanolipomer formulation can be successfully

  18. Gel Generator Technology Viability for Small Scale Production - Indian Experience [Country report: India - GEL Gen.

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Kothalkar, C.; Naskar, P.; Sneha, P.; Saraswathy, P.; Dey, A.C.; Venkatesh, Meera

    2015-01-01

    of the process. After successful completion of feasibility studies and small scale production and supply of gel generators to local hospitals, development of technology for regular production and supply was undertaken. A multidisciplinary core team comprising of chemists and engineers working in close collaboration enabled successful completion of the project. The technology development entailed four major aspects: (i) adaptation of chemical process to automation, (ii) design and erection of a production facility with adequate shielding, (iii) design/fabrication/installation of operation specific gadgets, and (iv) design of a compact, portable, easy to assemble and reusable generator assembly. The production facility, having a capacity to produce up to 25 generators per batch in an 8 hour shift operation, has been operational since the past five years. We report here the salient aspects of technology development and operational experience of producing the gel generators thereby demonstrating the viability of the technology

  19. Gas production in the Barnett Shale obeys a simple scaling theory

    OpenAIRE

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production f...

  20. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements

    Science.gov (United States)

    Desilets, Darin; Zreda, Marek

    2001-11-01

    The wide use of cosmogenic nuclides for dating terrestrial landforms has prompted a renewed interest in characterizing the spatial distribution of terrestrial cosmic rays. Cosmic-ray measurements from neutron monitors, nuclear emulsions and cloud chambers have played an important role in developing new models for scaling cosmic-ray neutron intensities and, indirectly, cosmogenic production rates. Unfortunately, current scaling models overlook or misinterpret many of these data. In this paper, we describe factors that must be considered when using neutron measurements to determine scaling formulations for production rates of cosmogenic nuclides. Over the past 50 years, the overwhelming majority of nucleon flux measurements have been taken with neutron monitors. However, in order to use these data for scaling spallation reactions, the following factors must be considered: (1) sensitivity of instruments to muons and to background, (2) instrumental biases in energy sensitivity, (3) solar activity, and (4) the way of ordering cosmic-ray data in the geomagnetic field. Failure to account for these factors can result in discrepancies of as much as 7% in neutron attenuation lengths measured at the same location. This magnitude of deviation can result in an error on the order of 20% in cosmogenic production rates scaled from 4300 m to sea level. The shapes of latitude curves of nucleon flux also depend on these factors to a measurable extent, thereby causing additional uncertainties in cosmogenic production rates. The corrections proposed herein significantly improve our ability to transfer scaling formulations based on neutron measurements to scaling formulations applicable to spallation reactions, and, therefore, constitute an important advance in cosmogenic dating methodology.

  1. Proper context: Comparison studies demonstrate that United States food-animal production antimicrobial uses have minimal impact on antimicrobial resistance

    Science.gov (United States)

    In the United States (US) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses "substantially drive" antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comparison...

  2. Smart grid demonstrators and experiments in France: Economic assessments of smart grids. Challenges, methods, progress status and demonstrators; Contribution of 'smart grid' demonstrators to electricity transport and market architectures; Challenges and contributions of smart grid demonstrators to the distribution network. Focus on the integration of decentralised production; Challenges and contributions of smart grid demonstrators to the evolution of providing-related professions and to consumption practices

    International Nuclear Information System (INIS)

    Sudret, Thierry; Belhomme, Regine; Nekrassov, Andrei; Chartres, Sophie; Chiappini, Florent; Drouineau, Mathilde; Hadjsaid, Nouredine; Leonard, Cedric; Bena, Michel; Buhagiar, Thierry; Lemaitre, Christian; Janssen, Tanguy; Guedou, Benjamin; Viana, Maria Sebastian; Malarange, Gilles; Hadjsaid, Nouredine; Petit, Marc; Lehec, Guillaume; Jahn, Rafael; Gehain, Etienne

    2015-01-01

    This publication proposes a set of four articles which give an overview of challenges and contributions of smart grid demonstrators for the French electricity system according to different perspectives and different stakeholders. These articles present the first lessons learned from these demonstrators in terms of technical and technological innovations, of business and regulation models, and of customer behaviour and acceptance. More precisely, the authors discuss economic assessments of smart grids with an overview of challenges, methods, progress status and existing smart grid programs in the World, comment the importance of the introduction of intelligence at hardware, software and market level, highlight the challenges and contributions of smart grids for the integration of decentralised production, and discuss how smart grid demonstrators impact providing-related professions and customer consumption practices

  3. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Fission product release from nuclear fuel II. Validation of ASTEC/ELSA on analytical and large scale experiments

    International Nuclear Information System (INIS)

    Brillant, G.; Marchetto, C.; Plumecocq, W.

    2013-01-01

    Highlights: • A wide range of experiments is presented for the ASTEC/ELSA code validation. • Analytical tests such as AECL, ORNL and VERCORS are considered. • A large-scale experiment, PHEBUS FPT1, is considered. • The good agreement with measurements shows the efficiency of the ASTEC modelling. • Improvements concern the FP release modelling from MOX and high burn-up UO 2 fuels. - Abstract: This article is the second of two articles dedicated to the mechanisms of fission product release from a degraded core. The models of fission product release from nuclear fuel in the ASTEC code have been described in detail in the first part of this work (Brillant et al., this issue). In this contribution, the validation of ELSA, the module of ASTEC that deals with fission product and structural material release from a degraded core, is presented. A large range of experimental tests, with various temperature and conditions for the fuel surrounding atmosphere (oxidising and reducing), is thus simulated with the ASTEC code. The validation database includes several analytical experiments with both bare fuel (e.g. MCE1 experiments) and cladded fuel (e.g. HCE3, VERCORS). Furthermore, the PHEBUS large-scale experiments are used for the validation of ASTEC. The rather satisfactory comparison between ELSA calculations and experimental measurements demonstrates the efficiency of the analytical models to describe fission product release in severe accident conditions

  5. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    Science.gov (United States)

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  7. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    Science.gov (United States)

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials.

  8. Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Faccioli, Pietro; Seixas, Joao [LIP and IST, Lisbon (Portugal); Lourenco, Carlos; Araujo, Mariana [CERN, Geneva (Switzerland)

    2018-02-15

    Dimensional analysis reveals general kinematic scaling rules for the momentum, mass, and energy dependence of Drell-Yan and quarkonium cross sections. Their application to mid-rapidity LHC data provides strong experimental evidence supporting the validity of the factorization ansatz, a cornerstone of non-relativistic QCD, still lacking theoretical demonstration. Moreover, data-driven patterns emerge for the factorizable long-distance bound-state formation effects, including a remarkable correlation between the S-wave quarkonium cross sections and their binding energies. Assuming that this scaling can be extended to the P-wave case, we obtain precise predictions for the not yet measured feed-down fractions, thereby providing a complete picture of the charmonium and bottomonium feed-down structure. This is crucial information for quantitative interpretations of quarkonium production data, including studies of the suppression patterns measured in nucleus-nucleus collisions. (orig.)

  9. analysis of cost efficiency in food crop production among small-scale

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Food crop production in Nigeria is dominated by small-scale farmers ... influenced by farm-specific factors, which delineate their ..... vii). Cost of seed: This is the total expenses on seed incurred by the farmer during the last cropping season. It.

  10. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine

    NARCIS (Netherlands)

    Maranga, L.; Rueda, P.; Antonis, A.F.G.; Vela, C.; Langeveld, J.P.M.; Casal, J.I.; Carrondo, M.J.T.

    2002-01-01

    Porcine parvovirus (PPV) virus-like particles (VLPs) constitute a potential vaccine for prevention of parvovirus-induced reproductive failure in gilts. Here we report the development of a large scale (25 l) production process for PPV-VLPs with baculovirus-infected insect cells. A low multiplicity of

  11. The Ecological Impacts of Large-Scale Agrofuel Monoculture Production Systems in the Americas

    Science.gov (United States)

    Altieri, Miguel A.

    2009-01-01

    This article examines the expansion of agrofuels in the Americas and the ecological impacts associated with the technologies used in the production of large-scale monocultures of corn and soybeans. In addition to deforestation and displacement of lands devoted to food crops due to expansion of agrofuels, the massive use of transgenic crops and…

  12. The use of soil moisture - remote sensing products for large-scale groundwater modeling and assessment

    NARCIS (Netherlands)

    Sutanudjaja, E.H.

    2012-01-01

    In this thesis, the possibilities of using spaceborne remote sensing for large-scale groundwater modeling are explored. We focus on a soil moisture product called European Remote Sensing Soil Water Index (ERS SWI, Wagner et al., 1999) - representing the upper profile soil moisture. As a test-bed, we

  13. Could small scale vegetable production contribute to a green economy in South Africa?

    CSIR Research Space (South Africa)

    Musvoto, Constansia D

    2015-02-01

    Full Text Available and produces for sale. Some of the practices on these farms are compatible with a green economy, and with interventions that improve alignment with green economy principles, small scale vegetable production could contribute to a green economy and open up...

  14. Electrolytic production of light lanthanides from molten chloride alloys on a large laboratory scale

    International Nuclear Information System (INIS)

    Szklarski, W.; Bogacz, A.; Strzyzewska, M.

    1979-01-01

    Literature data relating to electrolytic production of rare earth metals are presented. Conditions and results are given of own investigations into the electrolytic process of light lanthanide chloride solutions (LA-Nd) in molten potassium and sodium chlorides conducted on a large laboratory scale using molybdenic, iron, cobaltic and zinc cathodes. Design schemes of employed electrolysers are enclosed. (author)

  15. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra Belur

    2016-01-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected

  16. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S. [Work Efficiency Inst., Rajamaeki (Finland)

    1996-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  17. Modeling a production scale milk drying process: parameter estimation, uncertainty and sensitivity analysis

    DEFF Research Database (Denmark)

    Ferrari, A.; Gutierrez, S.; Sin, Gürkan

    2016-01-01

    A steady state model for a production scale milk drying process was built to help process understanding and optimization studies. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a comprehensive statistical analysis for quality assurance using...

  18. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S [Work Efficiency Inst., Rajamaeki (Finland)

    1997-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  19. Forest products cluster development in central Arizona—implications for landscape-scale forest restoration

    Science.gov (United States)

    David. Nicholls

    2014-01-01

    Since 2004, close to 50,000 ac of hazardous fuels have been mechanically treated in east-central Arizona as part of the USDA Forest Service's first 10-year stewardship project on national forest lands. The need for coordinated wood products and biomass utilization in Arizona is likely to increase as broad-scale restoration treatments across Arizona's national...

  20. Fuel from farms: a guide to small-scale ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

  1. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2017-12-01

    Full Text Available -effective production technologies account for the slow progression towards the development of envisioned MOF products at pilot-scale level. This short review brings together the scattered literature that addresses pilot-scale production of MOF materials. An additional...

  2. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  3. Small-scale production and use of wood fuels. Report of the year 2005

    International Nuclear Information System (INIS)

    Alakangas, E.

    2005-01-01

    The target areas of the research programme are: Small-scale production and handling of wood fuels, Pellet production, distribution and use, Heating technology and Business and service concepts. Production and processing technology focuses on cost-effectiveness, fuel quality, logistics of production chains and storage, transport and feeding solutions. The quality of pellets in the view of the whole chain: production, storage, distribution and feeding, is under scrutiny. In addition, storage and distribution systems are being developed. The aim is to create functional and comprehensive heat production systems based on the use of wood pellets. Emissions from small-scale use are reduced and efficiency of combustion improved to meet the Central European standard. Modern control, automation and data management systems are applied cost-effectively. The aim is to create comprehensive systems and modular solutions. Business and service concepts relate to all target areas such as heat entrepreneurship and energy service companies (ESCO). The aim is to promote the networking of companies and develop new solutions for fuel and heat production services

  4. Micro-scale energy valorization of grape marcs in winery production plants.

    Science.gov (United States)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The use of production management techniques in the construction of large scale physics detectors

    International Nuclear Information System (INIS)

    Bazan, A.; Chevenier, G.; Estrella, F.

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Workflow Management Software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an Information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector construction. This is the first time industrial production techniques have been deployed to this extent in detector construction

  6. Large-scale production of UO2 kernels by sol–gel process at INET

    International Nuclear Information System (INIS)

    Hao, Shaochang; Ma, Jingtao; Zhao, Xingyu; Wang, Yang; Zhou, Xiangwen; Deng, Changsheng

    2014-01-01

    In order to supply elements (300,000 elements per year) for the Chinese pebble bed modular high temperature gas cooled reactor (HTR-PM), it is necessary to scale up the production of UO 2 kernels to 3–6 kgU per batch. The sol–gel process for preparation of UO 2 kernels have been improved and optimized at Institute of Nuclear and New Energy Technology (INET), Tsinghua University, PR China, and a whole set of facility was designed and constructed based on the process. This report briefly describes the main steps of the process, the key equipment and the production capacities of every step. Six batches of kernels for scale-up verification and four batches of kernels for fuel elements for in-pile irradiation tests have been successfully produced, respectively. The quality of the produced kernels meets the design requirements. The production capacity of the process reaches 3–6 kgU per batch

  7. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  8. Entropy Production of Emerging Turbulent Scales in a Temporal Supercritical N-Neptane/Nitrogen Three-Dimensional Mixing Layer

    Science.gov (United States)

    Bellan, J.; Okongo, N.

    2000-01-01

    A study of emerging turbulent scales entropy production is conducted for a supercritical shear layer as a precursor to the eventual modeling of Subgrid Scales (from a turbulent state) leading to Large Eddy Simulations.

  9. Environmental degradation, global food production, and risk for large-scale migrations

    International Nuclear Information System (INIS)

    Doeoes, B.R.

    1994-01-01

    This paper attempts to estimate to what extent global food production is affected by the ongoing environmental degradation through processes, such as soil erosion, salinization, chemical contamination, ultraviolet radiation, and biotic stress. Estimates have also been made of available opportunities to improve food production efficiency by, e.g., increased use of fertilizers, irrigation, and biotechnology, as well as improved management. Expected losses and gains of agricultural land in competition with urbanization, industrial development, and forests have been taken into account. Although estimated gains in food production deliberately have been overestimated and losses underestimated, calculations indicate that during the next 30-35 years the annual net gain in food production will be significantly lower than the rate of world population growth. An attempt has also been made to identify possible scenarios for large-scale migrations, caused mainly by rapid population growth in combination with insufficient local food production and poverty. 18 refs, 7 figs, 6 tabs

  10. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Herrgard, Markus

    2015-01-01

    factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We...... investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell...... demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli...

  11. New systems for the large-scale production of male tsetse flies (Diptera: Glossinidae)

    International Nuclear Information System (INIS)

    Opiyo, E.; Luger, D.; Robinson, A.S.

    2000-01-01

    Tsetse flies, vectors of trypanosomiasis, infest 36 African countries and their distribution covers approximately 10 million km 2 . Trypanosomiasis is a debilitating and often fatal disease of domestic livestock and humans and is considered the most important limiting factor for the development of the livestock sector in Africa. Approximately 50 million cattle and scores of millions of small ruminants are at risk of contracting trypanosomiasis. Direct losses in meat production, milk yield and traction power and the cost of control programmes are estimated to amount to more than US$500 million each year (FAO 1994). In addition, 100 million people are at risk of contracting the disease. According to the World Health Organization, about 300,000 new cases of human trypanosomiasis occur annually (WHO 1997). If the lost potential in livestock production is combined with that of crop production through loss of traction power, trypanosomiasis is estimated to cost Africa US$4 billion or more each year (FAO 1994). The available and environmentally accepted intervention methods for the management of tsetse and trypanosomiasis include parasite control using drugs, the promotion of trypanotolerant livestock and vector control. Parasite control is plagued by the development of resistance to the available drugs and programmes for the development of new drugs are limited. Vector control and eradication involve application of insecticide treated attractive devices on animals including cattle, and the sterile insect technique (SIT). In spite of the efforts spent on the control of the disease and the vector, tsetse flies remain a threat to agricultural development of the region. Experience indicates that only a combination of several of these intervention methods can effectively support sustainable agricultural systems. The feasibility of rearing tsetse flies in Africa for use in SIT was first demonstrated in Tanzania (Williamson et al. 1983) where a colony of 60,000 Glossina

  12. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    Science.gov (United States)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  13. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  14. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain

    DEFF Research Database (Denmark)

    Jakociune, D.; Bisgaard, M.; Pedersen, Karl

    2014-01-01

    Aims: The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility......, members of the persistent clone were weak producers of H2S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. Conclusions: It was concluded that the contamination was caused by a persistent strain...... in the production facility and that this strain apparently had adapted to grow in the relevant egg product. Significance and Impact of the Study: S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility...

  15. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process

    Directory of Open Access Journals (Sweden)

    Konrad Krysiak-Baltyn

    2018-04-01

    Full Text Available Cost effective and scalable methods for phage production are required to meet an increasing demand for phage, as an alternative to antibiotics. Computational models can assist the optimization of such production processes. A model is developed here that can simulate the dynamics of phage population growth and production in a two-stage, self-cycling process. The model incorporates variable infection parameters as a function of bacterial growth rate and employs ordinary differential equations, allowing application to a setup with multiple reactors. The model provides simple cost estimates as a function of key operational parameters including substrate concentration, feed volume and cycling times. For the phage and bacteria pairing examined, costs and productivity varied by three orders of magnitude, with the lowest cost found to be most sensitive to the influent substrate concentration and low level setting in the first vessel. An example case study of phage production is also presented, showing how parameter values affect the production costs and estimating production times. The approach presented is flexible and can be used to optimize phage production at laboratory or factory scale by minimizing costs or maximizing productivity.

  16. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  17. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  18. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen View the MathML source from light hydrocarbons

  19. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen (<10 ppm CO) from light hydrocarbons such as

  20. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  1. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production.

    Science.gov (United States)

    Henkel, Marius; Geissler, Mareen; Weggenmann, Fabiola; Hausmann, Rudolf

    2017-07-01

    Surfactants are an important class of industrial chemicals. Nowadays oleochemical surfactants such as alkyl polyglycosides (APGs) become increasingly important. This trend towards the utilization of renewable resources continues and consumers increasingly demand for environmentally friendly products. Consequently, research in microbial surfactants has drastically increased in the last years. While for mannosylerythritol lipids and sophorolipids established industrial processes exist, an implementation of other microbially derived surfactants has not yet been achieved. Amongst these biosurfactants, rhamnolipids synthesized by Pseudomonas aeruginosa and surfactin produced by Bacillus subtilis are so far the most analyzed biosurfactants due to their exceptional properties and the concomitant possible applications. In this review, a general overview is given regarding the current status of biosurfactants and benefits attributed to these molecules. Furthermore, the most recent research approaches for both rhamnolipids and surfactin are presented with respect to possible methods for industrial processes and the occurring drawbacks and limitations researchers have to address and overcome. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A cross-scale approach to understand drought-induced variability of sagebrush ecosystem productivity

    Science.gov (United States)

    Assal, T.; Anderson, P. J.

    2016-12-01

    Sagebrush (Artemisia spp.) mortality has recently been reported in the Upper Green River Basin (Wyoming, USA) of the sagebrush steppe of western North America. Numerous causes have been suggested, but recent drought (2012-13) is the likely mechanism of mortality in this water-limited ecosystem which provides critical habitat for many species of wildlife. An understanding of the variability in patterns of productivity with respect to climate is essential to exploit landscape scale remote sensing for detection of subtle changes associated with mortality in this sparse, uniformly vegetated ecosystem. We used the standardized precipitation index to characterize drought conditions and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (250-m resolution) to characterize broad characteristics of growing season productivity. We calculated per-pixel growing season anomalies over a 16-year period (2000-2015) to identify the spatial and temporal variability in productivity. Metrics derived from Landsat satellite imagery (30-m resolution) were used to further investigate trends within anomalous areas at local scales. We found evidence to support an initial hypothesis that antecedent winter drought was most important in explaining reduced productivity. The results indicate drought effects were inconsistent over space and time. MODIS derived productivity deviated by more than four standard deviations in heavily impacted areas, but was well within the interannual variability in other areas. Growing season anomalies highlighted dramatic declines in productivity during the 2012 and 2013 growing seasons. However, large negative anomalies persisted in other areas during the 2014 growing season, indicating lag effects of drought. We are further investigating if the reduction in productivity is mediated by local biophysical properties. Our analysis identified spatially explicit patterns of ecosystem properties altered by severe drought which are consistent with

  3. Precipitation-productivity Relation in Grassland in Northern China: Investigations at Multiple Spatiotemporal Scales

    Science.gov (United States)

    Hu, Z.

    2017-12-01

    Climate change is predicted to cause dramatic variability in precipitation regime, not only in terms of change in annual precipitation amount, but also in precipitation seasonal distribution and precipitation event characteristics (high frenquency extrem precipitation, larger but fewer precipitation events), which combined to influence productivity of grassland in arid and semiarid regions. In this study, combining remote sensing products with in-situ measurements of aboveground net primary productivity (ANPP) and gross primary productivity (GPP) data from eddy covariance system in grassland of northern China, we quantified the effects of spatio-temporal vairation in precipitation on productivity from local sites to region scale. We found that, for an individual precipitation event, the duration of GPP-response to the individual precipitation event and the maximum absolute GPP response induced by the individual precipitation event increased linearly with the size of precipitation events. Comparison of the productivity-precipitation relationships between multi-sites determined that the predominant characteristics of precipitation events (PEC) that affected GPP differed remarkably between the water-limited temperate steppe and the temperature-limited alpine meadow. The number of heavy precipitation events (>10 mm d-1) was the most important PEC to impact GPP in the temperate steppe through affecting soil moisture at different soil profiles, while precipitation interval was the factor that affected GPP most in the alpine meadow via its effects on temperature. At the region scale, shape of ANPP-precipitation relationship varies with distinct spatial scales, and besides annual precipitation, precipitation seasonal distribution also has comparable impacts on spatial variation in ANPP. Temporal variability in ANPP was lower at both the dry and wet end, and peaked at a precipitation of 243.1±3.5mm, which is the transition region between typical steppe and desert steppe

  4. Operational data products to support phenological research and applications at local to continental scales

    Science.gov (United States)

    Weltzin, J. F.

    2017-12-01

    Phenological data from a variety of platforms - across a range of spatial and temporal scales - are required to support research, natural resource management, and policy- and decision-making in a changing world. Observational and modeled phenological data, especially when integrated with associated biophysical data (e.g., climate, land-use/land-cover, hydrology) has great potential to provide multi-faceted information critical to decision support systems, vulnerability and risk assessments, change detection applications, and early-warning and forecasting systems for natural and modified ecosystems. The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on understanding the drivers and feedback effects of phenological variation in changing environments. The Network maintains a centralized database of over 10M ground-based observations of plants and animals for 1954-present, and leverages these data to produce operational data products for use by a variety of audiences, including researchers and resource managers. This presentation highlights our operational data products, including the tools, maps, and services that facilitate discovery, accessibility and usability of integrated phenological information. We describe (1) the data download tool, a customizable GUI that provides geospatially referenced raw, bounded or summarized organismal and climatological data and associated metadata (including calendars, time-series curves, and XY graphs), (2) the visualization tool, which provides opportunities to explore, visualize and export or download both organismal and modeled (gridded) products at daily time-steps and relatively fine spatial resolutions ( 2.5 km to 4 km) for the period 1980 to 6 days into the future, and (3) web services that enable custom query and download of map, feature and cover services in a variety of standard formats. These operational products facilitate scaling of integrated

  5. The U.S. Shale Oil and Gas Resource - a Multi-Scale Analysis of Productivity

    Science.gov (United States)

    O'sullivan, F.

    2014-12-01

    Over the past decade, the large-scale production of natural gas, and more recently oil, from U.S. shale formations has had a transformative impact on the energy industry. The emergence of shale oil and gas as recoverable resources has altered perceptions regarding both the future abundance and cost of hydrocarbons, and has shifted the balance of global energy geopolitics. However, despite the excitement, shale is a resource in its nascency, and many challenges surrounding its exploitation remain. One of the most significant of these is the dramatic variation in resource productivity across multiple length scales, which is a feature of all of today's shale plays. This paper will describe the results of work that has looked to characterize the spatial and temporal variations in the productivity of the contemporary shale resource. Analysis will be presented that shows there is a strong stochastic element to observed shale well productivity in all the major plays. It will be shown that the nature of this stochasticity is consistent regardless of specific play being considered. A characterization of this stochasticity will be proposed. As a parallel to the discussion of productivity, the paper will also address the issue of "learning" in shale development. It will be shown that "creaming" trends are observable and that although "absolute" well productivity levels have increased, "specific" productivity levels (i.e. considering well and stimulation size) have actually falling markedly in many plays. The paper will also show that among individual operators' well ensembles, normalized well-to-well performance distributions are almost identical, and have remained consistent year-to-year. This result suggests little if any systematic learning regarding the effective management of well-to-well performance variability has taken place. The paper will conclude with an articulation of how the productivity characteristics of the shale resource are impacting on the resources

  6. Agronomic impacts of production scale harvesting of corn stover for cellulosic ethanol production in Central Iowa

    Science.gov (United States)

    Schau, Dustin

    This thesis investigates the impacts of corn stover harvest in Central Iowa with regards to nutrient removal, grain yield impacts and soil tilth. Focusing on phosphorus and potassium removal due to production of large, square bales of corn stover, 3.7 lb P2O5 and 18.7 lb K 2O per ton of corn stover were removed in 2011. P2O 5 removal remained statistically the same in 2012, but K2O decreased to 15.1 lb per ton of corn stover. Grain cart data showed no statistical difference in grain yield between harvest treatments, but yield monitor data showed a 3 - 17 bu/ac increase in 2012 and hand samples showed a 4 - 21 bu/ac increase in 2013. Corn stover residue levels decreased below 30% coverage when corn stover was harvested the previous fall and conventional tillage methods were used, but incorporating reduced tillage practices following corn stover harvest increased residue levels back up to 30% coverage. Corn emergence rates increased by at least 2,470 more plants per acre within the first three days of spiking, but final populations between harvest and nonharvest corn stover treatments were the same. Inorganic soil nitrogen in the form of ammonium and nitrate were not directly impacted by corn stover harvest, but it is hypothesized that weather patterns had a greater impact on nitrogen availability. Lastly, soil organic matter did not statistically change from 2011 to 2013 due to corn stover removal, even when analyzed within single soil types.

  7. Development of in situ product removal strategies in biocatalysis applying scaled-down unit operations.

    Science.gov (United States)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf H; Rehn, Gustav; Grey, Carl; Nordblad, Mathias; Krühne, Ulrich; Gernaey, Krist V; Adlercreutz, Patrick; Woodley, John M

    2017-03-01

    An experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in situ product removal (ISPR) process strategies. In such a platform, it is possible to compartmentalize different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi-automatically characterize ω-transaminases in a scaled-down packed-bed reactor (PBR) module, showing MPPA as a strong inhibitor. To overcome the inhibition, a two-step liquid-liquid extraction (LLE) ISPR concept was tested using scaled-down unit operations combined in a plug-and-play manner. Through the tested ISPR concept, it was possible to continuously feed the main substrate benzylacetone (BA) and extract the main product MPPA throughout the reaction, thereby overcoming the challenges of low substrate solubility and product inhibition. The tested ISPR concept achieved a product concentration of 26.5 g MPPA  · L -1 , a purity up to 70% g MPPA  · g tot -1 and a recovery in the range of 80% mol · mol -1 of MPPA in 20 h, with the possibility to increase the concentration, purity, and recovery further. Biotechnol. Bioeng. 2017;114: 600-609. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)

    1996-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  9. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J [Joanneum Research (Austria)

    1997-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  10. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    Science.gov (United States)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  11. Supersymmetry production from a TeV scale black hole at CERN LHC

    International Nuclear Information System (INIS)

    Chamblin, Andrew; Cooper, Fred; Nayak, Gouranga C.

    2004-01-01

    If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the CERN LHC. Similarly, if the scale of supersymmetry (SUSY) breaking is sufficiently low, then we might expect to see light supersymmetric particles in the next generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compare various signatures for SUSY production at LHC, and we contrast the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct perturbative QCD-SUSY production via parton fusion processes depending on the values of the Planck mass and black hole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section dσ/dp t for SUSY production increases as a function of the p t (up to p t equal to about 1 TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section dσ/dp t decreases as p t increases for high p t about 1 TeV or higher. This is a feature for any particle emission from a TeV scale black hole as long as the temperature of the black hole is very high (∼TeV). Hence the measurement of increase of dσ/dp t with p t for p t up to about 1 TeV or higher for final state particles might be a useful signature for black hole production at LHC

  12. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  13. Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives

    Directory of Open Access Journals (Sweden)

    Bashir Sajo Mienda

    2017-10-01

    Full Text Available Escherichia coli (E. coli has been established to be a native producer of succinic acid (a platform chemical with different applications via mixed acid fermentation reactions. Genome-scale metabolic models (GEMs of E. coli have been published with capabilities of predicting strain design strategies for the production of bio-based succinic acid. Proof-of-principle strains are fundamentally constructed as a starting point for systems strategies for industrial strains development. Here, we review for the first time, the use of E. coli GEMs for construction of proof-of-principles strains for increasing succinic acid production. Specific case studies, where E. coli proof-of-principle strains were constructed for increasing bio-based succinic acid production from glucose and glycerol carbon sources have been highlighted. In addition, a propose systems strategies for industrial strain development that could be applicable for future microbial succinic acid production guided by GEMs have been presented.

  14. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    Energy Technology Data Exchange (ETDEWEB)

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and

  15. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  16. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain.

    Science.gov (United States)

    Jakočiūnė, D; Bisgaard, M; Pedersen, K; Olsen, J E

    2014-08-01

    The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility and to characterize the persistent strains. Seventy-three S. Tennessee isolates collected from products over a 3-year period with intermittent contamination, and 15 control strains were compared by pulsed field gel electrophoresis (PFGE) using two enzymes. Forty-five case isolates distributed throughout the full period were shown to belong to one profile type. Isolates representing different PFGE profiles were all assigned to ST 319 by multilocus sequence typing (MLST). The case isolates did not show a higher ability to form biofilm on a plastic surface than noncase isolates. Characteristically, members of the persistent clone were weak producers of H2 S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. It was concluded that the contamination was caused by a persistent strain in the production facility and that this strain apparently had adapted to grow in the relevant egg product. S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility with this serovar. © 2014 The Society for Applied Microbiology.

  17. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  18. European-scale modelling of groundwater denitrification and associated N2O production

    International Nuclear Information System (INIS)

    Keuskamp, J.A.; Drecht, G. van; Bouwman, A.F.

    2012-01-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2 O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2 O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2 O production is expected. Predicted N leaching (16% of the N inputs) and N 2 O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. - Highlights: ► Groundwater denitrification and N 2 O production was modelled at the European scale. ► In large parts of Europe no groundwater denitrification is expected. ► N leaching and N 2 O emission in Europe are much less than the IPCC default values. - European groundwater denitrification is spatially variable, and associated nitrous oxide production is much less than based on the IPCC default estimate.

  19. Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM

    NARCIS (Netherlands)

    Chikowo, R.; Corbeels, M.; Tittonell, P.A.; Vanlauwe, B.; Whitbread, A.M.; Giller, K.E.

    2008-01-01

    The efficiency with which applied resources are utilized in sub-Saharan African cropping systems is especially critical as the resources are generally scarce. Research efforts to improve farm productivity increasingly focus on resource interactions and trade-offs operating at farm-scale. Farm-scale

  20. Renormalization and factorization scale analysis of b-barb production in antiproton-proton collisions

    International Nuclear Information System (INIS)

    Chyla, Jiri

    2003-01-01

    There is a sizable and systematic discrepancy between experimental data on the b-barb production in , p-barp, γp and γγ collisions and existing theoretical calculations within perturbative QCD. Before interpreting this discrepancy as a signal of new physics, it is important to understand quantitatively the ambiguities of conventional calculations. In this paper the uncertainty coming from renormalization and factorization scale dependence of finite order perturbation calculations of the total cross section of b-barb production in p-barp collisions is discussed in detail. It is shown that the mentioned discrepancy is reduced significantly if these scales are fixed via the Principle of Minimal Sensitivity. (author)

  1. Development of a production scale purification of Ge-68 from irradiated gallium metal

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan M.; Mausner, Leonard [Brookhaven National Laboratory, Upton, NY (United States)

    2015-05-01

    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex {sup copyright} G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68.

  2. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  3. Land Use in LCIA: an absolute scale proposal for Biotic Production Potential

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo; Ibrom, Andreas; Hauschild, Michael Zwicky

    , the present study proposes a single absolute scale for the midpoint impact category (MIC) of Biotic Production Potential (BPP). It is hypothesized that, for an ecosystem in equilibrium (where NPP equals decay), such an ecosystem has reached the maximum biotic throughput subject to site-specific conditions...... and no externally added inputs. The original ecosystem (or Potential Natural Vegetation) of a certain land gives then the maximum BPP with no additional, downstream or upstream, impacts. This Natural BPP is proposed as the maximum BPP in a hypothetical Absolute Scale for LCA’s Land Use framework. It is argued...... that this maximum BPP is Nature’s optimal solution through evolution-adaptation mechanisms, which provides the maximum matter throughput subject to the rest of environmental constraints (without further impacts). As a consequence, this scale rises a Land Use Optimality Point that suggests the existence of a limit...

  4. Solar thermal production of zinc - Final steps toward scale-up - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, A.

    2008-05-15

    A 10 kW receiver-reactor prototype (called ZIRRUS) was further improved and tested for the solar thermal de-composition of ZnO, which is the 1{sup st} step of the two-step water-splitting thermochemical ZnO/Zn cycle. The rotating cylindrical cavity was made of either sintered ZnO or sintered Al{sub 2}O{sub 3} tiles placed on top of a multi-layer Al{sub 2}O{sub 3}-SiO{sub 2}-Y{sub 2}O{sub 3}-based ceramics for thermal shock resistance, mechanical stability, gas diffusion barrier, and thermal insulation. Pre-heated Ar gas was injected for aerodynamic window protection and for minimizing recombination of product gases in the cavity. Experimentation was carried out at PSI's High-Flux Solar Simulator with the direct heating 10 kW reactor prototype subjected to peak radiative fluxes exceeding 5,800 suns. The reactor operated without incident for a total of more than 40 h at maximum temperatures - measured behind the ZnO and Al{sub 2}O{sub 3} tiles - ranging from 1807-1907 K. Thermal dissociation of ZnO(s) near 2000 K was demonstrated for experimental runs over 4 h in transient ablation mode with up to nine semi-continuous feed cycles of ZnO particles. A working Zn/O{sub 2} separation device based on the rapid quenching of the Zn/O{sub 2} mixture is ready to be incorporated at the exit of the solar reactor. Zinc yields of up to 94% were obtained when using total Ar/Zn(g) dilution of 530 and a cooling rate of about 10{sup 5} K/s. The fully integrated solar reactor will be scaled up to the pilot scale of 100 kW. A newly developed reactor model that couples radiation, conduction, and convection heat transfer to the reaction kinetics will allow determining optimal operational conditions for matching the feeding rate to the reaction rate and for maximizing solar-to-chemical energy conversion efficiency. The 2{sup nd} step of the ZnO/Zn cycle has been experimentally demonstrated at ETH using an aerosol-flow reactor for in-situ formation and hydrolysis of Zn nanoparticles

  5. Gram-scale production of a basidiomycetous laccase in Aspergillus niger.

    Science.gov (United States)

    Mekmouche, Yasmina; Zhou, Simeng; Cusano, Angela M; Record, Eric; Lomascolo, Anne; Robert, Viviane; Simaan, A Jalila; Rousselot-Pailley, Pierre; Ullah, Sana; Chaspoul, Florence; Tron, Thierry

    2014-01-01

    We report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. An economical device for carbon supplement in large-scale micro-algae production.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.

  7. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  8. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  9. Early interferon-γ production in human lymphocyte subsets in response to nontyphoidal Salmonella demonstrates inherent capacity in innate cells.

    Directory of Open Access Journals (Sweden)

    Tonney S Nyirenda

    2010-10-01

    Full Text Available Nontyphoidal Salmonellae frequently cause life-threatening bacteremia in sub-Saharan Africa. Young children and HIV-infected adults are particularly susceptible. High case-fatality rates and increasing antibiotic resistance require new approaches to the management of this disease. Impaired cellular immunity caused by defects in the T helper 1 pathway lead to intracellular disease with Salmonella that can be countered by IFNγ administration. This report identifies the lymphocyte subsets that produce IFNγ early in Salmonella infection.Intracellular cytokine staining was used to identify IFNγ production in blood lymphocyte subsets of ten healthy adults with antibodies to Salmonella (as evidence of immunity to Salmonella, in response to stimulation with live and heat-killed preparations of the D23580 invasive African isolate of Salmonella Typhimurium. The absolute number of IFNγ-producing cells in innate, innate-like and adaptive lymphocyte subpopulations was determined.Early IFNγ production was found in the innate/innate-like lymphocyte subsets: γδ-T cells, NK cells and NK-like T cells. Significantly higher percentages of such cells produced IFNγ compared to adaptive αβ-T cells (Student's t test, P<0.001 and ≤0.02 for each innate subset compared, respectively, with CD4(+- and CD8(+-T cells. The absolute numbers of IFNγ-producing cells showed similar differences. The proportion of IFNγ-producing γδ-T cells, but not other lymphocytes, was significantly higher when stimulated with live compared with heat-killed bacteria (P<0.0001.Our findings indicate an inherent capacity of innate/innate-like lymphocyte subsets to produce IFNγ early in the response to Salmonella infection. This may serve to control intracellular infection and reduce the threat of extracellular spread of disease with bacteremia which becomes life-threatening in the absence of protective antibody. These innate cells may also help mitigate against the effect on IFN

  10. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    Rahier, A.; Mesrobian, G.

    2006-01-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  11. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  12. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways.

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell

    2016-01-15

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials

    Science.gov (United States)

    Saviers, Kimberly R.

    Graphitic carbon nanomaterials enhance the performance of engineered systems for energy harvesting and storage. However, commercial availability remains largely cost-prohibitive due to technical barriers to mass production. This thesis examines both the scaled-up production and energy transport applications of graphitic materials. Cost driven-production of graphitic petals is developed, carbon nanotube array thermal interface materials enhance waste heat energy harvesting, and microsupercapacitors are visually examined using a new electroreflectance measurement method. Graphitic materials have previously been synthesized using batch-style processing methods with small sample sizes, limiting their commercial viability. In order to increase production throughput, a roll-to-roll radio-frequency plasma chemical vapor deposition method is employed to continuously deposit graphitic petals on carbon fiber tow. In consideration of a full production framework, efficient and informative characterization methods in the form of electrical resistance and electrochemical capacitance are highlighted. To co-optimize the functional characteristics of the material, the processing conditions are comprehensively varied using a data-driven predictive design of experiments method. Repeatable and reliable production of graphitic materials will enable a host of creative graphene-based devices to emerge into the marketplace. Two such applications are discussed in the remaining chapters. Waste heat is most efficiently harvested at high temperatures, such as vehicle exhaust systems near 600°C. However, the resistance to heat flux at the interfaces between the harvesting device and its surroundings is detrimental to the system-level performance. To study the performance of thermal interface materials up to 700°C, a reference bar measurement method was designed. Design considerations are discussed and compared to past implementations, particularly regarding radiation heat flux and thermal

  14. Evaluation and demonstration of remediation alternatives for historical mine waste using ash and alkaline by products; Utvaerdering och demonstration av efterbehandlingsalternativ foer historiskt gruvavfall med aska och alkaliska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias; Sartz, Lotta; Karlsson, Stefan [MTM, Man-Technology-Envionrment, Oerebro Univ., 701 82 Oerebro (Sweden)

    2009-03-15

    The results clearly show that the use of alkaline by products can significantly reduce the leakage of trace metals from historical acid mine waste. Under ideal conditions (laboratory experiments) pH increase significantly and the trace metal concentrations decrease with around 99% compared to the untreated reference. During more realistic conditions (pilot scale) the same increase in pH was not obtained and thus the decrease in trace metal concentrations was not as great. In the stabilisation experiments pH was between 5.8 and 6.8 while the trace metal reduction was around 96-99%. In the filter experiments a median pH between 4 (aged ash) and 10 (lime kiln dust) was obtained after the alkaline section. Average metal reduction is around 95% for cadmium, copper and lead while it is slightly lower for zinc (85%). In summary it is indicated that hydroxide dominated materials work best in aerated environments while carbonate dominated materials work best in reducing environments. In summary it can be concluded that the use of alkaline by products to neutralise acidic mine waste and acid mine drainage from historical mine sites give rise to both environmental and economical benefits and should therefore be encouraged as a sustainable remediation method

  15. Experimental congruence of interval scale production from paired comparisons and ranking for image evaluation

    Science.gov (United States)

    Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.

    2003-12-01

    Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.

  16. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    Science.gov (United States)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed

  17. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    Science.gov (United States)

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  19. Immunohistochemical demonstration of keratins in the epidermal layers of the Malayan pangolin (Manis javanica, with remarks on the evolution of the integumental scale armour

    Directory of Open Access Journals (Sweden)

    W. Meyer

    2013-09-01

    Full Text Available Using immunohistochemistry, the study demonstrates the distribution of keratins (pan-keratin with CK1-8, 10, 14-16, 19; keratins CK1, 5, 6, 9, 10; hair keratins AE13, AE14 in the epidermis of the Malayan pangolin (Manis javanica. A varying reaction spectrum was observed for pan-keratin, with body region-dependent negative to very strong reaction intensities. The dorsolateral epidermis exhibited positive reactions only in its vital layers, whereas the abdominal epidermis showed strong positive reactions in the soft two outer strata. The single acidic and basic-to-neutral (cytokeratins produced clear variations compared to the pan-keratin tinging. E.g., CK1 appeared in all epidermal layers of both body regions, except for the ventral stratum corneum, whereas CK5, 6, 9, 10 were restricted to the soft ventral epidermis. Here, distinctly positive reactions were confined to the stratum granulosum, except for CK6 that appeared in the soft stratum corneum. A different staining pattern was obvious for the hair keratins, i.e., positive reactions of AE13 concentrated only in the granular layer of the dorsal epidermis. In the abdominal epidermis, remarkable tinging for AE14 was visible in the stratum basale, decreasing toward the corneal layer, but was also found in the outer root sheath cells of the hair follicles in the ventral body part. Our findings are discussed related to the evolution of the horny dorsal scales of the pangolin, which may have started from the tail root, projecting forward to the head

  20. Enantiomeric separation of pharmaceutically important drug intermediates using a Metagenomic lipase and optimization of its large scale production.

    Science.gov (United States)

    Kumar, Rakesh; Banoth, Linga; Banerjee, Uttam Chand; Kaur, Jagdeep

    2017-02-01

    In the present study, efficient enzymatic methods were developed using a recombinant metagenomic lipase (LipR1) for the synthesis of corresponding esters by the transesterification of five different pharmaceutically important secondary alcohols. The recombinant lipase (specific activity=87m6U/mg) showed maximum conversion in presence of ionic liquid with Naphthyl-ethanol (eeP=99%), Indanol and Methyl-4 pyridine methanol (eeS of 98% and 99%) respectively in 1h. Vinyl acetate was found as suitable acyl donor in transesterification reactions. It was interesting to observe that maximum eeP of 85% was observed in just 15min with 1-indanol. As this enzyme demonstrated pharmaceutical applications, attempts were made to scale up the enzyme production on a pilot scale in a 5litre bioreactor. Different physical parameters affecting enzyme production and biomass concentration such as agitation rate, aeration rate and inoculum concentration were evaluated. Maximum lipase activity of 8463U/ml was obtained at 7h of cultivation at 1 lpm, 300rpm and 1.5% inoculum. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  2. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.

    2012-06-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2O production is expected. Predicted N leaching (16% of the N inputs) and N 2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. © 2012 Elsevier Ltd. All rights reserved.

  3. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    CERN Document Server

    Chapman, J; Duehrssen, M; Elsing, M; Froidevaux, D; Harrington, R; Jansky, R; Langenberg, R; Mandrysch, R; Marshall, Z; Ritsch, E; Salzburger, A

    2014-01-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during run I relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for run II, and beyond. A number of fast detector simulation, digitization and reconstruction techniques and are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  4. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    Science.gov (United States)

    Ritsch, E.; Atlas Collaboration

    2014-06-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  5. Operational experinece with large scale biogas production at the promest manure processing plant in Helmond, the Netherlands

    International Nuclear Information System (INIS)

    Schomaker, A.H.H.M.

    1992-01-01

    In The Netherlands a surplus of 15 million tons of liquid pig manure is produced yearly on intensive pig breeding farms. The dutch government has set a three-way policy to reduce this excess of manure: 1. conversion of animal fodder into a product with less and better ingestible nutrients; 2. distribution of the surplus to regions with a shortage of animal manure; 3. processing of the remainder of the surplus in large scale processing plants. The first large scale plant for the processing of liquid pig manure was put in operation in 1988 as a demonstration plant at Promest in Helmond. The design capacity of this plant is 100,000 tons of pig manure per year. The plant was initiated by the Manure Steering Committee of the province Noord-Brabant in order to prove at short notice whether large scale manure processing might contribute to the solution of the problem of the manure surplus in The Netherlands. This steering committee is a corporation of the national and provincial government and the agricultural industrial life. (au)

  6. Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain

    Science.gov (United States)

    Wen, J.; Xinwen, L.; You, D.; Dou, B.

    2017-12-01

    Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.

  7. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  8. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    Science.gov (United States)

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  9. Gas production in the Barnett Shale obeys a simple scaling theory.

    Science.gov (United States)

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  10. Investigation of the physical scaling of sea spray spume droplet production

    Science.gov (United States)

    Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.

    2009-10-01

    In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.

  11. A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Xingwen Lin

    2018-01-01

    Full Text Available The issue for the validation of land surface remote sensing albedo products over rugged terrain is the scale effects between the reference albedo measurements and coarse scale albedo products, which is caused by the complex topography. This paper illustrates a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain. A Mountain-Radiation-Transfer-based (MRT-based albedo upscaling model was proposed in the process of multi-scale validation strategy for aggregating fine scale albedo to coarse scale. The simulated data of both the reference coarse scale albedo and fine scale albedo were used to assess the performance and uncertainties of the MRT-based albedo upscaling model. The results showed that the MRT-based model could reflect the albedo scale effects over rugged terrain and provided a robust solution for albedo upscaling from fine scale to coarse scale with different mean slopes and different solar zenith angles. The upscaled coarse scale albedos had the great agreements with the simulated coarse scale albedo with a Root-Mean-Square-Error (RMSE of 0.0029 and 0.0017 for black sky albedo (BSA and white sky albedo (WSA, respectively. Then the MRT-based model was preliminarily applied for the assessment of daily MODerate Resolution Imaging Spectroradiometer (MODIS Albedo Collection V006 products (MCD43A3 C6 over rugged terrain. Results showed that the MRT-based model was effective and suitable for conducting the validation of MODIS albedo products over rugged terrain. In this research area, it was shown that the MCD43A3 C6 products with full inversion algorithm, were generally in agreement with the aggregated coarse scale reference albedos over rugged terrain in the Heihe River Basin, with the BSA RMSE of 0.0305 and WSA RMSE of 0.0321, respectively, which were slightly higher than those over flat terrain.

  12. Results of fission product release from intermediate-scale MCCI [molten core-concrete interaction] tests

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Fink, J.K.; Gunther, W.H.; Sehgal, B.R.

    1988-01-01

    A program of reactor-material molten core-concrete interaction (MCCI) tests and related analyses are under way at Argonne National Laboratory under sponsorship of the Electric Power Research Institute (EPRI). The particular objective of these tests is to provide data pertaining to the release of nonvolatile fission products such as La, Ba, and Sr, plus other aerosol materials, from the coupled thermal-hydraulic and chemical processes of the MCCI. The first stages of the program involving small and intermediate-scale tests have been completed. Three small-scale tests (/approximately/5 kg corium) and nine intermediate-scale tests (/approximately/30 kg corium) were performed between September 1985 and September 1987. Real reactor materials were used in these tests. Sustained internal heat generation at nominally 1 kW per kg of melt was provided by direct electrical heating of the corium mixture. MCCI tests were performed with both fully and partially oxidized corium mixtures that contained a variety of nonradioactive materials such as La 2 O 3 , BaO, and SrO to represent fission products. Both limestone/common sand and basaltic concrete basemats were used. The system was instrumented for characterization of the thermal hydraulic, chemical, gas release, and aerosol release processes

  13. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet

    2016-05-05

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. Towards a Quantitative Use of Satellite Remote Sensing in Crop Growth Models for Large Scale Agricultural Production Estimate (Invited)

    Science.gov (United States)

    Defourny, P.

    2013-12-01

    The development of better agricultural monitoring capabilities is clearly considered as a critical step for strengthening food production information and market transparency thanks to timely information about crop status, crop area and yield forecasts. The documentation of global production will contribute to tackle price volatility by allowing local, national and international operators to make decisions and anticipate market trends with reduced uncertainty. Several operational agricultural monitoring systems are currently operating at national and international scales. Most are based on the methods derived from the pioneering experiences completed some decades ago, and use remote sensing to qualitatively compare one year to the others to estimate the risks of deviation from a normal year. The GEO Agricultural Monitoring Community of Practice described the current monitoring capabilities at the national and global levels. An overall diagram summarized the diverse relationships between satellite EO and agriculture information. There is now a large gap between the current operational large scale systems and the scientific state of the art in crop remote sensing, probably because the latter mainly focused on local studies. The poor availability of suitable in-situ and satellite data over extended areas hampers large scale demonstrations preventing the much needed up scaling research effort. For the cropland extent, this paper reports a recent research achievement using the full ENVISAT MERIS 300 m archive in the context of the ESA Climate Change Initiative. A flexible combination of classification methods depending to the region of the world allows mapping the land cover as well as the global croplands at 300 m for the period 2008 2012. This wall to wall product is then compared with regards to the FP 7-Geoland 2 results obtained using as Landsat-based sampling strategy over the IGADD countries. On the other hand, the vegetation indices and the biophysical variables

  15. Novel Production Protocol for Small-scale Manufacture of Probiotic Fermented Foods

    Science.gov (United States)

    Westerik, Nieke; Wacoo, Alex Paul; Sybesma, Wilbert; Kort, Remco

    2016-01-01

    A novel dried bacterial consortium of Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106 is cultured in 1 L of milk. This fresh starter can be used for the production of fermented milk and other fermented foods either at home or at small-scale in rural settings. For the fresh starter, 1 L of milk is pasteurized in a pan that fits into a larger pan containing water, placed on a source of heat. In this water bath, the milk is heated and incubated at 85 °C for 30 min. Thereafter, the milk is cooled down to 45 °C, transferred to a vacuum flask, inoculated with the dried bacteria and left for at least 16 hr between 30 °C and 45 °C. For the purpose of frequent home production, the fresh starter is frozen into ice cubes, which can be used for the production of small volumes of up to 2 L of fermented milk. For the purpose of small-scale production in resource-poor countries, pasteurization of up to 100 L of milk is conducted in milk cans that are placed in a large sauce pan filled with water and heated on a fire at 85 °C for 30 min, and subsequently cooled to 45 °C. Next, the 100 L batch is inoculated with the 1 L freshly prepared starter mentioned before. To assure an effective fermentation at a temperature between 30 and 45 °C, the milk can is covered with a blanket for 12 hr. For the production of non-dairy fermented foods, the fresh starter is left in a cheese cloth for 12 hr, and the drained-off whey can be subsequently used for the inoculation of a wide range of food raw materials, including vegetables and cereal-based foods. PMID:27684196

  16. Trading off natural resources and rural livelihoods. A framework for sustainability assessment of small-scale food production in water-limited regions

    Science.gov (United States)

    Recanati, Francesca; Castelletti, Andrea; Dotelli, Giovanni; Melià, Paco

    2017-12-01

    Enhancing local production is key to promoting food security, especially in rural households of low-income countries, but may conflict with limited natural resources and ecosystems preservation. We propose a framework integrating the water-food nexus and a sustainable livelihoods perspective to assess small-scale food production in water-poor regions. We demonstrate it by assessing alternative production scenarios in the Gaza Strip at different spatial scales. At the scale of a single farm, there is a clear conflict among objectives: while cash crops ensure good incomes but contribute scarcely to domestic protein supply, crops performing well from the nutritional and environmental viewpoint are among the worst from the economic one. At the regional scale, domestic production might cover an important fraction of nutritional needs while contributing to household income, but water scarcity impairs the satisfaction of food demand by domestic production alone. Pursuing food security under multiple constraints thus requires a holistic perspective: we discuss how a multidimensional approach can promote the engagement of different stakeholders and allow the exploration of trade-offs between food security, sustainable exploitation of natural resources and economic viability.

  17. Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water.

    Directory of Open Access Journals (Sweden)

    Nicklas Blomquist

    Full Text Available The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process.

  18. Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production

    Directory of Open Access Journals (Sweden)

    David Orrego

    2018-03-01

    Full Text Available Coffee, one of the most popular food commodities and beverage ingredients worldwide, is considered as a potential source for food industry and second-generation biofuel due to its various by-products, including mucilage, husk, skin (pericarp, parchment, silver-skin, and pulp, which can be produced during the manufacturing process. A number of research studies have mainly investigated the valuable properties of brewed coffee (namely, beverage, functionalities, and its beneficial effects on cognitive and physical performances; however, other residual by-products of coffee, such as its mucilage, have rarely been studied. In this manuscript, the production of bioethanol from mucilage was performed both in shake flasks and 5 L bio-reactors. The use of coffee mucilage provided adequate fermentable sugars, primarily glucose with additional nutrient components, and it was directly fermented into ethanol using a Saccharomyces cerevisiae strain. The initial tests at the lab scale were evaluated using a two-level factorial experimental design, and the resulting optimal conditions were applied to further tests at the 5 L bio-reactor for scale up. The highest yields of flasks and 5 L bio-reactors were 0.46 g ethanol/g sugars, and 0.47 g ethanol/g sugars after 12 h, respectively, which were equal to 90% and 94% of the theoretically achievable conversion yield of ethanol.

  19. Thermo-energetic design of machine tools a systemic approach to solve the conflict between power efficiency, accuracy and productivity demonstrated at the example of machining production

    CERN Document Server

    2015-01-01

    The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining. In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions:   1.  Providing the modelling fundamentals to calculate the heat fluxes and the resulti...

  20. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis.

    Science.gov (United States)

    Wang, Mengru; Ma, Lin; Strokal, Maryna; Ma, Wenqi; Liu, Xuejun; Kroeze, Carolien

    2018-04-27

    Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4-5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China.

  1. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  2. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  3. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis

    Science.gov (United States)

    2018-01-01

    Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4–5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China. PMID:29671326

  4. Climate change impacts and adaptations on small-scale livestock production

    Directory of Open Access Journals (Sweden)

    Taruvinga, A.

    2013-06-01

    Full Text Available The paper estimated the impacts of climate change and adaptations on small-scale livestock production. The study is based on a survey of 1484 small-scale livestock rural farmers across the Eastern Cape Province of South Africa. Regression estimates finds that with warming, the probability of choosing the following species increases; goats, dual purpose chicken (DPC, layers, donkeys and ducks. High precipitation increases the probability of choosing the following animals; beef, goats, DPC and donkeys. Further, socio-economic estimates indicate that livestock selection choices are also conditioned by gender, age, marital status, education and household size. The paper therefore concluded that as climate changes, rural farmers switch their livestock combinations as a coping strategy. Unfortunately, rural farmers face a limited preferred livestock selection pool that is combatable to harsh climate which might translate to a bleak future for rural livestock farmers.

  5. Technology for the large-scale production of multi-crystalline silicon solar cells and modules

    International Nuclear Information System (INIS)

    Weeber, A.W.; De Moor, H.H.C.

    1997-06-01

    In cooperation with Shell Solar Energy (formerly R and S Renewable Energy Systems) and the Research Institute for Materials of the Catholic University Nijmegen the Netherlands Energy Research Foundation (ECN) plans to develop a competitive technology for the large-scale manufacturing of solar cells and solar modules on the basis of multi-crystalline silicon. The project will be carried out within the framework of the Economy, Ecology and Technology (EET) program of the Dutch ministry of Economic Affairs and the Dutch ministry of Education, Culture and Sciences. The aim of the EET-project is to reduce the costs of a solar module by 50% by means of increasing the conversion efficiency as well as the development of cheap processes for large-scale production

  6. Characterisation and full-scale production testing of multifunctional surfaces for deep drawing applications

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; De Chiffre, Leonardo

    2017-01-01

    assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests......Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot...

  7. Scaling relations for plasma production and acceleration of rotating plasma flows

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi; Sekine, Ryusuke; Hasegawa, Kazuyuki.

    1989-01-01

    Scaling relations are investigated theoretically and experimentally of the plasma production and acceleration in the rotating plasma gun which has been developed as a new means of plasma centrifuge. Two operational modes: the gas-discharge mode for gaseous elements and the vacuum-discharge mode for solid elements are studied. Relations of the plasma density and velocities to the discharge current and the magnetic field are derived. The agreement between experiment and theory is quite well. It is found that fully-ionized rotating plasmas produced in the gas-discharge mode is most advantageous to realize efficient plasma centrifuge. (author)

  8. Limiting fragmentation, scaling and substructual dependence of multiparticle production in high energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Otterlund, I; Garpman, S; Persson, S; Soderstrom, K; Stenlund, E [Lund Univ. (Sweden); Adamovich, M I; Alexandrov, Y A; Chernyavsky, M M; Gerassimov, S G; Kharlamov, S P; Larionova, V G; Maslennikova, N V; Orlova, G I; Peresadko, N G; Salmanova, N A; Tretyakova, M I [AN SSSR, Moscow. Fizicheskij Inst. (USSR); Aggarwal, M M; Friedlander, E M; Heckman, H H; Lindstrom, P J [Lawrence Berkeley Lab., CA (USA); Andreeva, N P; Anson, Z V; Ameeva, Z V; Bubnov, V I; Chasnicov, I Y; Eremenko, L E; Eligbaeva, G Z; Gaitinov, A S; Kalyachkina, G S; Kanygina, E K; Shakhova, T I [AN Kazakhskoj SSR, Alma-Ata. Inst. Fiziki Vysokikh Ehnergij (USSR); Arora, R; Bhatia, V S; Kaur, M; Mittra, I S [Panjab Univ., Chandigarh (India); Azimov, S A; Chernova, L P; Gadzhieva, S I; Gulamov, K G; Kadyrov, F G; Lukicheva, N S; Navotny, V S; Svechnikova, L N [AN Uzbekskoj SSR, Tashkent. Fiziko-Tekhnicheskij Inst. (USSR); Basova, E; Bondarenko, R A; Gulyamov, U G; EMUO1 Collaboration

    1990-01-01

    We report on recent results obtained by the EMUO1 collaboration from studies of {sup 16}O + emulsion, at 14.6, 60 and 200 A GeV, and {sup 32}S + emulsion and {sup 32}S+Au interactions at 200 A GeV. Shower-particle production in oxygen-induced interactions are studied over the energy range 2.1-200 A GeV. Scaling and limiting fragmentation are observed. Multiplicity and angular distributions of low energy target-associated particles are presented and compared with distributions obtained using the Ranft and the Fritiof simulation codes. (orig.).

  9. Development of in-situ product removal strategies in biocatalysis applying scaled-down unit operations

    DEFF Research Database (Denmark)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf Hoffmeyer

    2017-01-01

    different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit...... operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi...

  10. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  11. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    Science.gov (United States)

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A versatile, steam reforming based small-scale hydrogen production process

    International Nuclear Information System (INIS)

    P C Hulteberg; F A Silversand; B Porter; R Woods

    2006-01-01

    In this paper, a new design methodology and process is proposed for small scale pure hydrogen production capable of serving energy markets ranging from distributed generation to vehicular refuelling. The system was designed for producing 7 Nm 3 /hr pure hydrogen (purity of ≤ 1 ppm CO dry), yielding 10 kWe net power from a fuel cell system with an overall parasitic power loss ≤ 10 %. The discussion of this process includes a detailed description of the design methodology and operational results of the catalytic converter, the hydrogen purification system and the fuel cell system. This paper will discuss the design methodology of the overall system, as well as the specific design of the catalytic converter, the catalysts used within, and the hydrogen purification system. It will also report the system performance including gas purity, recovery rate, overall hydrogen production efficiencies, and electrical efficiencies during fuel cell operation. (authors)

  13. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  14. Scaling up the production capacity of U-Mo powder by HMD process

    International Nuclear Information System (INIS)

    Pasqualini, E.E.; Lopez, M.; Helzel Garcia, L.J.; Echenique, P.; Adelfang, P.

    2002-01-01

    The recent discovery that uranium alloys in metastable gamma phase can be hydrided at low temperatures and pressures have allowed developing the method of commuting bulk materials by milling the hydride to desired size and then dehydriding the powder. This process is called HMD (hydriding-milling-dehydriding) and needs an initial step of hydrogen incorporation to allow the alloy to be hydrided. This four step process has been conveniently set up for the production of U-7Mo p